JP4985439B2 - 分布帰還型半導体レーザの製造方法 - Google Patents

分布帰還型半導体レーザの製造方法 Download PDF

Info

Publication number
JP4985439B2
JP4985439B2 JP2008022955A JP2008022955A JP4985439B2 JP 4985439 B2 JP4985439 B2 JP 4985439B2 JP 2008022955 A JP2008022955 A JP 2008022955A JP 2008022955 A JP2008022955 A JP 2008022955A JP 4985439 B2 JP4985439 B2 JP 4985439B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
diffraction grating
semiconductor laser
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008022955A
Other languages
English (en)
Other versions
JP2009187968A (ja
Inventor
智和 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008022955A priority Critical patent/JP4985439B2/ja
Publication of JP2009187968A publication Critical patent/JP2009187968A/ja
Application granted granted Critical
Publication of JP4985439B2 publication Critical patent/JP4985439B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、分布帰還型半導体レーザの製造方法に関する。
従来より、半導体光素子として、活性層と、活性層の上側若しくは下側の一面側に所定軸に沿って設けられ、周期構造を有する回折格子形成層とを含んで構成される、いわゆる分布帰還型半導体レーザが知られている(例えば、非特許文献1)。
しかしながら、非特許文献1に記載された分布帰還型半導体レーザ1Aを含め、回折格子形成層が活性層の上側にあるか下側にあるかに関わらず、回折格子を形成してからその上に半導体層をオーバーグロース形成するまでの間、回折格子の表面が外気に曝されてしまう。その結果、回折格子表面の酸化、表面汚染、格子形状の劣化、またこれに起因するオーバーグロース層の結晶性劣化等が生じ、レーザ特性を劣化させる原因となっていた。
武政敬三等、"10Gbit/s1.3μm AlGaInAsDFBレーザの開発"、沖テクニカルレビュー(2003)Vol.70、No.4、p96
そこで、発明者らは鋭意研究の末、回折格子を外気に曝すことなく、回折格子上にオーバーグロース層を形成することができる技術を新たに見出した。
すなわち、本発明は上記事情を鑑みてなされたものであり、レーザ特性の向上が図られた分布帰還型半導体レーザの製造方法を提供することを課題とする。
本発明に係る分布帰還型半導体レーザの製造方法は、活性層に対して平行に延びる回折格子を有する分布帰還型半導体レーザの製造方法であって、回折格子が形成されるべき第1の半導体層上に、半導体材料からなるエッチングマスクを形成する工程と、エッチングマスクを用いて第1の半導体層を選択的にエッチングし、第1の半導体層に回折格子を形成する工程と、回折格子が形成された第1の半導体層上に、回折格子を覆う第2の半導体層をオーバーグロース形成する工程とを含第1の半導体層に回折格子を形成する工程と、第2の半導体層をオーバーグロース形成する工程とは、同一の気相成長装置内にて連続しておこない、オーバーグロース形成する工程では、エッチングマスクを形成する工程において形成されたエッチングマスクを除去することなく、第2の半導体層をオーバーグロース形成し、エッチングマスクの構成材料と第2の半導体層の構成材料とが同じであり、いずれもAlを含む半導体材料である。
従来の製造方法では、回折格子を形成するためのエッチングマスクは絶縁性材料で構成されていたが、本発明に係る分布帰還型半導体レーザの製造方法においては、回折格子を形成するためのエッチングマスクが半導体材料で構成されている。そのため、回折格子の形成後にエッチングマスクを除去することなく、回折格子を覆う半導体層をオーバーグロース形成することができる。すなわち、回折格子を外気に曝すことなく、第2の半導体層(いわゆる、オーバーグロース層)を形成することができる。従って、回折格子表面の酸化、表面汚染及び格子形状の劣化を抑制することができる。さらに、その上に形成される第2の半導体層の結晶性劣化を抑制できる。それにより、作製される分布帰還型半導体レーザのレーザ特性の向上が実現される。
また、この場合、実際に形成された回折格子が外気に曝されることなく第2の半導体層が形成される。
また、この場合、エッチングマスクの構成材料と第2の半導体層との界面において結晶欠陥や格子不整合が生じにくくなり、第2の半導体層において良好な結晶性を実現することができる。
また、第1の半導体層に回折格子を形成する工程の際、HCl/H 混合ガス及びPH ガスを用いたエッチングにより回折格子を形成する態様であってもよい。この場合、回折格子の形成の際に、回折格子の表面清浄や表面モフォロジの向上等の効果が得られる。
また、第2の半導体層上に活性層を形成する工程をさらに含む態様であってもよい。この場合、第2の半導体層が、高い結晶性を有する光閉じ込め層として機能するため、良好なレーザ特性を有する分布帰還型半導体レーザが得られる。
また、活性層が、Alを含む半導体材料で構成されている態様であってもよい。この場合、Alを含む半導体材料で構成された活性層を有する温度特性に優れた分布帰還型半導体レーザが得られる。
本発明によれば、レーザ特性の向上が図られた分布帰還型半導体レーザの製造方法が提供される。
以下、添付図面を参照して本発明を実施するにあたり最良と思われる形態について詳細に説明する。なお、同一又は同等の要素については同一の符号を付し、説明が重複する場合にはその説明を省略する。
(第1実施形態)
図1は、第1実施形態に係る分布帰還型半導体レーザ1Aを模式的に示した斜視図である。図1に示すように、分布帰還型半導体レーザ1A(以下、単に「半導体レーザ」とも称す。)は、第1導電型の半導体基板10と、半導体基板10上に設けられた半導体メサ部2と、半導体メサ部2の両側に設けられた埋め込み層80、81と、半導体メサ部2を上下方向から挟む位置に配置された第1及び第2の電極110a、110bとを備えている。
半導体基板10は、例えばSnがドープされたn型のInP基板であり、その厚さは350μm、そのキャリア濃度は1.5×1018cm−3である。
半導体メサ部2は、半導体基板10の側から、バッファ層(第1の半導体層)20、第1の光閉じ込め層(第2の半導体層)30、活性層40、第2の光閉じ込め層50及びクラッド層60が、順次積層された構成を有している。
バッファ層20は、Siがドープされたn型InP層であり、その厚さは550nm、そのキャリア濃度は1.1×1018cm−3となっている。バッファ層20と光閉じ込め層30との界面には、半導体レーザ1Aの端面に直交する方向(導波路方向、図1におけるZ方向)に沿って、並列する複数の溝で構成される回折格子22(周期:202nm)が形成されている(図7参照)。このバッファ層20の回折格子22は、導波路方向に進行する光の一部を反対方向に回折し、バッファ層20とクラッド層62との間では、その周期によって決定される波長の光が帰還される。
第1の光閉じ込め層30は、SiがドープされたAlGaInAsで構成されており、その組成は例えばAl0.26Ga0.21In0.53Asである。この光閉じ込め層30の厚さは光閉じ込め層30と活性層40との界面の平坦部において70nmであり、そのキャリア濃度は1.1×1018cm−3である。
活性層40は、例えば交互に積層された井戸層とバリア層とを含む多重量子井戸構造(MQW)を有する層である。井戸層とバリア層は、互いに組成が異なるAlGaInAs半導体材料からなる。バリア層は、そのバンドギャップ波長が1.1μm、その厚さが8nmとなっている。また、井戸層は、そのバンドギャップ波長が1.31μm、その厚さが5nmとなっている。そして、このような井戸層とバリア層とが9周期だけ繰り返されている。
第2の光閉じ込め層50は、p型不純物(例えば、Zn)がドープされたAlGaInAsで構成されており、その組成は例えばAl0.26Ga0.21In0.53Asである。この光閉じ込め層50は、その厚さが32nm、そのキャリア濃度が6.5×1017cm−3となっている。
クラッド層60は、p型不純物(例えば、Zn)がドープされたInPで構成されており、その厚さは240nm、そのキャリア濃度は6.5×1017cm−3となっている。
半導体メサ部2の両側面上には、半導体メサ部2を埋め込むように、半導体メサ部2の側面に近い方から、p型の第1埋め込み層80及びn型の第2埋め込み層81が順次積層されている。
第1埋め込み層80は、p型不純物(例えば、Zn)がドープされたInPで構成されており、そのキャリア濃度は1.0×1018cm−3となっている。第1埋め込み層80は、半導体メサ部2の両側面に近づくにつれて厚さが増していき、半導体メサ部2の両側面においてはクラッド層60の側部まで覆っている。第2埋め込み層81は、n型不純物(例えば、Si)がドープされたInPで構成されており、そのキャリア濃度は2.0×1018cm−3となっている。これらの埋め込み層80,81の厚さについては、半導体メサ部2の側面から十分に離れた半導体基板10に平行な平坦部において、第1埋め込み層80の厚さが1050nm、第2埋め込み層81の厚さが1050nmとなっている。
そして、分布帰還型半導体レーザ1Aには、上述した半導体メサ部2及び埋め込み層81の上面を全体的に覆うように、クラッド層62、コンタクト層90及び絶縁層100が順次積層されている。
クラッド層62は、半導体メサ部2のクラッド層60及び埋め込み層81の上に設けられている。クラッド層62は、p型不純物(例えば、Zn)がドープされたInPで構成されており、その厚さは1650nm、そのキャリア濃度は1.0×1018cm−3となっている。
コンタクト層90は、p型不純物(例えば、Zn)がドープされたInGaAsで構成されており、その厚さは500nm、そのキャリア濃度は15.0×1018cm−3となっている。
絶縁層100は、例えば、酸化シリコン、窒化シリコンなどのシリコン系無機絶縁材料で構成されており、その厚さは350nmとなっている。また、絶縁層100は、半導体メサ部2の位置に合わせた開口部100aを有している。そして、絶縁層100と絶縁層100の開口部100a内において露出するコンタクト層90とを覆うように第1の電極110a(例えば、アノード)が設けられている。また、半導体基板10の裏面には、第2の電極110b(例えば、カソード)が設けられている。
図2〜図8は、上述した分布帰還型半導体レーザ1Aの製造方法を工程毎に模式的に示した図である。分布帰還型半導体レーザ1Aは、下記各工程を順に経ることによって作製される。
(バッファ層形成工程)
半導体レーザ1Aを作製する際には、まず、図2に示すように、半導体基板10上にバッファ層20を形成する。バッファ層20は、例えば、SiがドープされたInPを有機金属気相成長(MOVPE)を用いて成長させることによって形成される。
(エッチングマスク形成工程)
続いて、回折格子22を形成するためのエッチングマスク30bを形成する。このエッチングマスク30bを形成するにあたり、まずは、バッファ層20上に、AlGaInAsで構成されるマスク層30aを形成する。なお、マスク層30aは、事後的に第1の光閉じ込め層30の一部を構成することとなる。
本実施形態において、マスク層30は、以下の条件によるMOVPEにより形成される。
・有機金属化合物ガス:TMI(トリメチルインジウム、In(CH)、TMG(トリメチルガリウム、Ga(CH)、TMA(トリメチルアルミニウム、Al(CH
・水素化合物ガス:AsH(アルシン)、SiH(モノシラン)
・ ガス流量:TMI、192sccm
TMG、2.2sccm
TMA、25sccm
AsH、100sccm
SiH、1.2sccm
・チャンバ圧力:8000Pa(80mbar)
・ 成長温度:650℃
・ 厚さ:30nm
マスク層30aの形成後、成膜された半導体基板10を成膜装置のチャンバから取り出すと共に、公知のフォトリソグラフィー技術を用いて、マスク層30a上に所定のレジストパターンを形成する。このレジストパターンは、複数のストライプ状パターンが並列する回折格子用のパターンであり、そのパターン幅や周期は適宜変更することができる。
そして、上記レジストパターンをマスクとしてエッチングをおこない、図3に示すようなAlGaInAsで構成された回折格子用のエッチングマスク30bを得る。このエッチングマスク30bは、バッファ層20が露出する深さまでエッチングすることにより形成される。なお、このエッチング処理には、RIE等のドライエッチングやウェットエッチングを利用することができる。レジストパターンを除去した後、エッチングマスク30bが形成された半導体基板10を成膜装置のチャンバ内に再度設置する。
(回折格子形成工程)
次に、図4に示すように、成膜装置のチャンバ内においてバッファ層20に回折格子22を形成する。この回折格子22は、HClガス(ハロゲン系ガス)を用いてバッファ層20に対しエッチングをおこなうことで形成される。発明者らは、ハロゲン系ガスが、エッチングマスク30bに対してはほとんど反応せず、バッファ層20に対してだけ反応する特性に着目し、このようにバッファ層20を選択的にエッチングする方法を採用した。このエッチングは、具体的には、温度600℃、リアクタ圧力8000Pa(80mbar)の条件下で、HCl/Hの混合ガス(HC:l5%)を22sccm、PHを300sccm流しながら約15分間おこなう。その結果、バッファ層20が選択的にエッチングされ、バッファ層20にInP層の{111}面が現れる。このエッチングの際、チャンバ内の温度を600℃程度にすることで、回折格子22の表面モフォロジが効果的に改善される。
続いて、結晶成長炉内にPHを100sccm流しつつ、チャンバ内の温度を650℃まで上げる。このとき、650℃に達するまでの時間は1〜2分程度の短時間であることが好ましく、それにより、回折格子の形状を維持しつつ、後続の光閉じ込め層30の形成をおこなうことができる。まだ、PHの流量を100sccm程度に抑えることで、回折格子22の形状がマストランスポートで変わってしまう事態を防止することができる。さらに、PHを流しつつ昇温することで、バッファ層20を構成するInPからPが抜ける事態を防止することができる。
(光閉じ込め層及び活性層の形成工程)
チャンバ内の温度が650℃に到達した後、図5に示すように、回折格子22を覆うように第1の光閉じ込め層(第2の半導体層)30をオーバーグロース成長させて、回折格子22を全体的に埋め込む。そして、その光閉じ込め層30上に活性層40を形成する。活性層40は、井戸層とバリア層とを交互に9周期繰り返して積層することで形成される。井戸層は、1%程度の圧縮歪みを有していることが好ましい。その後、活性層40上に、第2の光閉じ込め層50、クラッド層60及びキャップ層70を順次成長させる。キャップ層70は、例えば、Zn等のp型不純物がドープされたInGaAsで構成され、その厚さは100nm、そのキャリア濃度は2.0×1017cm−3等が好適である。
第1の光閉じ込め層30、活性層40及び第2の光閉じ込め層50のMOVPE成長には、例えば、TMI(トリメチルインジウム、In(CH)、TMG(トリメチルガリウム、Ga(CH)、TMA(トリメチルアルミニウム、Al(CH)、AsH(アルシン)、SiH(モノシラン)、DEZn(ジエチル亜鉛)の化合物ガス等が原料として用いられる。
(半導体メサ部形成工程)
次に、上記工程によって得られた積層体を、メサ状にエッチング成形する。具体的には、公知のフォトリソグラフィー技術を用いて、図6に示すように幅1.0μm程度及び長さ300μm程度のストライプ状の絶縁層72をSiN等で形成し、その後、この絶縁層72をマスクとして、図7に示すように半導体基板10が露出するまでエッチングをおこなう。このエッチングには、例えばブロムメタノールを用いたウェットエッチングを採用することができる。上記処理の後、ストライプ状の絶縁層72が形成されていない部分の半導体層が除去され、所定の軸方向(図6及び図7におけるZ方向)に延びる半導体メサ部2及びキャップ層70で構成されたメサ状積層体が形成される。
(埋め込み層形成工程)
続いて、図8に示すように、絶縁層72を残存させた状態で、埋め込み層80及び埋め込み層81を順次成長させて、半導体メサ部2及びキャップ層70を埋め込む。これらの埋め込み層80,81の形成には、例えば、MOVPE法が用いられる。
埋め込み層81を形成した後、例えばフッ酸水溶液を用いたウェットエッチングにより、絶縁層72を除去する。そして、さらにエッチングを続けて、半導体メサ部2上のキャップ層70を除去する。このキャップ層70の除去には、例えばリン酸と過酸化水素水との混合水溶液(HPO:H(5:1))を用いたウェットエッチングが用いられる。
(クラッド層及びコンタクト層形成工程)
そして、図1に示すように、クラッド層62及びコンタクト層90を形成する。この工程では、半導体メサ部2及び埋め込み層81の上に、クラッド層62及びコンタクト層90を順次成長させる。
(絶縁層形成工程)
次に、図1に示すように、コンタクト層90上に、半導体メサ部2の延在方向に沿って延びるストライプ状の開口部100aを有する絶縁層100を形成する。この絶縁層100の構成材料には、例えば、酸化シリコン、窒化シリコン等のシリコン系無機絶縁材料を採用することができる。絶縁層100の開口部100aは、公知のフォトリソグラフィー法及びエッチング法を用いて形成することができ、その幅は、半導体メサ部2の上端面の幅よりも広いことが好ましい。このような開口部100aを有する絶縁層100を形成することにより、半導体レーザ1Aを駆動させたときに、半導体メサ部2の活性層40に注入される電流の流れる領域を効果的に制限することができる。
(電極形成工程)
最後に、絶縁層100及びコンタクト層90の上に第1の電極110aを形成すると共に、半導体基板10の裏面に第2の電極110bを形成して、図1に示す分布帰還型半導体レーザ1Aの作製が完了する。第1及び第2の電極110a,110bの形成には、例えば蒸着装置を用いることができる。なお、第2の電極110bの形成に先立ち、半導体基板10を石英基板に貼り付けた上でその裏面を研磨し、半導体基板10の厚さを100μm程度にすることが好ましい。
以上で詳細に説明したように、第1実施形態に係る分布帰還型半導体レーザ1Aの製造方法においては、InPからなるバッファ層20上に、半導体材料(AlGaInAs)からなるエッチングマスク30bが形成される。そして、エッチングマスク30bを用いて回折格子22をエッチング形成した後、このエッチングマスク30bを除去することなく、回折格子22をエッチング形成したチャンバと同一のチャンバ内において、回折格子22を覆う第1の光閉じ込め層30がオーバーグロース形成される。すなわち、回折格子22を外気に曝すことなく、第1の光閉じ込め層30が形成される。従って、回折格子22の表面酸化、表面汚染及び格子形状の劣化が効果的に抑制されて、オーバーグロース形成される第1の光閉じ込め層30の結晶性を有意に向上させることができる。それにより、作製される分布帰還型半導体レーザ1Aのレーザ特性の向上が実現される。
また、回折格子22を、HClガスを用いたエッチングで形成することで、バッファ層20及びエッチングマスク30bの表面が洗浄されると共に表面モフォロジが改善される。そのため、エッチングマスク30bをチャンバ外において形成した際に、バッファ層20及びエッチングマスク30bの表面が汚染されたり酸化されたりした場合であっても、その表面状態を効果的に改善することができる。その上、表面状態が改善されたバッファ層20及びエッチングマスク30bの後に成長される光閉じ込め層30や活性層40等の結晶性についても改善が図られる。
また、本実施形態における製造方法では、エッチングマスク30bと第1の光閉じ込め層30とが同一組成のAlGaInAsで構成されるため、その界面において結晶欠陥や格子不整合が生じにくくなっており、第1の光閉じ込め層30において良好な結晶性を実現することができる。このように、回折格子22を形成する第1の光閉じ込め層30がAlを含む酸化しやすい半導体材料で構成した場合であっても、上述した製造方法を採用することにより、光閉じ込め層30の酸化が効果的に抑制される。なお、エッチングマスク30bと第1の光閉じ込め層30とが、必ずしも同一組成の同一材料で構成される必要はなく、屈折率等の光学的な特性を考慮して、その構成材料を適宜変更してもよい。
光閉じ込め層30と同様に、活性層40もAlGaInAsで構成することで、光閉じ込め層30と活性層40との間における格子不整合が緩和され、活性層40における結晶性の向上が図られる。すなわち、Alを含む活性層40を有する半導体レーザ1Aの作製に、上述した製造方法を採用することで、回折格子22表面の汚染や酸化等を回避しつつ、温度特性に優れた半導体レーザを作製することができる。
従来は、回折格子と活性層との間に酸化防止機能を有する酸化防止層(例えば、InGaAsP層)を介在させていたが、上述した製造方法を採用することで、そのような酸化防止層が不要となるため、回折格子と活性層との離間距離が有意に短縮され、それによりレーザ特性が向上する。
(第2実施形態)
図9は、第2実施形態に係る分布帰還型半導体レーザ1Bを模式的に示した斜視図である。また、図10は、図9に示した半導体レーザ1Bの製造段階における断面図(XY平面に平行な断面図)である。本実施形態に係る半導体レーザ1Bは、回折格子22がバッファ層20ではなく第2の光閉じ込め層50に形成されている点で、第1実施形態に係る半導体レーザ1Aと異なる。
この半導体レーザ1Bの製造方法について説明する。半導体レーザ1Bを作製する際は、まず、半導体レーザ1Aの製造方法と同一又は同等の製造条件により、半導体基板10上に、バッファ層20、第1の光閉じ込め層30、活性層40及び第2の光閉じ込め層50を順次積層する。
その後、図9に示すように、第2の光閉じ込め層(第1の半導体層)50上にエッチングマスク30bを形成する。このエッチングマスク30bは、第1実施形態と同様に、MOVPE等を用いて成膜したマスク層を、所定のレジストパターンでパターニングすることによって形成される。このマスク層は、例えば、Znがドープされたp型AlGaInAs層であり、その厚さは30nm、そのキャリア濃度は6.5×1017cm−3となっている。エッチングマスク30bは、事後的にクラッド層(第2の半導体層)60の一部を構成することとなる。
続いて、第2の光閉じ込め層50に回折格子22を形成する。ここでも、第1実施形態と同様に、ハロゲン系ガスを用いたエッチングにより、第2の光閉じ込め層50を選択的にエッチングする方法を採用した。すなわち、ハロゲン系ガスが、エッチングマスク30bに対してはほとんど反応せず、第2の光閉じ込め層50に対してだけ反応する特性を利用した。
そして、このエッチングマスク30bを除去することなく、エッチングマスク30bを形成したチャンバと同一のチャンバ内において、エッチングマスク30bと同一組成の半導体材料からなり回折格子22を覆うクラッド層(第2の半導体層)60をオーバーグロース形成する。その後、クラッド層60上にキャップ層70を形成し、第1実施形態と同様の手順により半導体メサ部を形成し、埋め込み層80,81、クラッド層62、コンタクト層90、絶縁層100及び電極110a,110bを形成して、半導体レーザ1Bの作製が完了する。
以上で詳細に説明したように、第2実施形態に係る分布帰還型半導体レーザ1Bの製造方法においては、AlGaInAsからなる第2の光閉じ込め層50上に、半導体材料(AlGaInAs)からなるエッチングマスク30bが形成される。そして、エッチングマスク30bを用いて回折格子22をエッチング形成した後、このエッチングマスク30bを除去することなく、エッチングマスク30bを形成したチャンバと同一のチャンバ内において、回折格子22を覆うクラッド層60がオーバーグロース形成される。すなわち、回折格子22を外気に曝すことなく、クラッド層60が形成される。従って、回折格子22の表面酸化、表面汚染及び格子形状の劣化が効果的に抑制されて、オーバーグロース形成されるクラッド層60の結晶性を有意に向上させることができる。それにより、作製される分布帰還型半導体レーザ1Bのレーザ特性の向上が実現される。
また、回折格子22を、HClを用いたエッチングで形成することで、第2の光閉じ込め層50及びエッチングマスク30bの表面が洗浄されると共に表面モフォロジが改善される。そのため、エッチングマスク30bをチャンバ外において形成した際に、第2の光閉じ込め層50及びエッチングマスク30bの表面が汚染されたり酸化されたりした場合であっても、その表面状態を効果的に改善することができる。その上、表面状態が改善された第2の光閉じ込め層50及びエッチングマスク30bの後に成長されるクラッド層60等の結晶性についても改善が図られる。
また、本実施形態における製造方法では、エッチングマスク30bとクラッド層60とが同一組成のAlGaInAsで構成されるため、その界面において結晶欠陥や格子不整合が生じにくくなっており、クラッド層60において良好な結晶性を実現することができる。
上述した半導体レーザ1A,1Bは以下のように動作する。例えば、第1の電極110aが高電位となるように、第1の電極110aと第2の電極110bとの間に電圧を印加すると、絶縁層100の開口部100aを介して電極110aからキャリア(正孔)が活性層40に注入される。また、注入されたキャリアは、埋め込み層80の電流狭窄作用によってそのほとんどが半導体メサ部2の活性層40に注入され、キャリアが半導体メサ部2の活性層40に効果的に閉じ込められる。そして、活性層40に閉じ込められたキャリアは、活性層40において再結合し、活性層40から光が出射される。この時、出射される光の波長は、上述した回折格子の周期(例えば、202nm)に対応する。
以上、本発明の好適な実施形態について説明してきたが、そのような実施形態は本発明の要旨を逸脱しない範囲で様々な変更が可能である。例えば、上記実施形態では、多重量子井戸構造(MQW)を有する活性層を例に説明したが、必要に応じて、バルク構造又は単一量子井戸構造(SQW)を有する活性層に変更することができる。
また、上記実施形態では、半導体基板10の導電型をn型からp型に変更してもよい。その場合には、例えばバッファ層20や第1の光閉じ込め層30の導電型をp型に変更するといった各層の導電型の変更を要する。さらに、各層にドープする不純物は、SiやZnに限らず、適宜変更することができる。
第1実施形態に係る分布帰還型半導体レーザを模式的に示した斜視図である。 図1に示した半導体レーザの製造工程のうちの一工程を示した図である。 図1に示した半導体レーザの製造工程のうちの一工程を示した図である。 図1に示した半導体レーザの製造工程のうちの一工程を示した図である。 図1に示した半導体レーザの製造工程のうちの一工程を示した図である。 図1に示した半導体レーザの製造工程のうちの一工程を示した図である。 図1に示した半導体レーザの製造工程のうちの一工程を示した図である。 図1に示した半導体レーザの製造工程のうちの一工程を示した図である。 第2実施形態に係る分布帰還型半導体レーザを模式的に示した斜視図である。 図9に示した半導体レーザの製造工程のうちの一工程を示した図である。
符号の説明
1A,1B…分布帰還型半導体レーザ、10…半導体基板、2…半導体メサ部、20…バッファ層、22…回折格子、30…第1の光閉じ込め層、30b…エッチングマスク、40…活性層、50…第2の光閉じ込め層、60,62…クラッド層。

Claims (4)

  1. 活性層に対して平行に延びる回折格子を有する分布帰還型半導体レーザの製造方法であって、
    前記回折格子が形成されるべき第1の半導体層上に、半導体材料からなるエッチングマスクを形成する工程と、
    前記エッチングマスクを用いて前記第1の半導体層を選択的にエッチングし、前記第1の半導体層に前記回折格子を形成する工程と、
    前記回折格子が形成された前記第1の半導体層上に、前記回折格子を覆う第2の半導体層をオーバーグロース形成する工程と
    を含
    前記第1の半導体層に前記回折格子を形成する工程と、前記第2の半導体層をオーバーグロース形成する工程とは、同一の気相成長装置内にて連続しておこない、
    前記オーバーグロース形成する工程では、前記エッチングマスクを形成する工程において形成された前記エッチングマスクを除去することなく、前記第2の半導体層をオーバーグロース形成し、
    前記エッチングマスクの構成材料と前記第2の半導体層の構成材料とが同じであり、いずれもAlを含む半導体材料である、
    分布帰還型半導体レーザの製造方法。
  2. 前記第1の半導体層に前記回折格子を形成する工程の際、HCl/H 混合ガス及びPH ガスを用いたエッチングにより前記回折格子を形成する請求項に記載の分布帰還型半導体レーザの製造方法。
  3. 前記第2の半導体層上に前記活性層を形成する工程をさらに含む、請求項1又は2に記載の分布帰還型半導体レーザの製造方法。
  4. 記活性層が、Alを含む半導体材料で構成されている、請求項に記載の分布帰還型半導体レーザの製造方法。
JP2008022955A 2008-02-01 2008-02-01 分布帰還型半導体レーザの製造方法 Expired - Fee Related JP4985439B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022955A JP4985439B2 (ja) 2008-02-01 2008-02-01 分布帰還型半導体レーザの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022955A JP4985439B2 (ja) 2008-02-01 2008-02-01 分布帰還型半導体レーザの製造方法

Publications (2)

Publication Number Publication Date
JP2009187968A JP2009187968A (ja) 2009-08-20
JP4985439B2 true JP4985439B2 (ja) 2012-07-25

Family

ID=41070964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022955A Expired - Fee Related JP4985439B2 (ja) 2008-02-01 2008-02-01 分布帰還型半導体レーザの製造方法

Country Status (1)

Country Link
JP (1) JP4985439B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260775A (ja) * 1996-03-25 1997-10-03 Mitsubishi Electric Corp 光半導体装置の製造方法,及び光半導体装置
DE10132231C2 (de) * 2001-06-29 2003-08-14 Infineon Technologies Ag Verfahren zur in-situ Herstellung von DFB-Lasern
WO2005046013A1 (en) * 2003-10-31 2005-05-19 Bookham Technology Plc Method for manufacturing gratings in semiconductor materials that readily oxidise

Also Published As

Publication number Publication date
JP2009187968A (ja) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5280614B2 (ja) 単一のステップmocvdによって製造される導波格子を組み込んだ埋め込みヘテロ構造デバイス
JP5026905B2 (ja) 半導体発光素子及びその製造方法
JP5463760B2 (ja) 光導波路集積型半導体光素子およびその製造方法
JP5027647B2 (ja) 単一のステップmocvdによって製造される埋め込みヘテロ構造デバイス
JP5051054B2 (ja) 半導体レーザおよび半導体レーザを作製する方法
JP5673253B2 (ja) 光半導体素子、半導体レーザ、および光半導体素子の製造方法
JP2008130731A (ja) 半導体発光装置の製造方法およびこれを用いて製造された半導体発光装置
JP2007184491A (ja) 分布帰還型半導体レーザ
JP2018078290A (ja) 半導体レーザ素子
JP4751124B2 (ja) 半導体発光素子を作製する方法
JP4886634B2 (ja) 量子井戸構造、光閉じ込め型量子井戸構造、半導体レーザ、分布帰還型半導体レーザ、及び量子井戸構造の製造方法
JP4899755B2 (ja) 半導体光素子を作製する方法
JP4985439B2 (ja) 分布帰還型半導体レーザの製造方法
JP2009135333A (ja) 半導体発光素子の製造方法
JP5531610B2 (ja) 半導体レーザ素子の製造方法
JP5205901B2 (ja) 半導体レーザ素子の作製方法および半導体レーザ素子
JP4917157B2 (ja) リッジ型半導体レーザ及びリッジ型半導体レーザの製造方法
JP5217598B2 (ja) 半導体発光素子の製造方法
JP5204690B2 (ja) 分布帰還型半導体レーザ及びその製造方法
JP2009194023A (ja) 半導体光素子を作製する方法
JP5108687B2 (ja) 光半導体装置及びその製造方法
JP2018101752A (ja) 半導体光素子およびその製造方法
JP2006216752A (ja) 回折格子の製造方法および半導体レーザ
JP4178901B2 (ja) 半導体光デバイス、及び半導体光デバイスを製造する方法
JP2004055881A (ja) 光半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4985439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees