JP4978377B2 - 近接センサ - Google Patents

近接センサ Download PDF

Info

Publication number
JP4978377B2
JP4978377B2 JP2007224393A JP2007224393A JP4978377B2 JP 4978377 B2 JP4978377 B2 JP 4978377B2 JP 2007224393 A JP2007224393 A JP 2007224393A JP 2007224393 A JP2007224393 A JP 2007224393A JP 4978377 B2 JP4978377 B2 JP 4978377B2
Authority
JP
Japan
Prior art keywords
detection
time
proximity sensor
excitation
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007224393A
Other languages
English (en)
Other versions
JP2009059528A (ja
Inventor
裕之 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2007224393A priority Critical patent/JP4978377B2/ja
Publication of JP2009059528A publication Critical patent/JP2009059528A/ja
Application granted granted Critical
Publication of JP4978377B2 publication Critical patent/JP4978377B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は近接センサに関し、特に、検出コイルにパルス状の励磁電流を周期的に流して、励磁電流の遮断後に検出コイルに誘起される電圧を検出信号として利用する近接センサに関する。
近接センサ(スイッチ)とは、検出対象の移動や存在を検出して、検出結果を電気信号として出力するセンサの総称である。検出結果を電気信号に置き換えるための検出方式には、たとえば電磁誘導により検出対象となる金属体の表面に発生する渦電流を利用する方式がある。
金属体の表面に渦電流を発生させるためには、金属体に鎖交する磁束を時間的に変動させる必要がある。上記した検出方式を採用する近接センサは、一般的にその磁界を生じさせるためのコイル(以下では「検出コイル」と呼ぶ)を備えている。
この検出コイルを励磁するための方式として、連続的に変化する電流を検出コイルに流す方式、および検出コイルにパルス状の励磁電流を周期的に流す方式がある。後者の方式を採用した近接センサを開示した文献としては、たとえば特公平7−78489号公報(特許文献1)、特許第2717743号公報(特許文献2)、特開2000−68808号公報(特許文献3)がある。以下、これらの文献に開示される技術についてその概略を説明する。
特公平7−78489号公報(特許文献1)では、導電材料の少なくとも一部に浸透する磁界を発生させるための磁界発生コイルと、その磁界発生コイルへの電流を遮断した後に、その磁界の減衰する結果として誘起された電圧を検出するための検出コイルとを用いた測定方法が開示される。この方法では、検出コイルと導電材料間の空間における磁界が減衰するまでの最初の非常に短い時間中に、導電材料に浸透した磁界の減衰による影響を受けることなく、検出コイルと導電材料間の空間における磁界の減衰に起因して検出コイルに誘起された電圧を検出する。そして、検出した電圧を基準値と比較することによって検出コイルから導電材料までの距離が決定される。
特許第2717743号公報(特許文献2)に開示される近接センサは、コイル、コイルに給電する手段、検出しようとする物体が存在する場合の信号を測定し処理する手段とを備える。この近接センサにおいて、給電手段は、周期的な電流供給の周期のうち、周期より短い接続時間の間コイルに電流を流し、周期の残りの持続期間の間は実質的にゼロの値を有するようにコイルの電流を通電し又は遮断するスイッチを有する手段である。
特開2000−68808号公報(特許文献3)に開示される近接センサは、コイルおよびコイルに周期的送信電流パルスを供給する手段とを備える。コイルに送られる送信電流は、周期の第1の半分においては、第1の方向、かつ実質的にその周期の半分よりも短い時間間隔だけ流れ、周期の第2の半分においては、第1の方向と逆の方向、かつ実質的にその周期の半分よりも短い時間間隔だけ流れる。
特公平7−78489号公報 特許第2717743号公報 特開2000−68808号公報
従来の近接センサの場合、近接センサが検出体の存在を検出したときの近接センサと検出体との距離(以下、「検出距離」とも呼ぶ)は検出体の材質によって異なる。具体的に説明すると、鉄等の磁性金属とアルミニウム等の非磁性金属とでは、一般的に後者のほうがその検出距離が短くなる。さらに検出体が非磁性金属の場合には、検出距離はその検出体の厚さに依存する。
このため、従来の近接センサにおいては、検出体が非磁性金属の場合には検出体の厚さのばらつきにより近接センサの検出距離がばらつく可能性が考えられる。
本発明の目的は、上述の課題を解決するためになされたものであって、その目的は、ユーザの使い勝手を向上させることが可能な近接センサを提供することである。
本発明は要約すれば、磁界を利用して金属体の有無または位置を検知する近接センサであって、磁界を発生させるための検出コイルと、検出コイルにパルス状の励磁電流を周期的に供給するための励磁回路と、検出コイルへの励磁電流の供給が遮断された後に検出コイルの両端に生じた電圧を検出する検出回路と、検出回路の検出した電圧に基づいて金属体の有無または位置を検出するとともに、励磁電流の供給期間が励磁電流の供給遮断期間以上となるように励磁回路を制御する制御回路とを備える。
好ましくは、制御回路は、検出コイルへの励磁電流の供給を開始した直後に金属体に発生した渦電流が消滅するのに必要な期間、励磁電流が検出コイルに供給されるように、励磁回路を制御する。
より好ましくは、近接センサは、少なくとも検出コイルが収納される、円柱形の筐体をさらに備える。励磁電流の供給期間は、励磁電流の供給遮断期間の1倍以上かつ2倍以下である。筐体の外径を励磁電流の供給期間で除算して得られる値は、27(m/秒)以上かつ76(m/秒)以下に定められる。
さらに好ましくは、筐体の外径がM18以上である場合において、筐体の外径を供給遮断期間で除算して得られる値は、76(m/秒)以下に定められる。
さらに好ましくは、金属体の材質は、アルミニウムである。検出回路は、励磁電流の供給遮断期間に含まれる所定の検出期間に、検出コイルの両端に生じた電圧の値を積分する。所定の期間は、金属体の厚さの範囲である第1の範囲に対して、検出コイルの両端に生じた電圧の積分値が閾値に等しくなるときの近接センサと金属体との距離である検出距離が、第2の範囲となるように定められる。
さらに好ましくは、第1の範囲は、1mm以上かつ5mm以下の範囲である。第2の範囲は、金属体の厚さが3mmであるときの検出距離を基準値とした場合に、基準値に対して−10%以上かつ+30%以下となる範囲である。
本発明の近接センサによれば、ユーザの使い勝手を向上させることが可能になる。
以下において、本発明の実施の形態について図面を参照しつつ説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについては詳細な説明は繰返さない。
(1.本実施の形態の近接センサの構成)
図1は、本実施の形態に係る近接センサの概略ブロック図である。図1を参照して、近接センサ100は、検出コイル11と、補助コイル12と、放電抵抗13と、励磁回路20と、検出回路30と、制御回路40とを備える。
検出コイル11は、2つの端子を有するコイルである。励磁回路20は検出コイル11に励磁電流を供給する。検出コイル11に励磁電流が流れることにより検出コイル11から磁束が生じる。
一般的に、近接センサはシールドタイプと非シールドタイプとに大別される。シールドタイプとは、検出コイルで発生した磁束が近接センサの前方に集中するタイプであり、検出コイル11の側面は金属の筐体により覆われる。なおシールドタイプの近接センサは金属中に埋め込まれるように設置された状態で検出体の有無または位置を検出できる。一方、非シールドタイプとは、検出コイルで発生した磁束が近接センサの前に広く発生するタイプであり、検出コイルの側面は金属の筐体で覆われていない。なお非シールドタイプは、近接センサの取付金属など、検出対象以外の周囲金属の影響を受けやすいという特徴を有する。
補助コイル12は、シールドタイプの近接センサの実現にあたり、近接センサ100の金属ケース体(図示せず)や近接センサ100が取付けられる周囲金属(図示せず)に検出コイル11からの磁束が鎖交しないようにするため、その磁束を打ち消す方向に磁界を発生させる。このため図1に示すように補助コイル12は検出コイル11と直列に接続され、その巻き方向は検出コイル11の巻き方向と逆になる。なお補助コイル12は検出コイル11の外側に配置される。
放電抵抗13は、検出コイル11の放電を速やかに収束させるための抵抗である。放電抵抗の抵抗値をRとし、検出コイル11のインダクタンスをLとすると、検出コイル11の放電時の時定数は(L/R)に比例する。
励磁回路20は、スイッチ21〜24および定電流回路25,26を含む。
スイッチ21〜24の各々は制御回路40により制御される。スイッチ21,22は、制御回路40からの信号に応じて同じ動作を行なう。つまりスイッチ21,22は同時にオンおよびオフする。
スイッチ23,24は、制御回路40からの信号に応じて同じ動作を行なう。つまりスイッチ23,24は同時にオンおよびオフする。
定電流回路25,26は検出コイル11に励磁電流を供給するための回路である。
検出回路30は、検出コイル11の両端の電圧を検出するための回路である。検出回路30は、増幅回路31と、同期検波回路34と、切換回路35と、ローパスフィルタ(図ではLPFと示す)36と、ADコンバータ(図ではADCと示す)38とを含む。
増幅回路31は、検出コイル11の両端の間の電圧を増幅する。
同期検波回路34は、増幅回路31の出力電圧の検波を行なう。切換回路35は同期検波回路34の出力電圧をローパスフィルタ36に出力するか否かを切換える。
ローパスフィルタ36は、切換回路35からの電圧(すなわち同期検波回路34からの電圧)を積分する積分回路として機能する。
ADコンバータ38はローパスフィルタ36の出力電圧をデジタルデータに変換して、そのデジタルデータを制御回路40に出力する。
制御回路40は、スイッチ21〜24、同期検波回路34、および切換回路35を制御するとともに、ADコンバータ38からのデジタルデータを閾値と比較する。そのデータが閾値よりも大きい場合、制御回路40は、検出体が近接センサの動作領域内に存在することを示す結果(センサ出力)を出力する。
図2は、本実施の形態に係る近接センサ100の基本部分の構成を示す図である。図2においては、検出コイル11と、検出コイル11が巻回されたコア15と、放電抵抗13と、検出コイル11に励磁電流を供給するための定電流回路26と、信号S1に応答してオン/オフするスイッチSWと、増幅回路31と、信号S5に応答してオン/オフする切換回路35と、LPF36とが示される。図2のスイッチSWは図1のスイッチ21,22をまとめて示したものである。
図3は、検出コイル11に流れる励磁電流ILおよび、励磁電流ILの遮断後に検出コイル11の両端に生じるコイル電圧VLを示す波形図である。図3および図2を参照して、まず時刻t1において信号S1が立ち上がることによりスイッチSWがオンする。これにより検出コイル11に励磁電流ILが流れるとともに、検出コイル11のコイル電圧VLが所定の時定数(L/R)で立ち上がる。時刻t2において信号S2が立ち下がることによりスイッチSWがオフする。これにより検出コイル11への励磁電流ILの供給が遮断される。
ここで曲線k1に示すように、検出コイル11自身の誘起電圧は放電抵抗13によって急激に低下する。しかし検出体200が近接センサに接近している場合には、検出コイル11によって、時刻t1〜t2の期間、検出体200に磁束が供給される。時刻t2において、検出コイル11への電流供給が遮断されると検出体200の周囲の磁界が変化するので、検出体200に渦電流250が発生する。渦電流250により生じた磁束が検出コイル11に鎖交することによって検出コイル11に誘起電圧が発生する。
この誘起電圧の時定数は検出コイル11自身の誘起電圧の時定数よりも大きい。したがって、時刻t2からある時間(たとえば数10μ秒)が経過した時刻を基準とすると、曲線k2に示すように、その基準時刻以後は、検出コイル11の両端の電圧として渦電流250による誘起電圧が支配的になる。この誘起電圧を検出することによって、検出体200の有無あるいは検出体200の位置を検出することができる。
検出コイル11の誘起電圧は検出体に流れる渦電流の時間的変化によるものであり、検出コイル11はその渦電流磁束の時間変化を電圧に変換する機能を実現するためのものである。本実施の形態によればパルス電流を検出コイルに印加することにより、検出コイル自身の損失や寄生容量などの影響を受けにくくなる。これにより、近接センサの検出結果が温度変化の影響を受けにくくなる。
図4は、コイル電圧VLをより詳しく説明する波形図である。図4を参照して、検出コイル11への励磁電流の供給が遮断された直後は検出コイル11の逆起電圧が支配的である。このため、励磁電流の遮断直後からの所定期間は、検出回路が検出動作を行なわない期間(マスク時間TM)とされる。マスク時間TMが経過した後、検出回路は検出時間TDにわたり検出動作を行なう。
検出体が存在しない場合には、コイル電圧VLは、検出時間TDの始まりの時点でほぼ0になる。これに対し、アルミニウムや鉄等の検出体が近接コイルの近くに存在する場合には、0よりも大きなコイル電圧VLが検出時間TDの間発生する。本実施の形態の近接センサ100は、検出時間TDの間のコイル電圧VLの値を積分することにより検出体の有無または位置を検出する。
図4に示すコイル電圧VLの波形は、鉄の検出体とアルミニウムの検出体とで厚さを同じにして得られたものである。アルミニウムの検出体のほうが鉄の検出体よりも、コイル電圧VLの時定数が大きくなる。
さらに、本実施の形態では、検出コイル11に極性が互いに異なる電流を交互に供給して検出コイルを励磁する。このような励磁方式をここでは「交互励磁方式」と呼ぶことにする。交互励磁方式を採用することにより近接センサの検出性能を高めることができる。
図5は、交互励磁方式を説明するための図である。図5を参照して、制御回路40は、信号S1,S2を励磁回路21に出力し、同期検波回路34に信号S4を出力し、切換回路35に信号S5を出力する。
図6は、本実施の形態の近接センサの動作波形図である。図6および図5を参照して、信号S1がHレベルの間、スイッチ21,22はオン状態となる(時間T1)。時間T1の間、信号S2はLレベルであるのでスイッチ23,24はオフ状態となる。これにより検出コイル11には図5の「+方向」と示される向きに電流が流れる。
さらに同期検波回路34に入力される信号S4がHレベルになる。応じて同期検波回路34はその電圧に応じた正の電圧を出力する。
信号S1がHレベルからLレベルに切換わることにより「+方向」の電流が遮断される。電流の遮断直後には検出コイル11の両端に逆起電圧が発生する。したがって増幅回路31から出力される信号SAの電圧にもこの逆起電圧が反映される。さらに信号S4がHレベルのままであるので検出コイル11に正の逆起電力が発生すると、同期検波回路34から信号SBが出力される。
検出コイルの逆起電圧は、マスク時間TMの間に減衰する。マスク時間TMの経過後に信号S5がLレベルからHレベルに変化する。これにより同期検波回路34からの出力である信号SBが切換回路35を通過する。このときの信号SBの電圧には検出コイルの誘起電圧が反映される。
信号S5は、検出時間TDが経過するとHレベルからLレベルに変化する。これにより切換回路35は、同期検波回路34からの信号の通過を終了する。
検出時間TDの終わりの時点から所定の時間が経過すると、信号S2がLレベルからHレベルに変化する。これによりスイッチ23,24がオンする。信号S2は信号S1の立下り時刻から時間T2が経過するとHレベルになる。信号S2がHレベルになると検出コイル11には図5の「−方向」と示される向きに電流が流れる。「+方向」と「−方向」とでは電流の向きが互いに逆となる。
さらに信号S4がHレベルからLレベルに変化する。同期検波回路34は、負の電圧が入力された場合に、その電圧の絶対値に応じた正の電圧を出力する。
続いて信号S2がHレベルからLレベルに切換わることにより「−方向」の電流が遮断される。この場合にも検出コイル11の両端に逆起電圧が発生する。ただし、逆起電圧の極性は「+方向」の電流の遮断時における極性と逆となる。同期検波回路34から出力される信号SBの電圧は正である。
マスク時間TMの経過後に信号S5がLレベルからHレベルに変化する。これにより切換回路35からは、同期検波回路34からの信号SBが出力される。
ローパスフィルタ36は、切換回路35からの出力を平滑化(時間積分)する。したがって、検出体が存在する場合にはローパスフィルタ36から出力される信号SCの電圧は閾値(たとえば2.5V)よりも大きくなる。
ADコンバータ38は、信号SCの電圧値(アナログデータ)をデジタルデータに変換する。制御回路40は。このデジタルデータを閾値(上述の場合には2.5)と比較することにより、検出体の有無を判定する。
図7は、近接センサおよび検出体間の距離と近接センサの出力との関係を示す図である。図7を参照して、近接センサの検出面と検出体200との距離をDとする。ローパスフィルタ36(図5参照)の出力である積分出力は距離Dが短いほど大きくなる。
積分出力が所定の閾値と等しくなるときの距離Dを検出距離D1と定義する。距離Dが検出距離D1よりも短いときには、センサ出力はON状態となり、距離Dが検出距離D1よりも長いときには、センサ出力はOFF状態となる。ON状態およびOFF状態とは、センサの出力信号の2つのレベル(HレベルおよびLレベル)のうち一方および他方である。
図8は、本実施の形態の近接センサ100の組付け構造を示す分解斜視図である。図8を参照して、近接センサ100の構造について説明する。
図8に示すように、近接センサ100は略円柱状の外形を有しており、円筒状のケース体110と、ケース体110の内部においてケース体110の前方端に取付けられた検出部組立体120と、ケース体110の内部においてケース体110の後方端に取付けられた出力部組立体130とを主に備えている。検出部組立体120は、検出コイル、補助コイル、フェライトコア、コイルケース124、検出回路基板125などを含んでいる。また、出力部組立体130は、出力回路基板131を含んでいる。
ケース体110の前方端に取付けられた検出部組立体120の検出回路基板125と、ケース体110の後方端に取付けられた出力部組立体130の出力回路基板131とは、接続部材140によって接続されている。本実施の形態における近接センサ100にあっては、検出回路基板125および出力回路基板131がいずれもリジッド配線基板によって形成されており、接続部材140がフレキシブル配線基板にて形成されている。
ここで、リジッド配線基板とは、ガラス−エポキシ基板に代表されるような高い剛性を有した配線基板のことであり、電子部品の実装に適したものである。一方、フレキシブル配線基板とは、リジッド配線基板に比べて可撓性に優れた配線基板のことであり、たとえばポリイミド樹脂からなる基材の主表面に導体パターンが接着剤等によって貼り付けられて形成された配線基板のことである。このフレキシブル配線基板は、適度に可撓性を有しているため、自在に折り曲げたり折り返したりすることが可能であり、離間配置されたリジッド配線基板の導体パターン同士の接続を中継する配線基板として利用可能なものである。
ケース体110は、金属ケース111と樹脂ケース112とを含んでおり、金属ケース111の後方端に樹脂ケース112を圧入することによって構成されている。樹脂ケース112の後端面には、スリット状の開口部が形成されており、この開口部を貫通するように、出力回路基板131の後端部が挿通配置されている。すなわち、本実施の形態における近接センサ100にあっては、金属ケース111と樹脂ケース112とによってケース体110が構成されており、このケース体110の後端部に設けられた開口部内に配線部材としての出力回路基板131が挿通配置されている。
ケース体110の外方に位置する部分の出力回路基板131には、外部接続用コード150の端子が半田付けによって接合される。ケース体110の後端部には、出力回路基板131と外部接続用コード150との半田接合部を覆うように、インサート成形によって外側樹脂封止層としてのコードプロテクタ160が設けられている。
検出回路基板125には、図1に示す検出回路30が搭載される。
出力回路基板131には、検出回路の出力を所定の仕様の電圧出力または電流出力に変換する出力回路が設けられており、その出力は、外部接続用コード150を介して外部へと導出される。また、出力回路基板131には、外部接続用コード150を介して外部から導入される電力を所定の電源仕様に変換して検出回路基板125に出力する電源回路50も設けられている。
(2.励磁時間および遮断時間の設定)
図9は、検出体の材質および厚さを変えた場合における検出コイルの誘起電圧の時間変化の測定結果を示す図である。なお、この測定においては、励磁電流Iexを10mAに設定した。また、近接センサと検出体との距離dを10mmに設定した。
図9(A)は、検出体の材質がアルミニウムであり、かつ検出体の厚さが0.5mmである場合における検出コイルの誘起電圧の時間変化を示す。
図9(B)は、検出体の材質がアルミニウムであり、かつ検出体の厚さが2mmである場合における検出コイルの誘起電圧の時間変化を示す。
図9(C)は、検出体の材質が鉄であり、かつ検出体の厚さが1mmである場合における検出コイルの誘起電圧の時間変化を示す。
図9(A),(B)の各々は、励磁時間を100,200,400,750(μsec)に設定した場合の誘起電圧の時間波形を示す。図9(C)は、励磁時間を100,200,400(μsec)に設定した場合の誘起電圧の時間波形を示す。「sec」とは秒を意味する。
検出体の材質がアルミニウムである場合には、透磁率は小さくなり、導電率は大きくなるので、検出体が薄くても検出体の電気抵抗は比較的小さくなる。このためアルミニウムの検出体に生じる渦電流の時定数は、鉄の検出体に生じる渦電流の時定数よりも大きくなる。図9(A)および図9(C)は、アルミニウムの検出体の場合には検出コイルの両端に誘起電圧が長時間発生することを示す。
検出体の材質がアルミニウムであり、かつ検出体が厚い場合には、検出体の電気抵抗がより小さくなるので検出体に生じる渦電流の時定数はより長くなる。この場合、図9(B)に示されるように検出コイルに生じた誘起電圧は緩やかに変化する。つまり図9(B)はコイルの両端に誘起電圧が長時間発生していることを示す。
鉄の透磁率はアルミニウムの透磁率に比較して大きいので、鉄の検出体とアルミニウムの検出体とで厚みを同じとした場合、鉄の検出体に生じる渦電流の時定数はアルミニウムの検出体の時定数よりも小さくなる。よって図9(C)に示すように、鉄の検出体の場合には、検出コイルの両端に生じる誘起電圧は、励磁電流の遮断時点から短時間のうちに発生するものの、すぐに収束する。
さらに、図9(C)は、検出コイルの両端に生じる誘起電圧の変化への励磁時間の影響が小さいことを示す。この理由は、鉄の導電率がアルミの導電率に比べて小さく、かつ鉄の透磁率がアルミニウムの透磁率より高いためである。
図9(A)および図9(C)は、検出コイルの両端に生じる誘起電圧の変化が検出体の材質(鉄またはアルミニウム)により異なることを示す。したがって、鉄とアルミニウムとで近接センサの検出距離が変わることを回避するためには、誘起電圧の値のサンプリング結果(時間積分の結果)を検出体が鉄の場合とアルミニウムの場合とで同等とする必要がある。図9(A)および図9(C)から、たとえば励磁時間および電圧値のサンプリング時間を短くすることにより、誘起電圧の値の時間積分の結果を、検出体が鉄の場合とアルミニウムの場合とで同等にすることができると考えられる。
一方、検出体の材質がアルミニウムの場合には、図9(A)と図9(B)とに示されるように、検出コイルの両端に生じる誘起電圧の時間変化は、検出体の厚さに依存する。したがって検出体の材質がアルミニウムの場合には、励磁時間および電圧値のサンプリング時間を短くすると、電圧値の時間積分の結果が検出体の厚さによって異なる可能性がある。したがって、検出体の材質がアルミニウムの場合には、検出体の厚さにより検出距離が変化する。
これらの問題を解決するため、本実施の形態では、検出コイルに励磁電流が供給される期間(励磁時間)および励磁電流の供給遮断期間(遮断時間)をともに長くする。
励磁時間を長くすることにより、厚肉アルミニウムを十分に励磁することができる。検出コイルの励磁が開始されると検出体の渦電流により検出コイルの励磁が妨げられる。ただし渦電流は時定数を有するので、検出体を十分に励磁するためには、渦電流が小さくなるまで検出コイルの励磁を継続する必要がある。検出体が厚肉アルミニウムの場合には渦電流の時定数が大きいので、本実施の形態では励磁時間を長くする。
さらに制御回路40は、励磁電流の供給開始直後に検出体に発生する渦電流が消滅するまでに要する期間、励磁電流を供給する。これにより(特に検出体が厚肉アルミの場合に)、検出体を十分に励磁することができる。
なお、検出体が鉄または薄肉アルミの場合、励磁時間を長くすることによる検出結果への影響は小さい。その理由は、検出体を十分に励磁するのに要する時間が小さく、励磁時間を長くしたとしても、検出体に鎖交する磁束の差異が小さいためである。したがって、検出体が鉄または薄肉アルミの場合にも、励磁時間を長くすることが可能になる。
一方、遮断時間を長くすることにより、誘起電圧の値の積分時間(すなわち検出時間)を長くできる。これにより、検出体が厚肉アルミである場合に、その積分値を大きくすることができる。これにより検出体が厚肉アルミである場合に、近接センサの検出距離が短くなるのを回避できる。
ただし検出体が鉄または薄肉アルミの場合には、誘起電圧の値の積分時間を長くしても、その時間の終わりの部分では検出コイルの両端に誘起電圧が殆ど発生しなくなる。このため、検出体が鉄または薄肉アルミの場合には、積分時間を長くするとむしろ近接センサの感度低下が起こる可能性がある。したがって、励磁電流の供給遮断期間を適切な大きさに定める必要がある。
したがって、本実施の形態では、制御回路40は検出コイル11に励磁電流を供給する期間が励磁電流の供給遮断期間以上となるように励磁回路20を制御する。これにより、検出体の材質がアルミニウムに代表される非磁性金属である場合には、検出体の厚さによる検出距離の変動を抑制することが可能になる。
さらに、本実施の形態によれば、検出体の材質が鉄の場合とアルミニウムの場合とで、厚さが同じであれば近接センサの検出距離の変動を抑制できる。
したがって本実施の形態によればユーザの使い勝手を向上させた近接センサが実現可能になる。
図10は、励磁時間の違いにより検出コイルに生じる誘起電圧への影響をより詳しく測定した結果を示す図である。なお本測定においては検出体と近接センサの検出面との距離を7mmとした。
図10(A)は、励磁時間が116μsecである場合の誘起電圧の時間変化を示す図である。
図10(B)は、励磁時間が636μsecである場合の誘起電圧の時間変化を示す図である。
図10(A),図10(B)において「CH1」は検出コイルの両端に生じる誘起電圧を示す。「CH2」は、その誘起電圧を増幅し、かつ極性を反転させた結果を示す。検出体の材質および検出体の厚さは図10(A),図10(B)の各々に示されるとおりである。
図10(A)および図10(B)から以下の内容を導き出すことができる。まず、厚肉アルミ(図10では厚さが3mmまたは5mmのアルミ)では、励磁時間を長くすることにより誘起電圧の変化量(検出体が存在しないときの電圧を基準とした変化量)が大きくなり、かつ、その変化量は長時間発生する。次に、検出体が鉄または薄肉アルミ(図10では厚さが1mmのアルミを示す)の場合、厚肉アルミの場合に比べて、励磁時間を変えたことによる誘起電圧の違いは小さい。図10からも、励磁時間を長くすることにより厚肉アルミを十分に励磁できること、および検出体が鉄または薄肉アルミの場合には、励磁時間を長くすることによる検出結果への影響が小さいことが示される。
図11は、励磁時間を遮断時間より長くした場合における近接センサの検出距離を検出物体の材質を変えて測定した結果を示す図である。なお本測定においては、励磁時間を600μsecに設定し、遮断時間を248μsecに設定した。なお、検出時間は200μsecに設定した。
図11を参照して、励磁時間を遮断時間よりも長くすることによって、検出物体の厚さが3mmの場合、鉄の検出物体とアルミニウムの検出物体とで、近接センサの検出距離を等しくすることが可能になる。さらに、検出物体の厚さを3mmから変化させた場合、鉄の検出物体とアルミニウムの検出物体とでの近接センサの検出距離の差を小さくすることが可能になる。
図12は、励磁時間および遮断時間の具体例を表形式で示した図である。図12を参照して、(A),(B),(C)は、センサ外径がそれぞれM18(Mはメートルネジを示し、数値の単位はmmを示す、以下同様),M12,M30の近接センサの励磁時間および遮断時間の例、および励磁時間を遮断時間で除算して得られる比を示す。なお図12に示す例では、「(励磁時間)÷(遮断時間)」の値が100%以上となる励磁時間および遮断時間の組合わせを含むとともに、本実施の形態との比較のために「(励磁時間)÷(遮断時間)」の値が100%以下となる励磁時間および遮断時間の組合わせも含めている。
図13は、図12(A)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。検出距離の変化率は、検出体の厚さが3mmであるときの検出距離を測定して、その検出距離を基準値とした。
なお図13に示す関係は、以下の条件により求められたものである。まず、検出体はアルミニウムの板(24mm角)とした。検出コイルにはターン数が600のコイル、補助コイルにはターン数が120のコイルを用いた。励磁電流は約8mAに設定した。マスク時間は28μsecに設定した。なお、検出時間は{(遮断時間)−2×(マスク時間)}と表わされる。
図13を参照して、励磁時間が116μsecの場合、検出体の厚さが小さくなるほど検出距離の変化率が大きくなる。これに対し、励磁時間が276μsec以上の場合には、検出物の厚さが1〜5mmの範囲において検出距離の変動を小さくすることが可能になる。具体的には、検出物の厚さが1〜5(mm)の範囲において、検出距離の変化率を−10%〜+30%の範囲内に収めることができる。
近接センサの取付け時には、センサの検出面と検出体との距離が調整される。ただしこのようにして取付けられた近接センサが検出体の有無を判別する際において、検出体の位置ずれによってセンサの検出面と検出体との距離の変動が生じたり、検出体の厚さの変動が生じたりすることがある。しかし、検出物の厚さが1〜5(mm)の範囲において検出距離の変化率を−10%〜+30%の範囲内に収めることにより、近接センサが検出体の有無を確実に判別することが可能になる。
また、近接センサの検出面から検出体を見た場合に検出体よりも遠くに位置する金属(背面金属)があったとしても、検出物の厚さが1〜5(mm)の範囲において検出距離の変化率を−10%〜+30%の範囲内に収めることによって、その背面金属を検出することなく検出体の有無を検出できる。
図14は、図12(B)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。検出距離の変化率の定義については図13の場合と同様である。
図14に示す関係は、以下の条件により求められたものである。まず、検出体はアルミニウムの板(12mm角)とした。検出コイルにはターン数が540のコイル、補助コイルにはターン数が85のコイルを用いた。励磁電流は約8mAに設定した。マスク時間は16μsecに設定した。
図14を参照して、励磁時間が68μsecの場合、検出体の厚さが小さくなるほど検出距離の変化率が大きくなる。これに対し、励磁時間が132μsec以上の場合には、検出物の厚さが1〜5mmの範囲において検出距離の変動を小さくすることが可能になる。図13と同様に、検出物の厚さが1〜5(mm)の範囲において、検出距離の変化率を−10%〜+30%の範囲内に収めることができる。
図15は、図12(C)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。検出距離の変化率の定義については図13の場合と同様である。
図15に示す関係は、以下の条件により求められたものである。まず、検出体はアルミニウムの板(45mm角)とした。検出コイルにはターン数が1200のコイル、補助コイルにはターン数が230のコイルを用いた。励磁電流は約8mAに設定した。マスク時間は60μsecに設定した。
図15を参照して、励磁時間が232μsecの場合、検出体の厚さが小さくなるほど検出距離の変化率が大きくなる。これに対し、励磁時間が460μsec以上の場合には、検出物の厚さが1〜5mmの範囲において検出距離の変動を小さくすることが可能になる。図13と同様に、検出物の厚さが1〜5(mm)の範囲において、検出距離の変化率を−10%〜+30%の範囲内に収めることができる。
図13〜図15に示すように、本実施の形態では、励磁時間を励磁電流の供給遮断期間より長くすることにより、検出距離の変動を小さくすることが可能になる。より特定的には、検出体の厚さが1〜5mmの範囲(3±2mmの範囲)において、検出物の厚さが3mmのときの検出距離を基準とした検出距離の変化率を−10%〜+30%の範囲に収めることが可能になる。
次に、励磁時間と遮断時間とのより好ましい関係について説明する。既に説明したように、遮断時間がある程度長いほうが、薄肉アルミと厚肉アルミとで近接センサの検出距離の差を小さくできるので好ましい。しかし遮断時間が長すぎると近接センサの検出感度が低下するため、検出結果に外乱ノイズあるいは周囲温度変化の影響が生じやすくなる。
本実施の形態では励磁時間は遮断時間の1倍以上かつ2倍以下の値に設定される。これにより、近接センサの検出感度の低下を防ぐことができるので安定した検出が可能になる。
図16は、励磁時間が遮断時間の1倍または2倍となるように励磁時間および遮断時間を設定した例を示す図である。
図16(A)は、センサ外径がM18の近接センサにおける励磁時間および遮断時間の設定例を示す。この設定例では、励磁時間は668(μsec)および236(μsec)である。
図16(B)は、センサ外径がM12の近接センサにおける励磁時間および遮断時間の設定例を示す。この設定例では、励磁時間は444(μsec)および160(μsec)である。
図16(C)は、センサ外径がM30の近接センサにおける励磁時間および遮断時間の設定例を示す。この設定例では、励磁時間は1112(μsec)および396(μsec)である。
図17は、図16(A)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。
図18は、図16(B)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。
図19は、図16(C)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。
なお、検出距離の変化率は、図13〜図15と同様に、検出体の厚さが3mmであるときの検出距離を測定して、その検出距離を基準値とした。また、図17,図18,図19は、それぞれ図13,図14,図15に示す結果が得られたときの条件(検出物体の大きさ、検出コイルおよび補助コイルのターン数、励磁時間等)と同様の条件に従って得られた測定結果である。
図17〜図19を参照して、励磁時間を遮断時間の1倍から2倍までの範囲に設定することにより、図13〜図15と同様の結果、すなわち、検出物の厚さが1〜5mmの範囲において検出距離の変化率を−10%〜+30%の範囲内に収めることができる。
このように本実施の形態によれば、励磁時間を遮断時間の1倍以上かつ2倍以下の値に設定することにより、検出体の厚さによる検出距離の変動を小さくすることができる。
なお、図12〜14に示すように、好ましくは、励磁時間は遮断時間の1倍以上かつ1.6倍以下の値である。さらに好ましくは、センサの外形がM18である場合には、励磁時間は遮断時間の1倍以上かつ1.6倍以下の値であり、センサの外形がM12である場合およびセンサの外形がM30である場合には、励磁時間は遮断時間の1倍以上かつ1.2倍以下の値である。この場合には、検出物の厚さが1〜5mmの範囲において検出距離の変化率を−10%〜+15%の範囲内に収めることができることが可能になる。
続いて、励磁時間および遮断時間のより具体的な設定について説明する。本実施の形態では、励磁時間の設定のパラメータとして「センサ外径÷励磁時間」(単位:m/sec)を用いる。
センサ外径が大きくなるほど検出コイルの直径が大きくなるので検出体にループ状に流れる渦電流の直径も大きくなる。これにより検出体のインダクタンス成分が大きくなるので渦電流の時定数も大きくなる。渦電流の時定数が大きくなると、検出体に十分な励磁を行なうための励磁時間が長くなる。
要するに励磁時間はセンサの外径に依存する。そこで本実施の形態では「センサ外径÷励磁時間」をパラメータとして励磁時間を決定する。これにより励磁時間を適切に定めることが可能になる。
本実施の形態では、このパラメータの値が26以上かつ76以下に設定される。図20は、「センサ外径÷励磁時間」の値の範囲が26以上かつ76以下となる励磁時間を表形式で示す図である。図20においては近接センサの外径がM18,M12,M30の各場合についての励磁時間が示される。
図13および図17から、M18の場合には励磁時間が236〜668(μsec)の範囲にあれば、アルミニウムの検出体の厚さによる検出距離の変動を抑制することが可能であることが導かれる。
図14および図18から、M12の場合には励磁時間が160〜444(μsec)の範囲にあれば、アルミニウムの検出体の厚さによる検出距離の変動を抑制することが可能であることが導かれる。
図15および図19から、M30の場合には励磁時間が395〜1111(μsec)の範囲にあれば、アルミニウムの検出体の厚さによる検出距離の変動を抑制することが可能であることが導かれる。
したがって、本実施の形態では「センサ外径÷励磁時間」の値の範囲が26以上かつ76以下となる励磁時間がアルミニウムの検出体の厚さによる検出距離の変動を抑制するために好ましいことが導かれる。
本実施の形態では励磁時間が遮断時間の1〜2倍の範囲であるため、遮断時間は、励磁時間が確定すれば励磁時間から導き出すことができる。ただし、より好ましい遮断時間の範囲を定めるため、「センサ外径÷遮断時間」(単位:m/sec)というパラメータを用いることが好ましい。具体的にはこのパラメータの値が76以下となるように遮断時間を定めることが好ましい。
図21は、「センサ外径÷遮断時間」の値が76となる遮断時間を表形式で示す図である。図21においては近接センサの外径がM18,M12,M30の各場合について遮断時間が示される。なお「センサ外径÷遮断時間」の値が76より小さくなると、遮断時間は、図21に示す値よりも大きくなる。つまり、図21は遮断時間の最低値として好ましい値を示す。
センサ外径がM18の場合、図13,図17から「センサ外径÷遮断時間」の値が76以下となる遮断時間を設定すれば検出距離の変化を小さくすることが可能であることが導かれる。センサ外径がM30の場合についても同様である(図15および図19参照)。
なお、センサ外径がM12の場合、「センサ外径÷遮断時間」が76となる遮断時間は158(μsec)となる。図14の結果(遮断時間が132(μsec))から、センサ外径がM12の場合については、「センサ外径÷遮断時間」の値を90以下とすることで、センサ外径がM18,M30の各場合と同様に遮断時間の好ましい最低値を決定することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本実施の形態に係る近接センサの概略ブロック図である。 本実施の形態に係る近接センサ100の基本部分の構成を示す図である。 検出コイル11に流れる励磁電流ILおよび、励磁電流ILの遮断後に検出コイル11の両端に生じるコイル電圧VLを示す波形図である。 コイル電圧VLをより詳しく説明する波形図である。 交互励磁方式を説明するための図である。 本実施の形態の近接センサの動作波形図である。 近接センサおよび検出体間の距離と近接センサの出力との関係を示す図である。 本実施の形態の近接センサ100の組付け構造を示す分解斜視図である。 検出体の材質および厚さを変えた場合における検出コイルの誘起電圧の時間変化の測定結果を示す図である。 励磁時間の違いにより検出コイルに生じる誘起電圧への影響をより詳しく測定した結果を示す図である。 励磁時間を遮断時間より長くした場合における近接センサの検出距離を検出物体の材質を変えて測定した結果を示す図である。 励磁時間および遮断時間の具体例を表形式で示した図である。 図12(A)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。 図12(B)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。 図12(C)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。 励磁時間が遮断時間の1倍または2倍となるように励磁時間および遮断時間を設定した例を示す図である。 図16(A)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。 図16(B)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。 図16(C)に示した励磁時間および遮断時間で近接センサを動作させた場合における検出体の厚さと検出距離の変化率との関係を示す図である。 「センサ外径÷励磁時間」の値の範囲が26以上かつ76以下となる励磁時間を表形式で示す図である。 「センサ外径÷遮断時間」の値が76となる遮断時間を表形式で示す図である。
符号の説明
11 検出コイル、12 補助コイル、13 放電抵抗、15 コア、20 励磁回路、21〜24,SW スイッチ、25,26 定電流回路、30 検出回路、31 増幅回路、34 同期検波回路、35 切換回路、36 ローパスフィルタ、38 ADコンバータ、40 制御回路、100 近接センサ、110 ケース体、111 金属ケース、112 樹脂ケース、120 検出部組立体、124 コイルケース、125 検出回路基板、130 出力部組立体、131 出力回路基板、140 接続部材、150 外部接続用コード、160 コードプロテクタ、200 検出体、250 渦電流。

Claims (6)

  1. 磁界を利用して金属体の有無または位置を検知する近接センサであって、
    前記磁界を発生させるための検出コイルと、
    前記検出コイルにパルス状の励磁電流を周期的に供給するための励磁回路と、
    前記検出コイルへの前記励磁電流の供給が遮断された後に前記検出コイルの両端に生じた電圧を検出する検出回路と、
    前記検出回路の検出した電圧に基づいて金属体の有無または位置を検出するとともに、励磁電流の供給期間が前記励磁電流の供給遮断期間以上となるように前記励磁回路を制御する制御回路とを備える、近接センサ。
  2. 前記制御回路は、前記検出コイルへの前記励磁電流の供給を開始した直後に前記金属体に発生した渦電流が消滅するのに必要な期間、前記励磁電流を供給する、請求項1に記載に近接センサ。
  3. 前記近接センサは、
    少なくとも前記検出コイルが収納される、円柱形の筐体をさらに備え、
    前記励磁電流の供給期間は、前記励磁電流の供給遮断期間の1倍以上かつ2倍以下であり、
    前記筐体の外径を前記励磁電流の供給期間で除算して得られる値は、27(m/秒)以上かつ76(m/秒)以下に定められる、請求項2に記載の近接センサ。
  4. 前記筐体の外径がM18以上である場合において、前記筐体の外径を前記供給遮断期間で除算して得られる値は、76(m/秒)以下に定められる、請求項3に記載の近接センサ。
  5. 前記金属体の材質は、アルミニウムであり、
    前記検出回路は、前記励磁電流の供給遮断期間に含まれる所定の検出期間に、前記検出コイルの両端に生じた電圧の値を積分し、
    前記所定の期間は、前記金属体の厚さの範囲である第1の範囲に対して、前記検出コイルの両端に生じた電圧の積分値が閾値に等しくなるときの前記近接センサと前記金属体との距離である検出距離が、第2の範囲となるように定められる、請求項3に記載の近接センサ。
  6. 前記第1の範囲は、1mm以上かつ5mm以下の範囲であり、
    前記第2の範囲は、前記金属体の厚さが3mmであるときの前記検出距離を基準値とした場合に、前記基準値に対して−10%以上かつ+30%以下となる範囲である、請求項5に記載の近接センサ。
JP2007224393A 2007-08-30 2007-08-30 近接センサ Active JP4978377B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007224393A JP4978377B2 (ja) 2007-08-30 2007-08-30 近接センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007224393A JP4978377B2 (ja) 2007-08-30 2007-08-30 近接センサ

Publications (2)

Publication Number Publication Date
JP2009059528A JP2009059528A (ja) 2009-03-19
JP4978377B2 true JP4978377B2 (ja) 2012-07-18

Family

ID=40555099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224393A Active JP4978377B2 (ja) 2007-08-30 2007-08-30 近接センサ

Country Status (1)

Country Link
JP (1) JP4978377B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6610286B2 (ja) 2016-01-22 2019-11-27 オムロン株式会社 近接スイッチ
JP6880861B2 (ja) * 2017-03-15 2021-06-02 オムロン株式会社 近接センサおよび検知方法
JP6900771B2 (ja) * 2017-05-09 2021-07-07 オムロン株式会社 近接センサおよび方法
JP6918284B2 (ja) 2018-02-21 2021-08-11 オムロン株式会社 近接センサ
JP7091963B2 (ja) * 2018-09-14 2022-06-28 オムロン株式会社 物体検知センサおよび物体検知システム
CN117571814B (zh) * 2023-11-30 2024-04-02 科瑞工业自动化系统(苏州)有限公司 一种非接触式金属材质检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219740A (en) * 1979-01-12 1980-08-26 Eldec Corporation Proximity sensing system and inductance measuring technique
ATE82451T1 (de) * 1990-12-21 1992-11-15 Detra Sa Induktiver naeherungssensor.

Also Published As

Publication number Publication date
JP2009059528A (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4978377B2 (ja) 近接センサ
JP6248785B2 (ja) 送電装置および受電装置
JP6880861B2 (ja) 近接センサおよび検知方法
JP2010164472A (ja) 高周波発振形近接センサ
JP2017062122A (ja) 磁界検出装置
JP5678358B2 (ja) 磁気検出装置
JP6918284B2 (ja) 近接センサ
US20190113544A1 (en) Magnetic sensor and current sensor including the same
EP1530064A1 (en) Inductive proximity sensor, particularly for sensing presence of ferrous and non-ferrous materials.
JP2012112842A (ja) 電流センサ
JP4559435B2 (ja) 測定対象のオブジェクト厚さ及び電気伝導度を測定するための方法及びデバイス
US7068028B2 (en) Method and apparatus for metal target proximity detection at long distances
JP2019078552A (ja) 磁界検出装置および電流センサ
US20130099781A1 (en) Current sensor and method for detecting a currentless state
JP4446223B2 (ja) 電磁流量計
JP2009077168A (ja) 近接センサ
JP5115084B2 (ja) 近接センサ
JP7363487B2 (ja) 近接センサ
JP6322378B2 (ja) 検出装置
JP2020041945A (ja) 磁界検出センサ
JP4808410B2 (ja) 磁界検出回路
JPH09210745A (ja) 容量式電磁流量計
JP7380249B2 (ja) 近接センサ
KR101122948B1 (ko) 아크 전압 검출 장치
JPH06334507A (ja) 高周波発振型近接センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250