JP5007278B2 - ガス漏れ診断装置及びガス漏れ診断方法 - Google Patents

ガス漏れ診断装置及びガス漏れ診断方法 Download PDF

Info

Publication number
JP5007278B2
JP5007278B2 JP2008160406A JP2008160406A JP5007278B2 JP 5007278 B2 JP5007278 B2 JP 5007278B2 JP 2008160406 A JP2008160406 A JP 2008160406A JP 2008160406 A JP2008160406 A JP 2008160406A JP 5007278 B2 JP5007278 B2 JP 5007278B2
Authority
JP
Japan
Prior art keywords
gas
pressure
differential pressure
value
gas leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008160406A
Other languages
English (en)
Other versions
JP2010002264A (ja
JP2010002264A5 (ja
Inventor
航一 加藤
晃一 高久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008160406A priority Critical patent/JP5007278B2/ja
Publication of JP2010002264A publication Critical patent/JP2010002264A/ja
Publication of JP2010002264A5 publication Critical patent/JP2010002264A5/ja
Application granted granted Critical
Publication of JP5007278B2 publication Critical patent/JP5007278B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、高圧タンクに貯蔵されているか又は配管により輸送されているガスのガス漏れを診断するガス漏れ診断装置に関連し、特に、車両に搭載されている燃料ガスの漏れ診断するのに適したガス漏れ診断装置に関する。
燃料電池を搭載する車両は、燃料ガス(水素)及びエア(酸素)を燃料電池に供給し電気化学反応させて動力源の起電力を得ている。この燃料ガスは、高圧タンクに貯蔵され配管で輸送されて燃料電池に供給される。ところで、この高圧タンク及び配管に亀裂や、これらの接続部分に緩みが発生すると、高圧の燃料ガスは車外に漏洩することになる。よってそのような事態が発生した場合は、いち早く察知し緊急事態に対応できる車両制御モードに移行する必要がある。
そのような、ガス漏れを診断する従来技術としては、ガス圧センサが圧力値を出力し、この圧力値の所定の時間間隔における差圧が設定閾値を超過する場合は、ガス漏と判定する技術が知られている(例えば、特許文献1)。
特開2005−127834号公報
ところで、燃料ガスの圧力値を出力するガス圧センサは、歪ゲージが広く利用されている。この歪ゲージは、圧力変形に伴う電気抵抗の変化を電圧値又は電流値の出力変化として検出するものであり、高圧領域での使用時に、ベースラインのオフセット異常が発生することが知られている。このオフセット異常とは、歪ゲージから検出される電圧又は電流が瞬間的に一定値スライドして検出される現象である。
そのような異常現象が発生する要因としては、最大35MPaから大気圧(約0.1MPa)までの広い圧力変化を検出範囲とすることによる材料限界、または歪ゲージから出力される微弱なアナログ信号である電圧値又は電流値を増幅するための増幅回路の接点不良などが挙げられる。
そして、従来技術において、このようなオフセット異常が発生し、このオフセット量が差圧の設定閾値を超過するものであった場合、ガス漏れと誤判定してしまうという問題があった。
本発明は、前記した問題を解決することを課題とし、ガスを貯蔵する高圧タンク又はガスを輸送する配管にガス漏洩が発生した場合、その旨をいち早く察知するとともに、誤診断のないガス漏れ診断装置及びガス漏れ診断方法を提供することを目的とする。
前記した課題を解決するために本発明は、ガスが貯蔵されている高圧タンク及びこの高圧タンクに接続して前記ガスを輸送する配管のガス漏れを診断するガス漏れ診断装置であって(請求項1)このガス漏れ診断装置は、(1)互いに重複しない時間帯における少なくとも前後2つの前記検定結果が共に超過の場合、ガス漏れと判定し、(2)前記第1ガス圧センサから取得して求められた前記差圧値が設定閾値を超過した旨の検定結果と、前記第2ガス圧センサから取得して求められた前記差圧値が設定閾値を超過した旨の検定結果と、がともに得られた場合は、互いに重複しない時間帯における次の検定結果を得る前にガス漏れと判定することを特徴とする。 または、ガスが貯蔵されている高圧タンク及びこの高圧タンクに接続して前記ガスを輸送する配管のガス漏れを診断するガス漏れ診断装置であって(請求項2)、(1)互いに重複しない時間帯において導出された少なくとも前後2つの前記差圧値が共に設定閾値を超過した場合、ガス漏れと判定し、(2)前記第1ガス圧センサから取得して求められた前記差圧値が設定閾値を超過し、かつ前記第2ガス圧センサから取得して求められた前記差圧値が設定閾値を超過した場合は、互いに重複しない時間帯における次の差圧値導出の前にガス漏れと判定することを特徴とする。
かかる構成により、ガスが正常に消費され、ガス漏れが発生していない状態にあっては、設定時間を挟んだ前後において差圧は、設定閾値を超過しないので、ガス漏れ診断されることはない。
そして、ガス漏れが発生し、差圧が設定閾値を超過し、時間的に重ならない異なる時間帯(互いに重複しない時間帯)における他の差圧も設定閾値を超過している場合は、ガス漏れと判定し、早期診断によりガス漏れが察知される。
また、燃料ガスの圧力値に設定閾値を超過するオフセット異常が発生した場合であっても、時間的に重ならない異なる時間帯(互いに重複しない時間帯)における他の差圧が設定閾値を超過していなければ、ガス漏れと判定されず、誤診断とならない。
さらに本発明のガス漏れ診断装置において、前記ガスは、車両用の燃料ガスであることを特徴とする。
かかる構成により、高圧タンクに貯蔵されているか又は配管により輸送されている燃料ガスのガス漏れを誤診断することなく早期に察知できるので、緊急事態に対応できる車両制御モードにいち早く切り替えることができる。
なお、前記した請求項1と請求項2の本発明のガス漏れ診断装置において、前記高圧タンク側に設けられた第1ガス圧センサが出力した第1圧力値の前記差圧が設定閾値を超過する旨の検定がなされ、さらに前記配管側に設けられた第2ガス圧センサが出力した第2圧力値の前記差圧も設定閾値を超過する旨の検定がなされれば、判定手段は、前記差圧の次の検定を待たずにガス漏れ判定をすることを特徴とする。
かかる構成により、時間的に重ならない異なる時間帯における他の差圧の検定結果を待つことなくガス漏れ判定がなされるので、ガス漏れが発生した場合、その旨をさらに早期に察知することができる。二つのガス圧センサがほぼ同時に設定閾値を超過する差圧を検出するということは、ガス漏れ量が多いことが示唆されるために通常よりも早期にガス漏れ診断を下す必要がある。
さらに本発明のガス漏れ診断装置において、前記圧力値は、歪ゲージを構成要素に含むガス圧センサから出力されることを特徴とする。
かかる構成により、オフセット異常の発生頻度が比較的高い歪ゲージを使用したガス圧センサによりガスの圧力値を検出しても誤診断の可能性が低くなる。
さらに本発明は、前記差圧が設定閾値を超過する旨の前記検定がなされ、前記時間的に重ならない異なる時間帯において導出された他の前記差圧は超過しない旨の前記検定がなされている場合は、前記超過する旨の検定がなされた差圧を、ベースラインのオフセット異常とみなし、データ取得部が取得した前記圧力値に対し補正を実施する補正部を備えることを特徴とする。
かかる構成により、ベースラインのオフセット異常が発生してもガスの正確な圧力値を得ることができる。
本発明により、ガスを貯蔵する高圧タンク又はガスを輸送する配管にガス漏洩が発生した場合、その旨をいち早く察知するとともに、誤診断のないガス漏れ診断装置及びガス漏れ診断方法が提供される。
<<第1実施形態(参考実施形態)>>
以下、図面を参照して本発明のガス漏れ診断装置の実施形態を詳細に説明する。図1は本発明に係る第1実施形態のガス漏れ診断装置を搭載した車両の実施形態を示すブロック図である。なお、この第1実施形態は、後記するように、ガス圧センサが1つである点において、参考実施形態である。
図1に示すように、車両本体10は、高圧に圧縮された燃料ガス(水素)が貯蔵されている高圧タンク11と、この高圧タンク11に接続し燃料ガスを燃料電池13に輸送するアノード系配管20と、酸化性ガス(エア)を燃料電池13に輸送するカソード系配管30と、車内LANを介して各種電装部品に接続し車両本体10の制御を統括するECU15と、燃料ガスのガス漏れを診断するガス漏れ診断装置40とを含む構成をとる。
高圧タンク11には、貯蔵されている高圧の燃料ガスの供給を開閉動作に応じて継続/停止させる遮断弁12と、高圧の燃料ガスの圧力値のアナログ信号を出力する第1ガス圧センサ41とが設けられている。
アノード系配管20には、高圧タンク11から供給される高圧の燃料ガスを一定の低圧値に減圧する一次減圧弁21と、コンプレッサ32のエア圧をパイロット圧(信号圧)として機械的な開度調整をすることにより燃料ガスをさらに調圧する調圧弁22と、この調圧された燃料ガスを循環させながら燃料電池13に供給するエゼクタ23とが設けられている。
第1ガス圧センサ41は(第2ガス圧センサは後記の第3実施形態参照)、ガス圧の検出方式に特に限定はないが、歪ゲージ方式を採用するものが広く用いられている。また、第1ガス圧センサ41の設置位置についても、特に限定はないが、本実施形態では、高圧タンク11の容器本体に設けられている。
カソード系配管30には、アクセルペダル33の踏み込み量に応じてエア圧力を増減させて燃料電池13にエア供給するコンプレッサ32と、この増減するエア圧力をパイロット圧(信号圧)として調圧弁22に同期伝達する分岐配管31とが設けられている。
燃料電池13は、アノード系配管20から供給される燃料ガス(水素)と、カソード系配管30から供給されるエア(酸素)とを電気化学反応させ、発電した直流電流を3相交流電力に変換するPDU16を介し、走行モータ17に電力供給するものである。
燃料電池13は、複数(例えば、200〜400)の単セルが厚み方向にセパレータを介して積層し、電気的に直列結合し、剛性の高い筐体に収納されている。
そして、単セルの両面には、それぞれ燃料ガス流路及びエア流路が設けられ、要求電力量に対応したガス圧が、単セルの両面に付勢するようになっている。
ECU15は、アクセルペダル33の踏み込み量に応じてコンプレッサ32の出力を増減させたり、ガス漏れ診断装置40が出力する情報に基づいてガス漏れ警告を発したり、車両本体10を緊急停止させたりする。
ここで警告とは図示しない警告灯を点灯させたり音声等で乗員にその旨を通告したり、緊急事態に対応できるように車両制御モードを変更したりすることを指す。また緊急停止とは、例えば、高圧タンク11の遮断弁12を閉状態にしたり、燃料電池13から走行モータ17に電力が供給されないようにしたりして、車両10を走行不能な状態にすることを指す。
ガス漏れ診断装置40は、図示を省略するが、ハードウェアとして、入出力インタフェイス、CPU、メモリなどを含んで構成される。また、ガス漏れ診断装置40は、図示を省略するが、機能として、第1ガス圧センサ41からのアナログ信号を受信してデジタル信号処理をするデータ取得部、データ取得部により取得された圧力値を一時的に記憶するバッファやタイマの設定値(設定値)を記憶する記憶部、取得された圧力値に基づいてガス漏れが発生しているか否かについて判定を行うガス漏れ判定手段などから構成される。
次に、図2は、第1実施形態のガス漏れ診断装置の動作を示すフローチャートであるが、このフローチャートを参照して、第1実施形態のガス漏れ診断装置40の動作を説明する。
この図2(a)のフローチャートは、ステップSt1〜St13が1つのルーチンとして、イグニッションスイッチONにより処理が開始し、イグニッションスイッチがOFFされるまで繰り返して実行される。なお、このフローチャートにおける動作の主体は、ガス漏れ診断装置40である。したがって、文中において主語が省略されている場合、その動作の主語はガス漏れ診断装置40である。
ステップSt1では、データ取得部を介して第1ガス圧センサ41からの圧力信号を圧力P1として取得する。
ステップSt2では、設定時間が経過したか否かが判定される。設定時間は、例えば10秒であるが、この値は、本実施形態では、ガス漏れの迅速な検出と、ガス漏れの誤検知防止という観点から設定されるものである。
ステップSt2で、設定時間を経過しない場合(St2→No)は、設定時間が経過するまで待機し、設定時間を経過した場合(St2→Yes)は、次のステップSt3に処理を進める。
ステップSt3では、データ取得部を介して第1ガス圧センサ41から圧力信号を圧力P2として取得する。
ステップSt4では、それぞれ取得した圧力P1と圧力P2との差圧であるΔPを導出する。この処理により導出されるΔPは、請求項に記載の「差圧導出のための設定時間を挟んだ前後において取得した圧力値から導出した差圧」に相当する。
ステップSt5では、ΔPと比較する閾値を設定する。閾値の設定は第3実施形態で説明するが、ガス消費量が多い場合は、閾値は大きな値が設定され、ガス消費量が少ない場合は、閾値は小さな値が設定される。
ステップSt6では、ΔPが閾値を超過するか否かを判定し(ΔP>閾値?)、ΔPが閾値を超過しない(閾値以下の)場合(St6→No)は、ステップSt1に戻って処理が繰り返される。一方、ステップSt6で、ΔPが閾値を超過する場合(ステップSt6→Yes)は、次のステップSt7に処理を進める。
ここで、ステップSt7〜St11は、前記したステップSt1〜St5と同じ処理なので、説明を省略する。ちなみに、本実施形態においては、ステップSt7で取得される圧力P1は、ステップSt3で取得される圧力P2よりも時間的に後に取得された圧力値であるが、必ずしもそうである必要はなく、ステップSt7における圧力値P1がステップSt3で取得された圧力P1であってもよい。ただし、ステップSt9で取得される圧力P2は、ステップSt7で取得される圧力P1よりも後に(設定時間経過後に)取得される。
次に、ステップSt12では、前記したステップS6と同様に、ΔPが閾値を超過するか否かを判定するが(ΔP>閾値?)、判定後の処理が異なる。つまり、ステップSt12でΔPが閾値を超過する場合は(St12→Yes)、ステップSt6でもΔPが閾値を超過しており、つまり、連続してΔPが閾値を超過している。このため、ステップSt13で異常を出力する。なお、異常とは、本実施形態では、ガス漏れである。
一方、ステップSt12で、ΔPが閾値を超過しない(閾値以下の)場合(St12→No)は、「Return」に進む。ちなみに、ステップSt12がNoになる場合は、連続してΔPが閾値を超過していないので、第1ガス圧センサ41にオフセット故障が考えられる。
なお、この第1実施形態ではステップSt13での「異常出力」の後も、「Return」に進む。そして、再度、ステップSt1以降の処理が繰り返されるが、ステップSt13の後に、処理を終わらせてもよい。
ところで、図2(a)のフローチャートでは、ステップSt1〜St13の処理を行うこととしたが、変形例として、図2(b)のように、ステップSt6がYesの場合に、前回の処理の際にもΔPが閾値を超過していたか否かを判定するステップ、つまり、連続してΔPが閾値を超過した否かを判定するステップSt7aを設け、このステップSt7aがYesの場合(連続して超過の場合)には異常(ガス漏れ)を出力し、Noの場合(連続して超過していない場合)にはステップSt1に戻るようにしてもよい。
ちなみに、この第1実施形態は、ガスの圧力値を取得するデータ取得部と、差圧導出のための設定時間を挟んだ前後において取得した圧力値(P1、P2)から導出した差圧(ΔP)を設定閾値と比較して、差圧(ΔP)が設定閾値を超過するかしないかを検定する差圧検定部と、時間的に重ならない異なる時間帯における少なくとも2つの検定の結果が共に超過(連続して超過)であれば、ガス漏れと判定する判定手段とを、備えるガス漏れ診断装置である。
また、この第1実施形態は、ガスの圧力値を取得するデータ取得部と、差圧導出のための設定時間を挟んだ前後において取得した圧力値(P1、P2)から差圧(ΔP)を導出する差圧導出部と、時間的に重ならない異なる時間帯において導出された少なくとも2つの前記差圧(ΔP)が共に設定閾値を超過(連続して超過)していれば、ガス漏れと判定する判定手段とを、備えるガス漏れ診断装置である。
ちなみに、図2のフローチャートを、例えば1秒ずつずらして10個並列で実行すれば、後記する第2実施形態などのように、1秒ごとに診断を行える。
<<第2実施形態(参考実施形態)>>
参考実施形態である第2実施形態のガス漏れ診断装置を説明する。図3は、第2実施形態のガス漏れ診断装置の動作を示すフローチャートである。なお、第1実施形態と共通部分は、文中に図1で使用したのと同じ符号を付して説明を省略する。
ちなみに、第2実施形態と第1実施形態の違いは、(1)第2実施形態では、ガス漏れ診断装置40が、データ取得部を介して1秒ごと、つまり設定時間をn分割(ここでは10分割)した時間間隔で第1ガス圧センサ41からの圧力信号を取得して、これを第1バッファ40a(図3参照)に逐次格納する点である。
また、(2)第2実施形態では、ガス漏れ診断装置40が、第1バッファ40aに、1秒間隔で得られる圧力のデータを時系列で11個格納し、新しいデータを格納すれば、一番古いデータを消去する点である。つまり、第1バッファ40aは、10秒分(設定時間分と同じ時間幅)のデータを、常時11個格納している。換言すると、第1バッファは、一時記憶領域の先頭(先頭のアドレス)に10秒前の圧力のデータを常時格納し、最後尾(末尾;末尾のアドレス)に現時点の圧力のデータを常時格納している(10秒前の圧力のデータ〜現在の圧力のデータまでの11個)。
また、(3)第2実施形態では、ガス漏れ診断装置40が、第1バッファ40aの先頭のデータ(つまり10秒前のデータ)と末尾のデータ(つまり現時点のデータ)を、第1バッファ40aから同時に読み出して、差圧(ΔP)を導出し、ΔPと閾値とを比較(検定)する点である。
また、(4)第2実施形態では、第2バッファ40b(図3参照)が、1秒間隔で得られる比較結果(検定結果)のデータを時系列で11個格納し、新しいデータを格納すれば、一番古いデータを消去する点である。つまり、第2バッファ40bは、第1バッファ40aと同様、10秒分(設定時間分と同じ時間幅)のデータを、常時11個格納している。換言すると、第1バッファは、一時記憶領域の先頭(先頭のアドレス)に10秒前の比較結果のデータを格納し、最後尾(末尾;末尾のアドレス)に現時点の比較結果のデータを格納している(10秒前の比較結果〜現在の比較結果までの11個)。
また、(5)第2実施形態では、ガス漏れ診断装置40が、第2バッファ40bの先頭のデータ(つまり10秒前の比較結果のデータ)と末尾のデータ(つまり現時点の比較結果のデータ)を、第2バッファ40bから同時に読み出して、比較結果が共に「ΔP>閾値」であるかを判断して、ガス漏れを検知する点である。
以上の(1)〜(5)の違いを前提に、図3のフローチャートを参照して第2実施形態のガス漏れ診断装置40の動作を説明する。
この図3のフローチャートは、ステップSt21〜St30が1つのルーチンとして、イグニッションスイッチONにより処理が開始し、イグニッションスイッチがOFFされるまで繰り返して実行される。なお、このフローチャートにおける動作の主体は、第1実施形態と同様、ガス漏れ診断装置40である。
ステップSt21では、データ取得部を介して第1ガス圧センサ41からの圧力信号を圧力のデータとして取得し、第1バッファ40aに格納する。前記のとおり、第1バッファ40aは、最新のデータを格納すると、最も古いデータを消去し、常時11個の圧力のデータ、つまり設定時間である10秒分の圧力のデータを格納する(10秒前の圧力のデータ〜現在の圧力のデータまでの11個)。
ステップSt22では、第1バッファ40aのデータの個数が11個あるか否かを判断する(バッファのデータ充足?)。不足していれば(St22→No)、充足するまでステップSt21を繰り返して実行する。一方、充足していれば(St22→Yes)、ステップSt23に進む。
なお、このステップSt22は、イグニッションスイッチONの直後(10秒ほど)の間に機能するものであるが、必須のステップではない。
ステップSt23では、ガス漏れ診断装置40が、圧力のデータを常時11個格納している第1バッファ40aから、その先頭のデータをP1として、末尾のデータをP2として読み出す。
次のステップSt24は、第1実施形態のステップSt4に相当し、ステップSt25は第1実施形態のSt5に相当するので、説明を省略する。
ステップSt26では、ΔPが閾値を超過するか否かの比較結果を算出し、その比較結果を第2バッファ40bに格納する。なお、比較結果は「超過」か「超過せず」か、のいずれかである。ちなみに、この第2バッファ40bも第1バッファと同様、常時11個分の比較結果(10秒前の比較結果〜現在の比較結果までの11個)のデータを格納している。
ステップSt27では、比較結果のデータの数が充足しているか否かを判断する。これは、前記したステップSt22と同様であり、不足していれば(St27→No)充足するまでステップSt21からの処理を繰り返して実行する。一方、充足していれば(St27→Yes)、ステップSt28に進む。
なお、このステップSt27は、イグニッションスイッチONの直後の間に機能するものであるが、必須のステップではない。
ステップSt28では、ガス漏れ診断装置40が、比較結果のデータを常時11個格納している第2バッファ40bから、その先頭の比較結果と、末尾の比較結果を読み出す。
そして、ステップSt29では、「読み出した比較結果は共にΔPが閾値を超過」であるか否かを判断する。共に超過であれば(St29→Yes)、つまり、10秒前もΔPが閾値を超過しており、かつ、今回もΔPが閾値を超過している場合は、連続して超過しているので、ステップSt30で異常を出力する。なお、異常とは、本実施形態では、ガス漏れである。
一方、ステップSt29で、共に超過ではない場合(St29→No)は、「Return」に進む。ちなみに、ステップSt29がNoになる場合は、連続してΔPが閾値を超過していないので、つまり、10秒前はΔPが閾値を超過していたが現在は超過していない場合(その逆の場合)は、第1ガス圧センサ41にオフセット異常が考えられる。
なお、この第1実施形態ではステップSt30での「異常出力」の後も、「Return」に進む。そして、再度、ステップSt21以降の処理が繰り返されるが、ステップSt30の後に、処理を終わらせてもよい。
この第2実施形態も、第1実施形態と同様の技術思想を実施するものであり、適切にガス漏れの判定などを行うことができる。
ちなみに、圧力のデータの取得が10秒間隔であり、第1バッファ40aなどが1個分のデータのみを格納するものであれば、第2実施形態は、第1実施形態とほぼ同じになる。
なお、第1実施形態でも同様であるが、ΔPと閾値との比較は、その都度行うのではなく、後でまとめて比較しても同じである。
また、第2実施形態で、設定時間を10秒、データの取得間隔を1秒、バッファのデータの格納個数を11個としたが、これらは適宜変更可能なものである。
また、ステップSt29での比較は、「時間的に重ならない異なる時間帯における少なくとも2つの比較結果(検定結果)が共に超過」かの比較に相当するが、2つではなく、「時間的に重ならない異なる時間帯における3つの検定の比較結果(検定結果)」を比較してもよい。この場合は、第2バッファ40bの記憶個数を増やして対応する。
<<第3実施形態>>
以下、図面を参照して本発明のガス漏れ診断装置の第3実施形態を詳細に説明する。この第3実施形態では、すでに説明した実施形態をさらに具体化した内容となっている。
図4は本発明に係るガス漏れ診断装置を搭載した車両の実施形態を示すブロック図である。なお、図4と図1との相違点は、車両本体10に第2ガス圧センサ42が設けられているか否かの点と、ガス漏れ診断装置40の具体的な構成が示されているか否かの点である。よって、図4において図1と同じ構成については、同じ符号を付して説明を省略する。
第2ガス圧センサ42は、ガス圧の検出方式に特に限定はないが、歪ゲージ方式を採用するものが広く用いられている。また、第2ガス圧センサ42の設置位置についても、特に限定はなく、一次減圧弁21及び調圧弁22の間に設けられていたり、調圧弁22及びエゼクタ23の間に設けられたりする場合もある。
ガス漏れ診断装置40は、第1ガス圧センサ41からのアナログ信号を受信してデジタル信号処理をする第1ガス圧信号処理手段50Aと、第2ガス圧センサ42からのアナログ信号を受信してデジタル信号処理をする第2ガス圧信号処理手段50Bと、各種処理のパラメータが保持されるパラメータ設定部43と、第1ガス圧信号処理手段50Aの出力信号を一定期間保持する記憶部44と、第1ガス圧信号処理手段50Aの出力信号及び記憶部44に保持されている信号に基づいてガス漏れが発生しているか否かについて判定を行うガス漏れ判定手段(判定部)45とから構成される。
そして、第1ガス圧信号処理手段50Aは、データ取得部51と、差圧導出部52と、差圧検定部53と、データ補正部54とから構成されており、第2ガス圧信号処理手段50Bも、図示略されているが、同様の構成を有している。
パラメータ設定部43は、後記するデータ取得間隔Δt、第1設定時間T、第2設定時間D(T≦D)、設定閾値Wのパラメータを、外部から入力し登録するものである。なお、第1設定時間T、第2設定時間Dに代わり、それぞれ後記するA=Int(T/Δt)、B=Int(D/Δt)であらわされるA,Bを登録してもよい。ここで、「Int」は整数化する(小数点以下を切り捨てる)ことを意味している。
また、図中、破線内の記載が省略されているが、パラメータ設定部43は、第2ガス圧信号処理手段50Bで適用されるパラメータも外部から入力し保持する。そして、第1ガス圧信号処理手段50A、及び第2ガス圧信号処理手段50Bにおいてそれぞれ異なるパラメータを適用してもよい。
設定閾値Wの内訳は、第1設定時間Tの時間内に燃料電池13で消費される燃料ガスの最大値と、ガス圧センサ41,42の検出誤差量と、外乱ノイズと、誤動作防止のためのマージンとを加算した値となる。なお、消費される燃料ガスの最大値は、この燃料ガスの使用状況によって適宜変更されるとして取り扱うことができる。
データ取得部51は、第1ガス圧センサ41から出力されるアナログ信号であるガスの圧力値P(t)を一定のデータ取得間隔Δt(Δt=tn+1−tn)で取得し、離散的なデジタル信号(P(t1),P(t2)…P(tn)…)に変換するものである(適宜図5参照)。
差圧導出部52は、T=A×Δt(A;自然数)の関係を示す第1設定時間Tとして、データ取得部51で取得された圧力値P(t)を第1設定時間Tだけ記憶部44に保持させるとともに、最新に取得した圧力値P(t)と第1設定時間Tだけ過去の値P(t)との差圧ΔP(ΔPn=P(tn-A)−P(tn))を出力するものである。
換言すると、差圧導出部52は、データ取得部51で取得された圧力値P(t)を直近のA個だけ記憶部44に保持させるとともに、このA個の圧力値P(t)のうち最新のものと最古のものの差圧ΔPを出力するものである。
差圧検定部53は、差圧導出部52から出力された差圧ΔPが設定閾値Wを「超過する」又は「超過しない」いずれかの検定結果を出力するものである。すなわち、W<ΔPの関係を満たすから否かについての検定を行うものである。
記憶部44は、D=B×Δt(B;自然数)の関係を示す第2設定時間Dとして、差圧導出部52が出力した差圧ΔP又は差圧検定部53における検定結果(「超過する」又は「超過しない」のいずれかの結果)を、少なくとも第2設定時間D(T≦D)にわたり保持するものである。換言すると、記憶部44は、差圧導出部52が出力した差圧ΔP又は差圧検定部53における検定結果を直近のB個だけ保持するものである。
つまり記憶部44は、請求項における「時間的に重ならない異なる時間帯」を第1設定時間Tと同じ又はそれよりも長い第2設定時間D(T≦D)にわたりデータを保持することにより実現するものである。
判定手段45は、差圧検定部53から「超過する」旨の検定結果が出力された場合、第2設定時間Dだけ過去の検定結果(すなわち記憶部44に保持されているデータのうち最も古いデータ)を参照し、この参照した検定結果が「超過する」旨であればガス漏れ判定するものである。なおこの際に、第2設定時間Dだけ過去の検定結果に代わり、第2設定時間Dだけ過去の差圧ΔPを参照して設定閾値Wと比較して「超過する」又は「超過しない」について再度、差圧検定を行ってもよい。
また判定手段45は、差圧検定部53から「超過する」旨の検定結果が出力されても、記憶部44に保持されている第2設定時間Dだけ過去の検定結果が「超過しない」旨である場合は、「超過する」旨の検定がなされた差圧ΔPを、ベースラインのオフセット異常とみなし、ガス漏れと判定しない。
さらに判定手段45は、第1ガス圧信号処理手段50Aから「超過する」旨の検定結果が出力され、第2ガス圧信号処理手段50Bからも「超過する」旨の検定結果が同時に出力されれば記憶部44を参照せずにガス漏れと判定する。
これにより、第2設定時間Dの経過を待つことなくガス漏れ判定がなされるので、ガス漏れが発生した場合、その旨をさらに早期に察知することができる。これは、二つのガス圧センサ41,42がほぼ同時に設定閾値Wを超過する差圧ΔPを検出するということは、ガス漏れ量が多いことが示唆されるために通常よりも早期にガス漏れ診断を下す必要があるためである。
データ補正部54は、差圧検定部53から「超過する」旨の検定結果が出力されても、判定手段45でベースラインのオフセット異常であると判断された場合は、データ取得部51が取得した圧力値P(tn)に対し差圧ΔPを用いて補正を実施し、ECU15に送信する。またデータ補正部54は、ベースラインのオフセット異常の判断がされない場合は、補正を実施せずに圧力値P(tn)をECU15に送信する。
この適宜補正がなされた圧力値P(tn)を受信したECU15は、その他の車載電装装置の制御パラメータとしてこの圧力値P(tn)を使用したり、高圧タンク11内の燃料ガスの残量を示す指標として表示したりする。
図5に示すオフセット異常がない状態でガス漏れが発生した場合の圧力値の変動結果と、図8に示すフローチャートとを用いて(適宜図4参照)、本実施形態に係るガス漏れ診断装置の動作を説明する。
イグニッションスイッチをONモードに設定すると(S11)、高圧タンク11から燃料ガス(水素)が、コンプレッサ32からはエアが、燃料電池13に供給され、発電が開始される。そして、このガス供給と同時に格納されている制御パラメータに基づくガス漏れ診断が開始される(S12,S13)。
そして、乗員が操作するアクセルペダル33の踏み込み量に応じて、コンプレッサ32から供給されるエア圧力が変化し、このエア圧力をパイロット圧(信号圧)として水素ガス圧力も同期変化して燃料電池13に供給されることになる。
このとき高圧タンク11内の高圧ガスの圧力値P(t)が第1ガス圧センサ41で検出され、データ取得部51でΔt間隔の離散的なデジタルデータP(t)として取得される(S14)。ここで、取得された圧力値P(t)は、記憶部44のバッファに第1設定時間Tだけ保持される。すなわち、このバッファには、A個分の直近の圧力値P(t)が保持されていることになる。つまり、バッファは、ループが循環するたびに、最新のデータP(1)を保持するとともに最古のデータP(A)を消去する。
そして、このバッファに保持されている最新の圧力値P(1)と最古の圧力値P(A)に対する差圧ΔPが差圧導出部52において出力される(S15)。
ここで、出力された差圧ΔPは、記憶部44のバッファに第2設定時間Dだけ保持される。そして、このバッファには、B個分の直近の差圧ΔPが保持される。つまり、バッファは、ループが循環するたびに、最新のデータΔP(1)を保持するとともに最古のデータΔP(B)を消去する。
そして、出力された差圧ΔPnが設定閾値Wを「超過する」又は「超過しない」のいずれであるかについての検定が差圧検定部53でなされる(S16)。
ここで図5に示すデータ信号を具体的に当てはめて説明を続ける。なお、図面中に、各時点tにおける差圧ΔPと、設定閾値Wとの大きさを両端矢印で示しているので、ステップS16の判断については、この図中の両端矢印の大きさを対比すると理解し易い。
まず、t1からtn-1の時点までは、ガス漏れ発生がないために、バッファに保持される最新の差圧ΔP(1)は、第1設定時間Tの時間内における燃料ガスの消費量のみであり、「超過しない」旨の検定結果が出力される(S16→No)。
そして、このときデータ取得部51で取得された圧力値P(t)がECU15に出力されて他の機器の制御パラメータとして利用される(S17)。
そして、イグニッションオフされない限り(S18→No)、このS14,S15,S16→No,S17,S18→Noのループが繰り返される。
同様にガス漏れ発生直後にtnからtn+2の時点までは、バッファに保持される最新の差圧差圧ΔP(1)は、誤動作防止のためのマージンが見込まれて、「超過しない」旨の検定結果が出力される(S16→No)。
次にtn+3の時点になったところで、バッファに保持される最新の差圧ΔP(1)(この場合ΔPn+3)が設定閾値Wを「超過する」旨の検定結果が出力される(S16→Yes)。するとガス漏れ判定手段45は、第2ガス圧信号処理手段50Bの差圧検定部(図示略)が「超過する」旨の検定結果を同時に出力している場合は(S19→No)、ただちにガス漏れ警告を発し(S22)、車両10を緊急停止させる(S23)。
一方、第2ガス圧信号処理手段50Bの差圧検定部53が「超過しない」旨の検定結果を出力している場合は(S19→Yes)、バッファに保持されている最古の差圧ΔP(B)を参照し「超過しない」旨の結論であれば(S20→No)、バッファに保持される最新の差圧ΔP(1)はオフセット異常とみなされて、圧力値P(t)はオフセット補正がなされた後に(S21)、ECU15出力される(S17)。そして、tn+3からtn+8の時点までは、このS14,S15,S16→Yes,S19→Yes,S20→No,S21,S17,S18→Noのループが繰り返される。
そして、tn+9の時点に到達し、バッファに保持されている最古の差圧ΔP(B)(この場合ΔPn+3)を参照して「超過する」旨の結論であれば(S20→Yes)、ただちにガス漏れ警告を発し(S22)、車両10を緊急停止させる(S23)。
なお、以上説明した動作フローにおいてS19及びS21の工程は、省略される場合もある。
図6は、ガス漏れが発生していないにもかかわらず、tn+1の時点でベースラインのオフセット異常が発生した場合の出力結果である。この場合の動作フローについて図8を参照して説明する。なお、第2ガス圧センサ42(図4参照)の圧力変動はないものとして説明を行う(S19→常時Yes)。
S11〜S14までのフローは、すでに説明した内容と同じである。そして、t1〜tnの時点については、S14,S15,S16→No,S17,S18→Noのループが繰り返される。
そして、tn+1〜tn+5の時点では、S16→YesとなるがS20→Noとなるので、今度は、S14,S15,S16→Yes,S19→Yes,S20→No,S21,S17,S18→Noのループが繰り返される。
そして、tn+6の時点以降については、S16→Noとなるので、再び、S14,S15,S16→No,S17,S18→Noのループが繰り返され、S22,S23のステップに進むことはなく、オフセット異常が発生してもガス漏れ診断されることはない。
図7は、ガス漏れが発生している最中に、tn+4の時点でベースラインにオフセット異常が発生した場合の出力結果である。この場合の動作フローについて図8を参照して説明する。なお、ここでも第2ガス圧センサ42(図4参照)の圧力変動はないものとして説明を行う(S19→常時Yes)。
S11〜S14までのフローは、すでに説明した内容と同じである。そして、t〜tn-1の時点については、ガス漏れが発生していないのでS14,S15,S16→No,S17,S18→Noのループが繰り返される。
ガス漏れが発生したtn〜tn+2の時点においても、差圧ΔPが設定閾値Wを「超過しない」ために、同様にS14,S15,S16→No,S17,S18→Noのループが繰り返される。
そして、tn+3の時点では、S16→YesとなるがS20→Noとなるので、今度は、S14,S15,S16→Yes,S19→Yes,S20→No,S21,S17,S18→Noのループが繰り返される。
しかし、tn+4の時点でオフセット異常が発生すると、S16→Noとなるので、再び、S14,S15,S16→No,S17,S18→Noのループが繰り返される。
そして、tn+6の時点で、S16→YesとなるがS20→Noとなるので、再び、S14,S15,S16→Yes,S19→Yes,S20→No,S21,S17,S18→Noのループが繰り返される。そしてtn+9の時点で、S20→Yesとなるので、ガス漏れ診断されて(S22)、車両は緊急停止する(S23)。
以上説明したように、図5から図7のt1〜tn時点のようにガス漏れせずに燃料ガスが正常に消費されている状態にあっては、第1設定時間Tにおける差圧ΔPは、設定閾値Wを超過しないので、ガス漏れ診断されることはない。
そして、図6のように燃料ガスの圧力値P(t)に設定閾値Wを超過するオフセット異常が発生した場合であっても、第2設定時間Dが経過した後に出力される差圧ΔPが設定閾値Wを超過していなければ、ガス漏れと判定されず、誤診断とならない。
そして、図5,7のようにガス漏れが発生し、差圧ΔPが設定閾値Wを超過した時点から第2設定時間D(T≦D)が経過した後においても差圧ΔPが設定閾値Wを超過している場合は、ガス漏れと判定し、ガス漏れが早期に察知されることになる。
これにより、高圧タンク11に貯蔵されているか又は配管20により輸送されている燃料ガスのガス漏れを誤診断することなく早期に察知できるので、緊急事態に対処できる車両制御モードにいち早く切り替えることができる。
さらに、第2ガス圧信号処理手段50Bの出力結果を利用すれば(S19)、ガス漏れのさらなる早期察知が可能になる。
ちなみに、燃料ガス供給ステーションなどからの燃料ガスの充填中を除き、燃料ガスを消費し続けている状況において図7のような急激な圧力上昇が生じた場合は、ガス漏れ診断装置40は、そのような急激な上昇を検知した時点で(上昇状態1点だけで)、オフセット故障などの異常が生じていると判定できる(「燃料ガスの消費中」and「圧力上昇」→ オフセット故障)。
前記した実施形態では、燃料電池13が搭載された車両本体10を例示したが、その他に例えば、燃料ガスを使用する自動車、自動二輪車、列車、船舶等に移動体にも適用することができる。また、家庭用や業務用の据え置き型の燃料電池システムや、給湯システムに組み込まれた燃料電池システムや、燃料ガスに限定されない高圧タンク及び配管のガス漏れ診断に本願発明を適用することができる。
図9は、図7の例とは異なり、圧力が急降下するオフセット故障の場合の圧力値の変動を示す出力結果である。この例では、tn+3とtn+4の間で圧力の急降下が生じている。この場合は、直ちに異常と判定してシステムを止めるのではなく、検知を継続してガス漏れか否かを確定させる。
本発明の第1実施形態に係るガス漏れ診断装置と、このガス漏れ診断装置を搭載した車両の実施形態を示すブロック図である。 (a)は本発明に第1実施形態に係るガス漏れ診断装置の動作を示すフローチャートであり、(b)は変形例である。 本発明に第2実施形態に係るガス漏れ診断装置の動作を示すフローチャートである。 本発明の第3実施形態に係るガス漏れ診断装置と、このガス漏れ診断装置を搭載した車両の実施形態を示すブロック図である。 オフセット異常が発生していない正常なベースラインにおいて、ガス漏れが発生した場合の圧力値の変動を示す出力結果である。 オフセット異常が発生しているベースラインにおいて、ガス漏れが発生していない場合の圧力値の変動を示す出力結果である。 オフセット異常が発生しているベースラインにおいて、ガス漏れが発生した場合の圧力値の変動を示す出力結果である。 本発明の第3実施形態に係るガス漏れ診断装置の動作を示すフローチャートである。 図7の例とは異なり、圧力が急降下するオフセット故障の場合の圧力値の変動を示す出力結果である。
符号の説明
10 車両本体
11 高圧タンク
12 遮断弁
13 燃料電池
17 走行モータ
20 アノード系配管(配管)
22 調圧弁
30 カソード系配管
31 分岐配管
32 コンプレッサ
40 ガス漏れ診断装置
41 第1ガス圧センサ(ガス圧センサ)
42 第2ガス圧センサ(ガス圧センサ)
43 パラメータ設定部
44 記憶部
45 ガス漏れ判定手段(判定部)
50A 第1ガス圧信号処理手段
50B 第2ガス圧信号処理手段
51 データ取得部
52 差圧導出部
53 差圧検定部
54 データ補正部
P(t) 圧力値
ΔP 差圧
T 第1設定時間(設定時間)
D 第2設定時間
W 設定閾値

Claims (7)

  1. ガスが貯蔵された高圧タンクと、該高圧タンクに接続して前記ガスを輸送する配管と、のいずれかの場所でガス漏れが有るか無いかを診断するガス漏れ診断装置であって、
    前記高圧タンクに設けられた第1ガス圧センサ及び前記配管に設けられた第2ガス圧センサからの前記ガスの圧力値を取得するデータ取得部と、
    該データ取得部により取得された圧力P1と、該圧力P1の取得から予め定められた設定時間が経過したときに取得された圧力P2と、から差圧値を求め、該差圧値と設定閾値と比較することにより、前記差圧が前記設定閾値を超過したかしないかを検定結果として得る差圧検定部と、
    互いに重複しない時間帯における少なくとも前後2つの前記検定結果が共に超過の場合、ガス漏れと判定し、
    前記第1ガス圧センサから取得して求められた前記差圧値が設定閾値を超過した旨の検定結果と、前記第2ガス圧センサから取得して求められた前記差圧値が設定閾値を超過した旨の検定結果と、がともに得られた場合は、互いに重複しない時間帯における次の検定結果を得る前にガス漏れと判定する判定部と
    備えることを特徴とするガス漏れ診断装置。
  2. ガスが貯蔵された高圧タンクと、該高圧タンクに接続して前記ガスを輸送する配管と、のいずれかの場所でガス漏れが有るか無いかを診断するガス漏れ診断装置であって、
    前記高圧タンクに設けられた第1ガス圧センサ及び前記配管に設けられた第2ガス圧センサからの前記ガスの圧力値を取得するデータ取得部と、
    該データ取得部により取得された圧力P1と、該圧力P1の取得から予め定められた設定時間が経過したときに取得された圧力P2と、から差圧を導出する差圧導出部と、
    互いに重複しない時間帯において導出された少なくとも前後2つの前記差圧値が共に設定閾値を超過した場合、ガス漏れと判定し、
    前記第1ガス圧センサから取得して求められた前記差圧値が設定閾値を超過し、かつ前記第2ガス圧センサから取得して求められた前記差圧値が設定閾値を超過した場合は、互いに重複しない時間帯における次の差圧値導出の前にガス漏れと判定する判定部と
    備えることを特徴とするガス漏れ診断装置。
  3. 前記ガスは、車両用の燃料ガスであることを特徴とする請求項1又は請求項2に記載のガス漏れ診断装置。
  4. 前記第1ガス圧センサ及び前記第2ガス圧センサは、歪ゲージを構成要素に含むガス圧センサであることを特徴とする請求項1から請求項3のいずれか1項に記載のガス漏れ診断装置。
  5. 前記互いに重複しない時間帯における少なくとも前後2つの前記差圧値と前記設定閾値との比較について、前後する一方は、前記差圧値が前記設定閾値を超過するものであり前後する他方は、前記差圧値が前記設定閾値を超過するものでない場合は、
    前記超過は、ベースラインのオフセット異常とみなし、データ取得部が取得した前記圧力値に対し補正を実施する補正部を備えることを特徴とする請求項1から請求項4のいずれか1項に記載のガス漏れ診断装置。
  6. ガスが貯蔵された高圧タンクと、該高圧タンクに接続して前記ガスを輸送する配管と、のいずれかの場所でガス漏れが有るか無いかを診断するガス漏れ診断装置のガス漏れ診断方法であって、
    前記ガス漏れ診断装置は、
    前記高圧タンクに設けられた第1ガス圧センサ及び前記配管に設けられた第2ガス圧センサからの前記ガスの圧力値を取得するデータ取得部と、
    該データ取得部により取得された圧力P1と、該圧力P1の取得から予め定められた設定時間が経過したときに取得された圧力P2と、から差圧値を求め、該差圧値と設定閾値と比較することにより、前記差圧値が前記設定閾値を超過したかしないかを検定結果として得る差圧検定部と、
    ガス漏れを判定する判定部と、を備えており、
    前記判定部は、
    互いに重複しない時間帯における少なくとも前後2つの前記検定結果が共に超過の場合、ガス漏れと判定し、
    前記第1ガス圧センサから取得して求められた前記差圧値が設定閾値を超過した旨の検定結果と、前記第2ガス圧センサから取得して求められた前記差圧値が設定閾値を超過した旨の検定結果と、がともに得られた場合は、互いに重複しない時間帯における次の検定結果を得る前にガス漏れと判定すること、
    特徴とするガス漏れ診断方法。
  7. ガスが貯蔵された高圧タンクと、該高圧タンクに接続して前記ガスを輸送する配管と、のいずれかの場所でガス漏れが有るか無いかを診断するガス漏れ診断装置のガス漏れ診断方法であって、
    前記ガス漏れ診断装置は、
    前記高圧タンクに設けられた第1ガス圧センサ及び前記配管に設けられた第2ガス圧センサからの前記ガスの圧力値を取得するデータ取得部と、
    該データ取得部により取得された圧力P1と、該圧力P1の取得から予め定められた設定時間が経過したときに取得された圧力P2と、から差圧値を導出する差圧導出部と、
    ガス漏れを判定する判定部と、を備えており、
    前記判定部は、
    互いに重複しない時間帯において導出された少なくとも前後2つの前記差圧値が共に設定閾値を超過した場合、ガス漏れと判定し、
    前記第1ガス圧センサから取得して求められた前記差圧値が設定閾値を超過し、かつ前記第2ガス圧センサから取得して求められた前記差圧値が設定閾値を超過した場合は、互いに重複しない時間帯における次の差圧値導出の前にガス漏れと判定すること、
    特徴とするガス漏れ診断方法。
JP2008160406A 2008-06-19 2008-06-19 ガス漏れ診断装置及びガス漏れ診断方法 Expired - Fee Related JP5007278B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160406A JP5007278B2 (ja) 2008-06-19 2008-06-19 ガス漏れ診断装置及びガス漏れ診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160406A JP5007278B2 (ja) 2008-06-19 2008-06-19 ガス漏れ診断装置及びガス漏れ診断方法

Publications (3)

Publication Number Publication Date
JP2010002264A JP2010002264A (ja) 2010-01-07
JP2010002264A5 JP2010002264A5 (ja) 2010-12-24
JP5007278B2 true JP5007278B2 (ja) 2012-08-22

Family

ID=41584117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160406A Expired - Fee Related JP5007278B2 (ja) 2008-06-19 2008-06-19 ガス漏れ診断装置及びガス漏れ診断方法

Country Status (1)

Country Link
JP (1) JP5007278B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444968A (zh) * 2015-12-28 2016-03-30 苏州赛腾精密电子股份有限公司 一种气密保压测试设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435403B (zh) * 2011-09-21 2014-01-22 浙江大学宁波理工学院 适用于高低压差压泄漏检测的集成装置
US9397354B2 (en) * 2013-04-24 2016-07-19 GM Global Technology Operations LLC Systems and methods to monitor and control a flow of air within a fuel cell stack
JP6650194B2 (ja) * 2014-04-21 2020-02-19 株式会社ケーヒン 検出装置及び検出方法
CN112610905B (zh) * 2020-12-25 2022-09-20 中法渤海地质服务有限公司 一种基于图像识别和红外热成像技术的海上平台管线气体泄漏识别方法
CN114061848B (zh) * 2021-11-18 2023-05-26 北京卫星环境工程研究所 一种航天器加筋密封结构漏孔辨识方法
CN115032340A (zh) * 2022-06-01 2022-09-09 上海贝辉木业有限公司 一种制胶厂房废气监测方法、装置、电子设备及存储介质
WO2024004535A1 (ja) * 2022-06-29 2024-01-04 株式会社フジキン コントロール弁のシートリーク検知方法
CN115172820A (zh) * 2022-08-15 2022-10-11 上海重塑能源科技有限公司 一种氢气泄露检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398542A (en) * 1992-10-16 1995-03-21 Nkk Corporation Method for determining direction of travel of a wave front and apparatus therefor
JP3432458B2 (ja) * 1999-07-30 2003-08-04 富士通テン株式会社 ガス燃料用内燃機関のガス漏れ検知及びフェイルセーフ制御方法及びその装置
JP3949348B2 (ja) * 2000-04-20 2007-07-25 本田技研工業株式会社 ガス燃料供給装置
JP2005127834A (ja) * 2003-10-23 2005-05-19 Fujitsu Ten Ltd ガス漏れ検出装置
JP2007280671A (ja) * 2006-04-04 2007-10-25 Toyota Motor Corp ガス燃料システム及びその異常検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444968A (zh) * 2015-12-28 2016-03-30 苏州赛腾精密电子股份有限公司 一种气密保压测试设备
CN105444968B (zh) * 2015-12-28 2019-01-11 苏州赛腾精密电子股份有限公司 一种气密保压测试设备

Also Published As

Publication number Publication date
JP2010002264A (ja) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5007278B2 (ja) ガス漏れ診断装置及びガス漏れ診断方法
US10598564B2 (en) Apparatus and method for detecting leakage in hydrogen tank of hydrogen fuel cell vehicle
JP4876369B2 (ja) 燃料電池システムおよびガス漏洩検知方法
US7127937B1 (en) Method for leak detection in gas feeding systems with redundant valves
US20170179511A1 (en) Method of controlling purge of fuel cell system for vehicle
US7736814B2 (en) Fuel-cell system and method of estimating nitrogen concentration on fuel electrode of fuel cell
JP4941730B2 (ja) 燃料供給装置及び車両
US20160133966A1 (en) Fuel Cell System and a Method for Controlling a Fuel Cell System
WO2006132393A1 (ja) 異常判定装置
US20160141678A1 (en) Fuel cell system and a method of detecting a hydrogen gas leak
JP2003308868A (ja) ガス燃料供給装置
US6923201B2 (en) Gas feed device
US20190334186A1 (en) Method for Determining the Sealing Tightness of a Fuel Cell Stack
JP2006118519A (ja) ガスエンジンの燃料漏れ検出装置
JP2005347185A (ja) 燃料電池システム及びその異常判定方法
WO2008071402A1 (en) Leakage test in a fuel cell system
US9142846B2 (en) Fuel cell system and fuel cell activation method
JP2006141122A (ja) 燃料供給装置、燃料供給装置の制御方法
US20200232603A1 (en) High pressure container system and fuel cell vehicle
JP4007538B2 (ja) ガス燃料供給装置
JP2007051917A (ja) 気密性異常判断装置およびガス供給装置
JP2006112492A (ja) 燃料供給装置
CN108317392B (zh) 使供氢系统的高压管线最小化的燃料电池系统及控制方法
JP4973271B2 (ja) 燃料電池システム
KR101252776B1 (ko) 증발가스 누설 진단 장치 및 방법

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees