JP4977322B2 - A new catalyst structure for olefin polymerization. - Google Patents

A new catalyst structure for olefin polymerization. Download PDF

Info

Publication number
JP4977322B2
JP4977322B2 JP2004555427A JP2004555427A JP4977322B2 JP 4977322 B2 JP4977322 B2 JP 4977322B2 JP 2004555427 A JP2004555427 A JP 2004555427A JP 2004555427 A JP2004555427 A JP 2004555427A JP 4977322 B2 JP4977322 B2 JP 4977322B2
Authority
JP
Japan
Prior art keywords
heteroatoms
bonded
different
group
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004555427A
Other languages
Japanese (ja)
Other versions
JP2006507345A5 (en
JP2006507345A (en
Inventor
ラザビ,アバス
ロペス,マルガリト
ベケルマン,デイデイエ
マリン,ウラデイミル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fina Technology Inc
Original Assignee
Fina Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/301,884 external-priority patent/US20040102311A1/en
Application filed by Fina Technology Inc filed Critical Fina Technology Inc
Publication of JP2006507345A publication Critical patent/JP2006507345A/en
Publication of JP2006507345A5 publication Critical patent/JP2006507345A5/ja
Application granted granted Critical
Publication of JP4977322B2 publication Critical patent/JP4977322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0258Flexible ligands, e.g. mainly sp3-carbon framework as exemplified by the "tedicyp" ligand, i.e. cis-cis-cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)cyclopentane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Pyridine Compounds (AREA)

Description

関連出願の相互参照Cross-reference of related applications

この出願は2002年11月21日出願の米国特許出願番号10/301,884および2003年10月23日出願の特許出願番号10/692,068からの優先権を主張する。   This application claims priority from US patent application Ser. No. 10 / 301,884, filed Nov. 21, 2002, and patent application No. 10 / 692,068, filed Oct. 23, 2003.

本発明は触媒成分、触媒系、オレフィン重合、ポリマー組成物と、そしてこのようなポリマー組成物から製造される物品とに関する。特に本発明はC、CあるいはC対称性を有する触媒に関する。 The present invention relates to catalyst components, catalyst systems, olefin polymerization, polymer compositions, and articles made from such polymer compositions. In particular, the invention relates to a catalyst having C 1 , C 2 or CS symmetry.

よく知られているように、ポリオレフィンを製造するのに種々の方法および触媒が存在する。伝統的なチーグラー・ナッタ触媒系はアルミニウムアルキルを共触媒とする遷移金属化合物を使用する。   As is well known, there are various methods and catalysts for producing polyolefins. Traditional Ziegler-Natta catalyst systems use transition metal compounds co-catalyzed with aluminum alkyl.

1980年代には、メタロセンおよびアルミニウムアルキル成分を含み、遷移金属化合物が2個以上のシクロペンタジエニル(Cp)環の配位子を有するオレフィン重合用のメタロセン触媒が商業化された。従って、チタノセン、ジルコノセンおよびハフノセンはすべてポリオレフィンの製造用にメタロセン含有触媒系において遷移金属成分として使用されてきた。メタロセン触媒はアルミニウムアルキルよりもむしろアルモキサンを共触媒として、ポリオレフィンの製造用の高活性のメタロセン触媒系を提供することができる。   In the 1980's, metallocene catalysts for olefin polymerization were commercialized that contained metallocene and aluminum alkyl components, and the transition metal compound had two or more cyclopentadienyl (Cp) ring ligands. Accordingly, titanocene, zirconocene and hafnocene have all been used as transition metal components in metallocene-containing catalyst systems for the production of polyolefins. The metallocene catalyst can use alumoxane as a cocatalyst rather than aluminum alkyl to provide a highly active metallocene catalyst system for the production of polyolefins.

チーグラー・ナッタ触媒およびメタロセン触媒に加えて、多数の「非メタロセン」型の触媒がオレフィンの重合に示唆された。具体的には、例えば(非特許文献1)において、Britovsekらは、3族金属触媒、例えばスカンジウムおよびイットリウム錯体;希土類金属触媒、例えば置換シクロペンタジエニル配位子により安定化されたランタニドおよびアクチニドベースの触媒;炭素ベースの配位子(アルキル配位子、アリル配位子、Cp類似体などの)を含むカチオン性4族金属錯体、窒素ベースの配位子(単独の、あるいは他の配位子と組み合わせたアミド配位子、単独の、あるいは他の配位子と組み合わせたアミジネート配位子、およびβ−ジケチメート配位子などの)を含むもの、および酸素ベースの配位子(単独の、あるいは他の配位子と組み合わせたアルコキシド配位子、更なる供与体と共のビス−アルコキシドなどの)を含むもの;中性の4族金属錯体;5族金属触媒;6族金属触媒;8族金属触媒;9族金属触媒;10族金属触媒;13族金属触媒を含む多数のオレフィン触媒系を概観している。   In addition to Ziegler-Natta and metallocene catalysts, a number of "non-metallocene" type catalysts have been suggested for olefin polymerization. Specifically, for example, in Non-Patent Document 1, Britovsek et al., Group 3 metal catalysts such as scandium and yttrium complexes; Rare earth metal catalysts such as lanthanides and actinides stabilized by substituted cyclopentadienyl ligands Catalytic Group 4 metal complexes including carbon-based ligands (such as alkyl ligands, allyl ligands, Cp analogs), nitrogen-based ligands (single or other coordination) Including amide ligands in combination with ligands, such as amidinate ligands alone or in combination with other ligands, and β-diketimate ligands, and oxygen-based ligands alone Or other alkoxide ligands in combination with other ligands, such as bis-alkoxides with further donors; And an overview of the number of olefin catalyst system comprising a Group 13 metal catalyst; metal complex; 5 metal catalyst; Group 6 metal catalyst; Group 8 metal catalyst; 9 group metal catalyst; 10 metal catalyst.

加えて、(非特許文献2)において、Britovsekらはエチレンの重合用の特定の鉄およびコバルト触媒を開示している。   In addition, Britovsek et al. Disclose specific iron and cobalt catalysts for the polymerization of ethylene.

(特許文献1)は、2,6−ピリジンカルボキサアルデヒドビス(イミン)および2,6−ジアシルピリジンビス(イミン)の選択された鉄錯体をプロピレン重合用の触媒として開示している。(特許文献2)はヘテロ原子の架橋性R基RおよびRを含んでなる架橋を有する触媒錯体を開示し、これらの錯体が「特にエチレン単独の重合に、あるいはエチレンと高級1−オレフィンとの共重合に」有用であると教示している(2頁、28−29行)。この架橋されたR基RおよびRは水素、ハロゲン、およびヒドロカルビル、置換ヒドロカルビル、ヘテロヒドロカルビルまたは置換ヘテロヒドロカルビルから独立に選択される。キラル錯体を高タクティシティ、結晶性ポリプロピレンの製造に好適なものとするための教示または示唆はない。 (Patent Document 1) discloses selected iron complexes of 2,6-pyridinecarboxaldehyde bis (imine) and 2,6-diacylpyridine bis (imine) as catalysts for propylene polymerization. (Patent Document 2) discloses a catalyst complex having a bridge comprising a heteroatom-crosslinkable R group R 5 and R 7 , and these complexes are particularly useful for the polymerization of ethylene alone or ethylene and higher 1-olefins. It is taught that it is useful for copolymerization with (page 2, lines 28-29). The bridged R groups R 5 and R 7 are independently selected from hydrogen, halogen, and hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl. There is no teaching or suggestion to make the chiral complex suitable for the production of high tacticity, crystalline polypropylene.

次の特許は架橋メタロセン触媒系を開示する:(特許文献3);(特許文献4);(特許文献5);(特許文献6);(特許文献7);(特許文献8);(特許文献9);(特許文献10);および、(特許文献11)。
WO98/30612(1998年7月16日公開) WO99/12981(1999年3月18日公開) 米国特許第5,145,819号明細書(1992年9月8日Winterらに発行) 米国特許第5,158,920号明細書(1992年10月27日Razaviらに発行) 米国特許第5,243,001号明細書(1993年9月7日Winterらに発行) 米国特許第6,002,033号明細書(1999年12月14日Razaviらに発行) 米国特許第6,066,588号明細書(2000年5月23日Razaviらに発行) 米国特許第6,177,529B1号明細書(2001年1月23日Razaviらに発行) 米国特許第6,194,343B1号明細書(2001年2月27日Collinsらに発行) 米国特許第6,211,110B1号明細書(2001年4月3日Santiらに発行) 米国特許第6,268,518B1号明細書(2001年7月31日Resconiらに発行) The Search for New−Generation Olefin Polymerization Catalysts:Life Beyond Metallocenes,Angew.Chem.Int.Ed.1999,38,428−447 Iron and Cobalt Ethylene Polymerization Catalysts Bearing 2,6−Bis(Imino)Pyridyl Ligands;Synthesis,Structures,and Polymerization Studies,J.Am.Chem.Soc.1999,121,8728−8740
The following patents disclose bridged metallocene catalyst systems: (Patent Document 3); (Patent Document 4); (Patent Document 5); (Patent Document 6); (Patent Document 7); (Patent Document 8); Document 9); (Patent Document 10); and (Patent Document 11).
WO98 / 30612 (released July 16, 1998) WO99 / 12981 (released March 18, 1999) US Pat. No. 5,145,819 (issued to Winter et al. On September 8, 1992) US Pat. No. 5,158,920 (issued to Razavi et al. On October 27, 1992) US Pat. No. 5,243,001 (issued to Winter et al. On Sep. 7, 1993) US Pat. No. 6,002,033 (issued to Razavi et al. On Dec. 14, 1999) US Pat. No. 6,066,588 (issued to Razavi et al. On May 23, 2000) US Pat. No. 6,177,529B1 (issued to Razavi et al. On January 23, 2001) US Pat. No. 6,194,343 B1 (issued to Collins et al. On Feb. 27, 2001) US Pat. No. 6,211,110B1 (issued to Santi et al. On April 3, 2001) US Pat. No. 6,268,518B1 (issued to Resconi et al. On July 31, 2001) The Search for New-Generation Olefin Polymerization Catalysts: Life Beyond Metallocenes, Angew. Chem. Int. Ed. 1999, 38, 428-447 Iron and Cobalt Ethylene Polymerization Catalyzing Bearing 2,6-Bis (Imino) Pyridyl Ligands; Synthesis, Structures, and Polymerization Studies, J. MoI. Am. Chem. Soc. 1999, 121, 8728-8740.

しかしながら、上記の進歩にも拘わらず、触媒組成物、このような組成物の製造方法、このような組成物を用いる重合方法、ポリマー組成物、およびこのようなポリマー組成物から製造される物品に対する必要性が当業界には存在する。   However, in spite of the above advances, to catalyst compositions, methods of making such compositions, polymerization methods using such compositions, polymer compositions, and articles made from such polymer compositions There is a need in the industry.

本発明の一つの態様によれば、式   According to one aspect of the invention, the formula

(ここで、Mは金属であり;各XはMに共有結合またはイオン結合により結合した原子または基であり、そして同一であるかあるいは異なってもよく;RおよびRは同一であってもよく、あるいは各々は異なってもよく、そして置換あるいは非置換のシクロペンタジエニルあるいは芳香族環であり;Rはシクロペンタジエニルあるいは芳香族環RおよびRの間の構造的架橋であり、そして前記環に立体的剛性を付与し、そしてMに結合する少なくとも1つのヘテロ原子を含んでなり、RおよびRの各々はRの同一の、あるいは異なるヘテロ原子に結合し、このヘテロ原子はMにも結合し;ZはMの配位数であり、そして4よりも大きいか、あるいは4に等しく;mはMとRのヘテロ原子の間の結合数であり、そして立体的剛性を付与するには2に等しいか2より大きく;そしてR、RおよびRは触媒成分にC、CあるいはC対称性を付与するように選択される)
を有する架橋化合物が提供される。この触媒成分はキラルあるいは非キラルであることができる。ある態様においては、キラルである触媒成分を有することが望ましい可能性がある。
(Wherein M is a metal; each X is an atom or group bonded to M by a covalent bond or an ionic bond and may be the same or different; R 1 and R 2 are the same; Or each may be different and is a substituted or unsubstituted cyclopentadienyl or aromatic ring; R B is a structural bridge between the cyclopentadienyl or aromatic rings R 1 and R 2 And comprising at least one heteroatom that imparts steric rigidity to said ring and is bonded to M, wherein each of R 1 and R 2 is bonded to the same or different heteroatom of R B. this heteroatom is bound to M; Z is the coordination number of M, and 4 is greater than or equal to 4; m is the bonding number between heteroatoms M and R B, And To give the body rigidity is greater than 2 or equal to 2; and R 1, R 2 and R B is selected to provide the C 1, C 2 or C S symmetry catalyst component)
A cross-linking compound is provided. The catalyst component can be chiral or achiral. In some embodiments, it may be desirable to have a catalyst component that is chiral.

本発明のもう一つの態様によれば、式M(X)の金属化合物を式 According to another aspect of the present invention, the metal compound of formula M (X) 2 is represented by the formula

(ここで、R、RおよびRは上記で定義した通りである)
の架橋化合物と接触させることを含んでなる架橋メタロセン化合物を製造する方法が提供される。
(Where R B , R 1 and R 2 are as defined above)
There is provided a method of producing a bridged metallocene compound comprising contacting with a crosslinking compound of:

本発明のもう一つの態様によれば、式   According to another aspect of the invention, the formula

(ここで、M、X、R、R、mおよびZは上記で定義した通りである)
を有する活性化された架橋メタロセン化合物を含んでなる触媒系が提供される。
(Where M, X, R 1 , R 2 , m and Z are as defined above)
There is provided a catalyst system comprising an activated bridged metallocene compound having:

本発明の更なるもう一つの態様によれば、賦活剤を式   According to yet another aspect of the invention, the activator is of the formula

(ここで、M、X、R、R、mおよびZは上記で定義した通りである)
を有する架橋メタロセン化合物と接触することを含んでなる触媒系を製造する方法が提供される。
(Where M, X, R 1 , R 2 , m and Z are as defined above)
There is provided a method of making a catalyst system comprising contacting a bridged metallocene compound having:

本発明の更なるもう一つの態様によれば、オレフィンモノマーまたはモノマーの混合物を式   According to yet another embodiment of the present invention, the olefin monomer or mixture of monomers is represented by the formula

(ここで、M、X、R、R、mおよびZは上記で定義した通りである)
を有する活性化された架橋メタロセン化合物の存在下で接触させることを含んでなるポリオレフィンを形成する方法が提供される。
(Where M, X, R 1 , R 2 , m and Z are as defined above)
There is provided a method of forming a polyolefin comprising contacting in the presence of an activated bridged metallocene compound having:

上記の態様のすべてに対して、詳細な説明で述べるようにM、X、R、R、mおよびZを変えることにより、種々の更なる態様が提供される。 For all of the above aspects, various further aspects are provided by varying M, X, R 1 , R 2 , m and Z as described in the detailed description.

本発明の一つの態様においては、本発明の架橋メタロセン触媒成分は式   In one embodiment of the present invention, the bridged metallocene catalyst component of the present invention has the formula

(ここで、Mは金属であり;各XはMに共有結合またはイオン結合により結合した原子または基であり、そして同一であるかあるいは異なってもよく;RおよびRは同一であってもよく、あるいは各々は異なってもよく、そして置換あるいは非置換のシクロペンタジエニルあるいは芳香族環であり;Rはシクロペンタジエニルあるいは芳香族環RおよびRの間の構造的架橋であり、そして前記環に立体的剛性を付与し、そしてMに結合する少なくとも1つのヘテロ原子を含んでなり、RおよびRの各々はRの同一の、あるいは異なるヘテロ原子に結合し、このヘテロ原子はMにも結合し;ZはMの配位数であり、そして4よりも大きいか、あるいは4に等しく;mはMとRのヘテロ原子の間の結合数であり、そしてMの周りの結合数はその配位数Zを超えることができないためにm立体的剛性を付与するには≧2であり;R、RおよびRは触媒成分にC、CあるいはC対称性を付与するように選択される)
により表され得る。この触媒成分はキラルあるいは非キラルであることができる。ある態様においては、キラルである触媒成分を有することが望ましい可能性がある。
(Wherein M is a metal; each X is an atom or group bonded to M by a covalent bond or an ionic bond and may be the same or different; R 1 and R 2 are the same; Or each may be different and is a substituted or unsubstituted cyclopentadienyl or aromatic ring; R B is a structural bridge between the cyclopentadienyl or aromatic rings R 1 and R 2 And comprising at least one heteroatom that imparts steric rigidity to said ring and is bonded to M, wherein each of R 1 and R 2 is bonded to the same or different heteroatom of R B. this heteroatom is bound to M; Z is the coordination number of M, and 4 is greater than or equal to 4; m is the bonding number between heteroatoms M and R B, And Number of bonds around is an ≧ 2 to impart m steric rigidity to not exceed the coordination number Z; R 1, R 2 and R B C 1, C 2 or the catalyst component is selected so as to provide a C S symmetry)
Can be represented by: The catalyst component can be chiral or achiral. In some embodiments, it may be desirable to have a catalyst component that is chiral.

本発明の金属Mはメタロセン触媒中で金属成分として有用ないかなる好適な金属であることもできる。非限定的な例として、Mはメタロセン触媒中で金属成分として有用であると先行技術で既知であるいかなる金属からも選択され得る。MはMに結合する置換基の数に少なくとも等しい配位数Z、すなわちRヘテロ原子−金属結合のm数プラス2(両方のXに対して)を有するように選択される。Mは遷移金属、ランタニドおよびアクチニドの中から選択され得る。Mは3d、4dあるいは5d族の遷移金属、例えばFe、Co、Ni、Ru、Rh、Pd、Os、IrおよびPtの中から選択され得る。ある態様においては、MはFe、CoおよびNiの中から望ましくは選択され得る。RおよびRは同一であってもよく、あるいは異なってもよく、そして置換あるいは非置換のシクロペンタジエニルあるいは芳香族環であると一般に記述され得る。 The metal M of the present invention can be any suitable metal useful as a metal component in a metallocene catalyst. As a non-limiting example, M can be selected from any metal known in the prior art to be useful as a metal component in a metallocene catalyst. M is at least equal the coordination number Z, i.e. R B heteroatoms to the number of substituents attached to M - is selected to have a metallurgical bond m number plus 2 (for both X). M may be selected from transition metals, lanthanides and actinides. M can be selected from 3d, 4d or 5d group transition metals such as Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt. In some embodiments, M may desirably be selected from among Fe, Co, and Ni. R 1 and R 2 may be the same or different and may generally be described as being substituted or unsubstituted cyclopentadienyl or aromatic rings.

非限定的な例として、RおよびRはメタロセン触媒中で有用であると当業界で既知であるいかなる置換あるいは非置換のシクロペンタジエニルまたは芳香族環の中から選択され得る。RおよびRとしての使用に好適な炭化水素基の非限定的な例を下記の例に示す。非限定的な例として、RおよびRは(C(R’))(ここで、各R’は同一であってもよく、あるいは各々は異なってもよく、そしてR’は水素または1−20個の炭素原子を有する置換あるいは非置換のヒドロカルビル基である)の形のシクロペンタジエニルあるいは芳香族環として記述され得る。 By way of non-limiting example, R 1 and R 2 may be selected from any substituted or unsubstituted cyclopentadienyl or aromatic ring known in the art to be useful in metallocene catalysts. Non-limiting examples of hydrocarbon groups suitable for use as R 1 and R 2 are shown in the examples below. As a non-limiting example, R 1 and R 2 are (C 5 (R ′) 4 ) (where each R ′ may be the same or each may be different, and R ′ is hydrogen Or a cyclopentadienyl or aromatic ring in the form of a substituted or unsubstituted hydrocarbyl group having 1-20 carbon atoms.

R’としての使用に好適なヒドロカルビル基の非限定的な例は、非置換および置換のアルキル、アルケニル、アリール、アルキルアリールあるいはアリールアルキル基を含む。好適なヒドロカルビル基の更に特定の非限定的な例は、非置換および置換のメチル、エチル、プロピル、ブチル、アミル、イソアミル、ヘキシル、イソブチル、ヘプチル、オクチル、ノニル、デシル、セチル、フェニル、メチレン、エチレン、プロピレン、および他の類似の基を含む。   Non-limiting examples of hydrocarbyl groups suitable for use as R 'include unsubstituted and substituted alkyl, alkenyl, aryl, alkylaryl or arylalkyl groups. More specific non-limiting examples of suitable hydrocarbyl groups include unsubstituted and substituted methyl, ethyl, propyl, butyl, amyl, isoamyl, hexyl, isobutyl, heptyl, octyl, nonyl, decyl, cetyl, phenyl, methylene, Contains ethylene, propylene, and other similar groups.

はシクロペンタジエニルあるいは芳香族環RとRの間の構造的架橋として作用し、そしてこの環に立体的剛性を付与し、Mに結合するn個のヘテロ原子(「HA」)を含んでなる。Mに結合するヘテロ原子の数はn≧1、n≧2であることができ、そしてある態様においてはn≧3を有することが望ましい可能性がある。好適な構造的架橋Rの例は実施例に示される。 R B acts as a structural bridge between the cyclopentadienyl or aromatic rings R 1 and R 2 and imparts steric rigidity to the ring and n heteroatoms (“HA”) attached to M. ). The number of heteroatoms attached to M can be n ≧ 1, n ≧ 2, and in some embodiments it may be desirable to have n ≧ 3. Examples of suitable structural bridge R B is shown in Example.

構造的架橋R中で有用なヘテロ原子は、「配位」結合、すなわち、このヘテロ原子から孤立電子対の供与により形成される結合により金属Mに配位可能であるいかなるものも含む。RがMに結合する1個以上のヘテロ原子を含んでなる場合には、これらは同一のヘテロ原子または異なるヘテロ原子であることができる。好適なヘテロ原子の非限定的な例はO、N、S、およびPを含む。ある態様においてはこのヘテロ原子は望ましくはNである。 Useful heteroatoms in the structural bridge R B include any “coordinating” bond, ie, anything that can be coordinated to the metal M by a bond formed by donation of a lone pair from the heteroatom. If the R B may comprise one or more heteroatoms bonded to M, it may be the same heteroatom or different hetero atoms. Non-limiting examples of suitable heteroatoms include O, N, S, and P. In some embodiments, this heteroatom is desirably N.

はRのヘテロ原子に結合し、このヘテロ原子は直接にあるいは異なるヘテロ原子を通し間接的にMにも結合する。同様に、RはRのヘテロ原子にも結合し、このヘテロ原子は直接にあるいは異なるヘテロ原子を通し間接的にMにも結合する。RおよびRは同一のヘテロ原子に結合し、これはMにも結合してもよく、あるいは異なるヘテロ原子に結合し、この異なるヘテロ原子はMにも結合してもよい。このR−R−R部分の構造はこの触媒の対称性を妨害しないいかなるものであることができる。例えば、このR−R−R部分は次の立体配置を有することができ、そしてなお本発明の請求の範囲内である。 R 1 is bonded to the hetero atom of R B , and this hetero atom is also bonded to M directly or indirectly through a different hetero atom. Similarly, R 2 is bonded to the heteroatom of R B, this heteroatom also binds indirectly M through directly or different hetero atoms. R 1 and R 2 may be bonded to the same heteroatom, which may be bonded to M, or may be bonded to a different heteroatom, which may be bonded to M. The structure of the R 1 -R 2 -R B moiety can be is any one which does not disturb the symmetry of the catalyst. For example, the R 1 -R 2 -R B moiety may have the following configuration, and still be within the scope of the claims of the present invention.

ある態様においては、4個のヘテロ原子を有する架橋基は本発明の範囲内である。本発明の一つの態様によれば、R、RおよびRはC、CあるいはC対称性を有する触媒成分を提供するように選択される。触媒製造業者に有用であることが既知のC、CあるいはC対称性を損なわないR、RおよびRのいかなる立体配置も本発明により使用され得る。この触媒成分はキラルあるいは非キラルであることができる。ある態様においては、キラルである触媒成分を有することが望ましい可能性がある。 In certain embodiments, bridging groups having 4 heteroatoms are within the scope of the invention. According to one aspect of the present invention, R 1, R 2, and R B is selected to provide a catalyst component having a C 1, C 2 or C S symmetry. Any configuration of R 1, R 2, and R B to be useful in the catalyst manufacturer can not impair the known C 1, C 2 or C S symmetry may be used according to the invention. The catalyst component can be chiral or achiral. In some embodiments, it may be desirable to have a catalyst component that is chiral.

各Xは触媒での使用が知られている原子または基であってもよく、そして一般にMに共有結合またはイオン結合により結合している。普通各Xは同一であるが、同一であるかあるいは異なってもよい。非限定的な例として、Xはハライド、サルフェート、ナイトレート、チオレート、チオカルボキシレート、BF 、PF 、ハイドライド、ヒドロカルビルオキシド、カルボキシレート、置換あるいは非置換のヒドロカルビル、およびヘテロヒドロカルビルの中から選択され得る。このような原子または基の非限定的な例は、クロリド、ブロミド、メチル、エチル、プロピル、ブチル、オクチル、デシル、フェニル、ベンジル、メトキシド、エトキシド、イソプロポキシド、トキシレート、トリフレート、ホルメート、アセテート、フェノキシドおよびベンゾエートである。XがハライドまたはC〜C20ヒドロカルビルである場合には、これは望ましい可能性がある。ある態様においては、Xはクロリドであることが望ましい。この架橋された触媒成分は架橋中間体をM(X)の形の化合物と接触させることにより一般に製造される。更なる詳細を実施例に示す。 Each X may be an atom or group known for use in catalysis and is generally bound to M by a covalent or ionic bond. Usually each X is the same, but may be the same or different. By way of non-limiting example, X can be a halide, sulfate, nitrate, thiolate, thiocarboxylate, BF 4 , PF 6 , hydride, hydrocarbyl oxide, carboxylate, substituted or unsubstituted hydrocarbyl, and heterohydrocarbyl. Can be selected. Non-limiting examples of such atoms or groups are chloride, bromide, methyl, ethyl, propyl, butyl, octyl, decyl, phenyl, benzyl, methoxide, ethoxide, isopropoxide, toxylate, triflate, formate, acetate , Phenoxide and benzoate. If X is a halide or C 1 -C 20 hydrocarbyl, which may be desirable. In some embodiments, it is desirable for X to be chloride. This crosslinked catalyst component is generally prepared by contacting the crosslinked intermediate with a compound in the form of M (X) 2 . Further details are given in the examples.

本発明は、1つ以上の上述の架橋された触媒成分および1つ以上の賦活剤および/または共触媒(下記に更に詳細に述べるような)または賦活剤および/または共触媒の反応生成物、例えばメチルアルミノキサン(MAO)および場合によってはアルキル化剤/掃去剤、例えばトリアルキルアルミニウム化合物、例えばトリエチルアルミニウム(TEAL)を含んでなる触媒系を更に含む。上述のメタロセン触媒成分はメタロセン技術で既知のように担持されてもよい。典型的な担体は、タルク、無機酸化物、粘土、および粘土鉱物、イオン交換された層状化合物、珪藻土、ケイ酸塩、ゼオライトまたはポリオレフィンなどの樹脂状担体材料などの担体であり得る。特定の無機酸化物は、単独で、あるいは他の無機酸化物、例えばマグネシア、チタニア、ジルコニアなどと組み合わせて使用されるシリカおよびアルミナを含む。四塩化チタンなどの非メタロセン遷移金属化合物は担持された触媒成分にも組み込まれ得る。担体として使用される無機酸化物は、30−600ミクロンの、望ましくは30−100ミクロンの範囲の平均粒子サイズ、グラム当り50−1,000平方メートルの、望ましくはグラム当り100−400平方メートルの表面積、および0.5−3.5cc/gの、望ましくは約0.5−2cc/gの細孔容積を有するものとして特徴づけ得る。   The present invention includes one or more of the above-mentioned crosslinked catalyst components and one or more activators and / or cocatalysts (as described in more detail below) or reaction products of activators and / or cocatalysts, Further included is a catalyst system comprising, for example, methylaluminoxane (MAO) and optionally an alkylating / scavenging agent such as a trialkylaluminum compound such as triethylaluminum (TEAL). The metallocene catalyst component described above may be supported as is known in the metallocene art. Typical carriers can be carriers such as talc, inorganic oxides, clays and clay minerals, ion-exchanged layered compounds, diatomaceous earth, silicates, zeolites or resinous carrier materials such as polyolefins. Specific inorganic oxides include silica and alumina used alone or in combination with other inorganic oxides such as magnesia, titania, zirconia and the like. Nonmetallocene transition metal compounds such as titanium tetrachloride can also be incorporated into the supported catalyst component. The inorganic oxide used as the support has an average particle size of 30-600 microns, preferably in the range of 30-100 microns, a surface area of 50-1,000 square meters per gram, preferably 100-400 square meters per gram, And a pore volume of 0.5-3.5 cc / g, desirably about 0.5-2 cc / g.

本発明の架橋された触媒は活性な触媒系を生み出すために、ある形の賦活剤と組み合わせて使用され得る。用語「賦活剤」は、1つ以上の触媒のオレフィンのポリオレフィンへの重合能を増強する能力のある任意の化合物または成分、または化合物もしくは成分の組み合わせ物であると本明細書では定義される。メチルアルモキサン(MAO)などのアルキルアルモキサンはメタロセン賦活剤として普通使用される。一般に、アルキルアルモキサンは約5〜40個の繰り返し単位を含む。   The crosslinked catalyst of the present invention can be used in combination with some form of activator to produce an active catalyst system. The term “activator” is defined herein as any compound or component or combination of compounds or components capable of enhancing the ability of one or more catalysts to polymerize olefins to polyolefins. Alkylalumoxanes such as methylalumoxane (MAO) are commonly used as metallocene activators. Generally, the alkylalumoxane contains about 5-40 repeat units.

アルモキサン溶液、特にメチルアルモキサン溶液は種々の濃度を有する溶液として商業的供給元から入手可能である。アルモキサンを製造する種々の方法が存在し、その非限定的な例は各々が引用により本明細書に全体で組み込まれている、米国特許第4,665,208号、第4,952,540号、第5,091,352号、第5,206,199号、第5,204,419号、第4,874,734号、第4,924,018号、第4,908,463号、第4,968,827号、第5,308,815号、第5,329,032号、第5,248,801号、第5,235,081号、第5,103,031号およびEP−A−0 561 476、EP0 279 586、EP−A−0 594 218およびWO94/10180に述べられている(本明細書で使用するように、特記しない限り「溶液」はサスペンジョンを含むいかなる混合物も指す)。   Alumoxane solutions, in particular methylalumoxane solutions, are available from commercial sources as solutions having various concentrations. There are a variety of methods for producing alumoxanes, non-limiting examples of which are U.S. Pat. Nos. 4,665,208, 4,952,540, each incorporated herein by reference in its entirety. 5,091,352, 5,206,199, 5,204,419, 4,874,734, 4,924,018, 4,908,463, 4,968,827, 5,308,815, 5,329,032, 5,248,801, 5,235,081, 5,103,031 and EP-A -0 561 476, EP0 279 586, EP-A-0 594 218 and WO 94/10180 (as used herein, unless otherwise specified, "solution" is any mixture containing a suspension). It is).

この架橋された触媒を活性化するためにイオン化賦活剤も使用され得る。これらの賦活剤は中性あるいはイオン性であり、あるいはこの中性触媒化合物をイオン化するトリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレートなどの化合物である。このようなイオン化化合物は活性プロトンを含有するか、あるいはこのイオン化化合物の残りのイオンと会合しているが、非配位の、あるいは単にゆるく配位した一部の他のカチオンを含有し得る。賦活剤の組み合わせ物、例えばアルモキサンおよびイオン化賦活剤の組み合わせも使用し得る。例えばWO94/07928を参照のこと。   An ionization activator can also be used to activate the crosslinked catalyst. These activators are neutral or ionic or are compounds such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate that ionizes the neutral catalyst compound. Such ionized compounds contain active protons, or are associated with the remaining ions of the ionized compound, but may contain some other cations that are non-coordinating or simply loosely coordinated. A combination of activators, such as a combination of alumoxane and ionization activator, may also be used. See for example WO 94/07928.

非配位性アニオンにより活性化されるメタロセンカチオンからなる配位重合用イオン性触媒の記述が初期の研究でEP−A−0 277 003、EP−A−0 277 004および米国特許第5,198,401号およびWO−A−92/00333(引用により本明細書に組み込まれている)に見られる。これらは、アニオン前駆体によりメタロセン(ビスCpおよびモノCp)をプロトン化し、遷移金属からアルキル/ハイドライド基を引き抜き、それによってカチオン性とし、そして非配位性アニオンにより電荷バランスのとれたものにするという望ましい製造方法を教示している。好適なイオン性塩は、限定ではないが、フッ化アリール構成成分、例えばフェニル、ビフェニルおよびナフチルを有するテトラキス置換ボレートまたはアルミニウム塩を含む。   Initial studies have described ionic catalysts for coordination polymerization consisting of metallocene cations activated by non-coordinating anions in EP-A-0 277 003, EP-A-0 277 004 and US Pat. No. 5,198. 401 and WO-A-92 / 00333, which is incorporated herein by reference. These protonate metallocenes (bis Cp and mono Cp) with anion precursors, abstract alkyl / hydride groups from transition metals, thereby making them cationic and making them charge balanced by non-coordinating anions A desirable manufacturing method is taught. Suitable ionic salts include, but are not limited to, tetrakis substituted borates or aluminum salts with aryl fluoride components such as phenyl, biphenyl and naphthyl.

用語非配位性アニオン(NCA)は、カチオンに配位しないかあるいはカチオンに弱く配位するのみで、中性ルイス塩基による置換に充分不安定なアニオンを意味する。適合する非配位性アニオンは初期に形成される錯体が分解する場合、分解して中性にならないものである。更には、このアニオンはアニオン性の置換基またはフラグメントをカチオンに移動し、アニオンから中性の四配位メタロセン化合物および中性の副生成物を形成させることはない。   The term non-coordinating anion (NCA) means an anion that does not coordinate to the cation or only weakly coordinates to the cation and is sufficiently unstable to substitution with a neutral Lewis base. A suitable non-coordinating anion is one that does not decompose and become neutral when the initially formed complex decomposes. Furthermore, the anion transfers an anionic substituent or fragment to the cation and does not form a neutral four-coordinated metallocene compound and neutral by-product from the anion.

活性プロトンを含有しないが、活性メタロセンカチオンおよび非配位性アニオンの両方を生成させる能力のあるイオン化イオン性化合物の使用も既知である。例えばEP−A−0 426 637およびEP−A−0 573 403(引用により本明細書に組み込まれている)を参照のこと。このイオン性触媒を製造する更なる方法は、初期には中性ルイス酸であるが、メタロセン化合物とのイオン化反応時にカチオンおよびアニオンを形成するイオン化アニオン前駆体を使用するものである。例えばトリス(ペンタフルオロフェニル)ボランの使用であり、EP−A−0520732(引用により本明細書に組み込まれている)を参照のこと。アニオン基と共に金属性酸化性基を含有するアニオン前駆体により遷移金属化合物の金属中心を酸化することにより、付加重合用のイオン性触媒も製造可能である。EP−A−0 495 375(引用により本明細書に組み込まれている)を参照のこと。   The use of ionized ionic compounds that do not contain active protons but are capable of generating both active metallocene cations and non-coordinating anions is also known. See, for example, EP-A-0 426 637 and EP-A-0 573 403, which are incorporated herein by reference. A further method for producing this ionic catalyst is to use an ionized anion precursor that initially is a neutral Lewis acid but forms a cation and an anion during the ionization reaction with the metallocene compound. See, for example, the use of tris (pentafluorophenyl) borane, see EP-A-0 520 732 (incorporated herein by reference). An ionic catalyst for addition polymerization can also be produced by oxidizing the metal center of the transition metal compound with an anionic precursor containing a metallic oxidizing group together with an anionic group. See EP-A-0 495 375 (incorporated herein by reference).

この金属配位子が標準条件下でイオン化引き抜き能力のないハロゲン部分を含む場合(例えば、ビス−シクロペンタジエニル二塩化ジルコニウム)には、これらを有機金属化合物、例えばリチウムあるいはアルミニウムハイドライドあるいはアルキル、アルキルアルモキサン、グリニャール試薬などによる既知のアルキル化反応によって転化することができる。活性化アニオン性化合物の添加の前または添加と共にアルキルアルミニウム化合物とジハロ置換メタロセン化合物とを反応させることを記述する系内の方法については、EP−A−0 500 944およびEP−A1−0 570 982(引用により本明細書に組み込まれている)を参照のこと。   If the metal ligand contains a halogen moiety that does not ionize and extract under standard conditions (eg, bis-cyclopentadienyl zirconium dichloride), these may be organometallic compounds such as lithium or aluminum hydride or alkyl, It can be converted by known alkylation reactions with alkylalumoxanes, Grignard reagents and the like. EP-A-0 500 944 and EP-A1-0 570 982 for processes in the system describing reacting an alkylaluminum compound with a dihalo-substituted metallocene compound before or with the addition of an activated anionic compound. See (incorporated herein by reference).

メタロセンカチオンおよびNCAを含んでなるイオン性触媒を担持するための望ましい方法が米国特許第5,643,847号;第6,143,686号;および第6,228,795号(すべて引用により本明細書に全体で組み込まれている)に述べられている。これらのNCA担持方法は、シリカ表面上に存在するヒドロキシル反応性官能基と反応し、このルイス酸が共有結合するようになるような充分に強いルイス酸である中性アニオン前駆体を使用することを一般に含んでなる。   Desirable methods for supporting an ionic catalyst comprising a metallocene cation and NCA are described in US Pat. Nos. 5,643,847; 6,143,686; and 6,228,795 (all hereby incorporated by reference). Which is incorporated in the specification in its entirety). These NCA loading methods use neutral anion precursors that are sufficiently strong Lewis acids to react with hydroxyl-reactive functional groups present on the silica surface so that the Lewis acid becomes covalently bonded. In general.

加えて、メタロセン担持触媒組成物に対する賦活剤がNCAである場合には、望ましくは最初にNCAを担体組成物に添加し、続いて架橋メタロセン触媒を添加する。賦活剤がMAOである場合には、望ましくはMAOおよび架橋メタロセン触媒を一緒に溶液中に溶解する。次に、この担体をMAO/メタロセン触媒溶液と接触させる。他の方法および添加順序は当業者には明白であろう。   In addition, if the activator for the metallocene supported catalyst composition is NCA, NCA is desirably first added to the support composition followed by the bridged metallocene catalyst. When the activator is MAO, desirably the MAO and the bridged metallocene catalyst are dissolved together in solution. The support is then contacted with a MAO / metallocene catalyst solution. Other methods and order of addition will be apparent to those skilled in the art.

本発明の触媒は、少なくとも2個の炭素原子を有するα−オレフィンの重合またはα−オレフィンの混合物の共重合に使用可能である。例えば、本発明の触媒は、エチレン、プロピレン、ブチレン、ペンテン、ヘキセン、4−メチルペンテンおよびこれらの混合物の触媒に有用であることができる。本発明の触媒をプロピレンの重合に使用して、例えば高結晶性ポリプロピレンなどのポリプロピレンを製造することができる。   The catalyst of the present invention can be used for the polymerization of α-olefins having at least 2 carbon atoms or the copolymerization of mixtures of α-olefins. For example, the catalysts of the present invention can be useful for the catalyst of ethylene, propylene, butylene, pentene, hexene, 4-methylpentene and mixtures thereof. The catalyst of the present invention can be used in the polymerization of propylene to produce polypropylene such as, for example, highly crystalline polypropylene.

この重合条件および、適用可能である場合には、予備重合の条件は当業界で既知であり、そして本明細書で詳細に述べる必要はない。一般に、α−オレフィンモノマーまたはα−オレフィンの混合物のいずれかを上述の触媒系の存在下重合条件下で一緒に接触させることにより、重合が行われる。本発明の特定の態様として、そしてこれらの実施および利点を実証するために次の実施例を示す。
[実施例]
これらの実施例は本発明のいくつかの態様を単に例示するために提供されるものであり、またこの明細書またはこの特許請求の範囲を制限する意図はなく、制限するものでない。これらの実施例においては、空気/水分敏感性材料のすべての取り扱いを標準のシュレンクライン技術を用いる慣用の真空/不活性雰囲気ラインで行った。
The polymerization conditions and, where applicable, prepolymerization conditions are known in the art and need not be discussed in detail herein. In general, the polymerization is carried out by contacting either an α-olefin monomer or a mixture of α-olefins together under polymerization conditions in the presence of the catalyst system described above. The following examples are presented as specific embodiments of the invention and to demonstrate their practice and advantages.
[Example]
These examples are provided merely to illustrate some aspects of the present invention and are not intended to limit or limit the specification or the claims. In these examples, all handling of air / moisture sensitive materials was done in a conventional vacuum / inert atmosphere line using standard Schlenk line technology.

下記に示すような式の配位子中間体Aの合成にはWO99/12981に述べられている手順を使用した。   The procedure described in WO 99/12981 was used for the synthesis of ligand intermediate A of the formula as shown below.

2,6−ジイソプロピルアニリン(3.46ml、18.4ミリモル)を2,6−ジアセチルピリジン(1.5g、9.2ミリモル)の無水エタノール(25ml)溶液に滴加して加えた。数滴の氷酢酸を添加し、そしてこの溶液を48時間還流した。この溶液を半分の容積に濃縮し、そして78℃まで冷却することによって、中間体Aを淡黄色結晶(80%)として得た。中間体C33H43N3に対する計算値はC82.3%;H8.9%;N8.7%である。生成した中間体の測定された結果はC81.9%;H8.5%;N8.7%であった。高速原子衝撃質量分析(FABMS)の結果はM+(481)である。NMR分析の結果は、HNMR(CDCl):8.6B7.9[m,3H,C5H3N]、7.2B6.9[m,6H,C6(CHMe2)H3]、2.73[sept,4H,CHMe2]、2.26[s,6H,C5H3N(CMeNAr)2]および1.16[m,24H,CHMe2]である。 2,6-Diisopropylaniline (3.46 ml, 18.4 mmol) was added dropwise to a solution of 2,6-diacetylpyridine (1.5 g, 9.2 mmol) in absolute ethanol (25 ml). A few drops of glacial acetic acid were added and the solution was refluxed for 48 hours. The solution was concentrated to half volume and cooled to 78 ° C. to give Intermediate A as pale yellow crystals (80%). The calculated values for the intermediate C33H43N3 are C82.3%; H8.9%; N8.7%. The measured results of the intermediate produced were C81.9%; H8.5%; N8.7%. The result of fast atom bombardment mass spectrometry (FABMS) is M + (481). The results of NMR analysis are as follows: 1 HNMR (CDCl 3 ): 8.6B7.9 [m, 3H, C5H3N], 7.2B6.9 [m, 6H, C6 (CHMe2) H3], 2.73 [sept, 4H , CHMe2], 2.26 [s, 6H, C5H3N (CMeNAr) 2] and 1.16 [m, 24H, CHMe2].

250mg、1.09等量の中間体A、および95mgのFeCl2・4H2Oを攪拌棒を収めた10mlのシュレンクフラスコの中に秤取した。このフラスコをシュレンクマニホルド上に配置し、アルゴンにより3回置換し、そして攪拌しながら10mlのテトラヒドロフラン(THF)を添加した。2時間後、THFを真空下で除去した。得られた深青色の固体(下記の式)をエーテルにより2回洗浄し、そして真空下で乾燥した。   250 mg, 1.09 equivalents of Intermediate A, and 95 mg of FeCl 2 .4H 2 O were weighed into a 10 ml Schlenk flask containing a stir bar. The flask was placed on a Schlenk manifold, replaced with argon three times, and 10 ml of tetrahydrofuran (THF) was added with stirring. After 2 hours, THF was removed under vacuum. The resulting deep blue solid (formula below) was washed twice with ether and dried under vacuum.

この実施例はC/クラスA対称性を有する配位子の創製を示す。2,6−ジイソプロピルアニリンをインデンにより置き換えたことを除き、同一の一般的な合成は実施例1に従う。 This example demonstrates the creation of a ligand with C 2 / Class A symmetry. The same general synthesis follows Example 1 except that 2,6-diisopropylaniline is replaced by indene.

1−アミノ−インデン(18.4ミリモル)を2,6−ジアセチルピリジン(9.2ミリモル)の無水エタノール(50ml)溶液に添加した。数滴の氷酢酸を添加し、そしてこの溶液を48時間還流した。この溶液を半分の容積に濃縮し、そしてこの溶液を室温まで冷却し、濾過することによって、下記に示す中間体を得た。   1-Amino-indene (18.4 mmol) was added to a solution of 2,6-diacetylpyridine (9.2 mmol) in absolute ethanol (50 ml). A few drops of glacial acetic acid were added and the solution was refluxed for 48 hours. The solution was concentrated to half volume and the solution was cooled to room temperature and filtered to give the intermediate shown below.

実施例2と同一の一般的な合成を使用することにより、実施例3の配位子からの触媒(対称性C/クラスAを有する中間体)を合成して、下記に示す触媒成分を与える。 By using the same general synthesis as in Example 2, the catalyst from the ligand of Example 3 (intermediate with symmetry C 2 / Class A) was synthesized and the catalyst components shown below were give.

この実施例はC/クラスB対称性を有する配位子の創製を示す。この配位子に対する合成の最初の部分は上記の実施例1のそれと異なる。この合成の最初の部分は、Leuckart−Wallach反応を使用することによりこのジアセチルピリジンをジアミンに還元することから出発する。下記のスキーム1においては、カルボニルのアミンへの還元についての一般的な反応を示す。 This example demonstrates the creation of a ligand with C 2 / Class B symmetry. The first part of the synthesis for this ligand is different from that of Example 1 above. The first part of the synthesis starts with reducing the diacetylpyridine to the diamine by using the Leuckart-Wallach reaction. In Scheme 1 below, the general reaction for the reduction of carbonyl to amine is shown.

この実施例はカルボニルのアミンへの還元、特に1−フェニルエチルアミンの合成を例示する(定性有機分析を含むVogel’s Practical Organic Chemistry,4th Ed,Furniss,B.S.ら,School of Chemistry Thames Polytechnic Longman Scientific and Technical,1978)。126g(2.0モル)のギ酸アンモニウム、72g(0.6モル)のアセトフェノンおよび数片の多孔質磁器を短い分留カラムを取り付けたクライゼン蒸留器頭部を設けた250mlのフラスコに添加し;このフラスコのほぼ底まで延びた温度計を挿入し、そして側腕に下降蒸留するために短い凝縮器を配置した。このフラスコを加熱した(加熱マントルによるか、あるいは空気バッチ中で);この混合物は最初2層に融解し、そして蒸留が起こった。この混合物は150−155℃で均一になり、そして若干の発泡を伴って反応が起こった。温度が185℃に達するまで加熱を継続した(約2時間);アセトフェノン、水および炭酸アンモニウムが留出する。加熱を185℃で中止し、アセトフェノンの上層を留出物から分離し、そして乾燥せずにフラスコに戻した。この混合物を180−185℃で3時間加熱し、そして冷却した;20ml量のトルエンによる抽出によりアセトフェノンを留出物から回収してもよい。この反応混合物を250mlの分液漏斗に移し、2つの75ml量の水と振って、ホルムアミドとギ酸アンモニウムを除去した。この粗(1−フェニルエチル)ホルムアミドを元の反応フラスコに移し、そしてこの水層を2つの20ml量のトルエンにより抽出した。このトルエン抽出物をこのフラスコに移し、75mlの濃塩酸および数片の多孔質磁器を添加した。約40mlのトルエンを捕集するまでこの混合物を慎重に加熱し、そして更に40分間還流下で穏やかに沸騰させた;未変化のアセトフェノンの僅かな層を除いて、加水分解が1−フェニルエチルアミン塩酸塩に迅速に進行した。この反応混合物を冷却し、そして4回の20ml量のトルエンによる抽出によって、アセトフェノンを除去した。この酸水溶液を水蒸気蒸留の装置を取り付けた500mlの丸底フラスコに移し、62.5gの水酸化ナトリウムの溶液を125mlの水に慎重に添加し、そして水蒸気蒸留した:容積がほぼ一定に留まるようにこの蒸留フラスコを加熱した。このアミンの大部分は最初の500mlの留出物中に含まれた;留出物が僅かに微アルカリ性となったならば、この操作を中止する。この留出物を5つの25ml量のトルエンにより抽出し、この抽出物を水酸化ナトリウムペレットにより乾燥し、分留した。トルエンを111℃で蒸留し、続いてフェニルエチルアミンを蒸留する。後者を沸点180−190℃の留分として捕集した(この生成物の大部分は184−186℃で蒸留した(3));収量は43g(59%)であった。   This example illustrates the reduction of a carbonyl to an amine, especially the synthesis of 1-phenylethylamine (Vogel's Practical Organic Chemistry, including qualitative organic analysis, 4th Ed, Furniss, BS et al., School of Chemistry Polymers Polychemistry Longman Scientific and Technical, 1978). 126 g (2.0 mol) ammonium formate, 72 g (0.6 mol) acetophenone and several pieces of porous porcelain are added to a 250 ml flask equipped with a Claisen still head fitted with a short fractionation column; A thermometer extending almost to the bottom of the flask was inserted and a short condenser was placed in the side arm for down distillation. The flask was heated (either with a heating mantle or in an air batch); the mixture initially melted into two layers and distillation occurred. The mixture became homogeneous at 150-155 ° C. and the reaction occurred with some foaming. Heating was continued until the temperature reached 185 ° C (about 2 hours); acetophenone, water and ammonium carbonate distill off. Heating was discontinued at 185 ° C., the upper layer of acetophenone was separated from the distillate and returned to the flask without drying. The mixture was heated at 180-185 ° C. for 3 hours and cooled; acetophenone may be recovered from the distillate by extraction with a 20 ml quantity of toluene. The reaction mixture was transferred to a 250 ml separatory funnel and shaken with two 75 ml volumes of water to remove formamide and ammonium formate. The crude (1-phenylethyl) formamide was transferred to the original reaction flask and the aqueous layer was extracted with two 20 ml volumes of toluene. The toluene extract was transferred to the flask and 75 ml of concentrated hydrochloric acid and a few pieces of porous porcelain were added. The mixture was carefully heated until about 40 ml of toluene was collected and gently boiled under reflux for an additional 40 minutes; except for a few layers of unaltered acetophenone, hydrolysis was reduced to 1-phenylethylamine hydrochloride. Proceeds quickly to salt. The reaction mixture was cooled and acetophenone was removed by extraction with four 20 ml portions of toluene. This acid aqueous solution was transferred to a 500 ml round bottom flask equipped with a steam distillation apparatus, 62.5 g of sodium hydroxide solution was carefully added to 125 ml of water and steam distilled: the volume remained approximately constant. The distillation flask was heated. Most of the amine was contained in the first 500 ml distillate; if the distillate becomes slightly slightly alkaline, the operation is discontinued. The distillate was extracted with five 25 ml quantities of toluene, and the extract was dried over sodium hydroxide pellets and fractionated. Toluene is distilled at 111 ° C., followed by phenylethylamine. The latter was collected as a fraction with a boiling point of 180-190 ° C (most of this product was distilled at 184-186 ° C (3)); the yield was 43 g (59%).

この実施例は2,6−(1,1’−ジエチルヒドロキシイミノ)−ピリジン(ジオキシム)の合成を例示する(スキーム2)。ヒドロキシルアミン塩酸塩(0.98g;14.1ミリモル)およびピリジン(5mL)をアルゴン下でフラスコ中に入れ、マグネチックスターラーを設けた。2,6−ジアセチルピリジン(1、0g;6.1ミリモル)を添加し、そしてこの混合物を8時間還流し、室温で2日間攪拌した。ピリジンを真空下で除去した。水(20mL)をこの残渣に添加した。この白色固体を少量の水により洗浄した。このジオキシムを真空下で一夜乾燥して、白色粉末(1.08g;5.6ミリモル;92%)を得、これを更に精製せずに使用した。NMR分析の結果は、HNMR(CDCl)、δ:7.81(d,2H,Hmeta,J=7.8Hz)、7.70(t,1H,Hpara,J=7.8Hz)、2.79(s,2H,OH)、2.33(s,6H,Me)である。 This example illustrates the synthesis of 2,6- (1,1′-diethylhydroxyimino) -pyridine (dioxime) (Scheme 2). Hydroxylamine hydrochloride (0.98 g; 14.1 mmol) and pyridine (5 mL) were placed in a flask under argon and equipped with a magnetic stirrer. 2,6-Diacetylpyridine (1,0 g; 6.1 mmol) was added and the mixture was refluxed for 8 hours and stirred at room temperature for 2 days. Pyridine was removed under vacuum. Water (20 mL) was added to the residue. This white solid was washed with a small amount of water. The dioxime was dried overnight under vacuum to give a white powder (1.08 g; 5.6 mmol; 92%) that was used without further purification. The results of NMR analysis were as follows: 1 HNMR (CD 2 Cl 2 ), δ: 7.81 (d, 2H, Hmeta, J = 7.8 Hz), 7.70 (t, 1H, Hpara, J = 7.8 Hz) 2.79 (s, 2H, OH), 2.33 (s, 6H, Me).

次の合成手順(スキーム3)を使用することにより、実施例7において得られたようなジオキシムのジアミンへの還元を行う。   Reduction of the dioxime to the diamine as obtained in Example 7 is performed by using the following synthetic procedure (Scheme 3).

2,6−(1,1’−ジエチルアミノ)−ピリジン(ジアミン)の合成。この2,6−(1,1’−ジエチルヒドロキシイミノ)−ピリジン(500mg;2.6ミリモル)をアルゴン下に設置し、そしてマグネチックスターラーを備えたフラスコに加え、そしてエタノール(10mL)および酢酸(6mL)中に溶解した。亜鉛粉末(6g;94ミリモル)を10分間かけて滴加して加えた。1時間の攪拌後白色沈澱が現れた。この混合物を室温で24時間攪拌した。非溶解の亜鉛を濾過により除去し、そして少量のエタノールにより洗浄した。この濾液を真空下で濃縮した。少量の水を添加し、蒸発し、いかなる残存酢酸も除去した。すべてのZn(OH)が再溶解するまで飽和水酸化カリウム水溶液(ほぼ56mL)を添加することにより、この混合物を強塩基性(pH>12)とした。この水層を分液漏斗に移し、そして4回の20mL量のジエチルエーテルにより抽出した。この合体した有機留分をMgSO上で乾燥し、そしてこの溶媒を真空下で除去して、無色のオイル(310mg;1.87ミリモル;72%)を得た。NMR分析の結果は、HNMR(CDCl)、δ:7.59(t,1H,Hpara,J=7.8Hz)、7.14(d,2H,Hmeta,J=7.8Hz)、4.07(q,2H,CH,J=6.6Hz)、1.79(s,4H,NH)、1.38(d,6H,Me,J=6.6Hz)である。 Synthesis of 2,6- (1,1′-diethylamino) -pyridine (diamine). The 2,6- (1,1′-diethylhydroxyimino) -pyridine (500 mg; 2.6 mmol) was placed under argon and added to a flask equipped with a magnetic stirrer and ethanol (10 mL) and acetic acid Dissolved in (6 mL). Zinc powder (6 g; 94 mmol) was added dropwise over 10 minutes. A white precipitate appeared after 1 hour of stirring. The mixture was stirred at room temperature for 24 hours. Undissolved zinc was removed by filtration and washed with a small amount of ethanol. The filtrate was concentrated under vacuum. A small amount of water was added and evaporated to remove any residual acetic acid. The mixture was made strongly basic (pH> 12) by adding saturated aqueous potassium hydroxide (approximately 56 mL) until all Zn (OH) 2 was redissolved. The aqueous layer was transferred to a separatory funnel and extracted with four 20 mL portions of diethyl ether. The combined organic fractions were dried over MgSO 4 and the solvent removed in vacuo to give a colorless oil (310 mg; 1.87 mmol; 72%). As a result of NMR analysis, 1 HNMR (CD 2 Cl 2 ), δ: 7.59 (t, 1H, Hpara, J = 7.8 Hz), 7.14 (d, 2H, Hmeta, J = 7.8 Hz) 4.07 (q, 2H, CH, J = 6.6 Hz), 1.79 (s, 4H, NH 2 ), 1.38 (d, 6H, Me, J = 6.6 Hz).

この実施例は実施例7で得られたジアミンとケトンとを反応(スキーム4)させることにより、対称性C/クラスBを有する触媒用の配位子を与える。 This example gives the ligand for the catalyst having symmetry C 2 / class B by reacting the diamine obtained in Example 7 with a ketone (Scheme 4).

この実施例はジアミンとβ−テトラロンとの反応に基づくC/クラスB対称性の触媒用のビス−イミンの合成(スキーム5)を例示する。 This example illustrates the synthesis of a bis-imine for a C 2 / Class B symmetry catalyst (Scheme 5) based on the reaction of a diamine with β-tetralone.

攪拌棒を備えた100mLの丸底フラスコ中で、このジアミン(0.50g、3.03ミリモル)およびこのβ−テトラロン(0.85mL、6.43ミリモル)を25℃でフラスコに添加し、そして混合物は透明な暗黄色液体を生じた。次に、このフラスコを真空下に置き、3回アルゴンにより置換し、次にアルゴン下で放置した。10分間攪拌後、この混合物は淡黄色固体タールを生成し、攪拌が極めて困難になった。25mLのエタノールを添加して、混合物の攪拌を助けた。透明な黄橙色溶液を得た。25℃で2時間攪拌した後、溶媒を真空下で除去し、淡黄色の起泡性固体を得た。1H−NMR分析は、この生成物が大部分所望のビス−イミン配位子であることを示した(78%収量)。NMR分析の結果は、HNMR(300MHz,CDC1,35℃)、δ:7.63(t,1H)、7.21(d,4H)、6.96(t,4H)、6.80(t,2H)、6.77(m,2H)、5.14(d,2H)、4.64(d,2H)、2.80(t,4H)、2.36(t,4H)、1.55(d,6H,Me)である。 In a 100 mL round bottom flask equipped with a stir bar, the diamine (0.50 g, 3.03 mmol) and the β-tetralone (0.85 mL, 6.43 mmol) are added to the flask at 25 ° C., and The mixture yielded a clear dark yellow liquid. The flask was then placed under vacuum and replaced with argon three times and then left under argon. After stirring for 10 minutes, the mixture produced a pale yellow solid tar that became very difficult to stir. 25 mL of ethanol was added to help stir the mixture. A clear yellow-orange solution was obtained. After stirring at 25 ° C. for 2 hours, the solvent was removed under vacuum to give a pale yellow foamy solid. 1H-NMR analysis showed that this product was mostly the desired bis-imine ligand (78% yield). The results of NMR analysis are as follows: 1 HNMR (300 MHz, CD 2 C1 2 , 35 ° C.), δ: 7.63 (t, 1H), 7.21 (d, 4H), 6.96 (t, 4H), 6 .80 (t, 2H), 6.77 (m, 2H), 5.14 (d, 2H), 4.64 (d, 2H), 2.80 (t, 4H), 2.36 (t, 4H), 1.55 (d, 6H, Me).

この実施例はジアミンとシクロヘキサノンとの反応(スキーム6)に基づくC/クラスB対称性の触媒用のビス−イミンの合成を例示する。実施例9に述べた手順をビス−イミンの合成に使用した。 This example bis for C 2 / Class B symmetry of catalyst based on the reaction of a diamine with cyclohexanone (Scheme 6) - illustrates the synthesis of the imine. The procedure described in Example 9 was used for the synthesis of bis-imine.

この実施例はジアミンとメシチルアルデヒドとの反応(スキーム7)に基づくC2/クラスB対称性の触媒用のビス−イミンの合成を例示する。実施例9で述べた手順をビス−イミンの合成に使用した。ビス−イミン:NMR分析の結果は、HNMR(300MHz,CDCl,35℃)、δ:8.7(s,2H,HCN)、7.66(t,J=7.8Hz,1H,Hpara)、(d,J=7.8Hz,2H,Hmeta)、6.88(s,4Hmeta,Mes)、4.63(q,J=6.6Hz,2H,HCH,)2.42(s,12H,CHortho,Mes)、2.28(s,6H,CHpara,Mes)、1.63(d,J=6.6Hz,6H,Me)である。 This example illustrates the synthesis of bis-imines for C2 / class B symmetry catalysts based on the reaction of diamines with mesitylaldehyde (Scheme 7). The procedure described in Example 9 was used for the synthesis of bis-imine. Bis-imine: NMR analysis results are as follows: 1 HNMR (300 MHz, CD 2 Cl 2 , 35 ° C.), δ: 8.7 (s, 2H, HCN), 7.66 (t, J = 7.8 Hz, 1H) , Hpara), (d, J = 7.8 Hz, 2H, Hmeta), 6.88 (s, 4Hmeta, Mes), 4.63 (q, J = 6.6 Hz, 2H, HCH 3 ) 2.42. (S, 12H, CH 3 ortho, Mes), 2.28 (s, 6H, CH 3 para, Mes), 1.63 (d, J = 6.6 Hz, 6H, Me).

対称性C/クラスBの触媒を製造するもう一つの触媒合成手順は、WO98/30612に述べられているものと同一の手順(この構造中でR基および二重結合の位置が異なることを除き)であり、そして次の反応式に示すものである。 Another catalyst synthesis procedure for producing symmetrical C 2 / Class B catalysts is the same procedure described in WO 98/30612 (in this structure the position of the R group and the double bond are different. And is shown in the following reaction formula.

実施例9の配位子(1.05等量)および水和あるいは無水の形の金属塩を不活性雰囲気下でシュレンクフラスコ中に一緒に添加し、次にTHFを装填した。この混合物を数時間あるいは検出可能な未反応塩が観察されなくなるまで攪拌する。この混合物を空気中で濾過し、この固体をEtOにより洗浄し、そして真空下で乾燥する。 The ligand of Example 9 (1.05 equivalents) and the metal salt in hydrated or anhydrous form were added together into a Schlenk flask under an inert atmosphere and then charged with THF. The mixture is stirred for several hours or until no detectable unreacted salt is observed. The mixture is filtered in air, the solid is washed with Et 2 O and dried under vacuum.

/クラスB対称性またはC/クラスB対称性の触媒用の配位子を合成するために、C/クラスB対称性に使用したものと類似の手順を使用する。違いは2つの異なるケトンのみをジアミンと反応させることである。この合成に対する一般的な手順を下記の式(スキーム8)に示す。 To synthesize ligands for C S / Class B symmetry or C 1 / Class B symmetry catalysts, a procedure similar to that used for C 2 / Class B symmetry is used. The difference is that only two different ketones are reacted with the diamine. The general procedure for this synthesis is shown in the following formula (Scheme 8).

/クラスC対称性の触媒用の配位子を合成するために、C/クラスB対称性に使用したものと類似の手順を使用する。違いは1つのアセチル基のみを2,6−ジアセチルアニリン上で還元することである。この合成に対する一般的な手順をアセチルの1つのみがアミンに還元される下記の式に示す。 To synthesize ligands for C 2 / Class C symmetry catalysts, a procedure similar to that used for C 2 / Class B symmetry is used. The difference is that only one acetyl group is reduced on 2,6-diacetylaniline. The general procedure for this synthesis is shown in the following formula where only one of the acetyls is reduced to an amine.

この実施例においては、実施例14のアミンをケトンと反応させて、この窒素にR基二重結合を付与する。   In this example, the amine of Example 14 is reacted with a ketone to impart an R group double bond to this nitrogen.

この実施例においては、アミンを実施例15のモノ−アセチル中間体と反応させて、下記の式に示すような窒素に単結合を有するR基を付与する。   In this example, the amine is reacted with the mono-acetyl intermediate of Example 15 to give an R group having a single bond to the nitrogen as shown in the formula below.

次に、実施例13の述べた手順により触媒を合成する。   Next, the catalyst is synthesized by the procedure described in Example 13.

単結合、二重結合の、あるいは1つの単結合と1つの二重結合を有する窒素原子に結合する異なるR基を単純に使用することにより、C1およびCに対する対称性も得てもよい。表1に示す構造について異なる対称性に対するいくつかの例を表1に要約する。 Single bond, by simply using different R groups attached to the nitrogen atom having a double bond, or one single bond and one double bond, may be obtained even symmetry with respect to C1 and C S. Table 1 summarizes some examples for different symmetries for the structures shown in Table 1.

本明細書に引用されているいかなる特許、特許出願、物品、書籍、論文、およびいかなる他の出版物はこれらの教示または示唆のすべてについて引用によりここに組み込まれる。   Any patents, patent applications, articles, books, articles, and any other publications cited herein are hereby incorporated by reference for all of these teachings or suggestions.

対称の鉄錯体のX線データ
鉄錯体の固体状態の構造は単結晶のX線回折法により決定したものである。この選択された結晶学的データを表2に要約し、そして構造を実施例4の式で記述し、下記の表に示す。
Structure of the solid state of the X-ray data iron complex iron complexes of C 2 symmetry are those determined by X-ray diffraction method of a single crystal. The selected crystallographic data is summarized in Table 2 and the structure is described by the formula of Example 4 and shown in the table below.

本発明の例示的な態様を特殊な例をもって述べてきたが、当業者には本発明の範囲を逸脱せずに種々の他の改変が明白であり、そして容易に行われ得ることは理解されるであろう。従って、添付の特許請求の範囲は本明細書に説明した実施例および説明に限定されることを意図するものでなく、特許請求の範囲は本発明が関連する当業者によりこれらの均等物として取り扱われるすべての特徴を含んで本発明に存する特許性のある新規性のすべての特徴を包含するものと解釈されることを意図するものである。   While exemplary embodiments of the present invention have been described with specific examples, it is understood that various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope of the invention. It will be. Therefore, it is not intended that the appended claims be limited to the examples and descriptions described herein, which are treated as equivalents by those skilled in the art to which this invention pertains. It is intended to be construed as including all features of patentable novelty that exist in the present invention, including all such features.

Claims (6)


(ここで、MはFe、Co及びNiからなる群から選択される遷移金属であり;各XはMに結合した原子または基であり、そして同一であるかあるいは異なっており;R1およびR2は同一、あるいは異なっており、そして(C5(R’)4)(ここで、各R’は同一であってもよく、あるいは各々は異なってもよく、そしてR’は水素または1−20個の炭素原子を有する置換あるいは非置換のヒドロカルビル基である)であり;RBはR1およびR2の間の構造的架橋であり、そしてMに結合する3つのヘテロ原子、こゝでヘテロ原子はO、N、S、及びPからなる群から選択される、を含んでなり、R1およびR2の各々はRBの同一の、あるいは異なるヘテロ原子に結合し、ヘテロ原子は又Mにも結合し;ZはMの配位数であり、そして4よりも大きいか、あるいは4に等しく;mはMとRBのヘテロ原子の間の結合数であり、そしてm≧2であり;そしてR1、R2およびRBはC1、C2あるいはCs対称性を付与するように選択される)
を含んでなるオレフィン重合用の触媒系。
formula
(Wherein M is a transition metal selected from the group consisting of Fe, Co and Ni ; each X is an atom or group bonded to M and is the same or different; R 1 and R 2 are the same or different, and (C 5 (R ′) 4 ) (wherein each R ′ may be the same or each may be different, and R ′ may be hydrogen or 1- a substituted or unsubstituted hydrocarbyl group) having 20 carbon atoms; R B is a structural bridge between R 1 and R 2, and three heteroatoms bonded to M, in thisゝThe heteroatom is selected from the group consisting of O, N, S, and P, wherein each of R 1 and R 2 is bonded to the same or different heteroatom of R B , Also binds to M; Z is the coordination number of M, and from 4 Greater than or equal to 4; m is the number of bonds between the heteroatoms of M and R B and m ≧ 2; and R 1 , R 2 and R B are C 1 , C 2 or Cs Selected to give symmetry)
A catalyst system for olefin polymerization comprising:
R 11 が前記ヘテロ原子の1つに結合し、そしてRIs bonded to one of said heteroatoms and R 22 が前記ヘテロ原子の異なる1つに結合する請求項1に記載の触媒系。The catalyst system according to claim 1, wherein is bonded to a different one of the heteroatoms. R 11 が前記3個のヘテロ原子の1つに結合し、そしてRIs bonded to one of the three heteroatoms and R 22 はRIs R 11 が結合するヘテロ原子と異なるヘテロ原子に結合し;Bonded to a heteroatom different from the heteroatom to which is bonded;
MがFe、CoおよびNiから選択される請求項1に記載の触媒系。The catalyst system according to claim 1, wherein M is selected from Fe, Co and Ni.
各Xがハライドおよび置換あるいは非置換の炭化水素からなる群から独立に選択される請求項3に記載の触媒系。4. A catalyst system according to claim 3, wherein each X is independently selected from the group consisting of halides and substituted or unsubstituted hydrocarbons. 賦活剤を式Activator formula
(ここで、MはFe、Co及びNiからなる群から選択される遷移金属であり;各XはMに結合した原子または基であり、そして同一であるかあるいは異なり;R(Wherein M is a transition metal selected from the group consisting of Fe, Co and Ni; each X is an atom or group bonded to M and is the same or different; R 11 およびRAnd R 22 は同一であるか、あるいは異なり、そして(CAre the same or different and (C 5Five (R’)(R ’) 4Four )(ここで、各R’は同一であってもよく、あるいは各々は異なってもよく、そしてR’は水素または1−20個の炭素原子を有する置換あるいは非置換のヒドロカルビル基である)であり;RWhere each R ′ may be the same or each may be different and R ′ is hydrogen or a substituted or unsubstituted hydrocarbyl group having 1-20 carbon atoms). Yes; R BB はRIs R 11 およびRAnd R 22 の間の構造的架橋であり、そしてMに結合する3個のヘテロ原子を含んでなり、RA structural bridge between and comprising three heteroatoms bonded to M, R 11 およびRAnd R 22 の各々がREach is R BB の同一の、あるいは異なるヘテロ原子、こゝでヘテロ原子はO、N、S、及びPからなる群から選択される、に結合し、ヘテロ原子はMにも結合し;ZはMの配位数であり、そして4よりも大きいか、あるいは4に等しく;mはMとRThe same or different heteroatoms, wherein the heteroatoms are selected from the group consisting of O, N, S, and P, the heteroatoms are also bound to M; Z is the coordination of M Is a number and greater than or equal to 4; m is M and R BB のヘテロ原子の間の結合数であり、そしてm≧2であり;そしてRThe number of bonds between the heteroatoms and m ≧ 2; and R 11 、R, R 22 およびRAnd R BB が触媒成分にCIs C in the catalyst component 11 、C, C 22 あるいはCs対称性を付与するように選択される)Or selected to give Cs symmetry)
を有する架橋化合物と接触させることを含んでなるオレフィン重合用の触媒系を製造する方法。A process for producing a catalyst system for olefin polymerization comprising contacting with a crosslinking compound having.
formula
(ここで、MはFe、Co及びNiからなる群から選択される遷移金属であり;各XはMに結合した原子または基であり、そして同一であるかあるいは異なり;R(Wherein M is a transition metal selected from the group consisting of Fe, Co and Ni; each X is an atom or group bonded to M and is the same or different; R 11 およびRAnd R 22 は同一、あるいは異なり、そして(CAre the same or different and (C 5Five (R’)(R ’) 4Four )(ここで、各R’は同一であってもよく、あるいは各々は異なってもよく、そしてR’は水素または1−20個の炭素原子を有する置換あるいは非置換のヒドロカルビル基である)であり;RWhere each R ′ may be the same or each may be different and R ′ is hydrogen or a substituted or unsubstituted hydrocarbyl group having 1-20 carbon atoms). Yes; R BB はRIs R 11 およびRAnd R 22 の間の構造的架橋であり、そしてMに結合する3個のヘテロ原子、こゝでヘテロ原子はO、N、S、及びPからなる群から選択される、を含んでなり、RComprising three heteroatoms bonded to M, wherein the heteroatoms are selected from the group consisting of O, N, S, and P, and R 11 およびRAnd R 22 の各々はREach is R BB の同一の、あるいは異なるヘテロ原子に結合し、ヘテロ原子はMにも結合し;ZはMの配位数であり、そして4よりも大きいか、あるいは4に等しく;mはMとRAre bonded to the same or different heteroatoms, the heteroatoms are also bonded to M; Z is the coordination number of M and is greater than or equal to 4; m is M and R BB のヘテロ原子の間の結合数であり、そしてm≧2である)The number of bonds between the heteroatoms and m ≧ 2)
を含んでなるオレフィン重合用の触媒系。A catalyst system for olefin polymerization comprising:
JP2004555427A 2002-11-21 2003-11-12 A new catalyst structure for olefin polymerization. Expired - Fee Related JP4977322B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/301,884 2002-11-21
US10/301,884 US20040102311A1 (en) 2002-11-21 2002-11-21 Bridged metallocene catalyst component, method of making, polyolefin catalyst having C1, C2, or Cs symmetry, methods of making, methods of polymerizing, olefins and products made thereof
US10/692,068 2003-10-23
US10/692,068 US6894180B2 (en) 2002-11-21 2003-10-23 Catalyst structure for olefin polymerization
PCT/US2003/036049 WO2004047972A2 (en) 2002-11-21 2003-11-12 New catalyst structure for olefin polymerization

Publications (3)

Publication Number Publication Date
JP2006507345A JP2006507345A (en) 2006-03-02
JP2006507345A5 JP2006507345A5 (en) 2006-12-28
JP4977322B2 true JP4977322B2 (en) 2012-07-18

Family

ID=32396700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004555427A Expired - Fee Related JP4977322B2 (en) 2002-11-21 2003-11-12 A new catalyst structure for olefin polymerization.

Country Status (6)

Country Link
EP (1) EP1562705A4 (en)
JP (1) JP4977322B2 (en)
KR (1) KR20050085108A (en)
AU (1) AU2003285202A1 (en)
CA (1) CA2503986A1 (en)
WO (1) WO2004047972A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034157B2 (en) * 2003-10-23 2006-04-25 Fina Technology, Inc. Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins
EP1855679B1 (en) * 2005-01-19 2016-06-29 Merck Sharp & Dohme Corp. Aminomethyl beta-secretase inhibitors for the treatment of alzheimer's disease
EP1746111A1 (en) * 2005-07-19 2007-01-24 Total Petrochemicals Research Feluy Polymerisation catalyst system based on dioxime ligands
AR124328A1 (en) * 2020-12-15 2023-03-15 Shell Int Research AN OLIGOMERIZATION CATALYST, METHOD OF PREPARATION AND PROCESS FOR USING THE CATALYST
CN114874362B (en) * 2022-03-18 2023-05-23 中国科学院青岛生物能源与过程研究所 Pyridinimine oxime iron catalyst, preparation method thereof and application thereof in conjugated diene polymerization

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE234870T1 (en) * 1996-03-27 2003-04-15 Dow Global Technologies Inc SOLUTION POLYMERIZATION PROCESS WITH DISPERSED CATALYST ACTIVATORS
CN1243520A (en) * 1997-01-13 2000-02-02 纳幕尔杜邦公司 Polymerization of propylene
JP2000001512A (en) * 1998-06-16 2000-01-07 Mitsui Chemicals Inc Catalyst for olefin polymerization and method for polymerizing olefin
TW498083B (en) * 1998-06-16 2002-08-11 Mitsui Chemicals Inc Catalyst for polymerizing olefin and method of polymerizing olefin
EP1125928A1 (en) * 1999-09-02 2001-08-22 Idemitsu Petrochemical Co., Ltd. Transition metal compounds, catalysts for the production of alpha-olefins and process therefor
CN1164534C (en) * 2001-07-20 2004-09-01 中国科学院化学研究所 Iron catalyst and its prepn and application
ATE344268T1 (en) * 2001-08-01 2006-11-15 Shell Int Research LIGANDS AND CATALYST SYSTEMS CONTAINING THEM FOR THE PRODUCTION OF LINEAR ALPHA-OLEFINS FROM ETHYLENE
JP2003206308A (en) * 2001-11-09 2003-07-22 Idemitsu Petrochem Co Ltd Polymerization catalyst for vinyl compound, polymer of vinyl compound and its manufacturing method, and composite resin comprising the polymer

Also Published As

Publication number Publication date
AU2003285202A8 (en) 2004-06-18
WO2004047972A2 (en) 2004-06-10
EP1562705A2 (en) 2005-08-17
JP2006507345A (en) 2006-03-02
AU2003285202A1 (en) 2004-06-18
CA2503986A1 (en) 2004-06-10
WO2004047972A3 (en) 2004-12-09
EP1562705A4 (en) 2007-04-25
KR20050085108A (en) 2005-08-29

Similar Documents

Publication Publication Date Title
US7973116B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
AU764658B2 (en) Production of half-sandwich substituted catalyst precursors
JP2006520833A (en) Polymerization catalyst
US5962714A (en) Monocyclopentadienyl transition metal catalyst and olefin polymerization process
US20050209472A1 (en) Preparation of metal amide complexes
CN100432084C (en) Non-metallocenes, method for production thereof and use thereof in polymerization of olefins
US20040248728A1 (en) Polyolefin catalyst component using non-covalent interactions
EP3285923B1 (en) Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom
JP6454548B2 (en) Process for preparing metallocene complexes
US7105672B2 (en) Cyclometallated catalysts
JP4977322B2 (en) A new catalyst structure for olefin polymerization.
EP0856518B1 (en) Metallocene compounds, synthesis process and use thereof
JP5595059B2 (en) Organometallic polyolefin catalyst component
JP4658335B2 (en) Organometallic catalyst for polymerization of unsaturated compounds
EP1997834A1 (en) Catalysts
US6894180B2 (en) Catalyst structure for olefin polymerization
JP4760171B2 (en) Method for producing metallocene compound
WO2003101936A1 (en) Polymerization catalysts for olefins and process for the production of olefin polymers
JP4857475B2 (en) Transition metal compound, olefin polymerization catalyst, and olefin polymerization method
JP4099986B2 (en) Transition metal compound, coordination compound, catalyst for olefin polymerization, and method for producing polyolefin using the same
JP2003511427A (en) Dicationic non-metallocene group 4 metal complexes
WO2013133439A1 (en) Method for manufacturing silicon substituted cyclopentadienyl titanium trihalide
JP2001181336A (en) Olefin polymerization catalyst and polymerization method for olefin

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101020

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111026

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees