JP2012172896A - Antifreezing device for tank storage liquid and liquid storage tank with heat insulating function - Google Patents

Antifreezing device for tank storage liquid and liquid storage tank with heat insulating function Download PDF

Info

Publication number
JP2012172896A
JP2012172896A JP2011035017A JP2011035017A JP2012172896A JP 2012172896 A JP2012172896 A JP 2012172896A JP 2011035017 A JP2011035017 A JP 2011035017A JP 2011035017 A JP2011035017 A JP 2011035017A JP 2012172896 A JP2012172896 A JP 2012172896A
Authority
JP
Japan
Prior art keywords
heat
liquid
tank
heat receiving
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011035017A
Other languages
Japanese (ja)
Other versions
JP5765555B2 (en
Inventor
Jiro Nagai
二郎 永井
Takeshi Takano
武史 高野
Shuichi Nakayama
修一 中山
Toshimi Dedokoro
敏美 出所
Tomofumi Ikeda
倫史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUSEN KK
University of Fukui NUC
Kyowa Seisakusho Co Ltd
Original Assignee
FUKUSEN KK
University of Fukui NUC
Kyowa Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUSEN KK, University of Fukui NUC, Kyowa Seisakusho Co Ltd filed Critical FUKUSEN KK
Priority to JP2011035017A priority Critical patent/JP5765555B2/en
Publication of JP2012172896A publication Critical patent/JP2012172896A/en
Application granted granted Critical
Publication of JP5765555B2 publication Critical patent/JP5765555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antifreezing device for a tank storage liquid, along with a liquid storage tank with an antifreezing function, capable of performing the heat insulation of the inside of a tank so that storage liquid can be prevented from being freezed in a cold district in winter, of achieving the largely scaled saving of electricity charges with satisfactory availability, and of easily performing the repair or exchange of a heat pipe.SOLUTION: An antifreezing device for storage liquid L is configured of a closed-end heat receiving cylinder 3 buried in the ground with heat transfer property; antifreezing solution 4 stored in the heat transfer cylinder 3; and an annular heat pipe 2 in which an almost U-shaped heat receiving section 22 is arranged so as to be immersed in the antifreezing solution 4, and a heat radiating section 21 is arranged in the liquid storage tank. Furthermore, the annular heat pipe 2 is configured by storing a heat medium liquid 23 in the heat receiving section 22, and by installing an air bubble generation chamber 22a bulging upward below a liquid level S of the heat medium liquid 23 in one vertical pipe of the U-shaped heat receiving section 22.

Description

本発明は、タンク貯溜液の凍結防止装置の改良、詳しくは、寒冷地において冬場に貯溜液が凍結しないようにタンク内を保温することができ、しかも、電気代の節約も行え、またヒートパイプの修理や交換も容易に行えるタンク貯溜液の凍結防止装置、及び保温機能を備えた液貯溜タンクに関するものである。   The present invention is an improvement of an anti-freezing device for a tank storage liquid, and more specifically, it can keep the inside of a tank warm so that the storage liquid does not freeze in winter in a cold region, and can also save electricity costs and heat pipes. The present invention relates to a tank storage liquid freezing prevention device that can be easily repaired and replaced, and a liquid storage tank having a heat retaining function.

近年、多くの染色工場では、染色前に繊維のアルカリ処理を行っており、このアルカリ処理に用いる苛性ソーダ液は、工場の外に設置した大型のタンクに一旦貯溜して必要な分を適宜工場内に移送して使用するのが一般的である。   In recent years, many dyeing factories have performed alkali treatment of fibers before dyeing. Caustic soda solution used for this alkali treatment is temporarily stored in a large tank installed outside the factory, and the necessary amount is appropriately stored in the factory. Generally, it is used after being transported to

ところが、寒冷地にある染色工場では、冬場になると外気温が5℃以下になることも珍しくないため、何の対策も講じないとタンク内に貯溜した苛性ソーダ液が凍結してしまい工場への移送が行えなくなる。   However, in a dyeing factory in a cold region, it is not uncommon for the outside air temperature to be 5 ° C or lower in the winter. Cannot be performed.

そこで、従来、苛性ソーダ液が凍らないように電熱ヒータをタンクに付設する手段が講じられてきたが、冬場の間ずっと電熱ヒータを使い続けると電気代が嵩みランニングコストが高く付く要因となっていた。   Therefore, in the past, measures have been taken to attach an electric heater to the tank so that the caustic soda solution does not freeze. It was.

一方、従来においては、タンクの保温手段として、ヒートパイプを埋設して地熱を利用する技術も公知となっているが(例えば、特許文献1〜3参照)、従来のヒートパイプは、性能面において低温度域の熱輸送性が充分でなかったため、稼働性が悪く実用性に乏しかった。   On the other hand, in the past, as a heat retaining means of the tank, a technique of burying a heat pipe and using geothermal heat is also known (for example, see Patent Documents 1 to 3), but the conventional heat pipe is in terms of performance. Since the heat transportability in the low temperature range was not sufficient, the operability was poor and the practicality was poor.

そこで、本件発明者は、上記ヒートパイプの性能を向上させるために、気泡生成室を備えたヒートパイプ(特許文献2参照)の使用を発案したが、実験を重ねた結果、文献2に係るヒートパイプを上下方向に長く設計する場合、熱媒液を環状パイプ全体に充満させるよりも受熱部のみに熱媒液を収容する方が熱輸送性が良いことが分かった。   In view of this, the present inventor has invented the use of a heat pipe (see Patent Document 2) provided with a bubble generation chamber in order to improve the performance of the heat pipe. When the pipe is designed to be long in the vertical direction, it has been found that the heat transportability is better when the heat transfer liquid is accommodated only in the heat receiving part than when the heat transfer liquid is filled in the entire annular pipe.

また、実験の結果から、気泡生成室は熱媒液の液面から遠い位置に設けるよりも近い位置に設けた方が性能が向上することも確認されたが、地熱温度の高い最下部に気泡生成室を設けて熱媒液の量を減らすと、作動時に放熱部で液溜まりが生じた際に、受熱部の熱媒液が微量になって蒸発効率が悪化する結果を招いた。   In addition, it was confirmed from the results of the experiment that the performance was improved when the bubble generation chamber was provided at a position closer to the position than the position far from the liquid surface of the heat transfer fluid. If the generation chamber is provided to reduce the amount of the heat transfer fluid, when the liquid pool is generated in the heat radiating portion during operation, the amount of the heat transfer fluid in the heat receiving portion becomes very small and the evaporation efficiency is deteriorated.

そのため、本件発明者は、受熱部に充分量の熱媒液を収容した上で液面の少し下側に気泡生成室を設ける構造を採用したが、それだと今度はヒートパイプを埋設した際に、気泡生成室が温度の低い地表近くにきてしまい、気泡生成室の加熱温度が低下する問題が生じた。   Therefore, the present inventor has adopted a structure in which a sufficient amount of heat transfer liquid is accommodated in the heat receiving part and a bubble generation chamber is provided slightly below the liquid level, but this time when the heat pipe is embedded In addition, the bubble generation chamber has come close to the ground surface where the temperature is low, and the heating temperature of the bubble generation chamber is lowered.

また他にも、上記ヒートパイプを設置する際、周囲を砂等で固めて地中に埋設すると、ヒートパイプの修理時や交換時に、受熱部を地中から掘り出すか、他の場所に新しい穴を掘るかしなければならず、修理・交換作業に多大な労力を要した。   In addition, when installing the above heat pipes, if the surroundings are hardened with sand or the like and buried in the ground, when the heat pipe is repaired or replaced, the heat receiving part is dug out of the ground or a new hole is formed in another place. It took a lot of labor to repair and replace.

実開昭62−16166号公報(第1−20頁、第1−2図)Japanese Utility Model Publication No. 62-16166 (page 1-20, Fig. 1-2) 特開2004−69197号公報(第2−8頁、第1−8図)Japanese Unexamined Patent Publication No. 2004-69197 (page 2-8, FIG. 1-8) 特開2007−24342号公報(第2−19頁、第1−9図)JP 2007-24342 (page 2-19, FIG. 1-9) 特開2008−170117号公報(第2−8頁、第1−4図)JP 2008-170117 A (page 2-8, Fig. 1-4)

そこで本発明は、上記の如き問題に鑑みて為されたものであり、その目的とするところは、寒冷地において冬場に貯溜液が凍結しないようにタンク内を保温することができ、しかも、良好な稼働性で電気代の大幅な節約も実現でき、ヒートパイプの修理や交換も容易に行えるタンク貯溜液の凍結防止装置、及び凍結防止機能を備えた液貯溜タンクを提供することにある。   Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to keep the inside of the tank warm so that the stored liquid does not freeze in the winter in a cold region. An object of the present invention is to provide a tank storage liquid anti-freezing device and a liquid storage tank equipped with an anti-freezing function that can realize significant savings in electricity bills with high operability and can easily repair and replace heat pipes.

本発明者が上記課題を解決するために採用した手段を添付図面を参照して説明すれば次のとおりである。   Means employed by the present inventor for solving the above-described problems will be described with reference to the accompanying drawings.

即ち、本発明は、伝熱性を有し、かつ、地中に埋設される有底の受熱筒3と;この受熱筒3内に収容される不凍液4と;この不凍液4中に略U字型の受熱部22が浸漬配置され、かつ、放熱部21が液貯溜タンク内に配置される環状のヒートパイプ2とを含んで貯溜液Lの凍結防止装置を構成し、
更に前記ヒートパイプ2には、受熱部22に熱媒液23を収容すると共に、U字型を成す受熱部22の一方の縦管において、前記熱媒液23の液面S下方に上向きに膨出した気泡生成室22aを設けたことにより、
前記受熱筒3中の不凍液4を、地熱により昇温した受熱筒3の最下部の熱で下方から上方に対流せしめて、この対流する不凍液4によって前記気泡生成室22aを加熱可能とした点に特徴がある。
That is, the present invention has a heat receiving cylinder 3 having a heat transfer property and embedded in the ground; an antifreeze liquid 4 accommodated in the heat receiving cylinder 3; a substantially U-shaped in the antifreeze liquid 4. The heat receiving part 22 is immersed and the annular heat pipe 2 in which the heat radiating part 21 is arranged in the liquid storage tank constitutes an anti-freezing device for the stored liquid L.
Further, in the heat pipe 2, the heat transfer fluid 23 is accommodated in the heat receiving portion 22, and in one vertical tube of the U-shaped heat receiving portion 22 swells upward below the liquid surface S of the heat transfer fluid 23. By providing the bubble generation chamber 22a out,
The antifreeze liquid 4 in the heat receiving tube 3 is convected upward from below by the heat of the lowermost part of the heat receiving tube 3 heated by geothermal heat, and the bubble generating chamber 22a can be heated by the convective antifreeze 4. There are features.

一方、本発明では、上記貯溜液Lの凍結防止装置に、内部に液体を貯溜可能なタンク本体1を加えて保温機能を備えた液貯溜タンクを構成することもできる。   On the other hand, in the present invention, a liquid storage tank having a heat retaining function can be configured by adding a tank main body 1 capable of storing a liquid therein to the antifreezing device for the stored liquid L.

また本発明は、上記ヒートパイプ2の受熱部22に設ける気泡生成室22aについて出口径を1mm以上とすることによりヒートパイプ2の熱輸送性を向上することができる。   In the present invention, the heat transportability of the heat pipe 2 can be improved by setting the outlet diameter of the bubble generation chamber 22a provided in the heat receiving portion 22 of the heat pipe 2 to 1 mm or more.

そしてまた本発明は、上記ヒートパイプ2の受熱部22において気泡生成室22aを下方に予備の気泡生成室22a’を少なくとも一つ以上設けることにより、放熱部21での液溜まりによって熱媒液23の液面が下降した場合でも予備の気泡生成室22’を作動させることで性能の低下を防ぐことができる。   In the heat receiving portion 22 of the heat pipe 2, the present invention provides at least one spare bubble generation chamber 22a 'below the bubble generation chamber 22a. Even when the liquid level of the liquid drops, it is possible to prevent the performance from being lowered by operating the preliminary bubble generation chamber 22 ′.

他方また、本発明においては、上記受熱筒3中の不凍液4が外気温の影響を受けないように受熱筒3の頂部に断熱性を有する蓋材31を付設することができる。   On the other hand, in the present invention, a heat insulating cover member 31 can be attached to the top of the heat receiving tube 3 so that the antifreeze liquid 4 in the heat receiving tube 3 is not affected by the outside air temperature.

また更に、上記ヒートパイプ2において地中の受熱部22とタンク内の放熱部21を繋ぐ上昇管24および下降管25を断熱材26で被覆して、これらの中を通る熱媒液23及びその蒸気が外気温の影響を受けないようにすることもできる。   Furthermore, the heat pipe 2 and the down pipe 25 that connect the heat receiving section 22 in the ground and the heat radiating section 21 in the tank in the heat pipe 2 are covered with a heat insulating material 26, and the heat transfer liquid 23 that passes through them and its It is also possible to prevent the steam from being affected by the outside air temperature.

本発明では、気泡生成室を備えた受熱部を地中に埋設すると共に、放熱部をタンク内に設置してヒートパイプを液貯溜タンクに付設したことにより、地熱をタンク内に運んで貯溜液(苛性ソーダ液等)を保温することが可能となるため、冬場の外気温が貯溜液の融点を下回る寒冷地において貯溜液の凍結防止に利用できる。   In the present invention, the heat receiving part provided with the bubble generating chamber is buried in the ground, and the heat radiating part is installed in the tank, and the heat pipe is attached to the liquid storage tank, so that the geothermal heat is transferred into the tank and the stored liquid. (Caustic soda solution, etc.) can be kept warm, so that it can be used to prevent the stored solution from freezing in cold regions where the outdoor temperature in winter is lower than the melting point of the stored solution.

しかも、本発明では、ヒートパイプの受熱部を、地中に埋設した受熱筒中の不凍液に浸漬して設置したことにより、気泡生成室が地中の浅い位置にある場合でも、地中深部の地熱で不凍液を対流させて気泡生成室を周囲の地熱よりも高い温度で加熱することができるため、稼働性の向上も図れる。   Moreover, in the present invention, the heat receiving portion of the heat pipe is installed by immersing it in the antifreeze liquid in the heat receiving tube buried in the ground, so that even if the bubble generation chamber is in a shallow position in the ground, Since the antifreeze liquid can be convected and the bubble generation chamber can be heated at a temperature higher than the surrounding geothermal heat, the operability can be improved.

そして、ヒートパイプの稼働性を向上させることによって、地熱の利用効率を高めることができるため、本発明に係る装置を単独で用いる場合は勿論、電熱ヒータの補助として用いる場合であっても、冬場の間、継続して使用すれば電気代を大幅に節約することが可能となる。   And since the utilization efficiency of geothermal heat can be improved by improving the operability of the heat pipe, not only when the apparatus according to the present invention is used alone, but also when used as an auxiliary to the electric heater, it is a winter season. In the meantime, if it is continuously used, the electricity bill can be greatly saved.

また、本発明においては、ヒートパイプを砂等で固めずに不凍液に浸漬して地中に設置したことにより、受熱部を不凍液から引き抜くだけでヒートパイプを簡単に取り外すことができるため、ヒートパイプの修理や交換作業も省力化できる。   Further, in the present invention, the heat pipe is immersed in the antifreeze liquid without being hardened with sand or the like and installed in the ground, so that the heat pipe can be easily removed simply by pulling out the heat receiving portion from the antifreeze liquid. Repair and replacement work can be saved.

したがって、本発明により、地熱を効率的に利用して低コストで貯溜液の保温を行うことができ、しかも、修理面でも至って好都合なタンク貯溜液の凍結防止装置、および保温機能を備えた液貯溜タンクを提供できることから、本発明の実用的利用価値は頗る高い。   Therefore, according to the present invention, the stored liquid can be kept warm at low cost by efficiently using geothermal heat, and the tank storage liquid freezing prevention device that is convenient in terms of repair and a liquid having a heat retaining function can be used. Since a storage tank can be provided, the practical utility value of the present invention is very high.

本発明の実施例1におけるタンク貯溜液の凍結防止装置を表わす全体斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole perspective view showing the antifreezing apparatus of the tank storage liquid in Example 1 of this invention. 本発明の実施例1におけるタンク貯溜液の凍結防止装置を表わす全体断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall cross-sectional view showing a tank storage liquid freeze prevention device in Embodiment 1 of the present invention. 本発明の実施例1における凍結防止装置の作動状態を表わす状態説明図である。It is a state explanatory drawing showing the operation state of the freeze prevention device in Example 1 of the present invention. 本発明の実施例1における予備の気泡生成室の作動状態を表わす状態説明図である。It is a state explanatory drawing showing the operation state of the preliminary | backup bubble production | generation chamber in Example 1 of this invention. 本発明の実施例1における凍結防止装置の効果を示す実験データである。It is an experimental data which shows the effect of the freeze prevention apparatus in Example 1 of this invention. 本発明の実施例2におけるタンク貯溜液の凍結防止装置を表わす全体説明図である。It is whole explanatory drawing showing the antifreezing apparatus of the tank storage liquid in Example 2 of this invention. 本発明の実施例2におけるヒートパイプの形態を表す分解斜視図である。It is a disassembled perspective view showing the form of the heat pipe in Example 2 of this invention. 本発明の実施例3におけるタンク貯溜液の凍結防止装置を表わす上面図である。It is a top view showing the freezing prevention apparatus of the tank storage liquid in Example 3 of this invention.

『実施例1』
まず、本発明の実施例1について、図1から図5に基いて説明する。同図において、符号1で指示するものは、タンク本体であり、符号2で指示するものは、ヒートパイプである。また、符号3で指示するものは、受熱筒であり、符号4で指示するものは、不凍液である。
“Example 1”
First, a first embodiment of the present invention will be described with reference to FIGS. In the figure, what is indicated by reference numeral 1 is a tank body, and what is indicated by reference numeral 2 is a heat pipe. Also, what is indicated by reference numeral 3 is a heat receiving cylinder, and what is indicated by reference numeral 4 is antifreeze.

この実施例1では、液体を貯溜可能なタンク本体1(材質:保温材が被覆された鉄)を架台フレームF上に設置し、このタンク本体1の内部にヒートパイプ2の放熱部21を配置している(図1、図2参照)。また、このヒートパイプ1の放熱部21は、貯溜液Lとの接触面積を大きくするために螺旋状としている。   In the first embodiment, a tank body 1 (material: iron coated with a heat insulating material) capable of storing liquid is installed on a gantry frame F, and a heat radiating portion 21 of a heat pipe 2 is disposed inside the tank body 1. (See FIGS. 1 and 2). Further, the heat radiating portion 21 of the heat pipe 1 has a spiral shape in order to increase the contact area with the stored liquid L.

一方、上記ヒートパイプ2については、受熱部22に熱媒液23(材料:水)を収容した環状パイプ(材質:ステンレス)から作製しており、U字状の受熱部22の一方の縦管には、熱媒液23の液面下方に出口寸法が数センチ程度の上向きに膨出した気泡生成室22aを設けている。   On the other hand, the heat pipe 2 is made of an annular pipe (material: stainless steel) containing a heat transfer liquid 23 (material: water) in the heat receiving portion 22, and one vertical tube of the U-shaped heat receiving portion 22. Is provided with a bubble generating chamber 22a having an outlet dimension bulging upward by several centimeters below the liquid surface of the heat transfer liquid 23.

ちなみに、上記気泡生成室22aを備えたヒートパイプ2は、気泡駆動型循環式ヒートパイプ(通称「BACH」)の原理を利用したものであり、気泡生成室22aの出口寸法が1mm以上であれば優れた熱輸送性を発揮する。   Incidentally, the heat pipe 2 provided with the bubble generation chamber 22a is based on the principle of a bubble driven circulation heat pipe (commonly referred to as “BACH”), and if the outlet dimension of the bubble generation chamber 22a is 1 mm or more. Exhibits excellent heat transportability.

そしてまた、上記ヒートパイプ2の気泡生成室22aの配置に関しては、気泡の発生条件等を考慮すると、熱媒液23の液面にできるだけ近い位置に設けるのが好ましく、本実施例では、熱媒液23の液面の数センチ下側に気泡生成室22aを設けている。   In addition, regarding the arrangement of the bubble generation chamber 22a of the heat pipe 2, it is preferable that the bubble generation chamber 22a is provided as close as possible to the liquid surface of the heat transfer liquid 23 in consideration of the bubble generation conditions and the like. A bubble generation chamber 22a is provided several centimeters below the liquid level of the liquid 23.

また、上記タンク本体1の周囲には、伝熱性を有する有底の受熱筒3(材質:鋼管)を地中に埋設しており、この受熱筒3に不凍液4(材料:水)を充填した上で、不凍液4中に上記ヒートパイプ2の受熱部22を浸漬配置している。   In addition, a heat-receiving bottomed heat receiving tube 3 (material: steel pipe) is buried in the ground around the tank body 1, and the anti-freezing liquid 4 (material: water) is filled in the heat receiving tube 3. Above, the heat receiving portion 22 of the heat pipe 2 is immersed in the antifreeze liquid 4.

そして、上記のようにヒートパイプ2をタンク本体1に付設したことにより、地熱を利用して受熱部22で蒸発させた熱媒液23の蒸気を、放熱部21で凝縮させて熱交換を行うことができるため、冬場において貯溜液Lの保温を行うことが可能となる。   Then, by attaching the heat pipe 2 to the tank body 1 as described above, the heat medium liquid 23 vaporized in the heat receiving part 22 using geothermal heat is condensed in the heat radiating part 21 for heat exchange. Therefore, the stored liquid L can be kept warm in winter.

また上記作動時において、受熱筒3中の不凍液4は、図3に示すように最下部の地熱によって下方から上方に対流した状態となるため、気泡生成室22aを周囲の地中温度よりも高い温度で加熱することができる。   Further, at the time of the above operation, the antifreeze liquid 4 in the heat receiving cylinder 3 is in a state of being convected upward from below by the lowermost geothermal heat as shown in FIG. 3, so that the bubble generation chamber 22a is higher than the surrounding underground temperature. Can be heated at temperature.

また更に実施例1では、ヒートパイプ2の受熱部22に、気泡生成室22aの下方に間隔を空けて予備の気泡生成室22’を設けているため、図4に示すように放熱部21で液溜まりが起こって熱媒液23の液面が下降した場合でも、予備の気泡生成室22a’を作動させることで性能を維持できる。   Furthermore, in the first embodiment, the heat receiving portion 22 of the heat pipe 2 is provided with a spare bubble generating chamber 22 ′ with a space below the bubble generating chamber 22a. Even when the liquid pool occurs and the liquid level of the heat transfer liquid 23 falls, the performance can be maintained by operating the spare bubble generation chamber 22a ′.

他方また、実施例1では、外気温への対策として不凍液4が外気温の影響を受けないように受熱筒3の頂部を断熱性を有する蓋材31で塞いでいる。なお本実施例では、蓋材31に合成樹脂発泡体を使用している。   On the other hand, in Example 1, as a measure against the outside air temperature, the top portion of the heat receiving cylinder 3 is closed with a heat-insulating lid 31 so that the antifreeze liquid 4 is not affected by the outside air temperature. In this embodiment, a synthetic resin foam is used for the lid member 31.

また、ヒートパイプ2に関しても、地中の受熱部22とタンク内の放熱部21を繋ぐ上昇管24および下降管25も断熱材26で被覆して、これらの中を通る熱媒液23及びその蒸気が外気温の影響を受けないようにしている。   As for the heat pipe 2, the riser pipe 24 and the downfall pipe 25 that connect the underground heat receiving part 22 and the heat radiating part 21 in the tank are also covered with a heat insulating material 26, and the heat transfer liquid 23 and Steam is not affected by outside air temperature.

[保温効果の検証試験]
次に、上記凍結防止装置を用いた保温効果の検証試験について説明する。なお、この検証試験では、凍結防止装置を接続したタンクと、接続していないタンクの両方に濃度48%の苛性ソーダ液を収容し、これらの苛性ソーダ液の温度が冬場においてどのように変化するかを調べた。
[Verification test of thermal insulation effect]
Next, the verification test of the heat retaining effect using the antifreezing device will be described. In this verification test, caustic soda solution with a concentration of 48% is contained in both the tank with and without antifreeze device connected, and how the temperature of these caustic soda solutions changes in winter. Examined.

その結果、図5に示すように、凍結防止装置(BACH)を接続した側の苛性ソーダ液の方が、接続していない側の苛性ソーダ液よりも平均して+1〜2℃高い温度で推移していることが確認できた。これにより、凍結防止装置の保温効果が実証された。   As a result, as shown in FIG. 5, the caustic soda solution on the side to which the anti-freezing device (BACH) was connected shifted at an average temperature of +1 to 2 ° C. higher than the caustic soda solution on the side not connected. It was confirmed that Thereby, the heat retention effect of the freeze prevention device was demonstrated.

また特に、装置を接続していない側の苛性ソーダ液については、外気温が0℃近くまで低下したA点において過冷却から凍結状態に移行し、その数時間後のB点ではほぼ完全に凍ってしまっていたが、装置を接続した側の苛性ソーダ液は、凍結することなく液体の状態を保っていた。   In particular, with respect to the caustic soda solution on the side where the apparatus is not connected, the transition from the supercooling state to the frozen state at the point A where the outside air temperature has decreased to near 0 ° C., and the point B after several hours is almost completely frozen. However, the caustic soda solution on the side to which the apparatus was connected was kept in a liquid state without freezing.

『実施例2』
次に、本発明の実施例2について図6及び図7に基いて説明する。この実施例2では、受熱筒3に二本のヒートパイプ2・2を交差させた状態で挿入している(図6参照)。そして、上記二本のヒートパイプ2・2の各放熱部21・21はタンク本体1内に上下に配置しており、これによって、一本のヒートパイプ2では対応できない高さのある貯溜タンクにも対応することが可能となる。
“Example 2”
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the two heat pipes 2 and 2 are inserted into the heat receiving cylinder 3 so as to intersect each other (see FIG. 6). The heat dissipating parts 21 and 21 of the two heat pipes 2 and 2 are arranged vertically in the tank body 1, so that a storage tank having a height that cannot be accommodated by a single heat pipe 2 is provided. Can also be supported.

なお、上記二本のヒートパイプ2・2については、気泡生成室22a・22a同士が接触しないように、後から挿入するヒートパイプ2の気泡生成室22a・22aを先に入れたヒートパイプ2の気泡生成室22a・22aよりも上側の位置に設けている(図7参照)。   For the two heat pipes 2 and 2, the bubble generation chambers 22a and 22a of the heat pipe 2 that is inserted later are inserted so that the bubble generation chambers 22a and 22a do not contact each other. It is provided at a position above the bubble generation chambers 22a and 22a (see FIG. 7).

『実施例3』
次に、本発明の実施例3について図8に基いて説明する。この実施例3では、タンク本体1の周囲に複数の受熱筒3・3…を設置し、これらの受熱筒3に装着したヒートパイプ2の放熱部21をタンク本体1内に同心円状に配置している(図8参照)。
“Example 3”
Next, Embodiment 3 of the present invention will be described with reference to FIG. In the third embodiment, a plurality of heat receiving cylinders 3, 3... Are installed around the tank main body 1, and the heat radiating portions 21 of the heat pipes 2 attached to these heat receiving cylinders 3 are concentrically arranged in the tank main body 1. (See FIG. 8).

そして上記構成を採用することにより、容積の大きい貯溜タンクにも対応することが可能となる。また実施例3では、ヒートパイプ2の放熱部21の形状を、各放熱部21・21…の内側部分が全体として輪を成すような異形型としており、これによってリング型の放熱部と同様の効果を得ることができる。   By adopting the above configuration, it is possible to cope with a storage tank having a large volume. In the third embodiment, the shape of the heat radiating portion 21 of the heat pipe 2 is a deformed shape in which the inner portions of the heat radiating portions 21, 21... Form a ring as a whole. An effect can be obtained.

本発明は、概ね上記のように構成されるが、本発明は図示の実施形態に限定されるものではなく、「特許請求の範囲」の記載内において種々の変更が可能であって、例えば、受熱筒2の材質は、剛性を有し熱伝導性に優れた材料であれば他の金属材料やプラスチック材料を選択してもよく、また不凍液3の材料も、熱伝導性が高く流動性を有する液体であれば水以外であってもよい。   The present invention is generally configured as described above. However, the present invention is not limited to the illustrated embodiment, and various modifications can be made within the description of “Claims”. The material of the heat receiving tube 2 may be selected from other metal materials and plastic materials as long as the material has rigidity and excellent thermal conductivity. The material of the antifreeze liquid 3 also has high thermal conductivity and fluidity. As long as it has a liquid, it may be other than water.

また、ヒートパイプ2の受熱部22に設ける気泡生成室22aに関しても、上下方向に3つ以上設けてもよく、また熱媒液23の材料に関してもハイドロフルオロカーボンやアンモニアなど、適宜最適のものを選択して使用することができる。   Also, three or more bubble generation chambers 22a provided in the heat receiving part 22 of the heat pipe 2 may be provided in the vertical direction, and the material of the heat transfer liquid 23 is appropriately selected as appropriate, such as hydrofluorocarbon or ammonia. Can be used.

そしてまた、タンク本体1には、ヒートパイプ2だけでなく電熱ヒータ等の他の保温手段を一緒に付設することができ、その場合にはヒートパイプ2の保温効果が不十分なときに電熱ヒータを併用して貯溜液の凍結を防止することができ、上記何れのものも本発明の技術的範囲に属する。   In addition, the tank body 1 can be provided with not only the heat pipe 2 but also other heat retaining means such as an electric heater. In this case, when the heat retaining effect of the heat pipe 2 is insufficient, the electric heater Can be used together to prevent the stored solution from freezing, and any of the above is within the technical scope of the present invention.

近年、地球温暖化や石油枯渇等の環境問題の深刻化から、産業界において自然エネルギーの利用が進められている。その中でも季節や天候の影響を受け難い「地熱」は、計算ができる実用性に優れた自然エネルギーといえる。   In recent years, the use of natural energy has been promoted in the industrial world due to serious environmental problems such as global warming and oil depletion. Among them, “geothermal”, which is not easily affected by the season or weather, can be said to be a natural energy with excellent practicality that can be calculated.

そのような中で、本発明のタンク貯溜液の凍結防止装置および保温機能を備えた液貯溜タンクは、地熱を利用して貯溜液の保温に使用される電気消費量を抑えることができ、しかも、メンテナンスも容易に行える有用な技術であるため、その産業上の利用価値は非常に高い。   Under such circumstances, the liquid storage tank having the anti-freezing device and the heat retaining function of the tank storage liquid of the present invention can suppress the electric consumption used for the heat storage of the stored liquid by using geothermal heat. Since it is a useful technology that can be easily maintained, its industrial utility value is very high.

1 タンク本体
2 ヒートパイプ
21 放熱部
22 受熱部
22a 気体生成室
23 熱媒液
24 上昇管
25 下降管
26 断熱材
3 受熱筒
31 蓋材
4 不凍液
L 貯溜液
F 架台フレーム
1 Tank body 2 Heat pipe
21 Heat sink
22 Heat receiving part
22a Gas generation chamber
23 Heat transfer fluid
24 riser
25 downcomer
26 Insulation 3 Heat-receiving tube
31 Lid 4 Antifreeze L Storage liquid F Mounting frame

Claims (6)

液貯溜タンクに付設される貯溜液(L)の凍結防止装置であって、
伝熱性を有し、かつ、地中に埋設される有底の受熱筒(3)と;この受熱筒(3)内に収容される不凍液(4)と;この不凍液(4)中に略U字型の受熱部(22)が浸漬配置され、かつ、放熱部(21)が前記タンク内に配置される環状のヒートパイプ(2)とを含んで構成され、
更に前記ヒートパイプ(2)には、受熱部(22)に熱媒液(23)を収容すると共に、U字型を成す受熱部(22)の一方の縦管において、前記熱媒液(23)の液面(S)下方に上向きに膨出した気泡生成室(22a)を設けたことにより、
前記受熱筒(3)中の不凍液(4)を、地熱により昇温した受熱筒(3)の最下部の熱で下方から上方に対流せしめて、この対流する不凍液(4)によって前記気泡生成室(22a)を加熱可能としたことを特徴とするタンク貯溜液の凍結防止装置。
A storage liquid (L) freezing prevention device attached to a liquid storage tank,
A bottomed heat receiving tube (3) that has heat conductivity and is buried in the ground; an antifreeze liquid (4) accommodated in the heat receiving tube (3); and an approximately U in the antifreeze liquid (4) A letter-shaped heat receiving portion (22) is immersed, and a heat radiating portion (21) is configured to include an annular heat pipe (2) disposed in the tank,
Further, in the heat pipe (2), the heat transfer liquid (23) is accommodated in the heat receiving section (22), and in one vertical pipe of the U-shaped heat receiving section (22), the heat transfer liquid (23 The bubble generation chamber (22a) swelled upward below the liquid level (S) of
The antifreeze liquid (4) in the heat receiving tube (3) is convected upward from below by the heat at the bottom of the heat receiving tube (3) heated by geothermal heat, and the bubble generating chamber is formed by the convective antifreeze liquid (4) (22a) A tank storage liquid freeze prevention device characterized in that heating is possible.
ヒートパイプ(2)の受熱部(22)に出口径が1mm以上の気泡生成室(22a)を設けたことを特徴とする請求項1記載のタンク貯溜液の凍結防止装置。   2. The tank storage liquid freeze prevention device according to claim 1, wherein a bubble generating chamber (22a) having an outlet diameter of 1 mm or more is provided in the heat receiving portion (22) of the heat pipe (2). ヒートパイプ(2)の受熱部(22)の気泡生成室(22a)の下方に、予備の気泡生成室(22a’)を少なくとも一つ以上設けたことを特徴とする請求項1または2に記載のタンク貯溜液の凍結防止装置。   The at least one spare bubble generation chamber (22a ') is provided below the bubble generation chamber (22a) of the heat receiving part (22) of the heat pipe (2). Anti-freezing device for tank reservoir liquid. 受熱筒(3)の頂部に断熱性を有する蓋材(31)を付設したことを特徴とする請求項1〜3の何れか一つに記載のタンク貯溜液の凍結防止装置。   The tank storage liquid freeze prevention device according to any one of claims 1 to 3, wherein a lid member (31) having heat insulation is attached to a top portion of the heat receiving cylinder (3). ヒートパイプ(2)において地中の受熱部(22)とタンク内の放熱部(21)を繋ぐ上昇管(24)および下降管(25)を断熱材(26)で被覆して外気温の影響を受けないようにしたことを特徴とする請求項1〜4の何れか一つに記載のタンク貯溜液の凍結防止装置。   In the heat pipe (2), the riser pipe (24) and the downfall pipe (25) connecting the underground heat receiving part (22) and the heat radiating part (21) in the tank are covered with heat insulating material (26), and the influence of the outside temperature The tank storage liquid freezing prevention device according to any one of claims 1 to 4, wherein the tank storage fluid freezing is not received. 内部に液体を貯溜可能なタンク本体(1)と;伝熱性を有し、かつ、地中に埋設される有底の受熱筒(3)と;この受熱筒(3)内に収容される不凍液(4)と;この不凍液(4)中に略U字型の受熱部(22)が浸漬配置され、かつ、放熱部(21)が前記タンク本体(1)内に配置された環状のヒートパイプ(2)とを含んで構成され、
更に前記ヒートパイプ(2)には、受熱部(22)に熱媒液(23)を収容すると共に、U字型を成す受熱部(22)の一方の縦管において、熱媒液(23)の液面(S)下方に上向きに膨出した気泡生成室(22a)を設けたことにより、
前記受熱筒(3)中の不凍液(4)を、地熱により昇温した受熱筒(3)の最下部の熱で下方から上方に対流せしめて、この対流する不凍液(4)によって前記気泡生成室(22a)を加熱可能としたことを特徴とする保温機能を備えた液貯溜タンク。
A tank body (1) capable of storing a liquid therein; a heat receiving tube (3) having heat conductivity and buried in the ground; and an antifreeze liquid accommodated in the heat receiving tube (3) (4) and an annular heat pipe in which a substantially U-shaped heat receiving portion (22) is immersed in the antifreeze liquid (4) and a heat radiating portion (21) is disposed in the tank body (1). (2)
Further, the heat pipe (2) contains the heat transfer liquid (23) in the heat receiving section (22), and the heat transfer liquid (23) in one vertical tube of the U-shaped heat receiving section (22). By providing a bubble generation chamber (22a) that bulges upward below the liquid level (S) of
The antifreeze liquid (4) in the heat receiving tube (3) is convected upward from below by the heat at the bottom of the heat receiving tube (3) heated by geothermal heat, and the bubble generating chamber is formed by the convective antifreeze liquid (4). (22a) A liquid storage tank having a heat retaining function characterized in that heating is possible.
JP2011035017A 2011-02-21 2011-02-21 Tank storage liquid freeze prevention device and liquid storage tank with heat retention function Active JP5765555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035017A JP5765555B2 (en) 2011-02-21 2011-02-21 Tank storage liquid freeze prevention device and liquid storage tank with heat retention function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035017A JP5765555B2 (en) 2011-02-21 2011-02-21 Tank storage liquid freeze prevention device and liquid storage tank with heat retention function

Publications (2)

Publication Number Publication Date
JP2012172896A true JP2012172896A (en) 2012-09-10
JP5765555B2 JP5765555B2 (en) 2015-08-19

Family

ID=46975969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035017A Active JP5765555B2 (en) 2011-02-21 2011-02-21 Tank storage liquid freeze prevention device and liquid storage tank with heat retention function

Country Status (1)

Country Link
JP (1) JP5765555B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092996A (en) * 2017-11-27 2019-06-20 飯田電子設計株式会社 Aed storage device and aed storage device management system

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597377A (en) * 1979-01-12 1980-07-24 Mitsubishi Electric Corp Water tank device
JPS55101609A (en) * 1979-01-30 1980-08-02 Seiken Co Device for preventing fall of snow and ice in cold area
JPS5997492A (en) * 1982-11-29 1984-06-05 Agency Of Ind Science & Technol Heat transfer device
JPS635352U (en) * 1986-06-25 1988-01-14
US4930572A (en) * 1988-09-14 1990-06-05 Doshier John R Heat pipe and aqua-thaw animal waterer
US4995450A (en) * 1989-08-18 1991-02-26 G.P. Industries, Inc. Heat pipe
JPH08109607A (en) * 1994-10-13 1996-04-30 Fujikura Ltd Snow-melting system utilizing unused heat source
JPH08284106A (en) * 1995-04-19 1996-10-29 Fujikura Ltd Heat pipe type snow-melting apparatus
JPH08285480A (en) * 1995-04-19 1996-11-01 Fujikura Ltd Heat pipe laying method of heat pipe type geothermal energy extraction apparatus
JPH09189006A (en) * 1996-01-11 1997-07-22 Fujikura Ltd Heat-pipe type snow-melting device
US5816314A (en) * 1995-09-19 1998-10-06 Wiggs; B. Ryland Geothermal heat exchange unit
JP2001174174A (en) * 1999-12-20 2001-06-29 Kago Ri Bubble-circulating heat exchanging device
JP2008170117A (en) * 2007-01-15 2008-07-24 Wakasawan Energ Kenkyu Center Loop-type heat pipe
JP2008194899A (en) * 2007-02-09 2008-08-28 Wakasawan Energ Kenkyu Center Luminescent decorative appliance
JP2009052757A (en) * 2007-08-23 2009-03-12 Wakasawan Energ Kenkyu Center Siphon type circulation type heat pipe
JP2010145032A (en) * 2008-12-19 2010-07-01 Daikin Ind Ltd Underground heat exchanger and air conditioning system
US8640765B2 (en) * 2010-02-23 2014-02-04 Robert Jensen Twisted conduit for geothermal heating and cooling systems

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597377A (en) * 1979-01-12 1980-07-24 Mitsubishi Electric Corp Water tank device
JPS55101609A (en) * 1979-01-30 1980-08-02 Seiken Co Device for preventing fall of snow and ice in cold area
JPS5997492A (en) * 1982-11-29 1984-06-05 Agency Of Ind Science & Technol Heat transfer device
JPS635352U (en) * 1986-06-25 1988-01-14
US4930572A (en) * 1988-09-14 1990-06-05 Doshier John R Heat pipe and aqua-thaw animal waterer
US4995450A (en) * 1989-08-18 1991-02-26 G.P. Industries, Inc. Heat pipe
JPH08109607A (en) * 1994-10-13 1996-04-30 Fujikura Ltd Snow-melting system utilizing unused heat source
JPH08285480A (en) * 1995-04-19 1996-11-01 Fujikura Ltd Heat pipe laying method of heat pipe type geothermal energy extraction apparatus
JPH08284106A (en) * 1995-04-19 1996-10-29 Fujikura Ltd Heat pipe type snow-melting apparatus
US5816314A (en) * 1995-09-19 1998-10-06 Wiggs; B. Ryland Geothermal heat exchange unit
JPH09189006A (en) * 1996-01-11 1997-07-22 Fujikura Ltd Heat-pipe type snow-melting device
JP2001174174A (en) * 1999-12-20 2001-06-29 Kago Ri Bubble-circulating heat exchanging device
JP2008170117A (en) * 2007-01-15 2008-07-24 Wakasawan Energ Kenkyu Center Loop-type heat pipe
JP2008194899A (en) * 2007-02-09 2008-08-28 Wakasawan Energ Kenkyu Center Luminescent decorative appliance
JP2009052757A (en) * 2007-08-23 2009-03-12 Wakasawan Energ Kenkyu Center Siphon type circulation type heat pipe
JP2010145032A (en) * 2008-12-19 2010-07-01 Daikin Ind Ltd Underground heat exchanger and air conditioning system
US8640765B2 (en) * 2010-02-23 2014-02-04 Robert Jensen Twisted conduit for geothermal heating and cooling systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092996A (en) * 2017-11-27 2019-06-20 飯田電子設計株式会社 Aed storage device and aed storage device management system

Also Published As

Publication number Publication date
JP5765555B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
AU2003257096B2 (en) Sealed well direct expansion heating and cooling system
JP2014202149A (en) Geothermal power generation system
US10006668B2 (en) Underground heat-exchange system
CN101696829A (en) Method for remotely transferring and storing geothermal energy, device and application thereof
JP2009092350A (en) Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
JP2007139370A (en) Underground heat exchanger
JP2022003293A (en) Geothermal power generation device
CN104880111A (en) Sealing method of phase-change energy storage unit
JP6831655B2 (en) Geothermal power generation system with triple pipes
JP5765555B2 (en) Tank storage liquid freeze prevention device and liquid storage tank with heat retention function
CN208860177U (en) The buried gravity assisted heat pipe of big L/D ratio stage evaporation type
RU2016104802A (en) Room heating and hot water supply system
JP6121865B2 (en) Geothermal heat pump system
JP2007071439A (en) Triple u-shaped tube type underground heat exchanger
US10345051B1 (en) Ground source heat pump heat exchanger
KR101861092B1 (en) Heat pump system having underground heat reservoir pipes
KR20170052119A (en) Hot and cool water supply apparatus using geothermal
JP2016047032A (en) Heat exchange type water tank
RU73392U1 (en) GEOTHERMAL HEAT EXCHANGER FOR ENERGY SUPPLY OF CONSUMERS
CN203704382U (en) Air-liquid interchange closed type emptying, antifreezing and anti-overheating solar water heating system
JP5388131B2 (en) Solar thermal underground thermal storage device using solar heat
CN209435728U (en) A kind of water-cooling shell for windfinding radar
CN208042549U (en) Bushing type underground pipe and buried radiator
JP5414488B2 (en) System for reducing the operating rate of existing boilers
CN205825460U (en) A kind of pressure-bearing convection tube one solar water heater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R150 Certificate of patent or registration of utility model

Ref document number: 5765555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250