JP4995718B2 - Process for producing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Process for producing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP4995718B2
JP4995718B2 JP2007514193A JP2007514193A JP4995718B2 JP 4995718 B2 JP4995718 B2 JP 4995718B2 JP 2007514193 A JP2007514193 A JP 2007514193A JP 2007514193 A JP2007514193 A JP 2007514193A JP 4995718 B2 JP4995718 B2 JP 4995718B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
raw material
temperature
isobutylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007514193A
Other languages
Japanese (ja)
Other versions
JPWO2007105523A1 (en
Inventor
正英 近藤
誠一 河藤
徹 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007514193A priority Critical patent/JP4995718B2/en
Publication of JPWO2007105523A1 publication Critical patent/JPWO2007105523A1/en
Application granted granted Critical
Publication of JP4995718B2 publication Critical patent/JP4995718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、不飽和アルデヒド及び不飽和カルボン酸の製造方法、詳しくはプロピレン、イソブチレン又は第三級ブタノールを分子状酸素により触媒の存在下気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法に関する。   The present invention relates to a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, specifically, propylene, isobutylene or tertiary butanol is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of a catalyst, and the corresponding unsaturated aldehyde and The present invention relates to a method for producing an unsaturated carboxylic acid.

プロピレン、イソブチレン又は第三級ブタノールを触媒の存在下気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法は広く知られており、工業的にも用いられている。触媒としては、例えば、モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物からなる触媒が用いられる(特許文献1〜6)。この場合、反応は触媒を固定床として用い、300〜400℃の温度で実施される。   Methods for producing propylene, isobutylene or tertiary butanol by gas phase catalytic oxidation in the presence of a catalyst to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid are widely known and used industrially. Yes. As the catalyst, for example, a catalyst made of a composite oxide containing molybdenum, bismuth and iron as essential components is used (Patent Documents 1 to 6). In this case, the reaction is carried out at a temperature of 300 to 400 ° C. using the catalyst as a fixed bed.

このような気相接触酸化反応に用いられる触媒は比較的長期間使用されるが、通常、触媒の活性は経時的に低下し、原料の反応率が低下する。通常、固定床反応器では経時的な活性の低下に伴い、プロセスの許容温度まで反応温度を上昇させることで、原料の反応率を維持する方法がとられている(特許文献7、非特許文献1)。
特開昭53−19188号公報 特開昭54−66610号公報 特開昭55−359号公報 特開昭55−19227号公報 特開昭56−95135号公報 特開昭60−28824号公報 特開平11−263739号公報 村上雄一監修 触媒劣化メカニズムと防止対策 17項(技術情報協会)
Although the catalyst used for such a gas phase catalytic oxidation reaction is used for a relatively long period of time, usually the activity of the catalyst decreases with time, and the reaction rate of the raw material decreases. Usually, in a fixed bed reactor, with the decrease in activity over time, a method of maintaining the reaction rate of the raw material by increasing the reaction temperature to the allowable temperature of the process is employed (Patent Document 7, Non-Patent Document). 1).
JP-A-53-19188 JP 54-66610 A JP-A-55-359 Japanese Unexamined Patent Publication No. 55-19227 JP-A-56-95135 Japanese Unexamined Patent Publication No. 60-28824 Japanese Patent Application Laid-Open No. 11-267339 Supervised by Yuichi Murakami Catalyst degradation mechanism and prevention measures, Section 17 (Technical Information Association)

しかし、本発明者らの検討によると、特許文献7や非特許文献1に記載されているような反応温度のみのコントロールでは、活性低下速度が比較的速く、工業的な実施の観点からは必ずしも十分に満足すべきものではない。   However, according to the study by the present inventors, the control of only the reaction temperature as described in Patent Document 7 and Non-Patent Document 1 has a relatively fast rate of decrease in activity, which is not necessarily from the viewpoint of industrial implementation. It is not satisfactory enough.

従って本発明は、プロピレン、イソブチレン又は第三級ブタノールを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造するにあたり、触媒を長期間使用可能な方法を提供することを目的としている。   Therefore, the present invention provides a method for using a catalyst for a long period of time in the gas phase catalytic oxidation of propylene, isobutylene or tertiary butanol with molecular oxygen to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid. The purpose is to provide.

本発明は、モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物からなる触媒の存在下、原料であるプロピレン、イソブチレン又は第三級ブタノールを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法であって、前記触媒の活性化エネルギーの境界温度をTA℃としたとき、(TA−15)℃以上TA℃以下の温度範囲で前記原料の反応率が一定になるように、反応圧力を変更する制御を行うことを特徴とする不飽和アルデヒド及び不飽和カルボン酸の製造方法である。   In the present invention, in the presence of a catalyst comprising a complex oxide containing molybdenum, bismuth and iron as essential components, propylene, isobutylene or tertiary butanol as raw materials are subjected to gas phase catalytic oxidation with molecular oxygen, respectively. A method for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid, wherein the starting material has a temperature range of (TA-15) ° C. to TA ° C., where TA is the boundary temperature of the activation energy of the catalyst. It is the manufacturing method of unsaturated aldehyde and unsaturated carboxylic acid characterized by performing control which changes reaction pressure so that the reaction rate of may become constant.

また、本発明は、モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物からなる触媒の存在下、原料であるイソブチレン又は第三級ブタノールを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法であって、前記触媒の活性化エネルギーの境界温度をTA℃としたとき、(TA−15)℃以上TA℃以下の温度範囲で前記原料の反応率が一定になるように、酸素と原料とのモル比を変更する制御を行うことを特徴とする不飽和アルデヒド及び不飽和カルボン酸の製造方法である。前記制御として、さらに反応圧力を変更することもできる。   In the present invention, in the presence of a catalyst comprising a composite oxide containing molybdenum, bismuth and iron as essential components, isobutylene or tertiary butanol as a raw material is subjected to gas phase catalytic oxidation with molecular oxygen, A method for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid, wherein the starting material has a temperature range of (TA-15) ° C. to TA ° C., where TA is the boundary temperature of the activation energy of the catalyst. It is a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, characterized in that control is performed to change the molar ratio of oxygen and raw material so that the reaction rate of is constant. As the control, the reaction pressure can be further changed.

本発明の不飽和アルデヒド及び不飽和カルボン酸の製造方法によると、触媒を実質的に長期間にわたり使用することができる。   According to the method for producing unsaturated aldehyde and unsaturated carboxylic acid of the present invention, the catalyst can be used for a substantially long period of time.

実施例1における第2反応の制御方法を示す図である。2 is a diagram showing a control method for a second reaction in Example 1. FIG. 実施例2における第2反応の制御方法を示す図である。FIG. 3 is a diagram showing a method for controlling a second reaction in Example 2. 実施例3における第2反応の制御方法を示す図である。FIG. 4 is a diagram showing a method for controlling a second reaction in Example 3. 実施例4における第2反応の制御方法を示す図である。FIG. 4 is a diagram showing a method for controlling a second reaction in Example 4. 比較例1における第2反応の制御方法を示す図である。It is a figure which shows the control method of the 2nd reaction in the comparative example 1.

本発明では、プロピレン、イソブチレン又は第三級ブタノール(以下、TBAともいう)を分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する際に、モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物からなる触媒を使用する。プロピレンを原料とした場合の対応する不飽和アルデヒド及び不飽和カルボン酸はアクロレイン及びアクリル酸であり、イソブチレン又は第三級ブタノールを原料とした場合の対応する不飽和アルデヒド及び不飽和カルボン酸はメタクロレイン及びメタクリル酸である。   In the present invention, propylene, isobutylene or tertiary butanol (hereinafter also referred to as TBA) is subjected to gas phase catalytic oxidation with molecular oxygen to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid. A catalyst comprising a complex oxide containing bismuth and iron as essential components is used. The corresponding unsaturated aldehyde and unsaturated carboxylic acid when starting from propylene are acrolein and acrylic acid, and the corresponding unsaturated aldehyde and unsaturated carboxylic acid when starting from isobutylene or tertiary butanol are methacrolein And methacrylic acid.

本発明において使用する触媒は、モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物からなるものであり、複合酸化物における必須成分以外の成分に特に限定はない。このような触媒は、特許文献1〜6などに記載されているような公知の方法で得ることができる。   The catalyst used in the present invention is composed of a composite oxide containing molybdenum, bismuth and iron as essential components, and there are no particular limitations on components other than the essential components in the composite oxide. Such a catalyst can be obtained by a known method as described in Patent Documents 1-6.

本発明において使用する触媒は、下記式(1)で表される組成を有する複合酸化物が好ましい。   The catalyst used in the present invention is preferably a composite oxide having a composition represented by the following formula (1).

MoBiFeSi (1)
式(1)中、Mo、Bi、Fe、Si及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示し、Mはコバルト及びニッケルからなる群より選ばれた少なくとも1種の元素を示し、Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群より選ばれた少なくとも1種の元素を示し、Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれた少なくとも1種の元素を示し、Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは、各元素の原子比率を表し、a=12のとき、b=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2、h=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。
Mo a Bi b Fe c M d X e Y f Z g Si h O i (1)
In the formula (1), Mo, Bi, Fe, Si and O each represent molybdenum, bismuth, iron, silicon and oxygen, M represents at least one element selected from the group consisting of cobalt and nickel, X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc, and Y represents phosphorus, boron, sulfur, selenium, tellurium, Z indicates at least one element selected from the group consisting of cerium, tungsten, antimony and titanium, and Z indicates at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, and when a = 12, b = 0.01-3, c = 0.01-5, d = 1 to 12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, h = 0 to 20, and i is an oxygen atom necessary for satisfying the valence of each component. It is a ratio.

本発明において使用する触媒である複合酸化物は、担体に担持されていてもよい。担体としては、シリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、シリコンカーバイト等が挙げられる。   The composite oxide that is a catalyst used in the present invention may be supported on a carrier. Examples of the carrier include silica, alumina, silica-alumina, magnesia, titania, silicon carbide and the like.

以下、本発明において使用する触媒の好適な製造方法について説明する。   Hereafter, the suitable manufacturing method of the catalyst used in this invention is demonstrated.

触媒を構成する元素の原料(以下、触媒原料と略すことがある)は、特に限定されないが、通常は、酸化物、塩化物、水酸化物、硫酸塩、硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、又はそれらの混合物が用いられる。塩化物を用いる場合は、強熱することにより酸化物になり得る塩化物から選択することが好ましい。更に、一般によく用いられる水溶性化合物だけでなく、特に金属及び難溶性化合物等を使用することも可能である。   The raw material of the element constituting the catalyst (hereinafter sometimes abbreviated as catalyst raw material) is not particularly limited, but is usually an oxide, chloride, hydroxide, sulfate, nitrate, carbonate, acetate, ammonium. Salts or mixtures thereof are used. When using a chloride, it is preferable to select from chlorides that can be converted into oxides when ignited. Furthermore, it is also possible to use not only water-soluble compounds that are commonly used, but also metals and sparingly soluble compounds.

まず、少なくともモリブデンを含有する溶液又は分散液(A液)を調製する。すなわち、少なくともモリブデン原料を溶媒中に溶解又は分散させる。モリブデン原料としてパラモリブデン酸アンモニウムを用いることが好ましいが、三酸化モリブデン及び塩化モリブデン等の種々の原料を使用することもできる。更にA液に、上記記載の式(1)で表される触媒を製造する場合における、ビスマス、M成分、X成分、Y成分、Z成分、及びケイ素に対応する触媒原料の一部又は全部を、A液の調製途中又は調製後に添加することもできる。ただし、鉄原料は添加しないことが好ましく、A液は鉄を含有しないことが好ましい。   First, a solution or dispersion (liquid A) containing at least molybdenum is prepared. That is, at least a molybdenum raw material is dissolved or dispersed in a solvent. It is preferable to use ammonium paramolybdate as the molybdenum raw material, but various raw materials such as molybdenum trioxide and molybdenum chloride can also be used. Furthermore, when manufacturing the catalyst represented by the above formula (1) in the liquid A, a part or all of the catalyst raw materials corresponding to bismuth, M component, X component, Y component, Z component, and silicon It can also be added during or after the preparation of solution A. However, it is preferable not to add an iron raw material, and it is preferable that A liquid does not contain iron.

A液の溶媒としては、水、アルコール、アセトン等を使用することができる。これらから選択した2種以上の混合溶媒でも良い。少なくとも水を溶媒として用いることが好ましく、溶媒全体の50質量%以上が水であることが好ましい。また、溶媒として水単独を使用することも好ましい。   As a solvent for the liquid A, water, alcohol, acetone or the like can be used. Two or more mixed solvents selected from these may be used. At least water is preferably used as a solvent, and 50% by mass or more of the entire solvent is preferably water. It is also preferable to use water alone as the solvent.

A液を調製する際に使用する溶媒の質量は、A液に添加する触媒原料の合計100質量部に対して、70〜270質量部が好ましい。   As for the mass of the solvent used when preparing A liquid, 70-270 mass parts is preferable with respect to a total of 100 mass parts of the catalyst raw material added to A liquid.

一方で、少なくとも鉄を含有する溶液又は分散液(B液)を調製する。すなわち、少なくとも鉄原料を溶媒中に溶解又は分散させる。鉄原料として硝酸第二鉄を用いることが好ましいが、水酸化鉄、三酸化鉄等の種々の原料を使用することもできる。更にB液に、上記記載の式(1)で表される触媒を製造する場合における、ビスマス、M成分、X成分、Y成分、Z成分、及びケイ素に対応する触媒原料の一部又は全部を、B液の調製途中又は調製後に添加することもできる。ただし、モリブデン原料は添加しないことが好ましく、B液はモリブデンを含有しないことが好ましい。   On the other hand, a solution or dispersion (liquid B) containing at least iron is prepared. That is, at least an iron raw material is dissolved or dispersed in a solvent. Ferric nitrate is preferably used as the iron raw material, but various raw materials such as iron hydroxide and iron trioxide can also be used. Furthermore, when manufacturing the catalyst represented by the above-mentioned formula (1) in the B liquid, a part or all of the catalyst raw material corresponding to bismuth, M component, X component, Y component, Z component, and silicon It can also be added during or after the preparation of solution B. However, it is preferable not to add a molybdenum raw material, and the liquid B preferably does not contain molybdenum.

B液の溶媒としては、水、アルコール、アセトン等を使用することができる。これらから選択した2種以上の混合溶媒でも良い。少なくとも水を溶媒として用いることが好ましく、溶媒全体の50質量%以上が水であることが好ましい。また、溶媒として水単独を使用することも好ましい。   As a solvent for the liquid B, water, alcohol, acetone, or the like can be used. Two or more mixed solvents selected from these may be used. At least water is preferably used as a solvent, and 50% by mass or more of the entire solvent is preferably water. It is also preferable to use water alone as the solvent.

B液を調製する際に使用する溶媒の質量は、B液に添加する触媒原料の合計100質量部に対して、30〜230質量部が好ましい。   As for the mass of the solvent used when preparing B liquid, 30-230 mass parts is preferable with respect to a total of 100 mass parts of the catalyst raw material added to B liquid.

そして、上記のように調製したA液とB液とを混合した溶液又は分散液(C液)を調製する。更にC液に、上記記載の式(1)で表される触媒を製造する場合における、ビスマス、M成分、X成分、Y成分、Z成分、及びケイ素に対応する触媒原料の一部又は全部を、C液の調製途中又は調製後に添加することも可能である。そして、最終的にD液とする。   And the solution or dispersion liquid (C liquid) which mixed A liquid and B liquid prepared as mentioned above is prepared. Furthermore, in the case where the catalyst represented by the above formula (1) is produced in the liquid C, a part or all of the catalyst raw material corresponding to bismuth, M component, X component, Y component, Z component, and silicon is added. It is also possible to add during or after the preparation of solution C. And finally, it is set as D liquid.

なお、ビスマス、M成分、X成分、Y成分、Z成分、及びケイ素の原料は、最終的に得られるD液中に必要な量の元素が含まれるように添加されていれば良く、それぞれの触媒原料について、A液、B液、及びC液の1つに全量を一度に添加しても良く、2つ以上に分けて、それぞれA液、B液、及びC液のいずれかに複数回に分けて添加しても良い。   The raw materials of bismuth, M component, X component, Y component, Z component, and silicon may be added so that a necessary amount of elements are contained in the finally obtained D liquid. About the catalyst raw material, the whole amount may be added to one of the A liquid, the B liquid, and the C liquid at a time, and divided into two or more, and each of the A liquid, the B liquid, and the C liquid multiple times. It may be added separately.

以上のような方法により、必要な触媒原料を用いて、少なくとも、モリブデン、ビスマス、及び鉄を含有する溶液又は分散液(D液)を調製することができる。複合酸化物が担体に担持されている触媒を製造する場合には、このD液中に担体を共存させて、以後の処理を行えばよい。   By the method as described above, a solution or dispersion (liquid D) containing at least molybdenum, bismuth, and iron can be prepared using necessary catalyst raw materials. When producing a catalyst in which a composite oxide is supported on a support, the subsequent treatment may be carried out in the presence of the support in the D solution.

次いで、得られたD液を80〜120℃の温度範囲に保持することが好ましい。保持温度は90〜110℃の温度範囲がより好ましい。D液をこの温度範囲に保持することにより、触媒性能を更に向上させることができる。   Subsequently, it is preferable to hold | maintain the obtained D liquid in a 80-120 degreeC temperature range. The holding temperature is more preferably a temperature range of 90 to 110 ° C. By keeping the D liquid in this temperature range, the catalyst performance can be further improved.

保持時間としては特に限定されないが、1秒〜30時間の範囲が適当であり、好ましくは1分〜20時間の範囲、特に好ましくは3分〜15時間の範囲である。保持時間が短すぎると、保持により触媒性能を向上させる効果が得られにくい。又、保持時間をあまり長くしても、保持によるそれ以上の効果は得られにくい。この温度範囲に保持することにより触媒性能が更に向上する理由については明らかではないが、触媒前駆体の反応性が良くなることにより、触媒性能が向上するものと考えている。   Although it does not specifically limit as holding time, The range of 1 second-30 hours is suitable, Preferably it is the range of 1 minute-20 hours, Most preferably, it is the range of 3 minutes-15 hours. If the holding time is too short, it is difficult to obtain the effect of improving the catalyst performance by holding. Even if the holding time is too long, it is difficult to obtain a further effect by holding. Although it is not clear why the catalyst performance is further improved by maintaining in this temperature range, it is considered that the catalyst performance is improved by improving the reactivity of the catalyst precursor.

次いで、必要に応じて乾燥、焼成を行う。乾燥方法としては、箱形乾燥機、蒸発乾燥、噴霧乾燥等種々の乾燥方法を用いることができる。乾燥条件は、例えば箱形乾燥機の場合は30〜150℃、噴霧乾燥機の場合は入口温度で100〜500℃が好ましい。又、焼成条件には特に限定はなく、公知の焼成条件を適用することができる。焼成は通常200〜600℃の温度範囲で、0.5〜10時間行われる。また、焼成は塩分解とその後の焼成に分けて行なうのが好ましい。   Subsequently, drying and baking are performed as necessary. As a drying method, various drying methods such as a box dryer, evaporation drying, spray drying and the like can be used. For example, in the case of a box dryer, the drying conditions are preferably 30 to 150 ° C., and in the case of a spray dryer, the inlet temperature is preferably 100 to 500 ° C. Moreover, there are no particular limitations on the firing conditions, and known firing conditions can be applied. Firing is usually performed in a temperature range of 200 to 600 ° C. for 0.5 to 10 hours. Moreover, it is preferable to perform the firing separately for salt decomposition and subsequent firing.

その後、得られた触媒を成型することができる。なお、触媒を成型する方法は特に限定されるものではなく、打錠成型機、押出成型機、転動造粒機等の一般粉体用成型機を用いて、球状、リング状、円柱状、星型状等の任意の形状に成型できる。   Thereafter, the obtained catalyst can be molded. In addition, the method for molding the catalyst is not particularly limited, and using a general powder molding machine such as a tableting molding machine, an extrusion molding machine, a rolling granulator, a spherical shape, a ring shape, a cylindrical shape, It can be molded into any shape such as a star shape.

また、触媒を成型する際には、従来公知の添加剤、例えば、ポリビニルアルコール、カルボキシメチルセルロース等の有機化合物を更に添加しても良い。更には、グラファイト及びケイソウ土等の無機化合物、ガラス繊維、セラミックファイバー及び炭素繊維等の無機ファイバーを添加しても良い。   Further, when molding the catalyst, conventionally known additives such as organic compounds such as polyvinyl alcohol and carboxymethyl cellulose may be further added. Further, inorganic compounds such as graphite and diatomaceous earth, and inorganic fibers such as glass fiber, ceramic fiber and carbon fiber may be added.

成型された触媒は必要に応じて熱処理される。熱処理条件については特に限定はなく、公知の熱処理条件を適用することができる。熱処理は、通常150〜600℃の温度範囲で、0.5〜80時間行われる。   The molded catalyst is heat-treated as necessary. The heat treatment conditions are not particularly limited, and known heat treatment conditions can be applied. The heat treatment is usually performed in a temperature range of 150 to 600 ° C. for 0.5 to 80 hours.

以上のようにして、少なくとも、モリブデン、ビスマス、及び鉄を含有する複合酸化物からなる触媒を得ることができる。   As described above, a catalyst composed of a composite oxide containing at least molybdenum, bismuth, and iron can be obtained.

触媒は、シリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、シリコンカーバイト等の不活性物質で希釈して用いることもできる。   The catalyst can also be used after diluted with an inert substance such as silica, alumina, silica-alumina, magnesia, titania, silicon carbide and the like.

本発明では、以上のような触媒の存在下、原料であるプロピレン、イソブチレン又は第三級ブタノールを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する。例えば、原料及び分子状酸素を含む反応ガスを、前記の触媒が充填された反応管を通過させることで、気相接触酸化を行うことができる。   In the present invention, propylene, isobutylene or tertiary butanol as raw materials is vapor-phase catalytically oxidized with molecular oxygen in the presence of the catalyst as described above, and the corresponding unsaturated aldehyde and unsaturated carboxylic acid are produced. To do. For example, gas phase catalytic oxidation can be performed by passing a reaction gas containing a raw material and molecular oxygen through a reaction tube filled with the catalyst.

分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気を用いうる。反応ガス中の分子状酸素と原料との濃度比(モル比)は0.5〜3:1の範囲が好ましい。反応ガスには、希釈のための不活性ガスが含まれていることが好ましい。反応ガスには水蒸気を含んでいてもよい。反応ガス中の原料の濃度は、1〜10容量%が好ましい。   It is economical to use air as the molecular oxygen source, but if necessary, air enriched with pure oxygen can be used. The concentration ratio (molar ratio) between the molecular oxygen in the reaction gas and the raw material is preferably in the range of 0.5 to 3: 1. The reaction gas preferably contains an inert gas for dilution. The reaction gas may contain water vapor. The concentration of the raw material in the reaction gas is preferably 1 to 10% by volume.

反応圧力は、反応管の入口圧及び出口圧の平均圧力として、20〜300kPa(ゲージ圧;以下、圧力表記は全てゲージ圧である)が好ましい。反応温度は200〜450℃の範囲で選ぶことができる。250〜400℃の範囲が好ましく、310〜380℃の範囲がより好ましい。   The reaction pressure is preferably 20 to 300 kPa (gauge pressure; hereinafter, all pressure expressions are gauge pressures) as an average pressure of the inlet pressure and outlet pressure of the reaction tube. The reaction temperature can be selected in the range of 200 to 450 ° C. The range of 250-400 degreeC is preferable, and the range of 310-380 degreeC is more preferable.

ただし、このような気相接触酸化に用いられる触媒は経時的に活性が低下する。その活性低下の原因としては、温度による触媒構造の分解(触媒成分の昇華・飛散、触媒構造中の結晶相の変化)、反応物による触媒成分の還元、反応物と温度による触媒成分の還元など、様々な説がある。本願発明者らは、鋭意検討の結果、本触媒系においては、劣化原因として、温度による触媒構造の分解あるいは反応物と温度による触媒成分の還元が支配的であることを見出し、本発明に至ったものである。   However, the activity of the catalyst used for such gas phase catalytic oxidation decreases with time. Causes of the decrease in activity include decomposition of the catalyst structure due to temperature (sublimation and scattering of the catalyst component, change of the crystal phase in the catalyst structure), reduction of the catalyst component by the reactant, reduction of the catalyst component by the reactant and temperature, etc. There are various theories. As a result of intensive studies, the present inventors have found that in the present catalyst system, the degradation of the catalyst structure due to temperature or the reduction of the reaction product and the catalyst component due to temperature is dominant as the cause of deterioration, leading to the present invention. It is a thing.

すなわち、本発明では、できるだけ反応温度を上昇させずに原料の反応率を維持するため、(TA−15)℃以上TA℃以下(ここで、TA(℃)は触媒の活性化エネルギーの境界温度)の温度範囲で、反応圧力、及び/又は、反応ガス中の分子状酸素/原料のモル比(O/R)、を変更する制御を行う。このような制御を行うことで、触媒構造の温度による分解や反応物と温度による触媒成分の還元が抑制され、従来の反応温度のみの制御の場合に比べて、触媒の使用期間(触媒寿命)が飛躍的に改善される。なお、TA(℃)は、特許文献7に記載の方法で求めることができる。   That is, in the present invention, in order to maintain the reaction rate of the raw material without increasing the reaction temperature as much as possible, (TA-15) ° C. or higher and TA ° C. or lower (where TA (° C.) is the boundary temperature of the activation energy of the catalyst. ), The reaction pressure and / or the molecular oxygen / raw material molar ratio (O / R) in the reaction gas are controlled to be changed. By performing such control, decomposition due to the temperature of the catalyst structure and reduction of the reaction components and the catalyst components due to temperature are suppressed, and the catalyst usage period (catalyst life) compared to conventional control of only the reaction temperature. Is drastically improved. TA (° C.) can be obtained by the method described in Patent Document 7.

固体触媒を用いた気相接触反応において、しばしば、対象とする反応の活性化エネルギーが、ある反応温度を境界に反応温度の低い領域と高い領域で異なった値となることが知られている。例えば、JOURNAL OF CATALYSIS第41巻第134〜139ページには、1−ブテンをモリブデン及びビスマスを含む複合酸化物からなる触媒上で接触酸化させる反応において前記のような異なる活性化エネルギーをもつことが報告されている。このような挙動は反応温度によって反応の律速段階が異なるために見られる現象であり、詳しくは講談社触媒講座第1巻第4節(触媒学会編)に記されている。一説によると、反応温度の低い領域では、触媒活性点上での反応分子の反応が律速段階であり、反応温度の高い領域では、反応分子の触媒活性点への拡散が律速段階であると推定されている。   In a gas phase catalytic reaction using a solid catalyst, it is often known that the activation energy of a target reaction has different values between a low temperature region and a high temperature region with a certain reaction temperature as a boundary. For example, JOURNAL OF CATALYSIS Vol. 41, pp. 134-139, has a different activation energy as described above in a reaction in which 1-butene is catalytically oxidized on a catalyst composed of a composite oxide containing molybdenum and bismuth. It has been reported. Such a behavior is a phenomenon observed because the rate-determining step of the reaction varies depending on the reaction temperature, and is described in detail in Kodansha Catalyst Course Volume 1 Section 4 (Catalytic Society). According to one theory, in the region where the reaction temperature is low, the reaction of the reactive molecule on the catalytic active point is the rate-limiting step, and in the region where the reaction temperature is high, the diffusion of the reactive molecule to the catalytic active point is estimated to be the rate-limiting step. Has been.

本発明者らは、モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物からなる触媒の存在下、イソブチレンを分子状酸素で気相接触酸化して、メタクロレイン及びメタクリル酸を製造する反応について活性化エネルギーを解析したところ、反応温度の低い領域と高い領域でそれぞれ異なった値となることを確認した。   In the presence of a catalyst composed of a composite oxide containing molybdenum, bismuth and iron as essential components, the present inventors have carried out a gas phase catalytic oxidation of isobutylene with molecular oxygen to produce methacrolein and methacrylic acid. When the activation energy was analyzed, it was confirmed that the values were different in the low and high reaction temperature regions.

本発明において、活性化エネルギーの境界温度TA(℃)は以下のようにして求められる。まず、熱媒浴を備えた反応管に触媒を充填し、熱媒浴の温度を315〜375℃の範囲で2〜5℃間隔で変化させ、各温度におけるイソブチレンの反応率を求める。ここで反応率は以下の式により求められる。   In the present invention, the boundary temperature TA (° C.) of the activation energy is obtained as follows. First, a catalyst is filled in a reaction tube equipped with a heat medium bath, and the temperature of the heat medium bath is changed within a range of 315 to 375 ° C. at intervals of 2 to 5 ° C., and the reaction rate of isobutylene at each temperature is obtained. Here, the reaction rate is obtained by the following equation.

イソブチレンの反応率(%)=A/B×100
(Aは反応したイソブチレンのモル数、Bは供給したイソブチレンのモル数を表す。)
続いて、以下の式により反応速度定数を求める。
Reaction rate of isobutylene (%) = A / B × 100
(A represents the number of moles of reacted isobutylene, and B represents the number of moles of isobutylene supplied.)
Subsequently, a reaction rate constant is obtained by the following equation.

K=(SV)×(1/ρ)×ln[100/(100−X)]
(Kは反応速度定数、SVは空間速度、ρは触媒の充填密度、Xは原料の反応率(%)を表す。)
続いて、横軸に1/Tを、縦軸にlnKをとり、各データをプロットした後、2本の近似直線を引きその傾きを求める。ここで、1/Tは反応管の熱媒浴温度(絶対温度)の逆数、lnKは反応速度定数の自然対数を表す。近似直線は最小自乗法などの一般的な方法により求めることができる。得られた近似直線の傾きの絶対値に気体定数を乗じた値が求める活性化エネルギーであり、2本の近似直線の交点の横座標の逆数が求める活性化エネルギーの境界温度TA(℃)である。
K = (SV) × (1 / ρ) × ln [100 / (100−X)]
(K represents the reaction rate constant, SV represents the space velocity, ρ represents the packing density of the catalyst, and X represents the reaction rate (%) of the raw material.)
Subsequently, 1 / T is plotted on the horizontal axis and lnK is plotted on the vertical axis, and each data is plotted. Then, two approximate straight lines are drawn to determine the inclination. Here, 1 / T represents the reciprocal of the heat medium bath temperature (absolute temperature) of the reaction tube, and lnK represents the natural logarithm of the reaction rate constant. The approximate straight line can be obtained by a general method such as a least square method. The value obtained by multiplying the absolute value of the slope of the obtained approximate line by the gas constant is the activation energy to be calculated, and the reciprocal of the abscissa of the intersection of the two approximate lines is the boundary temperature TA (° C) of the activation energy to be calculated is there.

原料としてイソブチレンに代えて第三級ブタノールを用いた場合、第三級ブタノールはモリブデン、ビスマス及び鉄を必須成分として含有する触媒の存在下、速やかにイソブチレン及び水に分解される。すなわち、反応原料として第三級ブタノールを用いた場合も、その反応形態は本質的にはイソブチレンの酸化反応と同様と考えられる。したがって、反応原料として第三級ブタノールを用いた場合も、イソブチレンからの反応の活性化エネルギーの境界温度をそのまま用いることができる。   When tertiary butanol is used instead of isobutylene as a raw material, tertiary butanol is rapidly decomposed into isobutylene and water in the presence of a catalyst containing molybdenum, bismuth and iron as essential components. That is, even when tertiary butanol is used as a reaction raw material, the reaction form is considered to be essentially the same as the oxidation reaction of isobutylene. Therefore, even when tertiary butanol is used as a reaction raw material, the boundary temperature of the activation energy of the reaction from isobutylene can be used as it is.

原料としてプロピレンを用いた場合もイソブチレンの場合と同様に活性化エネルギーの境界温度を求めることができる。   Even when propylene is used as a raw material, the boundary temperature of the activation energy can be obtained as in the case of isobutylene.

反応圧力は反応の進行に伴い上昇させる制御をすることが効果的である。反応開始時における圧力は、90〜110kPaとすることが好ましく、95〜105kPaがより好ましい。反応終了時における圧力は、105〜125kPaが好ましく、110〜120kPaがより好ましい。反応圧力は連続的に上昇させてもよいが、制御のしやすさの観点から段階的に上昇させることが好ましい。反応圧力を段階的に上昇させる際には、2回以上に分けて上昇させることが好ましい。2回に分けて上昇させる場合、例えば、最初の反応圧力を95〜105kPa、反応途中において一度反応圧力を100〜110kPaとし、最終的に反応圧力を110〜120kPaとすることが好ましい。なお、ここで言う反応圧力とは、反応器の入圧力と出圧力の平均圧力である。   It is effective to control the reaction pressure to increase as the reaction proceeds. The pressure at the start of the reaction is preferably 90 to 110 kPa, and more preferably 95 to 105 kPa. The pressure at the end of the reaction is preferably 105 to 125 kPa, more preferably 110 to 120 kPa. Although the reaction pressure may be continuously increased, it is preferably increased stepwise from the viewpoint of ease of control. When increasing the reaction pressure stepwise, it is preferable to increase the reaction pressure in two or more steps. In the case of increasing in two steps, for example, it is preferable that the initial reaction pressure is 95 to 105 kPa, the reaction pressure is once set to 100 to 110 kPa during the reaction, and the reaction pressure is finally set to 110 to 120 kPa. In addition, the reaction pressure said here is an average pressure of the input pressure of a reactor, and an output pressure.

反応ガス中の分子状酸素/原料のモル比(O/R)は反応の進行に伴い上昇させる制御をすることが効果的である。反応開始時におけるモル比(O/R)は1.8〜2.2が好ましく、1.9〜2.1がより好ましい。反応終了時におけるモル比(O/R)は2.1〜2.5が好ましく、2.2〜2.4がより好ましい。モル比(O/R)は連続的に上昇させてもよいが、制御のしやすさの観点から段階的に上昇させることが好ましい。段階的に上昇させる際には、2回以上に分けて上昇させることが好ましい。2回に分けて上昇させる場合、例えば、最初のモル比(O/R)を1.95〜2.05、反応途中において一度モル比(O/R)を2.10〜2.20とし、最終的にモル比(O/R)を2.25〜2.35とすることが好ましい。   It is effective to control the molecular oxygen / raw material molar ratio (O / R) in the reaction gas to increase as the reaction proceeds. The molar ratio (O / R) at the start of the reaction is preferably 1.8 to 2.2, more preferably 1.9 to 2.1. The molar ratio (O / R) at the end of the reaction is preferably 2.1 to 2.5, and more preferably 2.2 to 2.4. Although the molar ratio (O / R) may be continuously increased, it is preferably increased stepwise from the viewpoint of ease of control. When raising in steps, it is preferable to raise in two or more steps. In the case of increasing in two steps, for example, the initial molar ratio (O / R) is 1.95 to 2.05, and the molar ratio (O / R) is once 2.10 to 2.20 during the reaction, It is preferable that the molar ratio (O / R) is finally 2.25 to 2.35.

反応圧力、及び反応ガス中の分子状酸素/原料のモル比(O/R)は、それぞれ一方だけを変更する制御をしてもよいが、両方を変更する制御をすることで大きい効果が得られる。両方を変更する場合は、同時に変更してもよく、交互に変更してもよい。   The reaction pressure and the molecular oxygen / raw material molar ratio (O / R) in the reaction gas may be controlled by changing only one of them, but a great effect can be obtained by controlling both of them. It is done. When changing both, you may change simultaneously and may change alternately.

反応圧力、及び/又は、反応ガス中の分子状酸素/原料のモル比、の変更にあたっては、触媒の活性変化の度合いに応じて、経時的に条件を戻しても構わない。   In changing the reaction pressure and / or the molar ratio of molecular oxygen / raw material in the reaction gas, the conditions may be returned over time depending on the degree of change in the activity of the catalyst.

反応圧力、及び/又は、反応ガス中の分子状酸素/原料のモル比、の変更は、原料の反応率が一定になるように行う。ここで、「原料の反応率が一定」とは、定常運転時の運転管理反応率から±2%の範囲内であることを意味する。運転管理反応率は定常運転時に目標とする反応率である。例えば、原料の反応率が(反応開始時の原料の反応率−2)%まで低下した時点で、原料の反応率が(反応開始時の原料の反応率+2)%を超えないように、反応圧力、及び/又は、反応ガス中の分子状酸素/原料のモル比、を変更する方法でもよい。   The reaction pressure and / or the molecular oxygen / raw material molar ratio in the reaction gas are changed so that the reaction rate of the raw material becomes constant. Here, “the reaction rate of the raw material is constant” means that it is within a range of ± 2% from the operation management reaction rate during steady operation. The operation management response rate is a target response rate during steady operation. For example, when the reaction rate of the raw material is reduced to (reaction rate of the raw material at the start of reaction−2)%, the reaction is performed so that the reaction rate of the raw material does not exceed (reaction rate of the raw material at the start of reaction + 2)%. The pressure and / or the molecular oxygen / raw material molar ratio in the reaction gas may be changed.

ただし、TBAは前記のようにモリブデン、ビスマス及び鉄を必須成分として含有する触媒の存在下、速やかにイソブチレン及び水に分解される。したがって、TBAの反応率は、TBAがイソブチレンに100%分解するとみなしてそのイソブチレンを原料として反応率を算出する。   However, TBA is rapidly decomposed into isobutylene and water in the presence of a catalyst containing molybdenum, bismuth and iron as essential components as described above. Therefore, the reaction rate of TBA is calculated by assuming that TBA decomposes 100% into isobutylene and using that isobutylene as a raw material.

反応圧力、及び/又は、反応ガス中の分子状酸素/原料のモル比(O/R)、を変更する制御に加えて、反応温度を変更する制御を行うことで、より高い効果を得られる。   In addition to the control for changing the reaction pressure and / or the molecular oxygen / raw material molar ratio (O / R) in the reaction gas, a higher effect can be obtained by controlling the reaction temperature. .

本発明の製造方法は、特許文献7に記載されているような活性化処理と組み合わせて使用することも可能である。すなわち、触媒を300℃以上550℃未満の温度下に保ち、実質的に空気からなるガスを1時間以上接触させる方法で活性化することも可能である。   The production method of the present invention can also be used in combination with an activation treatment as described in Patent Document 7. That is, it is also possible to activate the catalyst by keeping the catalyst at a temperature of 300 ° C. or higher and lower than 550 ° C. and contacting a gas substantially consisting of air for 1 hour or longer.

この制御下での反応を行った後の触媒を、さらに通常の気相接触酸化に使用することもでき、その際の触媒の使用期間(触媒寿命)も改善される。   The catalyst after the reaction under the control can be further used for ordinary gas phase catalytic oxidation, and the period of use (catalyst life) of the catalyst at that time is also improved.

以下、本発明を実施例により示す。ただし、説明中の「部」は質量部を意味する。反応生成物の分析はガスクロマトグラフィーにより行った。また、原料としてのイソブチレンの反応率、生成されるメタクロレイン及びメタクリル酸の選択率は、以下のように定義される。
原料の反応率(%)=A/B×100
(Aは反応した原料のモル数、Bは供給した原料のモル数を表す。)
メタクロレインの選択率(%)=C/A×100
(Aは反応した原料のモル数、Cは生成したメタクロレインのモル数を表す。)
メタクリル酸の選択率(%)=D/A×100
(Aは反応した原料のモル数、Dは生成したメタクリル酸のモル数を表す。)
触媒前駆体粉末の酸素以外の組成は、塩酸に溶解した触媒前駆体粉末をICP発光分析法と原子吸光分析法により見積もった。
The present invention will now be illustrated by examples. However, “parts” in the description means parts by mass. The reaction product was analyzed by gas chromatography. Moreover, the reaction rate of isobutylene as a raw material and the selectivity of the produced methacrolein and methacrylic acid are defined as follows.
Raw material reaction rate (%) = A / B × 100
(A represents the number of moles of the reacted raw material, and B represents the number of moles of the supplied raw material.)
Selectivity of methacrolein (%) = C / A × 100
(A represents the number of moles of reacted raw material, and C represents the number of moles of methacrolein produced.)
Methacrylic acid selectivity (%) = D / A × 100
(A represents the number of moles of the reacted raw material, and D represents the number of moles of methacrylic acid produced.)
The composition of the catalyst precursor powder other than oxygen was estimated by ICP emission analysis and atomic absorption analysis of the catalyst precursor powder dissolved in hydrochloric acid.

[参考例]
(触媒の製造)
水6000部にパラモリブデン酸アンモニウム3000部を溶解し、続いて撹拌しながら三酸化アンチモン330.2部を加え、50℃に加温してA液とした。これとは別に、水5500部に、硝酸鉄(III)972.5部、硝酸コバルト3296.8部、硝酸亜鉛84.3部及び硝酸セシウム110.4部を溶解し、そこへ水300部に60質量%硝酸水溶液150部及び硝酸ビスマス480.8部を溶解させた溶液を加え、30℃に加温してB液とした。
[Reference example]
(Manufacture of catalyst)
Next, 3000 parts of ammonium paramolybdate was dissolved in 6000 parts of water, followed by addition of 330.2 parts of antimony trioxide with stirring, and the mixture was heated to 50 ° C. to obtain Liquid A. Separately, 972.5 parts of iron (III) nitrate, 3296.8 parts of cobalt nitrate, 84.3 parts of zinc nitrate, and 110.4 parts of cesium nitrate are dissolved in 5500 parts of water, and 300 parts of water are added thereto. A solution in which 150 parts of a 60 mass% nitric acid aqueous solution and 480.8 parts of bismuth nitrate were dissolved was added, and the mixture was heated to 30 ° C. to prepare a B solution.

撹拌下、A液にB液を混合しスラリー状物を得、これを90℃で2時間熟成した後、103℃まで昇温し1時間濃縮した後、スプレードライヤーを用いて乾燥粉末を得た。得られた乾燥粉末を300℃で4時間焼成し、次の組成からなる触媒前駆体粉末を得た。   Under stirring, liquid B was mixed with liquid A to obtain a slurry, which was aged at 90 ° C. for 2 hours, then heated to 103 ° C. and concentrated for 1 hour, and then a dry powder was obtained using a spray dryer. . The obtained dry powder was calcined at 300 ° C. for 4 hours to obtain a catalyst precursor powder having the following composition.

Mo12Bi0.7Fe1.7CoZn0.2Cs0.4Sb0.8
(式中Mo,Bi,Fe,Co,Zn,Cs,Sb及びOはそれぞれモリブデン、ビスマス、鉄、コバルト、亜鉛、セシウム、アンチモン及び酸素を表す。また元素記号右部併記の数字は各元素の原子比であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
得られた触媒前駆体粉末3920部をメチルセルロース粉末80部とよく混合した後、純水1490部を加え、混練り、押出し成形により、外径5mm、内径2mm、高さ5mmのリング状に成形し、成形体を510℃で2時間熱処理し、触媒を得た。
Mo 12 Bi 0.7 Fe 1.7 Co 8 Zn 0.2 Cs 0.4 Sb 0.8 O x
(In the formula, Mo, Bi, Fe, Co, Zn, Cs, Sb, and O represent molybdenum, bismuth, iron, cobalt, zinc, cesium, antimony, and oxygen, respectively. (Atomic ratio, x is the atomic ratio of oxygen necessary to satisfy the valence of each component)
After 3920 parts of the obtained catalyst precursor powder was well mixed with 80 parts of methylcellulose powder, 1490 parts of pure water was added, kneaded, and formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a height of 5 mm by extrusion molding. The molded body was heat-treated at 510 ° C. for 2 hours to obtain a catalyst.

(触媒の活性化エネルギーの境界温度TA(℃)の決定)
得られた触媒2000gを、外部に熱媒浴を有する内径27.5mm、高さ4mのステンレス製反応管に充填した。続いて、イソブチレン5容量%、酸素12容量%、水蒸気10容量%及び窒素73容量%からなる反応ガスを接触時間3.5秒で触媒層を通過させる条件下で、熱媒浴の温度を315〜375℃の範囲で2〜5℃間隔で変化させたイソブチレンの気相接触酸化を行い、各温度におけるイソブチレンの反応率から活性化エネルギーを算出した。その結果、活性化エネルギーの境界温度TA(℃)は335℃であり、該境界温度より低温域での活性化エネルギーが100kJ/mol、高温域での活性化エネルギーが32kJ/molであった。平均反応圧力は98kPaであった。
(Determination of catalyst activation energy boundary temperature TA (° C))
2000 g of the obtained catalyst was packed into a stainless steel reaction tube having an internal diameter of 27.5 mm and a height of 4 m, which has a heat medium bath outside. Subsequently, the temperature of the heat medium bath is set to 315 under the condition that a reaction gas consisting of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor, and 73% by volume of nitrogen is passed through the catalyst layer with a contact time of 3.5 seconds. Gas phase catalytic oxidation of isobutylene changed at intervals of 2 to 5 ° C. in a range of ˜375 ° C. was performed, and activation energy was calculated from the reaction rate of isobutylene at each temperature. As a result, the activation energy boundary temperature TA (° C.) was 335 ° C., the activation energy at a temperature lower than the boundary temperature was 100 kJ / mol, and the activation energy at a high temperature region was 32 kJ / mol. The average reaction pressure was 98 kPa.

[実施例1]
(第1反応)
参考例で得られた触媒2000gを、参考例で使用した反応管に充填した。続いて、熱媒浴の温度を320℃とし、イソブチレン(反応原料)5容量%、酸素9容量%、水蒸気10容量%及び窒素76容量%からなる反応ガスを接触時間4.5秒で触媒層を通過させる条件下でイソブチレンの気相接触酸化を行った。初期の反応生成物を分析した結果、イソブチレン反応率95.7%、メタクロレインの選択率87.9%、メタクリル酸の選択率5.4%であった。この段階での熱媒浴の温度は320℃、平均反応圧力は100kPa、反応ガス中の分子状酸素/原料のモル比は2.0である(初期反応条件)。
[Example 1]
(First reaction)
The reaction tube used in the reference example was charged with 2000 g of the catalyst obtained in the reference example. Subsequently, the temperature of the heat medium bath is set to 320 ° C., and a reaction gas composed of 5% by volume of isobutylene (reaction raw material), 9% by volume of oxygen, 10% by volume of water vapor and 76% by volume of nitrogen is contacted at a contact time of 4.5 seconds. The gas phase catalytic oxidation of isobutylene was carried out under the condition of passing through. As a result of analyzing the initial reaction product, the reaction rate of isobutylene was 95.7%, the selectivity of methacrolein was 87.9%, and the selectivity of methacrylic acid was 5.4%. The temperature of the heat medium bath at this stage is 320 ° C., the average reaction pressure is 100 kPa, and the molecular oxygen / raw material molar ratio in the reaction gas is 2.0 (initial reaction conditions).

(第2反応)
第1反応に続いて、運転管理反応率95%で制御を行った。具体的には、図1に示すように、熱媒浴の温度、平均反応圧力および反応ガス中の分子状酸素/原料のモル比を変更した。連続運転の期間は14700時間となった。この段階の反応生成物を分析した結果、イソブチレン反応率95.7%、メタクロレインの選択率87.8%、メタクリル酸の選択率5.3%であった。この段階での熱媒浴の温度は335℃、平均反応圧力は110kPa、反応ガス中の分子状酸素/原料のモル比は2.3である(反応条件1)。
(Second reaction)
Following the first reaction, control was performed at an operation management reaction rate of 95%. Specifically, as shown in FIG. 1, the temperature of the heat medium bath, the average reaction pressure, and the molecular oxygen / raw material molar ratio in the reaction gas were changed. The period of continuous operation was 14700 hours. As a result of analyzing the reaction product at this stage, the reaction rate of isobutylene was 95.7%, the selectivity of methacrolein was 87.8%, and the selectivity of methacrylic acid was 5.3%. The temperature of the heat medium bath at this stage is 335 ° C., the average reaction pressure is 110 kPa, and the molecular oxygen / raw material molar ratio in the reaction gas is 2.3 (reaction condition 1).

(第3反応)
第2反応の後、反応を一旦停止し、初期反応条件にて反応を再開した。再開初期の反応生成物を分析した結果、イソブチレン反応率93.5%、メタクロレインの選択率87.7%、メタクリル酸の選択率5.3%であった。
(Third reaction)
After the second reaction, the reaction was temporarily stopped and the reaction was restarted under the initial reaction conditions. As a result of analyzing the reaction product at the initial stage of the restart, the reaction rate of isobutylene was 93.5%, the selectivity of methacrolein was 87.7%, and the selectivity of methacrylic acid was 5.3%.

(第4反応)
第3反応の後、反応条件を反応条件1に変更し、イソブチレンの反応率が一定になるように熱媒浴の温度を上昇させる制御を行いつつ、熱媒浴の温度が360℃になるまで反応を継続した。連続運転の期間は通算で19200時間となった。この段階の反応生成物を分析した結果、イソブチレン反応率95.7%、メタクロレインの選択率87.6%、メタクリル酸の選択率5.3%であった。
(4th reaction)
After the third reaction, the reaction condition is changed to reaction condition 1 until the temperature of the heat medium bath reaches 360 ° C. while controlling to increase the temperature of the heat medium bath so that the reaction rate of isobutylene becomes constant. The reaction was continued. The total duration of continuous operation was 19,200 hours. As a result of analyzing the reaction product at this stage, the reaction rate of isobutylene was 95.7%, the selectivity of methacrolein was 87.6%, and the selectivity of methacrylic acid was 5.3%.

[実施例2]
(第1反応)
実施例1と同様に第1反応を行った。
[Example 2]
(First reaction)
The first reaction was carried out in the same manner as in Example 1.

(第2反応)
第1反応に続いて、図2に示すように、熱媒浴の温度および平均反応圧力を変更した以外は、実施例1と同様に第2反応を行った。連続運転の期間は7520時間となった。この段階の反応生成物を分析した結果、イソブチレン反応率95.6%、メタクロレインの選択率87.9%、メタクリル酸の選択率5.4%であった。この段階での熱媒浴の温度は335℃、平均反応圧力は110kPa、反応ガス中の分子状酸素/原料のモル比は2.0である(反応条件2)。
(Second reaction)
Following the first reaction, as shown in FIG. 2, the second reaction was performed in the same manner as in Example 1 except that the temperature of the heat medium bath and the average reaction pressure were changed. The period of continuous operation was 7520 hours. As a result of analyzing the reaction product at this stage, the reaction rate of isobutylene was 95.6%, the selectivity of methacrolein was 87.9%, and the selectivity of methacrylic acid was 5.4%. The temperature of the heat medium bath at this stage is 335 ° C., the average reaction pressure is 110 kPa, and the molecular oxygen / raw material molar ratio in the reaction gas is 2.0 (reaction condition 2).

(第3反応)
第2反応の後、実施例1と同様に第3反応を行った。再開初期の反応生成物を分析した結果、イソブチレン反応率93.4%、メタクロレインの選択率87.8%、メタクリル酸の選択率5.4%であった。
(Third reaction)
After the second reaction, the third reaction was performed in the same manner as in Example 1. As a result of analyzing the reaction product at the initial stage of the restart, the reaction rate of isobutylene was 93.4%, the selectivity of methacrolein was 87.8%, and the selectivity of methacrylic acid was 5.4%.

(第4反応)
第3反応の後、反応条件を反応条件2に変更したこと以外は、実施例1と同様に第4反応を行い、熱媒浴の温度が360℃になるまで反応を継続した。連続運転の期間は通算で14400時間となった。この段階の反応生成物を分析した結果、イソブチレン反応率95.6%、メタクロレインの選択率87.7%、メタクリル酸の選択率5.4%であった。
(4th reaction)
After the third reaction, the fourth reaction was performed in the same manner as in Example 1 except that the reaction condition was changed to the reaction condition 2, and the reaction was continued until the temperature of the heat medium bath reached 360 ° C. The total duration of continuous operation was 14400 hours. As a result of analyzing the reaction product at this stage, the reaction rate of isobutylene was 95.6%, the selectivity of methacrolein was 87.7%, and the selectivity of methacrylic acid was 5.4%.

[実施例3]
(第1反応)
実施例1と同様に第1反応を行った。
[Example 3]
(First reaction)
The first reaction was carried out in the same manner as in Example 1.

(第2反応)
第1反応に続いて、図3に示すように、熱媒浴の温度および反応ガス中の分子状酸素/原料のモル比を変更した以外は、実施例1と同様に第2反応を行った。連続運転の期間は8000時間となった。この段階の反応生成物を分析した結果、イソブチレン反応率95.7%、メタクロレインの選択率87.9%、メタクリル酸の選択率5.4%であった。この段階での熱媒浴の温度は335℃、平均反応圧力は100kPa、反応ガス中の分子状酸素/原料のモル比は2.3である(反応条件3)。
(Second reaction)
Subsequent to the first reaction, as shown in FIG. 3, the second reaction was carried out in the same manner as in Example 1 except that the temperature of the heat medium bath and the molar ratio of molecular oxygen / raw material in the reaction gas were changed. . The period of continuous operation was 8000 hours. As a result of analyzing the reaction product at this stage, the reaction rate of isobutylene was 95.7%, the selectivity of methacrolein was 87.9%, and the selectivity of methacrylic acid was 5.4%. The temperature of the heat medium bath at this stage is 335 ° C., the average reaction pressure is 100 kPa, and the molecular oxygen / raw material molar ratio in the reaction gas is 2.3 (reaction condition 3).

(第3反応)
第2反応の後、実施例1と同様に第3反応を行った。再開初期の反応生成物を分析した結果、イソブチレン反応率93.5%、メタクロレインの選択率87.9%、メタクリル酸の選択率5.4%であった。
(Third reaction)
After the second reaction, the third reaction was performed in the same manner as in Example 1. As a result of analyzing the reaction product at the initial stage of the restart, the reaction rate of isobutylene was 93.5%, the selectivity of methacrolein was 87.9%, and the selectivity of methacrylic acid was 5.4%.

(第4反応)
第3反応の後、反応条件を反応条件3に変更したこと以外は、実施例1と同様に第4反応を行い、熱媒浴の温度が360℃になるまで反応を継続した。連続運転の期間は通算で15000時間となった。この段階の反応生成物を分析した結果、イソブチレン反応率95.7%、メタクロレインの選択率87.7%、メタクリル酸の選択率5.4%であった。
(4th reaction)
After the third reaction, the fourth reaction was performed in the same manner as in Example 1 except that the reaction condition was changed to the reaction condition 3, and the reaction was continued until the temperature of the heat medium bath reached 360 ° C. The period of continuous operation was 15000 hours in total. As a result of analyzing the reaction product at this stage, the reaction rate of isobutylene was 95.7%, the selectivity of methacrolein was 87.7%, and the selectivity of methacrylic acid was 5.4%.

[実施例4]
反応原料として、イソブチレンの代わりに第三級ブタノール(TBA)を使用し、第2反応において、図4に示すように、熱媒浴の温度、平均反応圧力および反応ガス中の分子状酸素/原料のモル比を変更した点以外は、実施例1と同様に反応を実施した。TBAの反応率はTBAがイソブチレンに100%分解するとみなしてそのイソブチレンを原料として反応率を算出した。
[Example 4]
Tertiary butanol (TBA) is used as a reaction raw material instead of isobutylene, and in the second reaction, as shown in FIG. 4, the temperature of the heat medium bath, the average reaction pressure, and the molecular oxygen / raw material in the reaction gas The reaction was carried out in the same manner as in Example 1 except that the molar ratio was changed. The reaction rate of TBA was calculated by assuming that TBA decomposes 100% into isobutylene and using that isobutylene as a raw material.

その結果、第2反応の連続運転時間は14600時間、第4反応までの連続運転時間は19100時間であった。   As a result, the continuous operation time of the second reaction was 14600 hours, and the continuous operation time until the fourth reaction was 19100 hours.

[比較例1]
(第1反応)
実施例1と同様に第1反応を行った。
[Comparative Example 1]
(First reaction)
The first reaction was carried out in the same manner as in Example 1.

(第2反応)
第1反応に続いて、図5に示すように、熱媒浴の温度を変更した以外は、実施例1と同様に第2反応を行った。連続運転の期間は4600時間となった。この段階の反応生成物を分析した結果、イソブチレン反応率95.4%、メタクロレインの選択率88.0%、メタクリル酸の選択率5.5%であった。この段階での熱媒浴の温度は335℃、平均反応圧力は100kPa、反応ガス中の分子状酸素/原料のモル比は2.0である(反応条件4)。
(Second reaction)
Subsequent to the first reaction, as shown in FIG. 5, the second reaction was performed in the same manner as in Example 1 except that the temperature of the heat medium bath was changed. The period of continuous operation was 4600 hours. As a result of analyzing the reaction product at this stage, the reaction rate of isobutylene was 95.4%, the selectivity of methacrolein was 88.0%, and the selectivity of methacrylic acid was 5.5%. The temperature of the heat medium bath at this stage is 335 ° C., the average reaction pressure is 100 kPa, and the molecular oxygen / raw material molar ratio in the reaction gas is 2.0 (reaction condition 4).

Figure 0004995718
Figure 0004995718

Claims (3)

モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物からなる触媒の存在下、原料であるプロピレン、イソブチレン又は第三級ブタノールを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法であって、前記触媒の活性化エネルギーの境界温度をTA℃としたとき、(TA−15)℃以上TA℃以下の温度範囲で前記原料の反応率が一定になるように、反応圧力を変更する制御を行うことを特徴とする不飽和アルデヒド及び不飽和カルボン酸の製造方法。  In the presence of a catalyst composed of a complex oxide containing molybdenum, bismuth and iron as essential components, propylene, isobutylene or tertiary butanol as raw materials are vapor-phase catalytically oxidized with molecular oxygen and the corresponding unsaturation A method for producing an aldehyde and an unsaturated carboxylic acid, wherein when the boundary temperature of activation energy of the catalyst is TA ° C, the reaction rate of the raw material is within a temperature range of (TA-15) ° C to TA ° C. A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein the reaction pressure is controlled so as to be constant. モリブデン、ビスマス及び鉄を必須成分として含有する複合酸化物からなる触媒の存在下、原料であるプロピレン、イソブチレン又は第三級ブタノールを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法であって、前記触媒の活性化エネルギーの境界温度をTA℃としたとき、(TA−15)℃以上TA℃以下の温度範囲で前記原料の反応率が一定になるように、酸素と原料とのモル比を変更する制御を行うことを特徴とする不飽和アルデヒド及び不飽和カルボン酸の製造方法。  In the presence of a catalyst composed of a complex oxide containing molybdenum, bismuth and iron as essential components, propylene, isobutylene or tertiary butanol as raw materials are vapor-phase catalytically oxidized with molecular oxygen and the corresponding unsaturation A method for producing an aldehyde and an unsaturated carboxylic acid, wherein when the boundary temperature of activation energy of the catalyst is TA ° C, the reaction rate of the raw material is within a temperature range of (TA-15) ° C to TA ° C. A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein the control is performed to change the molar ratio of oxygen to the raw material so as to be constant. 前記制御として、さらに反応圧力を変更する請求項2に記載の不飽和アルデヒド及び不飽和カルボン酸の製造方法。  The method for producing an unsaturated aldehyde and unsaturated carboxylic acid according to claim 2, wherein the reaction pressure is further changed as the control.
JP2007514193A 2006-03-10 2007-03-06 Process for producing unsaturated aldehyde and unsaturated carboxylic acid Active JP4995718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514193A JP4995718B2 (en) 2006-03-10 2007-03-06 Process for producing unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006065834 2006-03-10
JP2006065834 2006-03-10
JP2007514193A JP4995718B2 (en) 2006-03-10 2007-03-06 Process for producing unsaturated aldehyde and unsaturated carboxylic acid
PCT/JP2007/054245 WO2007105523A1 (en) 2006-03-10 2007-03-06 Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JPWO2007105523A1 JPWO2007105523A1 (en) 2009-07-30
JP4995718B2 true JP4995718B2 (en) 2012-08-08

Family

ID=38509357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007514193A Active JP4995718B2 (en) 2006-03-10 2007-03-06 Process for producing unsaturated aldehyde and unsaturated carboxylic acid

Country Status (5)

Country Link
US (2) US8178720B2 (en)
JP (1) JP4995718B2 (en)
KR (1) KR101332123B1 (en)
CN (1) CN101437782B (en)
WO (1) WO2007105523A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332034B1 (en) 2005-07-05 2013-11-22 미츠비시 레이온 가부시키가이샤 Process for producing catalyst
CN104781221B (en) * 2012-11-07 2016-10-05 三菱丽阳株式会社 Methacrolein and the manufacture method of methacrylic acid
US9347014B2 (en) 2013-04-03 2016-05-24 Gfo Oil Llc Methods and systems for generating aldehydes from organic seed oils

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263739A (en) * 1997-11-25 1999-09-28 Mitsubishi Rayon Co Ltd Production of methacrolein and methacrylic acid
JP2001011010A (en) * 1999-04-27 2001-01-16 Nippon Shokubai Co Ltd Production of methacrylic acid
JP2004002323A (en) * 2002-04-03 2004-01-08 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319188A (en) 1976-08-06 1978-02-22 Nippon Zeon Co Ltd Olefin oxidation catalyst
JPS584691B2 (en) 1977-11-07 1983-01-27 宇部興産株式会社 Method for producing methacrolein
JPS5519227A (en) 1978-07-28 1980-02-09 Asahi Chem Ind Co Ltd Production of methacrolein
JPS55359A (en) 1979-03-12 1980-01-05 Nippon Zeon Co Ltd Production of methacrylic acid
JPS6045858B2 (en) 1980-09-05 1985-10-12 三菱レイヨン株式会社 Method for producing methacrolein and methacrylic acid
JPS6028824A (en) 1983-07-27 1985-02-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for manufacturing methacrolein
US6346646B1 (en) * 1997-11-25 2002-02-12 Mitsubishi Rayon Co., Ltd. Process for producing methacrolein and methacrylic acid
US7045657B2 (en) * 2002-04-03 2006-05-16 Nippon Shokubai Co., Ltd. Catalytic gas phase oxidation process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263739A (en) * 1997-11-25 1999-09-28 Mitsubishi Rayon Co Ltd Production of methacrolein and methacrylic acid
JP2001011010A (en) * 1999-04-27 2001-01-16 Nippon Shokubai Co Ltd Production of methacrylic acid
JP2004002323A (en) * 2002-04-03 2004-01-08 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde

Also Published As

Publication number Publication date
JPWO2007105523A1 (en) 2009-07-30
CN101437782B (en) 2012-08-29
KR20080104190A (en) 2008-12-01
US8329942B2 (en) 2012-12-11
KR101332123B1 (en) 2013-11-21
WO2007105523A1 (en) 2007-09-20
CN101437782A (en) 2009-05-20
US20120184771A1 (en) 2012-07-19
US8178720B2 (en) 2012-05-15
US20090221847A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5678476B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2012115825A (en) Catalyst for producing methacrolein and methacrylic acid, and method for producing the same
WO2015008814A1 (en) Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
JP6229497B2 (en) Method for producing methacrolein and methacrylic acid
JP5680373B2 (en) Catalyst and method for producing acrylic acid
JP4995718B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP5130562B2 (en) Method for producing methacrolein and / or methacrylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3939187B2 (en) Process for producing unsaturated aldehyde
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH09299803A (en) Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP5340732B2 (en) Method for producing methacrylic acid
JP2007090193A (en) Production method of catalyst for methacrylic acid production and production method of methacrylic acid
JP4745653B2 (en) Method for producing methacrylic acid
JP4902991B2 (en) Method for producing oxide catalyst
JP2013091016A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4301484B2 (en) Method for producing methacrylic acid
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5301110B2 (en) Method for producing methacrolein
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
JP2011088028A (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2006263677A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP3260174B2 (en) Catalyst for producing unsaturated carboxylic acid and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4995718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250