JP2009052757A - Siphon type circulation type heat pipe - Google Patents

Siphon type circulation type heat pipe Download PDF

Info

Publication number
JP2009052757A
JP2009052757A JP2007217275A JP2007217275A JP2009052757A JP 2009052757 A JP2009052757 A JP 2009052757A JP 2007217275 A JP2007217275 A JP 2007217275A JP 2007217275 A JP2007217275 A JP 2007217275A JP 2009052757 A JP2009052757 A JP 2009052757A
Authority
JP
Japan
Prior art keywords
heat
pipe
liquid
heat receiving
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007217275A
Other languages
Japanese (ja)
Other versions
JP5067692B2 (en
Inventor
Hideo Shingu
秀夫 新宮
Nobuo Otani
暢夫 大谷
Toyoji Onishi
東洋司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKASAWAN ENERG KENKYU CT
Wakasa Wan Energy Research Center
Original Assignee
WAKASAWAN ENERG KENKYU CT
Wakasa Wan Energy Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKASAWAN ENERG KENKYU CT, Wakasa Wan Energy Research Center filed Critical WAKASAWAN ENERG KENKYU CT
Priority to JP2007217275A priority Critical patent/JP5067692B2/en
Publication of JP2009052757A publication Critical patent/JP2009052757A/en
Application granted granted Critical
Publication of JP5067692B2 publication Critical patent/JP5067692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a siphon type circulation type heat pipe capable of extending the range of operation temperature as well as realizing increase of a heat transporting amount, and suitable for use in top heat or horizontal heat. <P>SOLUTION: A heat receiving pipe part is provided at a predetermined part of an annular pipe 1, the heat receiving pipe and a storage tank 2 arranged above the heat receiving pipe are connected by warm liquid rising pipe part, and a steam expansion chamber is continuously provided for the heat receiving pipe part. The storage tank 2 stores heating medium liquid while leaving a void inside, and connects to a warm liquid descending pipe part at its lower part so as to connect to a heat radiation pipe part provided below the tank. The heat radiation pipe part is connected to a cool liquid rising pipe part with its liquid head position higher than the liquid surface level of the heating medium liquid 11 stored in the tank. End parts of the cool liquid rising pipe part and a cool liquid descending pipe part communicating with the heat receiving pipe part are continuously connected via a heat-conductive cooling pipe part penetrating the storage tank 2 going through the void inside the tank. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒートパイプの改良、詳しくは、作動温度範囲の拡張が図れると共に、熱伝達性の飛躍的な向上、特に温熱輸送量を格段に増大することができ、トップヒートや水平ヒートでの使用も可能で、しかも、構造も非常に簡素なサイフォン式循環型ヒートパイプに関するものである。   The present invention can improve the heat pipe, more specifically, extend the operating temperature range, and can dramatically increase the heat transfer property, particularly the heat transport amount, and can be used in top heat and horizontal heat. The present invention relates to a siphon circulation heat pipe that can be used and has a very simple structure.

周知のとおり、産業上や生活上の至る所で見受けられる熱交換器や冷却装置等において高速に熱を伝達する手段としてヒートパイプが一般的に使用される。   As is well known, a heat pipe is generally used as a means for transferring heat at high speed in a heat exchanger, a cooling device, and the like that are found throughout the industry and daily life.

そして、このようなヒートパイプとしては、従来において、内面にウィックが設けられた単管状の収容容器に熱媒液を封入して構成し、容器下部を加熱して蒸発させた熱媒液の蒸気を容器上部の放熱部で熱消費により凝縮させ、更にその凝縮液を毛細管力及び重力によりウィック内を下降させてもとの加熱部に還流させることによって継続的な熱輸送を行うことを可能とした単管構造のヒートパイプが公知となっている(例えば、特許文献1参照)。   As such a heat pipe, conventionally, a heat medium liquid is formed by enclosing a heat medium liquid in a single tubular container having a wick on the inner surface, and evaporating by heating the lower part of the container. It is possible to perform continuous heat transport by condensing the condensate by heat consumption in the heat radiating part at the upper part of the container, and returning the condensed liquid to the original heating part even if it is lowered in the wick by capillary force and gravity. A heat pipe having a single tube structure is known (for example, see Patent Document 1).

ところが、上記の単管構造のヒートパイプでは毛管作用を利用していたため、熱媒液の輸送量に限界があり、この限界を越えて加熱が行われると加熱部がドライアウトを起こして循環力が急速に低下し、熱伝達性能が急激に悪化してしまうという問題があった。   However, since the above-mentioned single pipe heat pipe uses the capillary action, there is a limit to the amount of heat transfer liquid transported. However, there was a problem that the heat transfer performance deteriorated rapidly.

一方、従来においては、<特許文献2>にあるような、ループ構造の収容容器に蒸気圧の異なる2種の熱媒液を充填封入し、加熱により容器内で熱媒液を循環させることによって、加熱部で予熱した熱媒液の顕熱を放熱部で放出して熱輸送を行うヒートパイプも公知となっている。   On the other hand, conventionally, by filling and enclosing two types of heat transfer fluids having different vapor pressures in a loop-structured container as described in <Patent Document 2>, the heat transfer fluid is circulated in the vessel by heating. Heat pipes that perform heat transport by releasing the sensible heat of the heat transfer fluid preheated in the heating section at the heat radiating section are also known.

しかしながら、上記<文献1>に係る従来技術においては、管内に閉塞された気体が停留できる条件が必要であったことから、管径を約5mm程度以下に細くしなければならず、それにより熱媒液を高速に循環させることができなかったため、満足できる熱輸送性を得るには至らなかった。   However, in the prior art according to the above <Reference 1>, the condition that the gas blocked in the pipe can be retained is necessary. Therefore, the pipe diameter must be reduced to about 5 mm or less. Since the liquid medium could not be circulated at high speed, satisfactory heat transportability could not be obtained.

また、上記の従来技術においては、熱媒液を所定の方向に循環させるために収容容器内に逆止弁等の流動方向制御手段を設ける必要があり、その構造がどうしても複雑になり易かった。   Further, in the above prior art, it is necessary to provide a flow direction control means such as a check valve in the storage container in order to circulate the heat transfer liquid in a predetermined direction, and the structure is apt to be complicated.

そこで、本件出願人は、上記問題の解決を図るために図7に示すような、受熱管部を下部に備え、上部に放熱管部を備えた環状パイプにおいて、受熱管部に蒸気膨張室を設け、放熱管部に蒸気収縮室を設けることにより気泡の浮力を利用して熱媒液の高速循環を可能としたループ型ヒートパイプを発明し、以前に特許出願(特願2007-5429)している。   Therefore, in order to solve the above problems, the applicant of the present invention is provided with a heat receiving pipe part at the lower part and a heat radiating pipe part at the upper part as shown in FIG. Invented a loop-type heat pipe that enables high-speed circulation of the heat transfer fluid using the buoyancy of bubbles by providing a steam shrinkage chamber in the heat radiating tube, and previously filed a patent application (Japanese Patent Application No. 2007-5429). ing.

ところが、上記出願に係るループ型ヒートパイプの構造は、下部で加熱した熱媒液の温熱を上部で受け取るボトムヒートでの使用に適していたものの、そのままの構造ではトップヒートや水平ヒートでの使用に適さず、ヒートパイプとしての用途が制約されるという難点があった。   However, although the structure of the loop heat pipe according to the above application was suitable for use in bottom heat that receives the heat of the heat transfer fluid heated in the lower part, the structure as it is is used in top heat or horizontal heat. There was a difficulty that the use as a heat pipe was restricted.

他方、従来においては、トップヒートや水平ヒートの使用に適した循環型ヒートパイプとして<特許文献3>にあるような、連続したU字管部から成るパイプ部材の両端を貯溜槽の下部に連結すると共に、それぞれのU字管部の下部位置に受熱部及び放熱部を配設して構成し、受熱部内の熱媒液を加熱して沸騰させることにより貯溜槽内の蒸気圧を増大させ、その増大した蒸気圧を利用して熱媒液を循環させる構造も開示されている。   On the other hand, in the past, both ends of a pipe member composed of a continuous U-shaped pipe portion as described in <Patent Document 3> as a circulation heat pipe suitable for use with top heat or horizontal heat are connected to the lower part of the storage tank. In addition, the heat receiving portion and the heat radiating portion are arranged at the lower position of each U-shaped tube portion, and the vapor pressure in the storage tank is increased by heating and boiling the heat transfer fluid in the heat receiving portion, A structure for circulating the heat transfer fluid using the increased vapor pressure is also disclosed.

ところが、上記<文献3>に係る従来技術では、受熱部における熱媒液の沸騰が起り難かったことから、放熱部で冷却された熱媒液を受熱部に還流する前に貯溜槽内に収容された温液で予め温めておく必要があり、これによって貯溜槽内の温液が冷めてしまうことで放熱部に輸送可能な温熱輸送量が小さくなってしまうという構造的な問題があった。
特開2000−171181号公報(第2−11頁、第1〜7図) 特開平1−111197号公報(第2−15頁、第1〜7図) 特開平2004−245566号公報(第2−30頁、第1〜33図)
However, in the prior art according to the above <Reference 3>, since the boiling of the heat transfer liquid in the heat receiving part is unlikely to occur, the heat transfer liquid cooled in the heat radiating part is accommodated in the storage tank before returning to the heat receiving part. There is a structural problem that the amount of heat transportable to the heat radiating portion becomes small because the warm liquid in the storage tank needs to be preliminarily warmed by this, so that the warm liquid in the storage tank is cooled.
Japanese Unexamined Patent Publication No. 2000-171181 (page 2-11, FIGS. 1-7) Japanese Patent Laid-Open No. 1-1111197 (page 2-15, FIGS. 1-7) Japanese Unexamined Patent Publication No. 2004-245666 (page 2-30, FIGS. 1-33)

本発明は、上記の如き問題に鑑みて為されたものであり、その目的とするところは、外部エネルギーによる助勢を必要とせず自動的に気体、液体およびそれらの混合した気液二層流をなす熱媒体が循環作動可能な熱輸送手段であって、作動温度範囲の拡張が図れると共に、熱伝達性の向上、特に温熱輸送量の増大を実現することもでき、トップヒートや水平ヒートでの使用にも適し、しかも、構造も簡素であって製造面でも有利なサイフォン式循環型ヒートパイプを提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to automatically convert gas, liquid, and a mixed gas-liquid two-layer flow without requiring assistance from external energy. The heat transfer medium is a heat transport means that can be circulated and can extend the operating temperature range, improve heat transfer, especially increase the amount of heat transport. An object of the present invention is to provide a siphon-type circulation heat pipe that is suitable for use, has a simple structure, and is advantageous in terms of manufacturing.

本発明者が、上記課題を解決するために採用した手段を添付図面を参照して説明すれば次のとおりである。   Means employed by the present inventor for solving the above problems will be described with reference to the accompanying drawings.

即ち、環状パイプ1に減圧封入された熱媒液11を所定方向に循環させて熱輸送可能な循環型ヒートパイプであって、非作動時において熱媒液11を循環経路のすべての部分で連結させてサイフォンの原理の利用を可能としたものであり、
前記環状パイプ1の所定部位に加熱機構Hと熱交換可能なるごとく受熱管部12を配設し、この受熱管部12とその上方に配設された貯溜タンク2とを温液上昇管部13により接続すると共に、前記受熱管部12には蒸気膨張室Eを連設して、受熱時において前記蒸気膨張室Eから温液上昇管部13に連続的に気泡を供給可能にする一方、
前記貯溜タンク2には、内部に空隙Sを残して熱媒液11を収容すると共に、下部に温液下降管部14を連結してタンク下方に配設された放熱管部15と接続し、かつ、当該放熱管部15には前記タンク内に収容した熱媒液11の液面レベルよりも液頭位置の高い冷液上昇管部16を連結して、この冷液上昇管部16と前記受熱管部12に連通する冷液下降管部17の端部同士を、タンク内部の空隙Sを経由して前記貯留タンク2を貫通する伝熱性の冷却管部18を介して連接して構成した点に特徴がある。
That is, it is a circulating heat pipe capable of transporting heat by circulating the heat medium liquid 11 sealed in the annular pipe 1 in a predetermined direction, and the heat medium liquid 11 is connected to all parts of the circulation path when not operating. To enable the use of the principle of siphon,
A heat receiving pipe section 12 is disposed at a predetermined portion of the annular pipe 1 so that heat exchange with the heating mechanism H is possible. The heat receiving pipe section 12 and the storage tank 2 disposed above the heat receiving pipe section 12 are connected to the hot liquid rising pipe section 13. In addition, the steam expansion chamber E is connected to the heat receiving pipe section 12 to enable continuous supply of bubbles from the steam expansion chamber E to the warm liquid rising pipe section 13 during heat reception.
The storage tank 2 accommodates the heat transfer fluid 11 while leaving a gap S therein, and is connected to a heat radiating pipe section 15 disposed below the tank by connecting a hot liquid descending pipe section 14 to the lower portion. And, the radiating pipe part 15 is connected with a chilled liquid rising pipe part 16 having a liquid head position higher than the liquid level of the heat transfer liquid 11 accommodated in the tank, and the chilled liquid rising pipe part 16 and the The end portions of the cold liquid descending pipe portion 17 communicating with the heat receiving pipe portion 12 are connected to each other via a heat conductive cooling pipe portion 18 penetrating the storage tank 2 via a gap S inside the tank. There is a feature in the point.

また、本発明においては、上記課題を解決するために、必要に応じて上記手段に加え、環状パイプ1において受熱管部12を放熱管部15よりも上方に配設するという技術的手段を採用することができる。   Further, in the present invention, in order to solve the above-described problem, in addition to the above-described means as necessary, technical means of arranging the heat receiving pipe portion 12 above the heat radiating pipe portion 15 in the annular pipe 1 is adopted. can do.

また、本発明においては、上記課題を解決するために、必要に応じて上記手段に加え、環状パイプ1において受熱管部12と放熱管部15とを水平状態に配設するという技術的手段を採用することができる。   Further, in the present invention, in order to solve the above-described problem, technical means for arranging the heat receiving pipe portion 12 and the heat radiating pipe portion 15 in the annular pipe 1 in a horizontal state in addition to the above means as necessary. Can be adopted.

また、本発明においては、上記課題を解決するために、必要に応じて上記手段に加え、環状パイプ1の受熱管部12に設けた蒸気膨張室Eの基部を細く形成するという技術的手段を採用することができる。   Further, in the present invention, in order to solve the above-mentioned problem, in addition to the above-described means as necessary, a technical means for forming a base portion of the steam expansion chamber E provided in the heat receiving pipe portion 12 of the annular pipe 1 is formed thinly. Can be adopted.

また、本発明においては、上記課題を解決するために、必要に応じて上記手段に加え、環状パイプ1に収容する熱媒液11に界面活性剤を添加して起泡性を増大するという技術的手段を採用することができる。   Further, in the present invention, in order to solve the above-described problems, a technique of increasing the foamability by adding a surfactant to the heat transfer fluid 11 accommodated in the annular pipe 1 in addition to the above means as necessary. Manual means can be employed.

また、本発明においては、上記課題を解決するために、必要に応じて上記手段に加え、環状パイプ1において受熱管部12の蒸気膨張室E内に沸騰石または極細毛管を丸めて成る突沸抑制材を内装するという技術的手段を採用することができる。   In addition, in the present invention, in order to solve the above-described problem, in addition to the above-described means as necessary, bumping suppression in which an annular pipe 1 is formed by rounding a boiling stone or an ultracapillary tube in the steam expansion chamber E of the heat receiving pipe portion 12 is performed. It is possible to adopt technical means for interior decoration.

また、本発明においては、上記課題を解決するために、必要に応じて上記手段に加え、高沸点の熱媒液11aを減圧封入した環状パイプ1であって、当該環状パイプ1を、下部に加熱機構Hに連繋される受熱管部12を備え、かつ、上部には放熱管部15を備えて構成し、前記受熱管部12と放熱管部15を温液上昇管部13及び冷液下降管部17において連通して、受熱時において前記熱媒液11aが当該環状パイプ1内を循環可能とし、かつ、
前記環状パイプ1の受熱管部12の下部には、蒸気膨張室Eを配設すると共に、前記高沸点熱媒液11aとは非相容で、かつ、比重の大きい低沸点熱媒液11bを充填して、受熱時において前記蒸気膨張室Eから温液上昇管部13に連続的に気泡を供給可能とする一方、
前記放熱管部15に、上部に膨出した室内に空隙Sを作出すると共に、この放熱管部15で凝縮した前記低沸点液11bを冷液下降管部17を通って前記受熱管部12の下部に還流可能とするという技術的手段を採用することができる。
In addition, in the present invention, in order to solve the above-described problem, an annular pipe 1 in which a high-boiling heat transfer fluid 11a is sealed under reduced pressure in addition to the above-described means as necessary. A heat receiving pipe section 12 connected to the heating mechanism H is provided, and a heat radiating pipe section 15 is provided at the upper part, and the heat receiving pipe section 12 and the heat radiating pipe section 15 are connected to the hot liquid rising pipe section 13 and the cold liquid descending section. In communication with the pipe portion 17, the heat transfer liquid 11 a can circulate in the annular pipe 1 when receiving heat, and
A steam expansion chamber E is disposed below the heat receiving pipe portion 12 of the annular pipe 1, and a low boiling point heating medium liquid 11b having a high specific gravity is incompatible with the high boiling point heating medium liquid 11a. While filling, it is possible to continuously supply bubbles from the steam expansion chamber E to the warm liquid riser 13 during heat reception,
A space S is created in the heat radiating pipe portion 15 in the chamber bulging upward, and the low boiling point liquid 11b condensed in the heat radiating pipe portion 15 is passed through a cold liquid descending pipe portion 17 to the heat receiving pipe portion 12. It is possible to adopt a technical means for allowing refluxing in the lower part.

また、本発明においては、上記課題を解決するために、必要に応じて上記手段に加え、環状パイプ1に減圧封入された高沸点の熱媒液11aを所定方向に循環させて熱輸送可能な循環型ヒートパイプであって、非作動時において熱媒液11aを循環経路のすべての部分で連結させてサイフォンの原理の利用を可能としたものであり、
前記環状パイプ1の所定部位に加熱機構Hと熱交換可能なるごとく受熱管部12を配設し、この受熱管部12とその上方に配設された一次冷却用の貯溜タンク2とを温液上昇管部13により接続すると共に、前記受熱管部12の下部には、蒸気膨張室Eを配設すると共に、前記高沸点熱媒液11aとは非相容で、かつ、比重の大きい低沸点熱媒液11bを充填して、受熱時において前記蒸気膨張室Eから温液上昇管部13に連続的に気泡を供給可能にする一方、
前記貯溜タンク2に、内部に空隙Sを残して熱媒液11aを収容して、さらに当該貯溜タンク2の熱媒液収容部位の下部に温液輸送管部14'を連通させることにより、前記タンク2の下方或いは水平方向に配設された二次冷却用の放熱部15と接続させ、かつ、この放熱管部15には冷液輸送管部17'を連通せしめて下方或いは水平方向に配設された前記受熱管部12と接続して、前記貯溜タンク2内で凝縮した前記低沸点液11bを前記温液輸送管部14'及び冷液輸送管部17'を通って前記受熱管部12の下部に還流可能とするという技術的手段を採用することができる。
In addition, in the present invention, in order to solve the above-described problem, in addition to the above-described means, heat transport liquid 11a having a high boiling point sealed in the annular pipe 1 under reduced pressure can be circulated in a predetermined direction and transported by heat. It is a circulation type heat pipe, and it enables the use of the siphon principle by connecting the heat transfer fluid 11a at all parts of the circulation path when not in operation.
A heat receiving pipe portion 12 is disposed at a predetermined portion of the annular pipe 1 so that heat exchange with the heating mechanism H is possible, and the heat receiving pipe portion 12 and the primary cooling storage tank 2 disposed above the heat receiving pipe portion 12 are heated. A low-boiling point which is connected by the rising pipe part 13 and has a vapor expansion chamber E below the heat receiving pipe part 12 and is incompatible with the high-boiling-point heat transfer fluid 11a and has a large specific gravity. While filling the heat transfer fluid 11b, it is possible to continuously supply bubbles from the steam expansion chamber E to the warm liquid riser portion 13 during heat reception,
By storing the heat transfer medium 11a in the storage tank 2 leaving a gap S inside, and further connecting a hot liquid transport pipe portion 14 'to the lower part of the heat transfer medium storing portion of the storage tank 2, It is connected to a heat radiating section 15 for secondary cooling arranged below or horizontally in the tank 2, and a chilled liquid transport pipe section 17 ′ is connected to the heat radiating pipe section 15 so as to be arranged in the lower or horizontal direction. The low-boiling point liquid 11b condensed in the storage tank 2 is connected to the installed heat receiving pipe section 12 and passes through the hot liquid transport pipe section 14 ′ and the cold liquid transport pipe section 17 ′ to form the heat receiving pipe section. A technical means for allowing reflux at the bottom of 12 can be adopted.

また、本発明においては、上記課題を解決するために、必要に応じて上記手段に加え、環状パイプ1の受熱管部12の底部に連通する連通管19を介して蒸気膨張室Eを設けるという技術的手段を採用することができる。   Further, in the present invention, in order to solve the above-described problem, the vapor expansion chamber E is provided through a communication pipe 19 communicating with the bottom of the heat receiving pipe section 12 of the annular pipe 1 in addition to the above means as necessary. Technical means can be employed.

また、本発明においては、上記課題を解決するために、必要に応じて上記手段に加え、環状パイプ1の受熱管部12の下部に充填する低沸点液11bとしてパーフロロカーボンを使用するという技術的手段を採用することができる。   Further, in the present invention, in order to solve the above-described problem, in addition to the above-described means as necessary, technically, perfluorocarbon is used as the low boiling point liquid 11b filled in the lower part of the heat receiving pipe portion 12 of the annular pipe 1. Means can be employed.

本発明では、熱媒液を真空封入した環状パイプの受熱管部に連通する温液上昇管部、及び放熱管部に連通する温液下降管部を貯溜タンクに連結して構成すると共に、前記受熱管部には蒸気膨張室を形成し、かつ、貯溜タンク内に空隙を残して熱媒液を収容したことにより、受熱管部を加熱した際、蒸気膨張室内で膨張した蒸気が気泡となって温液上昇管部に連続的に放出され、その放出された気泡が前記タンク内の空隙に向かって浮力で上昇して熱媒液を上方に押し上げる一方、気泡後方の熱媒液は気泡が上昇した分、吸い込まれて環状パイプ内の熱媒液を間歇的でなく連続的に効率良く循環させることができるため、高速かつ大量の熱輸送を行うことが可能となる。   In the present invention, the hot liquid rising pipe part communicating with the heat receiving pipe part of the annular pipe vacuum-sealed with the heat transfer fluid and the hot liquid lowering pipe part communicating with the heat radiating pipe part are connected to the storage tank, and A steam expansion chamber is formed in the heat receiving pipe section, and the heat medium liquid is accommodated in the storage tank leaving a gap, so that when the heat receiving pipe section is heated, the steam expanded in the steam expansion chamber becomes bubbles. The discharged bubbles are continuously discharged to the warm liquid riser section, and the discharged bubbles rise by buoyancy toward the gap in the tank to push the heat transfer fluid upward, while the heat transfer fluid behind the bubbles Since the amount of the rise is sucked in and the heat transfer fluid in the annular pipe can be continuously and efficiently circulated without being intermittent, high-speed and large-scale heat transport can be performed.

しかも、上記の循環作動時においては、蒸気膨張室内で発生した気泡は熱媒液を押し上げつつ温液上昇管部を上昇するが、貯溜タンク内に放出されると直ちに凝縮して液体に戻る。したがって、貯溜タンク内は常に液体で充たされている事によりサイフォンの原理が作用し、タンク内に収容された熱媒液は放熱管部へと一旦降下した後、冷液上昇管部の頂部位置である貯溜タンクの上部近傍まで再度上昇する。このようにサイフォン作用で熱媒液が下降及び上昇することにより、放熱管部が貯溜タンク下方に離れて配置されていても熱媒液は環状パイプ内を円滑に循環する。   In addition, during the above-described circulation operation, bubbles generated in the steam expansion chamber rise up the warm liquid riser while pushing up the heat transfer liquid, but immediately condense and return to liquid when released into the storage tank. Therefore, the principle of siphon works because the storage tank is always filled with liquid, and the heat transfer liquid stored in the tank once drops to the heat radiating pipe, and then the top of the cold liquid rising pipe It rises again to the position near the top of the storage tank. As described above, the heat medium liquid descends and rises by the siphon action, so that the heat medium liquid smoothly circulates in the annular pipe even if the heat radiating pipe portion is disposed below the storage tank.

そして更に、放熱管部に連結された冷液上昇管部と受熱管部に連通する冷液下降管部との端部に接続された伝熱性を有する冷却管部を、タンク内部の空隙を通して貯留タンク内に配設したことによって、冷却管部を通過する低温の熱媒液によりタンク内の空隙が冷やされて温液上昇管部からタンク内に放出される気泡の凝縮・液化を促進する効果が得られるだけでなく、受熱管部との蒸気圧差の拡大によって高圧域から低圧域へと液を押し上げる力が増大し熱媒液の循環速度を高速化できる。   Furthermore, a cooling pipe portion having heat conductivity connected to the ends of the cold liquid rising pipe section connected to the heat radiating pipe section and the cold liquid lowering pipe section communicating with the heat receiving pipe section is stored through a gap inside the tank. The effect of accelerating the condensation and liquefaction of bubbles released into the tank from the warm liquid rising pipe part by cooling the air gap in the tank by the low-temperature heat transfer liquid passing through the cooling pipe part by arranging in the tank As a result, the force for pushing up the liquid from the high-pressure region to the low-pressure region is increased by increasing the vapor pressure difference with the heat receiving pipe portion, and the circulation speed of the heat transfer fluid can be increased.

また、環状パイプの受熱管部に設けた蒸気膨張室により低温域の加熱でも気泡を良好に発生させることが可能となるため、熱媒液が放熱管部を通過した後、受熱管部に還流する前に貯溜タンク内の高温の熱媒液で低温の熱媒液を予熱する必要も生じず、それによって輸送熱の損失が発生することもないため受熱管部から放熱管部への温熱輸送量の増大も図れる。   In addition, the steam expansion chamber provided in the heat receiving pipe part of the annular pipe can generate air bubbles even when heated in a low temperature region, so that the heat transfer fluid passes through the heat radiating pipe part and then returns to the heat receiving pipe part. It is not necessary to preheat the low-temperature heat transfer liquid with the high-temperature heat transfer liquid in the storage tank before the heat transfer, so that no heat loss is caused by transporting the heat from the heat receiving pipe to the heat radiating pipe. The amount can be increased.

そしてまた、循環作動時において貯溜タンク内に収容された多量の熱媒液が環状パイプに順次供給されることにより、パイプ内は温液上昇管部を上昇する気泡を除いて常に熱媒液で満たされている状態となるため、パイプを受熱管部及び貯溜タンクの位置の上下方向又は水平方向に自由に伸長することが可能であるためのサイフォン作用を有効に保つことができると共に、ドライアウト等の機能的な障害を生じることもなく、作動温度が不要に制限されることもない。   In addition, since a large amount of the heat transfer liquid accommodated in the storage tank is sequentially supplied to the annular pipe during the circulation operation, the heat transfer liquid is always kept in the pipe except for the bubbles rising in the warm liquid riser. Since the pipe is filled, the pipe can be freely extended vertically or horizontally in the position of the heat receiving pipe section and the storage tank, so that the siphon action can be effectively maintained, and the dryout can be performed. Thus, there is no functional failure such as, and the operating temperature is not unnecessarily limited.

他方また、貯溜タンクを介して受熱管部及び放熱管部を設けたことにより、受熱管部と放熱管部の上下に係る相対位置関係を任意に変更することができるため、トップヒートや水平ヒートの形態での設計も可能となり、太陽光の熱利用システムなどの幅広い用途に使用することも可能である。   On the other hand, since the heat receiving pipe part and the heat radiating pipe part are provided via the storage tank, the relative positional relationship between the heat receiving pipe part and the heat radiating pipe part can be arbitrarily changed. It is also possible to design in this form, and it can be used for a wide range of applications such as a solar heat utilization system.

加えて、本発明に係る循環型ヒートパイプは、環状パイプと貯溜タンクに熱媒液を封入しただけの極めて簡単な構造であり、また、下降液と上昇液の量が等しいことから位置エネルギーに変化も生じないため、外部から液循環のための仕事を供給する必要もなく、しかも、液循環の方向性を決めたり液を起動したりするための補助操作や、液の逆止弁や気液分離膜なども必要としないことから製造も非常に容易となる。   In addition, the circulation type heat pipe according to the present invention has a very simple structure in which the heat transfer liquid is simply enclosed in the annular pipe and the storage tank, and the amount of the descending liquid and the rising liquid is equal, so that the potential energy is reduced. There is no change, so there is no need to supply work for liquid circulation from the outside.In addition, auxiliary operations for determining the direction of liquid circulation and starting liquid, check valves for liquid and air Since a liquid separation membrane or the like is not required, the production is very easy.

したがって、本発明により、熱輸送性の飛躍的な向上に加え、使用性や生産性にも優れた循環型ヒートパイプを提供することができることから、本発明の実用的利用価値は頗る高い。   Therefore, according to the present invention, it is possible to provide a circulation type heat pipe excellent in usability and productivity in addition to a dramatic improvement in heat transportability, and thus the practical utility value of the present invention is very high.

『実施例1』
まず、本発明の実施例1について、図1に基いて詳細に説明する。まず、符号1で指示するものは、環状パイプであり、符号2で指示するものは、貯溜タンクである。
“Example 1”
First, Example 1 of the present invention will be described in detail with reference to FIG. First, what is indicated by reference numeral 1 is an annular pipe, and what is indicated by reference numeral 2 is a storage tank.

以下、本実施例の構成を詳しく説明する。まず、本実施例においては、熱媒液11である水を低沸点となる真空状態に減圧封入した環状パイプ1の所定部位に、加熱機構Hに連繋される受熱管部12を配設し、この受熱管部12はその上方に配設された貯溜タンク2と温液上昇管部13により接続すると共に、受熱管部12の温液上昇管部13近傍には上向きに膨出する蒸気膨張室Eを形成した(図1参照)。   Hereinafter, the configuration of the present embodiment will be described in detail. First, in the present embodiment, the heat receiving pipe portion 12 connected to the heating mechanism H is disposed at a predetermined portion of the annular pipe 1 in which the heat medium liquid 11 is sealed under reduced pressure in a vacuum state having a low boiling point, The heat receiving pipe portion 12 is connected to a storage tank 2 disposed above the heat receiving pipe portion 12 by a hot liquid rising pipe portion 13, and in the vicinity of the hot liquid rising pipe portion 13 of the heat receiving pipe portion 12, a steam expansion chamber that bulges upward. E was formed (see FIG. 1).

なお、本実施例では、環状パイプ1及び貯留タンク2に内部状態を視認可能なガラス製管材及び容器を使用した。   In this embodiment, glass pipes and containers whose internal state can be visually recognized are used for the annular pipe 1 and the storage tank 2.

そして、前記貯溜タンク2には内部に空隙Sを残した状態で所定量の熱媒液11を収容して、この熱媒液11中に温液上昇管部13の放出口13aを配置すると共に、貯溜タンク2内はタンク上部に開口した排気コック21から脱気を行うことにより真空状態を作出した。   The storage tank 2 accommodates a predetermined amount of the heat transfer fluid 11 with the space S left inside, and the discharge port 13a of the warm liquid riser 13 is disposed in the heat transfer fluid 11. The storage tank 2 was evacuated from the exhaust cock 21 opened at the top of the tank to create a vacuum.

そして更に、前記貯溜タンク2の下部には温液下降管部14を連結し、この温液下降管部14を介してタンク下方に配設され、冷却機構Cに連繋された放熱管部15と接続するとともに、この放熱管部15には前記タンク内に収容した熱媒液11の液面レベルよりも頂部位置が高い冷液上昇管部16を連結した。   Further, a hot liquid descending pipe section 14 is connected to the lower part of the storage tank 2, and a heat radiating pipe section 15 disposed below the tank via the hot liquid descending pipe section 14 and connected to the cooling mechanism C; In addition to the connection, the radiating pipe portion 15 was connected with a cold liquid rising pipe portion 16 having a top position higher than the liquid level of the heat transfer fluid 11 accommodated in the tank.

そうして放熱管部15に連結した冷液上昇管部16の他端部を、受熱管部12に連通する冷液下降管部17の端部と、タンク内部の空隙Sを経由して前記貯留タンク2を貫通する伝熱性の冷却管部18を介して連接して構成した。   Then, the other end of the cold liquid rising pipe part 16 connected to the heat radiating pipe part 15 is connected to the end of the cold liquid lowering pipe part 17 communicating with the heat receiving pipe part 12 and the gap S inside the tank. It connected and comprised through the heat-conductive cooling pipe part 18 which penetrates the storage tank 2. As shown in FIG.

上記のように構成したことによって、受熱管部12を加熱した際、蒸気膨張室E内で膨張した蒸気が気泡Bとなって温液上昇管部13に連続的に放出され、放出された気泡Bによって環状パイプ1内の熱媒液11を効率良く循環させることができるため、高速かつ大量の熱輸送を行うことが可能となる。   With the above-described configuration, when the heat receiving pipe section 12 is heated, the steam expanded in the steam expansion chamber E becomes a bubble B and is continuously discharged to the warm liquid rising pipe section 13, and the released bubble. Since the heat transfer fluid 11 in the annular pipe 1 can be efficiently circulated by B, a large amount of heat can be transported at high speed.

なお、本実施例においては、環状パイプ1の受熱管部12に設けた蒸気膨張室Eの基部を細く形成することにより、気泡Bの発生を促進して循環速度の高速化を図っている。   In the present embodiment, the base of the steam expansion chamber E provided in the heat receiving pipe portion 12 of the annular pipe 1 is formed thin, thereby promoting the generation of bubbles B and increasing the circulation speed.

しかも、上記の循環作動時においては、蒸気膨張室E内の蒸気の膨張に伴い温液上昇管部13内を上昇する気泡により押し上げられる熱媒液11と同量の液体が冷液下降管部17を通じて受熱管部12に吸入される吸引力によってタンク下方に配設された放熱管部15から冷液上昇管部16の頂部まで熱媒液11を押し上げることができるため、放熱管部15がタンク下方に離れた位置に設けられても熱媒液11は円滑に循環する。   Moreover, at the time of the above circulation operation, the same amount of liquid as the heat transfer liquid 11 pushed up by the bubbles rising in the warm liquid rising pipe section 13 as the steam in the vapor expansion chamber E expands is the cold liquid falling pipe section. Since the heat transfer liquid 11 can be pushed up from the heat radiating pipe 15 disposed below the tank to the top of the cold liquid rising pipe 16 by the suction force sucked into the heat receiving pipe 12 through 17, the heat radiating pipe 15 Even if it is provided at a position distant from the tank, the heat transfer fluid 11 circulates smoothly.

そして更に、環状パイプ1において冷却管部18を貯留タンク内に配設したことにより、冷却管部18を通過する低温の熱媒液11によってタンク内の空隙Sが冷やされて蒸気圧の過剰な増大を抑制し、これによって減圧タンクの効果を奏するだけでなく、熱媒液11の循環速度を高速化することもできる。   Further, since the cooling pipe portion 18 is disposed in the storage tank in the annular pipe 1, the space S in the tank is cooled by the low-temperature heat transfer liquid 11 passing through the cooling pipe portion 18, and the vapor pressure is excessive. In addition to suppressing the increase, the effect of the decompression tank can be obtained, and the circulation speed of the heat transfer fluid 11 can be increased.

なお、本実施例では、冷却管部18にも環状パイプ1の他の部位と同じガラス製管材を使用している。   In the present embodiment, the same glass tube material as that of other portions of the annular pipe 1 is used for the cooling pipe portion 18.

また、貯溜タンク2内を、受熱管部12と放熱管部15の温度差に合わせて熱媒液11が適度な割合で満たすことにより、環状パイプ1内を循環する熱媒液11の流量の自動調節を行うことも可能である。   In addition, the heat medium liquid 11 is filled in the storage tank 2 at an appropriate rate in accordance with the temperature difference between the heat receiving pipe part 12 and the heat radiating pipe part 15, so that the flow rate of the heat medium liquid 11 circulating in the annular pipe 1 is reduced. Automatic adjustment is also possible.

他方また、環状パイプ1の受熱管部12に設けた蒸気膨張室Eにより低温域の加熱でも気泡Bを良好に発生させることが可能となるため、放熱管部15を通過した低温の熱媒液11を予熱する必要もなくなり、輸送熱を損失せずに受熱管部12から放熱管部15への温熱輸送量の増大が可能である。   On the other hand, since the bubble expansion chamber E provided in the heat receiving pipe portion 12 of the annular pipe 1 can favorably generate the bubbles B even by heating in the low temperature region, the low temperature heat transfer liquid that has passed through the heat radiating pipe portion 15. It is no longer necessary to preheat 11, and the amount of heat transport from the heat receiving pipe section 12 to the heat radiating pipe section 15 can be increased without losing transport heat.

そしてまた、作動時において環状パイプ1内は気泡を除いて熱媒液11で常に満たされている状態であるためサイフォン作用により作動時に液の位置エネルギーに変化がなく、またドライアウト等の障害が生じることもない。   In addition, during operation, the annular pipe 1 is always filled with the heat transfer liquid 11 except for air bubbles, so that the potential energy of the liquid does not change during operation due to siphon action, and there is a problem such as dryout. It does not occur.

一方、本実施例では、受熱管部12が放熱管部15よりも上方に配置され、上部の加熱機構Hから下部の冷却機構Cに対して温熱輸送が可能なトップヒートの形態で構成したことにより、太陽光の熱利用システムなどの用途に使用することができる。   On the other hand, in the present embodiment, the heat receiving pipe portion 12 is arranged above the heat radiating pipe portion 15 and is configured in a top heat form capable of transporting heat from the upper heating mechanism H to the lower cooling mechanism C. Therefore, it can be used for applications such as a solar heat utilization system.

加えて、本実施例における循環型ヒートパイプは、環状パイプ1と貯溜タンク2に熱媒液11を封入した極めて簡単な構造であり、また、外部から液循環のための仕事を供給する必要もなく、液循環の方向性を決めたり液を起動したりするための補助操作や、液の逆止弁や気液分離膜なども必要としないことから製造も非常に容易である。   In addition, the circulation type heat pipe in this embodiment has a very simple structure in which the heat transfer liquid 11 is enclosed in the annular pipe 1 and the storage tank 2, and it is also necessary to supply work for liquid circulation from the outside. In addition, there is no need for an auxiliary operation for determining the direction of the liquid circulation or starting the liquid, and a liquid check valve, a gas-liquid separation membrane or the like is also required, so that the manufacture is very easy.

また本実施例では、環状パイプ1に封入する熱媒液11に、界面活性剤である脂肪酸塩を添加したことにより起泡性が向上して、気泡Bの発生が促進され気泡ポンプの効果も大幅に向上した。   In this embodiment, the addition of a fatty acid salt, which is a surfactant, to the heat transfer fluid 11 sealed in the annular pipe 1 improves the foaming property, promotes the generation of bubbles B, and has the effect of the bubble pump. Greatly improved.

加えて、界面活性剤の添加で気泡Bの発生が促進されることによって、管径を数センチメートル以上にまで拡大しても、気泡ポンプの効果が容易に失われることはない。   In addition, since the generation of the bubbles B is promoted by the addition of the surfactant, the effect of the bubble pump is not easily lost even if the tube diameter is expanded to several centimeters or more.

『実施例2』
次に、本発明の実施例2について図2に基いて以下に説明する。本実施例においては、環状パイプ1において受熱管部12と放熱管部15とを水平な位置に配設して、水平に離れた位置への熱輸送が可能な水平ヒートの形態で構成したことにより、ノートパソコンの内部など幅や奥行に比べて高さが低い環境内での熱輸送手段として利用できる(図2参照)。
“Example 2”
Next, Example 2 of the present invention will be described below with reference to FIG. In the present embodiment, the heat receiving tube portion 12 and the heat radiating tube portion 15 are arranged in a horizontal position in the annular pipe 1 and configured in the form of a horizontal heat capable of transporting heat to a horizontally separated position. Thus, it can be used as a heat transport means in an environment where the height is lower than the width or depth, such as the inside of a notebook computer (see FIG. 2).

そして、環状パイプ1及び貯留タンク2には、強度と加工性に優れたステンレス製管材及び容器を使用し、更に環状パイプ1に封入する熱媒液11に、水よりも沸点の低いエチルアルコールを使用したことにより、低温度域かつ低温度差の加熱においても熱輸送を行うことが可能となる。   The annular pipe 1 and the storage tank 2 are made of stainless steel pipes and containers having excellent strength and workability. Further, ethyl alcohol having a boiling point lower than that of water is added to the heat transfer liquid 11 sealed in the annular pipe 1. By using it, it becomes possible to carry out heat transport even in heating in a low temperature range and a low temperature difference.

『実施例3』
次に、本発明の実施例3について図3に基いて以下に説明する。本実施例では、貯溜タンク2内に配設した環状パイプ1の冷却管部18を空隙S中で巻回させたことにより、空隙S内の蒸気と触れる表面積を拡大して冷却効果を向上することができる(図3参照)。
“Example 3”
Next, Embodiment 3 of the present invention will be described below with reference to FIG. In the present embodiment, the cooling pipe portion 18 of the annular pipe 1 disposed in the storage tank 2 is wound in the gap S, so that the surface area in contact with the vapor in the gap S is expanded and the cooling effect is improved. (See FIG. 3).

また本実施例では、環状パイプ1の温液下降管部14及び冷液下降管部17に、冷液上昇管部16及び温液上昇管部13よりも管径が大きい管状部材を使用したことにより、循環時において位置エネルギーから変換される熱媒液11の下降に係る管摩擦抵抗を減少させて循環作用を促進することができる。   Further, in the present embodiment, the hot liquid descending pipe portion 14 and the cold liquid descending pipe portion 17 of the annular pipe 1 are made of tubular members having a diameter larger than that of the cold liquid rising pipe portion 16 and the warm liquid rising pipe portion 13. Accordingly, it is possible to reduce the pipe frictional resistance related to the lowering of the heat transfer fluid 11 converted from the potential energy during circulation, thereby promoting the circulation action.

そしてまた、環状パイプ1の冷却管部18には伝熱性に優れた銅製管材を使用し、更に環状パイプ1に封入する熱媒液11に、エチルアルコールよりも更に沸点の低いアセトンを使用したことにより、ヒートパイプの作動温度範囲の拡張を可能とした。   In addition, a copper pipe material having excellent heat conductivity is used for the cooling pipe portion 18 of the annular pipe 1, and acetone having a boiling point lower than that of ethyl alcohol is used for the heat transfer liquid 11 sealed in the annular pipe 1. This makes it possible to expand the operating temperature range of the heat pipe.

『実施例4』
次に、本発明の実施例4について図4に基いて以下に説明する。本実施例においては、下部に加熱機構Hに連繋された受熱管部12を備え、上部に放熱管部15を備えた環状パイプ1において、前記受熱管部12と放熱管部15を温液上昇管部13及び冷液下降管部17で連通して、管内に高沸点の熱媒液11aを減圧封入すると共に、前記受熱管部12の下部には、蒸気膨張室Eを配設し、前記高沸点熱媒液11aとは非相容で、かつ、比重の大きい低沸点熱媒液11bを充填して構成した(図4参照)。
Example 4
Next, a fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, in the annular pipe 1 having the heat receiving pipe portion 12 connected to the heating mechanism H in the lower portion and the heat radiating tube portion 15 in the upper portion, the heat receiving pipe portion 12 and the heat radiating pipe portion 15 are heated up. The pipe part 13 and the cold liquid descending pipe part 17 communicate with each other, and the high boiling point heating medium liquid 11a is sealed in the pipe under reduced pressure, and a vapor expansion chamber E is disposed below the heat receiving pipe part 12, The high boiling point heat medium liquid 11a is incompatible with the low boiling point heat medium liquid 11b having a large specific gravity (see FIG. 4).

上記のように構成したことにより、比重で受熱管部12の下部に溜まった低沸点液11bの一部が蒸気膨張室E内で蒸気化し、その蒸気の熱膨張により気泡Bが発生して温液上昇管部13内を上昇することで高沸点液11aを有効に循環させることができた。   With the above configuration, a part of the low-boiling liquid 11b accumulated at the lower portion of the heat receiving pipe portion 12 with a specific gravity is vaporized in the vapor expansion chamber E, and bubbles B are generated due to the thermal expansion of the vapor to generate a temperature. The high boiling point liquid 11a could be circulated effectively by ascending the inside of the liquid riser section 13.

そして、上記蒸気化して気泡Bとなった低沸点液11bは放熱管部15で凝縮された後、冷液下降管部17を通って受熱管部12の下部に還流するため、気泡Bを途切れさせることなく連続して発生させることができる。   The low boiling point liquid 11b that has been vaporized into bubbles B is condensed in the heat radiating pipe section 15 and then refluxed to the lower part of the heat receiving pipe section 12 through the cold liquid descending pipe section 17, so that the bubbles B are interrupted. It can be generated continuously without causing it.

これにより、ボトムヒート型ヒートパイプにおける顕熱輸送性の向上、及び低温加熱域における作動温度範囲の拡大を図ることができる。   Thereby, the improvement of the sensible heat transport property in a bottom heat type heat pipe and the expansion of the operating temperature range in a low-temperature heating region can be aimed at.

なお、本実施例では、低沸点液11bとして、高沸点液11aに採用した水よりも比重が大きく、かつ、水と非相溶のパーフロロカーボン(PFC)を使用しているが、低沸点液11bには、環境に優しいハイドロフロロエーテル(HFE)などの他のフッ素系液体や自然冷媒等を使用することも可能である。   In this example, as the low boiling point liquid 11b, perfluorocarbon (PFC) having a specific gravity greater than that of the water employed in the high boiling point liquid 11a and incompatible with water is used. It is also possible to use other fluorine-based liquids such as environmentally friendly hydrofluoroether (HFE), natural refrigerants, and the like for 11b.

そして更に、本実施例では、環状パイプ1の受熱管部12の底部に連通した連通管19を介して蒸気膨張室Eを設けたことにより、気泡Bの供給位置を調節することができるため、温液上昇管部13の真下から気泡Bを浮上させることができる。   In this embodiment, the supply position of the bubble B can be adjusted by providing the steam expansion chamber E via the communication pipe 19 that communicates with the bottom of the heat receiving pipe section 12 of the annular pipe 1. Bubbles B can be lifted from directly below the warm liquid riser section 13.

『実施例5』
次に、本発明の実施例5について図5に基いて以下に説明する。本実施例では、高沸点熱媒液11aを減圧封入した環状パイプ1において、受熱管部12の下部に低沸点熱媒液11bを充填して気泡Bの発生を促進すると共に、受熱管部11から気泡Bが供給される温液上昇管部13に接続された貯溜タンク2と略同じ高さに放熱管部15を配設し、更にこの放熱管部15を温液輸送管部14'と冷液輸送管部17'により前記貯溜タンク2及び受熱管部11に連結することによって熱媒液11が環状パイプ1内を循環可能に構成した(図5参照)。
“Example 5”
Next, Embodiment 5 of the present invention will be described below with reference to FIG. In the present embodiment, in the annular pipe 1 in which the high-boiling point heat medium liquid 11a is sealed under reduced pressure, the lower part of the heat receiving pipe part 12 is filled with the low boiling point heat medium liquid 11b to promote the generation of bubbles B, and the heat receiving pipe part 11 A heat radiating pipe portion 15 is arranged at substantially the same height as the storage tank 2 connected to the hot liquid riser pipe portion 13 to which the bubbles B are supplied from, and this heat radiating pipe portion 15 is further connected to the hot liquid transport pipe portion 14 '. By connecting to the storage tank 2 and the heat receiving pipe section 11 by the cold liquid transport pipe section 17 ′, the heat medium liquid 11 is configured to be able to circulate in the annular pipe 1 (see FIG. 5).

そして、前記温液上昇管部13を上昇する気泡Bは、貯溜タンク2の空隙Sに放出され、一次冷却機構C1により冷やされて低沸点液11bに凝縮して、高沸点液11aと共に水平方向に配設された温液輸送管部14'を通って放熱管部15へと移動し、放熱管部15内で二次冷却機構C2により高沸点熱媒液11aと共に顕熱を放熱した後、冷液輸送管部17'を下って受熱管部11に還流する。 Then, the bubble B to increase the hot liquid rising pipe section 13 is discharged into the gap S of the storage tank 2, and condensed is cooled by primary cooling mechanism C 1 to low boiling point liquid 11b, the horizontal with a high-boiling liquid 11a through disposed in the direction hot liquid transport pipe section 14 'moves into the radiator tube section 15 and radiating the sensible heat with the high-boiling heat transfer fluid 11a by a secondary cooling mechanism C 2 in the radiator tube section 15 Thereafter, the refrigerant flows down to the heat receiving pipe section 11 through the cold liquid transport pipe section 17 ′.

上記のように構成したことにより、環状パイプ1内を循環する熱媒 液11の顕熱輸送性が高まるだけでなく、環状パイプ1における放熱管部15の高低位置を、受熱管部12と貯溜タンク2の高さの間で自由に調節することができるため、ヒートパイプの設計自由度が向上して様々な用途に対応することが可能となる。   By configuring as described above, not only the sensible heat transportability of the heat transfer medium 11 circulating in the annular pipe 1 is increased, but also the height of the heat radiating pipe portion 15 in the annular pipe 1 is stored with the heat receiving pipe portion 12. Since it can be freely adjusted between the heights of the tank 2, the design flexibility of the heat pipe is improved and it is possible to cope with various uses.

本発明は、概ね上記のように構成されるが、図示の実施形態に限定されるものでは決してなく、「特許請求の範囲」の記載内において種々の変更が可能であって、例えば、環状パイプ1及び貯溜タンク2の材料は一定の強度及び耐久性を有したものであればガラス材料や金属材料、プラスチック材料から適宜選択すればよく、その中でも環状パイプ1の冷却管部18には特に伝熱性に優れたものを選択するのが好ましい。   The present invention is generally configured as described above. However, the present invention is not limited to the illustrated embodiment, and various modifications can be made within the scope of the claims, for example, an annular pipe. The material of the storage tank 2 and the storage tank 2 may be appropriately selected from glass materials, metal materials, and plastic materials as long as they have a certain strength and durability. It is preferable to select one having excellent thermal properties.

また、環状パイプ1に収容する熱媒液11には、水やエチルアルコール、アセトン、パーフロロカーボンだけでなく、使用に適した沸点を有する液材であれば何れを採用してもよく、更に環状パイプ1の熱媒液11に添加する界面活性剤も、脂肪酸塩だけでなく、陰イオン系、陽イオン系、非イオン系、及び両性イオン系の界面活性剤の中から適宜選択して使用することができる。   Further, as the heat transfer medium 11 accommodated in the annular pipe 1, not only water, ethyl alcohol, acetone and perfluorocarbon, but any liquid material having a boiling point suitable for use may be adopted. The surfactant to be added to the heat transfer fluid 11 of the pipe 1 is not only selected from fatty acid salts but also selected from anionic, cationic, nonionic and zwitterionic surfactants as appropriate. be able to.

そしてまた、上昇管部14a内に有効に気泡が連続して供給されれば蒸気膨張室Eの数や形態、設置位置を変更してもよく、また、熱媒液11の流速を制御する目的および流れを外部から感知する目的で環状パイプ内に流れにつれて動く小球などを封入してもよい。   Further, the number, form, and installation position of the steam expansion chamber E may be changed as long as bubbles are effectively continuously supplied into the ascending pipe portion 14a, and the purpose of controlling the flow rate of the heat transfer liquid 11 Further, for the purpose of sensing the flow from the outside, a small sphere that moves as it flows in the annular pipe may be enclosed.

さらに、受熱管部12へと還流する熱媒液11と貯溜タンク2内の気体および液体との熱交換の必然性が無い場合には、冷液上昇管部16から冷液下降管部17へと流れる管材を貯溜タンク2に貫通させる必要は無く、貯溜タンク2の外部任意の上下位置に設置してもよい。   Further, when there is no necessity for heat exchange between the heat transfer liquid 11 that flows back to the heat receiving pipe section 12 and the gas and liquid in the storage tank 2, the cold liquid rise pipe section 16 goes to the cold liquid down pipe section 17. There is no need to allow the flowing pipe material to penetrate through the storage tank 2, and it may be installed at any vertical position outside the storage tank 2.

さらに貯溜タンク2の形態においても、図6に示すように狭窄部22を設けて、空隙Sとタンク内に収容された熱媒液11の接触面積を小さくすることにより、冷やされた空隙S内の蒸気によって奪われる温液の熱量を軽減してもよく、また、環状パイプ1において受熱管部12の蒸気膨張室E内に沸騰石Fまたは極細毛管を丸めて成る塊状物を付設して気泡性を高めてもよく、何れも本発明の技術的範囲に属する。   Furthermore, also in the form of the storage tank 2, as shown in FIG. 6, a narrowed portion 22 is provided to reduce the contact area between the gap S and the heat transfer fluid 11 accommodated in the tank, thereby reducing the inside of the cooled gap S. The amount of heat of the hot liquid taken away by the steam may be reduced, and in the annular pipe 1, a lump of a boiling stone F or a microcapillary tube is provided in the steam expansion chamber E of the heat receiving pipe section 12 to provide bubbles. These may be enhanced, and both belong to the technical scope of the present invention.

近年においてヒートパイプは、パソコン電子機器の局所冷却から自動車のエンジン等の冷却、屋上の太陽光熱を利用した屋内の加熱システム、屋外の冷気を利用した屋内の冷房システム、工場廃熱、温排水の移送などの熱輸送手段として幅広く利用されており、将来の産業発展において不可欠な非常に重要度の高い技術の一つとなっている。   In recent years, heat pipes have been used for local cooling of personal computer electronics, cooling of automobile engines, indoor heating systems using solar heat on the roof, indoor cooling systems using outdoor cold air, factory waste heat, Widely used as a means of heat transport such as transport, it is one of the most important technologies essential for future industrial development.

そのような中で、本発明のサイフォン式循環型ヒートパイプは、機能面である熱輸送性の飛躍的向上に加え、トップヒート及び水平ヒートでの幅広い使用が可能な実用性にも富んだ極めて簡便かつ有用な技術であることから、市場における需要は大きく、本発明の産業上の利用価値は非常に高いと云える。   Under such circumstances, the siphon circulation heat pipe of the present invention is extremely practical and capable of wide use in top heat and horizontal heat, in addition to the dramatic improvement in heat transportability, which is a functional aspect. Since it is a simple and useful technology, there is a great demand in the market and it can be said that the industrial utility value of the present invention is very high.

本発明の実施例1における循環型ヒートパイプを表わす説明断面図である。It is explanatory sectional drawing showing the circulation type heat pipe in Example 1 of this invention. 本発明の実施例2における循環型ヒートパイプを表わす説明断面図である。It is explanatory sectional drawing showing the circulation type heat pipe in Example 2 of this invention. 本発明の実施例3における循環型ヒートパイプを表わす説明断面図である。It is explanatory sectional drawing showing the circulation type heat pipe in Example 3 of this invention. 本発明の実施例4における循環型ヒートパイプを表わす説明断面図である。It is explanatory sectional drawing showing the circulation type heat pipe in Example 4 of this invention. 本発明の実施例5における循環型ヒートパイプを表わす説明断面図である。It is explanatory sectional drawing showing the circulation type heat pipe in Example 5 of this invention. 本発明の変形例における循環型ヒートパイプを表わす説明断面図である。It is explanatory sectional drawing showing the circulation type heat pipe in the modification of this invention. 本件出願人が以前行った特許出願に係るループ型ヒートパイプを表わす説明断面図である。It is explanatory sectional drawing showing the loop type heat pipe which concerns on the patent application which the present applicant applied previously.

符号の説明Explanation of symbols

1 環状パイプ
11 熱媒液
11a 高沸点液
11b 低沸点液
12 受熱管部
13 温液上昇管部
13a 放出口
14 温液下降管部
14' 温液輸送管部
15 放熱管部
16 冷液上昇管部
17 冷液下降管部
17' 冷液輸送管部
18 冷却管部
19 連通管
2 貯溜タンク
21 排気コック
22 狭窄部
H 加熱機構
C 冷却機構
1 一次冷却機構
2 二次冷却機構
E 蒸気膨張室
S 空隙
B 気泡
1 annular pipe
11 Heat transfer fluid
11a High boiling point liquid
11b Low boiling point liquid
12 Heat receiving pipe
13 Hot liquid riser
13a outlet
14 Hot liquid downcomer
14 'Hot liquid transport pipe
15 Radiation tube
16 Cold liquid riser
17 Cold liquid downcomer
17 'Cold liquid transport pipe
18 Cooling pipe section
19 Communication pipe 2 Storage tank
21 Exhaust cock
22 Constriction H Heating mechanism C Cooling mechanism C 1 Primary cooling mechanism C 2 Secondary cooling mechanism E Vapor expansion chamber S Void B Bubble

Claims (10)

環状パイプ1に減圧封入された熱媒液11を所定方向に循環させて熱輸送可能な循環型ヒートパイプであって、非作動時において熱媒液11を循環経路のすべての部分で連結させてサイフォンの原理の利用を可能としたものであり、
前記環状パイプ1の所定部位に加熱機構Hと熱交換可能なるごとく受熱管部12を配設し、この受熱管部12とその上方に配設された貯溜タンク2とを温液上昇管部13により接続すると共に、前記受熱管部12には蒸気膨張室Eを連設して、受熱時において前記蒸気膨張室Eから温液上昇管部13に連続的に気泡を供給可能にする一方、
前記貯溜タンク2には、内部に空隙Sを残して熱媒液11を収容すると共に、下部に温液下降管部14を連結してタンク下方に配設された放熱管部15と接続し、かつ、当該放熱管部15には前記タンク内に収容した熱媒液11の液面レベルよりも液頭位置の高い冷液上昇管部16を連結して、この冷液上昇管部16と前記受熱管部12に連通する冷液下降管部17の端部同士を、タンク内部の空隙Sを経由して前記貯留タンク2を貫通する伝熱性の冷却管部18を介して連接して構成したことを特徴とするサイフォン式循環型ヒートパイプ。
A circulating heat pipe capable of transporting heat by circulating a heat medium liquid 11 sealed in an annular pipe 1 in a predetermined direction, and connecting the heat medium liquid 11 in all parts of the circulation path when not operating. The use of the principle of siphon
A heat receiving pipe section 12 is disposed at a predetermined portion of the annular pipe 1 so that heat exchange with the heating mechanism H is possible. The heat receiving pipe section 12 and the storage tank 2 disposed above the heat receiving pipe section 12 are connected to the hot liquid rising pipe section 13. In addition, the steam expansion chamber E is connected to the heat receiving pipe section 12 to enable continuous supply of bubbles from the steam expansion chamber E to the warm liquid rising pipe section 13 during heat reception.
The storage tank 2 accommodates the heat transfer fluid 11 while leaving a gap S therein, and is connected to a heat radiating pipe section 15 disposed below the tank by connecting a hot liquid descending pipe section 14 to the lower portion. And, the radiating pipe part 15 is connected with a chilled liquid rising pipe part 16 having a liquid head position higher than the liquid level of the heat transfer liquid 11 accommodated in the tank, and the chilled liquid rising pipe part 16 and the The end portions of the cold liquid descending pipe portion 17 communicating with the heat receiving pipe portion 12 are connected to each other via a heat conductive cooling pipe portion 18 penetrating the storage tank 2 via a gap S inside the tank. Siphon type circulation heat pipe characterized by that.
環状パイプ1において受熱管部12が放熱管部15よりも上方に配設されていることを特徴とする請求項1記載のサイフォン式循環型ヒートパイプ。   The siphon-type circulation heat pipe according to claim 1, wherein the heat receiving pipe section (12) is disposed above the heat radiating pipe section (15) in the annular pipe (1). 環状パイプ1において受熱管部12と放熱管部15とが水平状態に配設されていることを特徴とする請求項1記載のサイフォン式循環型ヒートパイプ。   The siphon-type circulation heat pipe according to claim 1, wherein the heat receiving pipe section (12) and the heat radiating pipe section (15) are arranged in a horizontal state in the annular pipe (1). 環状パイプ1の受熱管部12に設けた蒸気膨張室Eの基部を細く形成したことを特徴とする請求項1〜3の何れか一つに記載のサイフォン式循環型ヒートパイプ。   The siphon circulation heat pipe according to any one of claims 1 to 3, wherein a base portion of the steam expansion chamber E provided in the heat receiving pipe portion 12 of the annular pipe 1 is formed thin. 環状パイプ1に収容する熱媒液11に界面活性剤を添加して起泡性を増大したことを特徴とする請求項1〜4の何れか一つに記載のサイフォン式循環型ヒートパイプ。   The siphon circulation heat pipe according to any one of claims 1 to 4, wherein a foaming property is increased by adding a surfactant to the heat transfer fluid 11 accommodated in the annular pipe 1. 環状パイプ1において受熱管部12の蒸気膨張室E内に沸騰石または極細毛管を丸めて成る突沸抑制材が内装されていることを特徴とする請求項1〜5の何れか一つに記載のサイフォン式循環型ヒートパイプ。   6. The bumping suppression material formed by rounding a boiling stone or a microcapillary tube is provided in the steam expansion chamber E of the heat receiving pipe portion 12 in the annular pipe 1, according to claim 1. Siphon circulation heat pipe. 高沸点の熱媒液11aが減圧封入された環状パイプ1であって、当該環状パイプ1は、下部に加熱機構Hに連繋される受熱管部12を備え、かつ、上部には放熱管部15を備えて構成され、前記受熱管部12と放熱管部15は温液上昇管部13及び冷液下降管部17において連通されて、受熱時において前記熱媒液11aが当該環状パイプ1内を循環可能であり、かつ、
前記環状パイプ1の受熱管部12の下部には、蒸気膨張室Eを配設すると共に、前記高沸点熱媒液11aとは非相容で、かつ、比重の大きい低沸点熱媒液11bを充填して、受熱時において前記蒸気膨張室Eから温液上昇管部13に連続的に気泡を供給可能とする一方、
前記放熱管部15には、上部に膨出した室内に空隙Sが作出されると共に、この放熱管部15で凝縮した前記低沸点液11bが冷液下降管部17を通って前記受熱管部12の下部に還流可能であることを特徴とするサイフォン式循環型ヒートパイプ。
An annular pipe 1 in which a high-boiling heat transfer liquid 11a is sealed under reduced pressure. The annular pipe 1 includes a heat receiving pipe portion 12 connected to a heating mechanism H at a lower portion, and a heat radiating pipe portion 15 at an upper portion. The heat receiving pipe section 12 and the heat radiating pipe section 15 are communicated with each other through a hot liquid rising pipe section 13 and a cold liquid lowering pipe section 17, and the heat transfer liquid 11a passes through the annular pipe 1 when receiving heat. Can be circulated and
A steam expansion chamber E is disposed below the heat receiving pipe portion 12 of the annular pipe 1, and a low boiling point heating medium liquid 11b having a high specific gravity is incompatible with the high boiling point heating medium liquid 11a. While being filled, it is possible to continuously supply bubbles from the vapor expansion chamber E to the warm liquid riser section 13 during heat reception,
In the heat radiating pipe portion 15, a void S is created in the chamber bulging upward, and the low boiling point liquid 11 b condensed in the heat radiating pipe portion 15 passes through the cold liquid descending pipe portion 17 and the heat receiving pipe portion. A siphon type circulation heat pipe characterized by being able to return to the lower part of 12.
環状パイプ1に減圧封入された高沸点の熱媒液11aを所定方向に循環させて熱輸送可能な循環型ヒートパイプであって、非作動時において熱媒液11aを循環経路のすべての部分で連結させてサイフォンの原理の利用を可能としたものであり、
前記環状パイプ1の所定部位に加熱機構Hと熱交換可能なるごとく受熱管部12を配設し、この受熱管部12とその上方に配設された一次冷却用の貯溜タンク2とを温液上昇管部13により接続すると共に、前記受熱管部12の下部には、蒸気膨張室Eを配設すると共に、前記高沸点熱媒液11aとは非相容で、かつ、比重の大きい低沸点熱媒液11bを充填して、受熱時において前記蒸気膨張室Eから温液上昇管部13に連続的に気泡を供給可能にする一方、
前記貯溜タンク2に、内部に空隙Sを残して熱媒液11aを収容して、さらに当該貯溜タンク2の熱媒液収容部位の下部に温液輸送管部14'を連通させることにより、前記タンク2の下方或いは水平方向に配設された二次冷却用の放熱部15と接続させ、かつ、この放熱管部15には冷液輸送管部17'を連通せしめて下方或いは水平方向に配設された前記受熱管部12と接続して、前記貯溜タンク2内で凝縮した前記低沸点液11bが前記温液輸送管部14'及び冷液輸送管部17'を通って前記受熱管部12の下部に還流可能であることを特徴とするサイフォン式循環型ヒートパイプ。
A circulating heat pipe capable of transporting heat by circulating a high boiling point heat transfer medium 11a sealed in an annular pipe 1 in a predetermined direction, and the heat transfer liquid 11a in all parts of the circulation path when not operating. It is possible to use the principle of siphon by connecting,
A heat receiving pipe portion 12 is disposed at a predetermined portion of the annular pipe 1 so that heat exchange with the heating mechanism H is possible, and the heat receiving pipe portion 12 and the primary cooling storage tank 2 disposed above the heat receiving pipe portion 12 are heated. A low-boiling point which is connected by the rising pipe part 13 and has a vapor expansion chamber E below the heat receiving pipe part 12 and is incompatible with the high-boiling-point heat transfer fluid 11a and has a large specific gravity. While filling the heat transfer fluid 11b, it is possible to continuously supply bubbles from the steam expansion chamber E to the warm liquid riser portion 13 during heat reception,
By storing the heat transfer medium 11a in the storage tank 2 leaving a gap S inside, and further connecting a hot liquid transport pipe portion 14 'to the lower part of the heat transfer medium storing portion of the storage tank 2, It is connected to a heat radiating section 15 for secondary cooling arranged below or horizontally in the tank 2, and a chilled liquid transport pipe section 17 ′ is connected to the heat radiating pipe section 15 so as to be arranged in the lower or horizontal direction. The low-boiling-point liquid 11b condensed in the storage tank 2 is connected to the heat receiving pipe section 12 provided, and passes through the hot liquid transport pipe section 14 ′ and the cold liquid transport pipe section 17 ′. A siphon type circulation heat pipe characterized by being able to return to the lower part of 12.
環状パイプ1の受熱管部12の底部に連通する連通管19を介して蒸気膨張室Eが設けられていることを特徴とする請求項7または8に記載のサイフォン式循環型ヒートパイプ。   The siphon-type circulation heat pipe according to claim 7 or 8, wherein a steam expansion chamber E is provided through a communication pipe 19 communicating with the bottom of the heat receiving pipe section 12 of the annular pipe 1. 環状パイプ1の受熱管部12の下部に充填する低沸点液11bとしてパーフロロカーボンを使用したことを特徴とする請求項7〜9の何れか一つに記載のサイフォン式循環型ヒートパイプ。
The siphon circulation heat pipe according to any one of claims 7 to 9, wherein perfluorocarbon is used as the low boiling point liquid 11b filled in the lower part of the heat receiving pipe portion 12 of the annular pipe 1.
JP2007217275A 2007-08-23 2007-08-23 Siphon circulation heat pipe Expired - Fee Related JP5067692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217275A JP5067692B2 (en) 2007-08-23 2007-08-23 Siphon circulation heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217275A JP5067692B2 (en) 2007-08-23 2007-08-23 Siphon circulation heat pipe

Publications (2)

Publication Number Publication Date
JP2009052757A true JP2009052757A (en) 2009-03-12
JP5067692B2 JP5067692B2 (en) 2012-11-07

Family

ID=40503993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217275A Expired - Fee Related JP5067692B2 (en) 2007-08-23 2007-08-23 Siphon circulation heat pipe

Country Status (1)

Country Link
JP (1) JP5067692B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172896A (en) * 2011-02-21 2012-09-10 Fukusen:Kk Antifreezing device for tank storage liquid and liquid storage tank with heat insulating function
JP2012215375A (en) * 2011-03-30 2012-11-08 Wakasawan Energ Kenkyu Center Heat pipe capable of switching heat transfer direction and heat pipe capable of automatically switching heat transfer direction by check valve
JP2013130332A (en) * 2011-12-21 2013-07-04 Toshiba Corp Bubble-driven cooling device
JP2013532812A (en) * 2010-07-26 2013-08-19 ウニヴェルスィテト・ヴァルミア−マズールィ・ヴ・オルシュティニェ Method and apparatus for spontaneous heat transfer in the direction opposite to natural convection
JP2013238362A (en) * 2012-05-16 2013-11-28 Wakasa Wan Energy Research Center Heat pipe enabling automatic reversal of heat transport direction
JP2015155101A (en) * 2014-02-20 2015-08-27 株式会社デンソー Casting method and casting device
JPWO2014007354A1 (en) * 2012-07-06 2016-06-02 国立大学法人九州大学 Boiling cooler
WO2016129044A1 (en) * 2015-02-09 2016-08-18 富士通株式会社 Cooling device and electronic apparatus
CN107053599A (en) * 2017-03-28 2017-08-18 三门县职业中等专业学校 A kind of injection mold and its manufacture method for being easy to take out product
JP2019082273A (en) * 2017-10-30 2019-05-30 下田 一喜 Cooling system
WO2019139493A1 (en) 2018-01-09 2019-07-18 Jurij Dobrianski Steam engine
CN110323514A (en) * 2019-05-20 2019-10-11 河南科技大学 A kind of electric automobile battery box temperature control system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149835A (en) * 1977-06-02 1978-12-27 Neos Kk Antirust method
JPS54142842U (en) * 1978-03-29 1979-10-03
JPS58203395A (en) * 1981-12-25 1983-11-26 Mitsubishi Electric Corp Heat transferring apparatus
JPH093440A (en) * 1995-06-19 1997-01-07 Meisei Kagaku Kogyo Kk Foamed water and oil-repellent treatment agent composition
JP2002122392A (en) * 2000-10-13 2002-04-26 Shigetoshi Ipposhi Loop heat exchange heat transporting equipment
JP2003287378A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Capillary heat pipe and heat exchanger
JP2003322485A (en) * 2002-04-30 2003-11-14 Furukawa Electric Co Ltd:The Electric insulation type heat pipe cooler
JP2004003816A (en) * 2002-04-02 2004-01-08 Mitsubishi Electric Corp Heat transport element, semiconductor device using heat transport element, and extra-atmospheric mobile using heat transport element
JP2004245566A (en) * 2003-01-21 2004-09-02 Mitsubishi Electric Corp Bubble pump type heat transport apparatus
JP2006313052A (en) * 2005-05-03 2006-11-16 Sadasuke Ito Top heating loop heat exchange-heat transporting apparatus
JP2008170117A (en) * 2007-01-15 2008-07-24 Wakasawan Energ Kenkyu Center Loop-type heat pipe

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149835A (en) * 1977-06-02 1978-12-27 Neos Kk Antirust method
JPS54142842U (en) * 1978-03-29 1979-10-03
JPS58203395A (en) * 1981-12-25 1983-11-26 Mitsubishi Electric Corp Heat transferring apparatus
JPH093440A (en) * 1995-06-19 1997-01-07 Meisei Kagaku Kogyo Kk Foamed water and oil-repellent treatment agent composition
JP2002122392A (en) * 2000-10-13 2002-04-26 Shigetoshi Ipposhi Loop heat exchange heat transporting equipment
JP2003287378A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Capillary heat pipe and heat exchanger
JP2004003816A (en) * 2002-04-02 2004-01-08 Mitsubishi Electric Corp Heat transport element, semiconductor device using heat transport element, and extra-atmospheric mobile using heat transport element
JP2003322485A (en) * 2002-04-30 2003-11-14 Furukawa Electric Co Ltd:The Electric insulation type heat pipe cooler
JP2004245566A (en) * 2003-01-21 2004-09-02 Mitsubishi Electric Corp Bubble pump type heat transport apparatus
JP2006313052A (en) * 2005-05-03 2006-11-16 Sadasuke Ito Top heating loop heat exchange-heat transporting apparatus
JP2008170117A (en) * 2007-01-15 2008-07-24 Wakasawan Energ Kenkyu Center Loop-type heat pipe

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013532812A (en) * 2010-07-26 2013-08-19 ウニヴェルスィテト・ヴァルミア−マズールィ・ヴ・オルシュティニェ Method and apparatus for spontaneous heat transfer in the direction opposite to natural convection
JP2012172896A (en) * 2011-02-21 2012-09-10 Fukusen:Kk Antifreezing device for tank storage liquid and liquid storage tank with heat insulating function
JP2012215375A (en) * 2011-03-30 2012-11-08 Wakasawan Energ Kenkyu Center Heat pipe capable of switching heat transfer direction and heat pipe capable of automatically switching heat transfer direction by check valve
JP2013130332A (en) * 2011-12-21 2013-07-04 Toshiba Corp Bubble-driven cooling device
JP2013238362A (en) * 2012-05-16 2013-11-28 Wakasa Wan Energy Research Center Heat pipe enabling automatic reversal of heat transport direction
JPWO2014007354A1 (en) * 2012-07-06 2016-06-02 国立大学法人九州大学 Boiling cooler
JP2015155101A (en) * 2014-02-20 2015-08-27 株式会社デンソー Casting method and casting device
US10123457B2 (en) 2015-02-09 2018-11-06 Fujitsu Limited Cooling apparatus and electronic device
WO2016129044A1 (en) * 2015-02-09 2016-08-18 富士通株式会社 Cooling device and electronic apparatus
JPWO2016129044A1 (en) * 2015-02-09 2017-11-02 富士通株式会社 Cooling device and electronic equipment
CN107053599A (en) * 2017-03-28 2017-08-18 三门县职业中等专业学校 A kind of injection mold and its manufacture method for being easy to take out product
CN107053599B (en) * 2017-03-28 2019-05-07 三门县职业中等专业学校 A kind of injection mold being easy to take out product and its manufacturing method
JP2019082273A (en) * 2017-10-30 2019-05-30 下田 一喜 Cooling system
WO2019139493A1 (en) 2018-01-09 2019-07-18 Jurij Dobrianski Steam engine
CN110323514A (en) * 2019-05-20 2019-10-11 河南科技大学 A kind of electric automobile battery box temperature control system
CN110323514B (en) * 2019-05-20 2022-02-18 河南科技大学 Temperature control system for battery box of electric automobile

Also Published As

Publication number Publication date
JP5067692B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5067692B2 (en) Siphon circulation heat pipe
JP4771964B2 (en) Loop type heat pipe
CN100414243C (en) Boiling cooling device
CN105674780B (en) A kind of antigravity heat pipe
WO2010050129A1 (en) Cooling structure, electronic device, and cooling method
US9593675B2 (en) Self-powered pump for heated liquid and heat driven liquid close-loop automatic circulating system employing same
CN103687455A (en) Vapor chamber
CN111725157B (en) Intelligent phase change cooling structure based on shape memory material
Dobriansky Concepts of self-acting circulation loops for downward heat transfer (reverse thermosiphons)
CN101900504A (en) Flat type loop heat pipe
CN103200803A (en) Loop heat pipe cooling device with pool boiling function
CN101179917A (en) Loop type hidden heat cooling method and loop type hidden heat radiating module
CN102980429A (en) Loop thermosyphon heat dissipation device
CN102646651A (en) Thin hot plate structure
CN102425968A (en) Compact type loop heat pipe device
CN104059612A (en) Heat conductive refrigerating medium with heat transfer with phase change
CN104329868A (en) Semiconductor refrigeration refrigerator and cold-end heat exchange device thereof
CN202142519U (en) Thin type hot plate structure
CN210070686U (en) High-liquid-filling-rate loop thermosiphon based on multi-scale collaborative hydrophobic surface
CN103062728A (en) Large-power light-emitting diode (LED) heat dissipation mechanism
CN101418998B (en) Semiconductor absorption refrigeration system
CN109916209A (en) One kind being based on the multiple dimensioned high liquid filled ratio loop thermal siphon of collaboration hydrophobic surface
JP2007251085A (en) Cooling system
CN209197182U (en) A kind of different poly- state self-circulation system of solar energy
JP2010169283A (en) Heat exchange system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees