JP4977046B2 - Edge overcoat prevention device and electroplating material manufacturing method using the same - Google Patents

Edge overcoat prevention device and electroplating material manufacturing method using the same Download PDF

Info

Publication number
JP4977046B2
JP4977046B2 JP2008010549A JP2008010549A JP4977046B2 JP 4977046 B2 JP4977046 B2 JP 4977046B2 JP 2008010549 A JP2008010549 A JP 2008010549A JP 2008010549 A JP2008010549 A JP 2008010549A JP 4977046 B2 JP4977046 B2 JP 4977046B2
Authority
JP
Japan
Prior art keywords
auxiliary cathode
strip
edge
plated
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008010549A
Other languages
Japanese (ja)
Other versions
JP2009173952A (en
Inventor
邦芳 前澤
正輝 村田
喜寛 千葉
英明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2008010549A priority Critical patent/JP4977046B2/en
Publication of JP2009173952A publication Critical patent/JP2009173952A/en
Application granted granted Critical
Publication of JP4977046B2 publication Critical patent/JP4977046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

本発明は、電磁シールド用銅箔等の被めっき材を電気めっきする際、エッジオーバーコートを防止する装置及びそれを用いた電気めっき材の製造方法に関する。   The present invention relates to an apparatus for preventing edge overcoat when electroplating a material to be plated such as a copper foil for electromagnetic shielding and a method for producing an electroplating material using the same.

電気めっきは、被めっき材の表面に両面・片面を問わず、金属の被膜を形成する表面処理方法として一般的に行われている方法である。ところが、従来から、金属ストリップ等の被めっき材の端部に電流が集中してめっき量が多くなる、いわゆるエッジオーバーコートが問題となっている。そこで、エッジオーバーコートを防止するため、金属ストリップの端部にエッジマスクを対向させ、めっき電流を物理的に遮蔽する技術が開示されている(特許文献1、2参照)。
また、アノードの端部にアノードマスクを設け、めっき電流を物理的に遮蔽する技術が開示されている(特許文献3参照)。
さらに、金属ストリップの両端近傍に補助電極を配置し、補助電極を金属ストリップと同一極性の電源に接続する技術が開示されている(特許文献4参照)。補助電極により、主電極と補助電極との間にも電流が分流し、金属ストリップの両端への電流集中を防止することができる。
Electroplating is a method generally used as a surface treatment method for forming a metal film on the surface of a material to be plated, regardless of whether it is double-sided or single-sided. However, conventionally, a so-called edge overcoat, in which a current is concentrated on an end portion of a material to be plated such as a metal strip and a plating amount increases, has been a problem. Therefore, in order to prevent edge overcoat, a technique is disclosed in which an edge mask is opposed to the end of the metal strip to physically shield the plating current (see Patent Documents 1 and 2).
Further, a technique is disclosed in which an anode mask is provided at the end of the anode to physically shield the plating current (see Patent Document 3).
Furthermore, a technique is disclosed in which auxiliary electrodes are arranged in the vicinity of both ends of the metal strip, and the auxiliary electrode is connected to a power source having the same polarity as the metal strip (see Patent Document 4). With the auxiliary electrode, current is also divided between the main electrode and the auxiliary electrode, and current concentration at both ends of the metal strip can be prevented.

実開昭60−117863号公報Japanese Utility Model Publication No. 60-117863 特開平8−239796号公報Japanese Patent Laid-Open No. 8-239796 特開平6−306695号公報JP-A-6-306695 特開昭62−202096号公報Japanese Patent Laid-Open No. 62-202020

しかしながら、エッジマスクを用いる方法の場合、十分な効果を発揮するためにはエッジマスクを被めっき材両端にかなり近接させる必要があり、被めっき材の蛇行などによってエッジマスクと被めっき材が衝突し、被めっき材の折れやシワが発生する可能性がある。特に、板厚の薄い(例えば、6〜100μm)銅箔等にめっきする場合に、折れが生じ易い。
さらに、銅箔等を予め樹脂フィルムで片面をラミネートした後に電気めっきに供される片面めっきの場合、両面めっきと異なり、エッジマスクを用いてもエッジオーバーコートを防止できないことがある。つまり、両面めっきや、ラミネート無しの片面めっきであれば、アノードからの電流は、ストリップ対向面だけでなく、エッジマスクの外側を経由してストリップの裏面にも回り込み、裏面のめっきに電流が消費される。ところが、図11に示すようにストリップの裏面200bが絶縁体(例えば樹脂ラミネート)である場合、裏面200bに回り込んだ電流は、裏面200bがめっきされないためにエッジマスク300内側を経由し、ストリップの上面200a端部をめっきし、エッジオーバーコートを生じる。
なお、図11の主電極100から延びる矢印は、電気力線を示す。又、ストリップ200は幅方向の中心線Cを中心に対称であるので、中心線より左側のみ示す。
However, in the case of the method using the edge mask, it is necessary to bring the edge mask close to both ends of the material to be plated in order to achieve a sufficient effect, and the edge mask and the material to be plated collide due to meandering of the material to be plated. In addition, the material to be plated may be broken or wrinkled. In particular, when plating is performed on a thin copper foil (for example, 6 to 100 μm) copper foil or the like, bending is likely to occur.
Further, in the case of single-side plating that is applied to electroplating after laminating one side of a copper foil or the like in advance with a resin film, edge overcoat may not be prevented even if an edge mask is used, unlike double-sided plating. In other words, with double-sided plating or single-sided plating without laminating, the current from the anode goes not only to the opposite surface of the strip, but also to the backside of the strip via the outside of the edge mask, and current is consumed for plating on the backside. Is done. However, as shown in FIG. 11, when the back surface 200b of the strip is an insulator (for example, a resin laminate), the current sneaking into the back surface 200b passes through the inside of the edge mask 300 because the back surface 200b is not plated. The edge of the upper surface 200a is plated to produce an edge overcoat.
Note that arrows extending from the main electrode 100 in FIG. 11 indicate lines of electric force. Further, since the strip 200 is symmetric about the center line C in the width direction, only the left side of the center line is shown.

また、アノードの側端と裏面(ストリップの対向面の反対面)をアノードマスクで覆う方法を用いても、上記した片面ラミネート材を電気めっきする場合には、エッジオーバーコートを防止できないことがある。これは、アノードマスク外側に回りこんだ電流が被めっき材の端部に集中しエッジオーバーコートを生じるためである。   Moreover, even when a method of covering the side edge and back surface of the anode (opposite surface opposite to the surface of the strip) with an anode mask is used, the edge overcoat may not be prevented when the above single-sided laminate is electroplated. . This is because the current flowing around the outside of the anode mask concentrates on the edge of the material to be plated and causes an edge overcoat.

一方、補助電極を用いる方法の場合、エッジ部に集中する電流をトラップする効果により、エッジオーバーコートを有効に防止することができる。しかし、補助電極に付着及び成長しためっき被膜と、被めっき材とが衝突し、被めっき材の折れやシワが発生したり、補助電極上のめっき被膜を被めっき材が噛み込む可能性がある。これは、長時間めっきを行うと、補助電極に析出したSnめっき皮膜がストリップ端部に向かって伸び、両者の間隔が縮まってストリップと接触することに起因する。特に、上記した板厚の薄い銅箔等を被めっき材に用いる場合、折れやめっき被膜の噛み込むによる歩留り低下が起きやすい。
なお、特許文献2記載の技術は、エッジマスク内側に補助電極(陽極)を配置するものであるが、この方法の場合、主電極に重畳して補助電極からめっきが施されるため、被めっき材の端部のソリや蛇行に応じて補助電極の電流を調整する必要があり、現実的な方法として採用し難い。
On the other hand, in the case of the method using the auxiliary electrode, the edge overcoat can be effectively prevented by the effect of trapping the current concentrated on the edge portion. However, the plating film adhered to and grown on the auxiliary electrode may collide with the material to be plated, causing the material to be plated to bend or wrinkle, or the material to be plated may bite the plating film on the auxiliary electrode. . This is because, when plating is performed for a long time, the Sn plating film deposited on the auxiliary electrode extends toward the end portion of the strip, and the distance between the two is reduced to come into contact with the strip. In particular, when the above-described thin copper foil or the like is used as a material to be plated, yield is likely to be lowered due to bending or biting of a plating film.
In addition, although the technique of patent document 2 arrange | positions an auxiliary electrode (anode) inside an edge mask, in this method, since plating is performed from the auxiliary electrode so as to overlap with the main electrode, It is necessary to adjust the current of the auxiliary electrode according to the warp or meandering of the end of the material, and it is difficult to adopt as a practical method.

すなわち、本発明は上記の課題を解決するためになされたものであり、電気めっき時のエッジオーバーコートを防止すると共に、補助陰極上に析出しためっき被膜との接触による被めっき材の折れやシワを抑制し、めっき被膜の被めっき材への噛み込みをなくしたエッジオーバーコート防止装置及びそれを用いた電気めっき材の製造方法の提供を目的とする。   That is, the present invention has been made to solve the above-mentioned problems, and prevents edge overcoat during electroplating, and also breaks or wrinkles the material to be plated due to contact with the plating film deposited on the auxiliary cathode. An object of the present invention is to provide an edge overcoat prevention device that suppresses the above-described phenomenon and eliminates the biting of the plating film into the material to be plated, and a method for producing an electroplating material using the device.

上記の目的を達成するために、本発明のエッジオーバーコート防止装置はストリップを電気めっきする際に用いられ、前記ストリップの両端に対向してそれぞれ配置される絶縁体と、前記絶縁体を挟んで前記ストリップの近傍に配置される補助陰極とを備え、前記絶縁体の一部が前記ストリップの端部より内側に延びて該端部を覆うエッジマスクを構成し、前記ストリップの厚み方向に沿って、前記補助陰極の外周縁が前記絶縁体の外周縁より内側に位置する。 To achieve the above object, the edge overcoat prevention device of the present invention is used in electroplating the strip, and an insulating body which is disposed opposite the ends of the strip, across the insulator An auxiliary cathode disposed in the vicinity of the strip , and a part of the insulator extends inward from an end portion of the strip to form an edge mask covering the end portion, along the thickness direction of the strip , the outer peripheral edge of said auxiliary cathode is located inside the outer peripheral edge of the insulator.

このように、補助陰極と被めっき材(ストリップ)との間に絶縁体を配置すると、補助陰極によってエッジオーバーコートが防止されるだけでなく、絶縁体が邪魔になるため補助陰極に析出しためっき金属が成長して被めっき材に達する(接触する)ことが防止される。そのため、補助陰極に付着及び成長しためっき金属との接触による被めっき材の折れやシワを抑制し、補助陰極上のめっき被膜を被めっき材が噛み込むこともなくなる。
特に、被めっき材が銅箔等の薄い材料であると強度が低いために、折れやシワが生じ易く、本発明が有効である。又、片面めっき材の場合、エッジマスクを用いても、電流が非めっき面側からエッジマスク内側を経由して被めっき材の端部に流れ、エッジオーバーコートを生じるが、補助陰極で電流を消費させることでエッジオーバーコートを有効に防止できる。
さらに、絶縁体の外周縁が補助陰極の外周縁より外側に張り出しているため、補助陰極に析出しためっき金属の成長方向は、被めっき材から離れた方向へ向かう。そのため、めっき金属と被めっき材との接触がより一層防止される。
Thus, when an insulator is disposed between the auxiliary cathode and the material to be plated ( strip) , not only the edge overcoat is prevented by the auxiliary cathode, but also the plating that is deposited on the auxiliary cathode because the insulator becomes an obstacle. The metal is prevented from growing and reaching (contacting) the material to be plated. Therefore, bending and wrinkling of the material to be plated due to contact with the plating metal adhered and grown on the auxiliary cathode are suppressed, and the material to be plated does not bite the plating film on the auxiliary cathode.
In particular, if the material to be plated is a thin material such as a copper foil, the strength is low, so that the material is easily broken and wrinkled, and the present invention is effective. In the case of a single-sided plating material, even if an edge mask is used, the current flows from the non-plating surface side to the edge of the material to be plated via the edge mask inside, resulting in an edge overcoat. The edge overcoat can be effectively prevented by consuming.
Furthermore, since the outer peripheral edge of the insulator projects outward from the outer peripheral edge of the auxiliary cathode, the growth direction of the plating metal deposited on the auxiliary cathode is directed away from the material to be plated. Therefore, the contact between the plating metal and the material to be plated is further prevented.

前記ストリップの片面が絶縁性であってもよい。 One side of the strip may be insulative.

前記補助陰極と前記ストリップとの間隔を調整する間隔調整手段、及び/又は前記補助陰極の電流を調整する電流調整手段を有してもよい。
このようにすると、エッジオーバーコートを防止する効果と、補助陰極へのめっき金属の析出防止効果を適度に両立できる。又、補助陰極と被めっき材との間隔及び/又は補助陰極の電流を調整することにより、エッジオーバーコートが生じない最適の電流分布が得られる。
You may have a space | interval adjustment means to adjust the space | interval of the said auxiliary cathode and the said strip , and / or a current adjustment means to adjust the electric current of the said auxiliary cathode.
If it does in this way, the effect which prevents edge overcoat and the effect which prevents the precipitation of the plating metal to an auxiliary cathode can be moderately reconciled. In addition, by adjusting the distance between the auxiliary cathode and the material to be plated and / or the current of the auxiliary cathode, an optimal current distribution without edge overcoat can be obtained.

前記電流調整手段は、前記ストリップに印加される電流と独立して前記補助陰極の電流を調整可能であることが好ましい。
このようにすると、補助陰極によるめっき電流の制御がより精度よく行え、エッジオーバーコートと補助陰極へのめっき金属の析出をさらに有効に防止できる。又、過剰の電流が補助陰極に流れることを防止するため、めっき液中の金属イオンの消費を抑制し、めっき液の消耗が低減される。
Preferably, the current adjusting means is capable of adjusting the current of the auxiliary cathode independently of the current applied to the strip .
In this way, the plating current can be controlled more accurately by the auxiliary cathode, and the plating over the edge overcoat and the auxiliary cathode can be more effectively prevented. Further, since excessive current is prevented from flowing to the auxiliary cathode, consumption of metal ions in the plating solution is suppressed, and consumption of the plating solution is reduced.

前記補助陰極は前記被めっき材の両端に対向してそれぞれ配置され、前記電流調整手段は各補助陰極の電流をそれぞれ独立して調整可能であると好ましい。
このようにすると、両端の補助陰極の電流密度をそれぞれ変化できるため、被めっき材の蛇行等によって片方の被めっき材端部のみエッジオーバーコートが発生することを防止できる。
Preferably, the auxiliary cathode is disposed opposite to both ends of the material to be plated, and the current adjusting means can adjust the current of each auxiliary cathode independently.
In this way, since the current densities of the auxiliary cathodes at both ends can be changed, it is possible to prevent the edge overcoat from occurring only at one end of the material to be plated due to meandering of the material to be plated.

前記ストリップに対向するアノードにアノードマスクを備えると好ましい。
このようにすると、補助陰極とアノードマスクを併用することにより、アノードマスクが裏に回り込む電流を少なくするので、補助陰極の電流密度をさらに低下させることができる。
前記補助陰極の電流密度を7A/dm 以上、かつストリップの電流密度より低く設定してもよい。
前記補助陰極と前記被めっき材との間隔を85mm以下に調整してもよい。
It is preferable to provide an anode mask on the anode facing the strip.
In this case, by using the auxiliary cathode and the anode mask together, the current that the anode mask wraps around is reduced, so that the current density of the auxiliary cathode can be further reduced.
The current density of the auxiliary cathode may be set to 7 A / dm 2 or more and lower than the current density of the strip.
You may adjust the space | interval of the said auxiliary cathode and the said to-be-plated material to 85 mm or less.

本発明の電気めっき材の製造方法は、ストリップの両端に対向してそれぞれ絶縁体を配置し、前記絶縁体の一部が前記ストリップの端部より内側に延びて該端部を覆うエッジマスクを構成させ、前記絶縁体を挟んで前記ストリップと反対側に補助陰極を配置し、かつ前記ストリップの厚み方向に沿って、前記補助陰極の外周縁を前記絶縁体の外周縁より内側に位置させ、前記ストリップと前記補助陰極とをカソードとして前記ストリップに電気めっきする。 Method of manufacturing an electro-plating material of the present invention, respectively disposed an insulator to face the opposite ends of the strip, the edge mask covering the end portion part of the insulator extends inwardly from the end portion of the strip An auxiliary cathode is disposed on the opposite side of the strip across the insulator, and the outer peripheral edge of the auxiliary cathode is positioned on the inner side of the outer peripheral edge of the insulator along the thickness direction of the strip , The strip and the auxiliary cathode are electroplated on the strip as a cathode.

本発明によれば、電気めっき時のエッジオーバーコートを防止すると共に、補助陰極上に析出しためっき被膜との接触による被めっき材の折れやシワを抑制し、めっき被膜の被めっき材への噛み込みをなくすことができる。特に、樹脂フィルムで片面をラミネートした片面めっき材である銅箔等の薄い材料をめっきする際に本発明は有効である。   According to the present invention, edge overcoat during electroplating is prevented, and bending or wrinkle of the plating material due to contact with the plating film deposited on the auxiliary cathode is suppressed, and the plating film is bitten by the plating material. Can be eliminated. In particular, the present invention is effective when plating a thin material such as a copper foil, which is a single-sided plating material laminated on one side with a resin film.

以下、本発明の実施形態に係るエッジオーバーコート防止装置について説明する。
図1に本発明の実施形態に係るエッジオーバーコート防止装置を含む連続電気めっき装置の全体構成の一例を示す。但し、本発明のエッジオーバーコート防止装置は、図1に示す縦型めっき装置の他、横型、ドラム型等全てのめっき装置に適用できる。
連続電気めっき装置50は、めっき液を収容するめっき槽45、めっき槽45上の通電ロール30及びアッパーロール34、めっき槽45内に配置されたシンカーロール32を備え、銅箔ストリップ20を通電ロール30からシンカーロール32を経由してアッパーロール34へ張り渡し、銅箔ストリップ20を連続的に走行させてめっき槽45へ出入させるようになっている。又、通電ロール30とシンカーロール32の間に張り渡された銅箔ストリップ20の外側に対向して主電極(アノード)10が垂直に配置され、同様に、アッパーロール34とシンカーロール32の間に張り渡された銅箔ストリップ20の外側に対向して他の主電極(アノード)10が垂直に配置されている。
Hereinafter, an edge overcoat prevention device according to an embodiment of the present invention will be described.
FIG. 1 shows an example of the overall configuration of a continuous electroplating apparatus including an edge overcoat preventing apparatus according to an embodiment of the present invention. However, the edge overcoat prevention apparatus of the present invention can be applied to all plating apparatuses such as a horizontal type and a drum type in addition to the vertical type plating apparatus shown in FIG.
The continuous electroplating apparatus 50 includes a plating tank 45 containing a plating solution, an energizing roll 30 and an upper roll 34 on the plating tank 45, and a sinker roll 32 disposed in the plating tank 45, and the copper foil strip 20 is energized by the energizing roll. The copper foil strip 20 is continuously run from 30 to the upper roll 34 via the sinker roll 32, and is moved into and out of the plating tank 45. Further, the main electrode (anode) 10 is vertically arranged facing the outside of the copper foil strip 20 stretched between the energizing roll 30 and the sinker roll 32, and similarly between the upper roll 34 and the sinker roll 32. The other main electrode (anode) 10 is arranged vertically so as to face the outside of the copper foil strip 20 stretched between the two.

そして、通電ロール30と主電極(アノード)10間に接続された主電源(整流器)5により、カソードとなる銅箔ストリップ20が電気めっきされる。なお、この実施形態においては、連続電気めっき装置50は銅箔ストリップ20の片面を電気めっきするようになっていて、主電極(アノード)10としては、例えばSnが用いられる。又、銅箔ストリップ20の片面(裏面)20bに樹脂(PET;ポリエチレンテレフタレート)フィルムがラミネートされ、表面20aは銅が表出している。
さらに、それぞれの主電極10に対向する銅箔ストリップ20の両端の近傍には、該両端に対向してエッジオーバーコート防止装置6が配置されている。エッジオーバーコート防止装置6は後述する補助陰極を備え、通電ロール30と補助陰極の間に接続された補助電源(整流器)42により、補助陰極がカソードとなる。
エッジオーバーコート防止装置6は、銅箔ストリップ20の両端に沿って垂直に長尺状に延び、銅箔ストリップ20の厚みより外側に張り出している。エッジオーバーコート防止装置6の下端は主電極10の下端より下側に延び、エッジオーバーコート防止装置6の上端はめっき液面より浮上している。
Then, the copper foil strip 20 serving as the cathode is electroplated by the main power source (rectifier) 5 connected between the energizing roll 30 and the main electrode (anode) 10. In this embodiment, the continuous electroplating apparatus 50 is configured to electroplate one side of the copper foil strip 20, and Sn is used as the main electrode (anode) 10, for example. Further, a resin (PET; polyethylene terephthalate) film is laminated on one surface (back surface) 20b of the copper foil strip 20, and copper is exposed on the surface 20a.
Further, an edge overcoat prevention device 6 is disposed in the vicinity of both ends of the copper foil strip 20 facing each main electrode 10 so as to face the both ends. The edge overcoat prevention device 6 includes an auxiliary cathode described later, and the auxiliary cathode becomes a cathode by an auxiliary power source (rectifier) 42 connected between the energizing roll 30 and the auxiliary cathode.
The edge overcoat prevention device 6 extends vertically along both ends of the copper foil strip 20 and protrudes outside the thickness of the copper foil strip 20. The lower end of the edge overcoat prevention device 6 extends downward from the lower end of the main electrode 10, and the upper end of the edge overcoat prevention device 6 floats above the plating solution surface.

図2は、図1の紙面方向に平行な面で銅箔ストリップ20を幅方向に切断したときの、本発明の第1の実施形態に係るエッジオーバーコート防止装置の部分断面図である。銅箔ストリップ20は幅方向の中心線Cを中心に左右対称であるので、中心線から左側端部までの領域のみを示す。
図2において、銅箔ストリップ20の左端に対向して絶縁体2が配置され、絶縁体2を挟んで銅箔ストリップ20と反対側に補助陰極4が配置されている。そして、絶縁体2と補助陰極4とによってエッジオーバーコート防止装置6が構成されている。
絶縁体2は断面がコ字状をなし、コ字の2つの延長部分2Lの先端が銅箔ストリップ端部20cより内側にそれぞれ位置し、該端部20cの表裏面を覆うことにより、エッジマスクを構成する。絶縁体2のコ字基部の面は、銅箔ストリップ20の幅方向(及び端面)に垂直になっている。
又、厚肉板状の補助陰極4は絶縁体2のコ字基部の裏面(銅箔ストリップ20に対向する面と反対面)に密着し、補助陰極4の外周縁が絶縁体2のコ字基部の外周縁より内側に位置している。この補助電極は外周縁が絶縁体2のエッジマスクの外周縁より内側に位置していることを特徴とし、エッジマスクの形状および位置には影響を受けない。
FIG. 2 is a partial cross-sectional view of the edge overcoat preventing device according to the first embodiment of the present invention when the copper foil strip 20 is cut in the width direction along a plane parallel to the paper surface direction of FIG. Since the copper foil strip 20 is symmetrical with respect to the center line C in the width direction, only the region from the center line to the left end is shown.
In FIG. 2, the insulator 2 is disposed to face the left end of the copper foil strip 20, and the auxiliary cathode 4 is disposed on the opposite side of the copper foil strip 20 with the insulator 2 interposed therebetween. The insulator 2 and the auxiliary cathode 4 constitute an edge overcoat prevention device 6.
The insulator 2 has a U-shaped cross section, and the ends of two U-shaped extension portions 2L are located inside the copper foil strip end portion 20c, and cover the front and back surfaces of the end portion 20c, thereby providing an edge mask. Configure. The surface of the U-shaped base portion of the insulator 2 is perpendicular to the width direction (and end surface) of the copper foil strip 20.
The thick plate-like auxiliary cathode 4 is in close contact with the back surface of the U-shaped base portion of the insulator 2 (the surface opposite to the surface facing the copper foil strip 20), and the outer peripheral edge of the auxiliary cathode 4 is the U-shape of the insulator 2. It is located inside the outer peripheral edge of the base. The auxiliary electrode is characterized in that the outer peripheral edge is located inside the outer peripheral edge of the edge mask of the insulator 2 and is not affected by the shape and position of the edge mask.

このように、補助陰極と被めっき材(銅箔ストリップ20)との間に絶縁体を配置すると、補助陰極によってエッジオーバーコートが防止されるだけでなく、絶縁体が邪魔になるため補助陰極に析出しためっき被膜が成長して被めっき材に達する(接触する)ことが防止される。そのため、補助陰極に付着及び成長しためっき被膜との接触による被めっき材の折れやシワを抑制し、補助陰極上のめっき被膜を被めっき材が噛み込むこともなくなる。
特に、被めっき材が銅箔等の薄い材料であると強度が低いために、折れやシワが生じ易く、本発明が有効である。又、片面めっき材の場合、上記図9で説明したように、エッジマスクを用いても、電流が非めっき面側からエッジマスク内側を経由して被めっき材の端部に流れ、エッジオーバーコートを生じるが、補助陰極で電流を消費させることでエッジオーバーコートを有効に防止できる。
Thus, when an insulator is arranged between the auxiliary cathode and the material to be plated (copper foil strip 20), not only the edge overcoat is prevented by the auxiliary cathode but also the insulator becomes an obstacle, so that the auxiliary cathode is used. The deposited plating film is prevented from growing and reaching (contacting) the material to be plated. Therefore, bending and wrinkle of the material to be plated due to contact with the plating film adhered and grown on the auxiliary cathode are suppressed, and the material to be plated does not bite the plating film on the auxiliary cathode.
In particular, if the material to be plated is a thin material such as a copper foil, the strength is low, so that the material is easily broken and wrinkled, and the present invention is effective. In the case of a single-sided plating material, as described in FIG. 9 above, even if an edge mask is used, the current flows from the non-plating surface side to the edge of the material to be plated via the edge mask inside, and the edge overcoat However, edge overcoat can be effectively prevented by consuming current at the auxiliary cathode.

さらに、本発明においては、絶縁体の外周縁が補助陰極の外周縁より外側に張り出しているため、補助陰極に析出しためっき被膜(電着粒等)の成長方向Dは、被めっき材から離れた方向へ向かう。そのため、めっき被膜と被めっき材との接触がより一層防止される。
補助陰極4の形状は特に限定されず、例えば円筒状、棒状、箔状、板上等とすることができるが、補助陰極4の体積が小さいほど、補助陰極4に析出するめっき量が少なくなり、めっき液中のめっき金属濃度を低下させないので、補助陰極4の体積が小さい方がよい。
補助陰極4は、導電性の材料であれば特に限定されないが、再処理を考慮するとめっき金属と同一の材料とすることが好ましい。
絶縁体2をエッジマスクとする場合、エッジマスクの断面形状は特に限定されないが、コ字状とすると被めっき材と衝突し難くなるので好ましい。
絶縁体2の材質は、例えばPET(ポリエチレンテレフタレート)、ポリイミド、フェノール樹脂、エポキシ樹脂等とすることができる。
なお、本発明においては、絶縁体を挟んで被めっき材と反対側に補助陰極が配置されている限り、絶縁体の形状も限定されず、絶縁体と補助陰極の位置関係も限定されない。
又、本発明において、絶縁体が被めっき材に「対向して」配置されるとは、被めっき材に面している限りあらゆる位置を含む。例えば、被めっき材が帯(板)状のストリップの場合、板面に絶縁体が対向してもよく、板の端部(エッジ)に絶縁体が対向してもよい。但し、エッジオーバーコートを有効に防止する点では、被めっき材が帯(板)状の場合には板の端部(エッジ)に絶縁体が対向する(図2、図3のように)のが好ましい。
Furthermore, in the present invention, since the outer peripheral edge of the insulator projects outward from the outer peripheral edge of the auxiliary cathode, the growth direction D of the plating film (electrodeposited grains, etc.) deposited on the auxiliary cathode is separated from the material to be plated. Head in the direction Therefore, the contact between the plating film and the material to be plated is further prevented.
The shape of the auxiliary cathode 4 is not particularly limited. For example, the auxiliary cathode 4 may be cylindrical, rod-shaped, foil-shaped, on a plate, or the like. The smaller the volume of the auxiliary cathode 4 is, the smaller the amount of plating deposited on the auxiliary cathode 4 is. Since the plating metal concentration in the plating solution is not lowered, the volume of the auxiliary cathode 4 is preferably small.
The auxiliary cathode 4 is not particularly limited as long as it is a conductive material, but it is preferable to use the same material as the plating metal in consideration of reprocessing.
When the insulator 2 is an edge mask, the cross-sectional shape of the edge mask is not particularly limited, but a U-shape is preferable because it does not easily collide with the material to be plated.
The material of the insulator 2 can be, for example, PET (polyethylene terephthalate), polyimide, phenol resin, epoxy resin, or the like.
In the present invention, as long as the auxiliary cathode is disposed on the side opposite to the material to be plated with the insulator interposed therebetween, the shape of the insulator is not limited, and the positional relationship between the insulator and the auxiliary cathode is not limited.
Further, in the present invention, the phrase “the insulator is disposed“ facing ”the material to be plated includes all positions as long as it faces the material to be plated. For example, when the material to be plated is a strip in the form of a strip (plate), the insulator may face the plate surface, or the insulator may face the end (edge) of the plate. However, in terms of effectively preventing edge overcoat, when the material to be plated is in the form of a band (plate), the insulator faces the edge (edge) of the plate (as shown in FIGS. 2 and 3). Is preferred.

次に、本発明の第2の実施形態に係るエッジオーバーコート防止装置について、図2と同様な断面図3により説明する。図3に示すように、第2の実施形態に係るエッジオーバーコート防止装置6Bは、絶縁体2Bの形状が異なること以外は、第1の実施形態に係るエッジオーバーコート防止装置と同様であるので、同一部分を同一符号を付して省略する。
図3において、絶縁体2Bは板状をなし、絶縁体2Bの裏面(銅箔ストリップ20に対向する面と反対面)に補助陰極4が密着し、補助陰極4の外周縁が絶縁体2Bの外周縁より内側に位置している。絶縁体2Bの面は、銅箔ストリップ20の幅方向(及び端面)に垂直になっている。
Next, an edge overcoat preventing apparatus according to a second embodiment of the present invention will be described with reference to a sectional view 3 similar to FIG. As shown in FIG. 3, the edge overcoat prevention device 6B according to the second embodiment is the same as the edge overcoat prevention device according to the first embodiment except that the shape of the insulator 2B is different. The same parts are denoted by the same reference numerals and omitted.
In FIG. 3, the insulator 2B has a plate shape, the auxiliary cathode 4 is in close contact with the back surface of the insulator 2B (the surface opposite to the surface facing the copper foil strip 20), and the outer periphery of the auxiliary cathode 4 is the insulator 2B. It is located inside the outer periphery. The surface of the insulator 2B is perpendicular to the width direction (and end surface) of the copper foil strip 20.

第2の実施形態においても、補助陰極と被めっき材との間に絶縁体が配置されているため、補助陰極によってエッジオーバーコートが防止されるだけでなく、補助陰極に析出しためっき被膜が成長して被めっき材に達する(接触する)ことが防止される。そして、補助陰極でめっき電流を消費させることで、エッジオーバーコートを防止できる。
さらに、第2の実施形態においても、絶縁体の外周縁が補助陰極の外周縁より外側に張り出しているため、補助陰極に析出しためっき被膜の成長方向Dは、被めっき材から離れた方向へ向かう。そのため、めっき被膜と被めっき材との接触がより一層防止される。
Also in the second embodiment, since the insulator is disposed between the auxiliary cathode and the material to be plated, not only the edge overcoat is prevented by the auxiliary cathode but also the plating film deposited on the auxiliary cathode grows. Thus, reaching (contacting) the material to be plated is prevented. And edge overcoat can be prevented by consuming a plating current with an auxiliary cathode.
Furthermore, also in the second embodiment, since the outer peripheral edge of the insulator projects outward from the outer peripheral edge of the auxiliary cathode, the growth direction D of the plating film deposited on the auxiliary cathode is away from the material to be plated. Head. Therefore, the contact between the plating film and the material to be plated is further prevented.

次に、補助陰極の電流制御について説明する。詳しくは後述する実施例で説明するが、本発明者らが鋭意検討した結果、エッジオーバーコートの発生は、補助陰極の電流密度、及び補助陰極と被めっき材との間隔によって大きく影響を受けることが判明した。まず、補助陰極と被めっき材との間隔が近接している場合は、補助電極の電流密度が低くてもエッジオーバーコート抑制効果が生じる。一方、補助陰極と被めっき材との間隔が遠くなると補助電極の効果が少なくなるため、エッジオーバーコートを抑制するためには補助電極の電流密度を上昇させる必要がある。これは、補助陰極と被めっき材との間隔や補助陰極の電流が変化すると、被めっき材との間の電流分布が変化し、エッジオーバーコートに影響を与えるためと考えられる。
このことは、逆に、めっき装置の大きさや構成、めっき条件等に応じて、補助陰極の電流密度、及び/又は補助陰極と被めっき材との間隔を調整すれば、確実にエッジオーバーコートを抑制できることを示す。つまり、補助陰極の電流又は上記間隔さえ調整すればエッジオーバーコートにならない適切な補助陰極の電流密度が存在する。
Next, the current control of the auxiliary cathode will be described. As will be described in detail in Examples described later, as a result of intensive studies by the present inventors, the occurrence of edge overcoat is greatly affected by the current density of the auxiliary cathode and the distance between the auxiliary cathode and the material to be plated. There was found. First, when the distance between the auxiliary cathode and the material to be plated is close, the edge overcoat suppressing effect is produced even if the current density of the auxiliary electrode is low. On the other hand, if the distance between the auxiliary cathode and the material to be plated is increased, the effect of the auxiliary electrode is reduced. Therefore, in order to suppress the edge overcoat, it is necessary to increase the current density of the auxiliary electrode. This is presumably because, when the distance between the auxiliary cathode and the material to be plated or the current of the auxiliary cathode changes, the current distribution between the material to be plated changes and affects the edge overcoat.
Conversely, if the current density of the auxiliary cathode and / or the distance between the auxiliary cathode and the material to be plated is adjusted according to the size and configuration of the plating apparatus, the plating conditions, etc., the edge overcoat can be reliably applied. It can be suppressed. That is, there is an appropriate auxiliary cathode current density that does not result in an edge overcoat if only the auxiliary cathode current or the distance is adjusted.

以上のことから、本発明のエッジオーバーコート装置において、前記補助陰極と前記被めっき材との間隔を調整する間隔調整手段、及び/又は前記補助陰極の電流を調整する電流調整手段を有することが好ましい。
上記間隔調整手段は、例えば、補助陰極を支持部材(例えばめっき槽の側壁から延びる梁)上の所定位置に移動可能に取付ける構造とすることができる。移動可能な取付けは、例えば、上記梁に並ぶ複数の取付け孔のいずれかの孔で、補助陰極をネジ止めする構造が挙げられる。
又、補助陰極の電流を調整する電流調整手段としては、補助陰極に接続される電源(整流器)や、電源と補助陰極との間の抵抗器が挙げられる。
From the above, the edge overcoat apparatus of the present invention has a gap adjusting means for adjusting the gap between the auxiliary cathode and the material to be plated and / or a current adjusting means for adjusting the current of the auxiliary cathode. preferable.
For example, the distance adjusting means may be structured such that the auxiliary cathode is movably attached to a predetermined position on a support member (for example, a beam extending from the side wall of the plating tank). Examples of the movable attachment include a structure in which the auxiliary cathode is screwed in any one of a plurality of attachment holes arranged in the beam.
Examples of the current adjusting means for adjusting the current of the auxiliary cathode include a power source (rectifier) connected to the auxiliary cathode and a resistor between the power source and the auxiliary cathode.

次に、図4〜図6を参照して被めっき材(銅箔ストリップ20)用の主電源と補助陰極4用の電源の配線態様について説明する。
図4は、被めっき材20用の主電源と補助陰極4用の電源として、共通の主電源70を用いた場合の配線図である。主電源7050のカソード端子(−)は通電ロール30(を介して銅箔ストリップ20)に接続されると共に各補助陰極4にも接続されている。又、主電源70のアノード端子(+)は、アノード10に接続され、カソード端子(−)、各電源は整流器であってよい。
図4に示す場合、被めっき材と補助陰極の電源が共通であるので、エッジオーバーコートを有効に抑制するためには、補助陰極と電源の間に抵抗を入れて補助陰極の電流を調整するか、補助陰極と被めっき材の間隔を変えることが好ましい。
Next, with reference to FIGS. 4-6, the wiring aspect of the main power supply for to-be-plated materials (copper foil strip 20) and the power supply for the auxiliary cathode 4 is demonstrated.
FIG. 4 is a wiring diagram when a common main power source 70 is used as the main power source for the material to be plated 20 and the power source for the auxiliary cathode 4. The cathode terminal (−) of the main power supply 7050 is connected to the energizing roll 30 (via the copper foil strip 20) and also to each auxiliary cathode 4. The anode terminal (+) of the main power supply 70 may be connected to the anode 10, the cathode terminal (-), and each power supply may be a rectifier.
In the case shown in FIG. 4, since the power source for the material to be plated and the auxiliary cathode is common, in order to effectively suppress the edge overcoat, a resistance is inserted between the auxiliary cathode and the power source to adjust the current of the auxiliary cathode. Alternatively, it is preferable to change the interval between the auxiliary cathode and the material to be plated.

図5は、被めっき材20用の主電源70と別個に、補助陰極4用の電源80を用いた場合の配線図である。主電源70のカソード端子(−)が通電ロール1(を介して銅箔ストリップ20)に接続され、アノード端子(+)はアノード10に接続されている。
一方、補助陰極用電源80のアノード端子(+)はアノード10に接続され、カソード端子(−)は各補助陰極4に並列に接続されている。
図5の配線の場合、被めっき材20と補助陰極4とは別個の電源により制御されるので、補助陰極の電流調整が容易となり、エッジオーバーコートの抑制が容易となる。
FIG. 5 is a wiring diagram when the power source 80 for the auxiliary cathode 4 is used separately from the main power source 70 for the material to be plated 20. The cathode terminal (−) of the main power supply 70 is connected to the energizing roll 1 (through the copper foil strip 20), and the anode terminal (+) is connected to the anode 10.
On the other hand, the anode terminal (+) of the auxiliary cathode power source 80 is connected to the anode 10, and the cathode terminal (−) is connected to each auxiliary cathode 4 in parallel.
In the case of the wiring shown in FIG. 5, the material to be plated 20 and the auxiliary cathode 4 are controlled by separate power sources, so that the current adjustment of the auxiliary cathode is easy and the edge overcoat can be easily suppressed.

図6は、被めっき材20用の主電源70と別個に、補助陰極4用の電源81、82を用いた場合の配線図である。主電源70のカソード端子(−)が通電ロール1(を介して銅箔ストリップ20)に接続され、アノード端子(+)はアノード10に接続されている。
一方、補助陰極用電源81のアノード端子(+)はアノード10に接続され、カソード端子(−)は左側の補助陰極4に接続されている。又、補助陰極用電源82のアノード端子(+)はアノード10に接続され、カソード端子(−)は右側の補助陰極4に接続されている。
FIG. 6 is a wiring diagram when power sources 81 and 82 for the auxiliary cathode 4 are used separately from the main power source 70 for the material to be plated 20. The cathode terminal (−) of the main power supply 70 is connected to the energizing roll 1 (through the copper foil strip 20), and the anode terminal (+) is connected to the anode 10.
On the other hand, the anode terminal (+) of the auxiliary cathode power supply 81 is connected to the anode 10, and the cathode terminal (−) is connected to the left auxiliary cathode 4. The anode terminal (+) of the auxiliary cathode power source 82 is connected to the anode 10, and the cathode terminal (−) is connected to the right auxiliary cathode 4.

図6の配線の場合、被めっき材20と補助陰極4とは別個の電源により制御されるので、補助陰極の電流調整が容易となり、エッジオーバーコートの抑制が容易となる。又、図6の配線の場合、左側と右側の補助陰極4がそれぞれ別個の補助陰極用電源に接続されているため、両端の補助陰極の電流(密度)をそれぞれ変えることができる。そのため、被めっき材の蛇行等によって片方の端部のエッジオーバーコートが顕著になることを防止できる。
なお、蛇行により被めっき材との間隔の狭くなった方の補助陰極の電流密度を低く、間隔の広くなった方の補助陰極の電流密度を高くすれば、被めっき材の両エッジ部のめっき厚をほぼ同等(均一)にすることができ、片方の端部にエッジオーバーコートが発生したり顕著になることがない。
In the case of the wiring shown in FIG. 6, the material to be plated 20 and the auxiliary cathode 4 are controlled by separate power sources, so that the current adjustment of the auxiliary cathode is easy and the edge overcoat can be easily suppressed. In the case of the wiring shown in FIG. 6, since the left and right auxiliary cathodes 4 are connected to separate auxiliary cathode power supplies, the current (density) of the auxiliary cathodes at both ends can be changed. Therefore, it is possible to prevent the edge overcoat at one end from becoming noticeable due to meandering of the material to be plated.
In addition, if the current density of the auxiliary cathode whose distance to the plating material is narrow due to meandering is low and the current density of the auxiliary cathode whose distance is wide is high, the plating on both edges of the material to be plated The thickness can be made substantially equal (uniform), and edge overcoat does not occur or become noticeable at one end.

本発明のエッジオーバーコート防止装置において、被めっき材に対向するアノードにアノードマスクを備えると好ましい。
図7、8は、それぞれアノードマスクの一例を示す。図7において、アノードマスク11は、アノード10の両端部と、アノード10において被めっき材20との対向面の端縁部と、アノード10の裏面とを覆っている。又、図8において、アノードマスク11Bは、アノード10の両端部と、アノード10において被めっき材20との対向面の端縁部からやや被めっき材20側へ離間した位置と、アノード10の裏面とを覆っている。つまり、アノードマスク11Bは、アノード10の両端部から被めっき材20へ向かって延びる張り出し部11xを有している。
アノードマスクは、アノードから外側に漏れる電流を抑えることでオーバーコートを抑え、被めっき材の幅方向のめっき付着量を均一にする。アノードマスクは、少なくともアノードの両端から外側(被めっき材側)に漏れるエッジ電流を低減するものであれば形状は限定されず、絶縁板等を用いることができる。
In the edge overcoat prevention device of the present invention, it is preferable that an anode mask is provided on the anode facing the material to be plated.
7 and 8 each show an example of the anode mask. In FIG. 7, the anode mask 11 covers both end portions of the anode 10, end edges of the facing surface of the anode 10 facing the material to be plated 20, and the back surface of the anode 10. In FIG. 8, the anode mask 11 </ b> B includes both end portions of the anode 10, positions where the anode 10 is slightly separated from the edge portion of the surface facing the material to be plated 20, and the back surface of the anode 10. And covering. That is, the anode mask 11 </ b> B has a protruding portion 11 x extending from both end portions of the anode 10 toward the material to be plated 20.
The anode mask suppresses an overcoat by suppressing a current leaking from the anode to the outside, and makes the amount of plating adhered in the width direction of the material to be plated uniform. The shape of the anode mask is not limited as long as it reduces the edge current that leaks from at least both ends of the anode to the outside (to-be-plated material side), and an insulating plate or the like can be used.

但し、銅箔等を予め樹脂フィルムで片面をラミネートした材料に片面めっきする場合、アノードマスクを用いてもオーバーコートを充分に抑制できない。そこで、本発明においては、アノードマスク単体で用いるのではなく、補助陰極と併用することで、補助陰極に印加する電流密度を低減し、めっき金属が補助陰極に析出することをさらに抑えることができる。
このような目的から、本発明においては、被めっき材に印加される電流と独立して補助陰極の電流を調整可能である場合(例えば、補助陰極が主電源と別個の電源に接続され、補助陰極の電流密度を単独で制御できる場合)にアノードマスクを用いる。
例えば、上記したように、被めっき材の電流密度と比較して補助陰極の電流密度を低くする場合には、補助陰極の電流密度がある閾値を超えないと、補助陰極による効果が生じないが、アノードマスクを用いると、補助陰極の電流密度の閾値を低くすることができるという効果を生じる。
However, when copper foil or the like is plated on one side of a material previously laminated on one side with a resin film, the overcoat cannot be sufficiently suppressed even if an anode mask is used. Therefore, in the present invention, the current density applied to the auxiliary cathode can be reduced by using the auxiliary mask together with the auxiliary cathode instead of using the anode mask alone, and the plating metal can be further prevented from being deposited on the auxiliary cathode. .
For this purpose, in the present invention, when the current of the auxiliary cathode can be adjusted independently of the current applied to the material to be plated (for example, the auxiliary cathode is connected to a power source separate from the main power source, An anode mask is used when the current density of the cathode can be controlled independently.
For example, as described above, when the current density of the auxiliary cathode is made lower than the current density of the material to be plated, the effect of the auxiliary cathode does not occur unless the current density of the auxiliary cathode exceeds a certain threshold value. If the anode mask is used, an effect is obtained that the threshold value of the current density of the auxiliary cathode can be lowered.

本発明の電気めっき材の製造方法は、被めっき材に対向して絶縁体を配置し、前記絶縁体を挟んで前記被めっき材と反対側に補助陰極を配置し、かつ前記補助陰極の外周縁を前記絶縁体の外周縁より内側に位置させ、前記被めっき材と前記補助陰極とをカソードとして前記被めっき材に電気めっきするものである。被めっき材、絶縁体、補助陰極の材質や形状、絶縁体と補助陰極の配置態様は、上記したエッジオーバーコート防止装置と同様とすることができる。
本発明は上記実施形態に限定されず、絶縁体が被めっき材に対向して配置される限り、例えば絶縁体の面を被めっき材の端面に対して斜めに配置してもよい。要は、主電極から被めっき材へ向かう電流のうち、被めっき材の端部へ向かう電流を補助陰極で消費するよう、補助陰極と絶縁体の位置を調整すればよい。
又、補助陰極と絶縁体とは密着していても、離間していてもよい。
In the method for producing an electroplating material of the present invention, an insulator is disposed so as to face the material to be plated, an auxiliary cathode is disposed on the opposite side of the material to be plated across the insulator, and the outside of the auxiliary cathode is disposed. The peripheral edge is positioned inside the outer peripheral edge of the insulator, and electroplating is performed on the material to be plated using the material to be plated and the auxiliary cathode as a cathode. The material and shape of the material to be plated, the insulator, and the auxiliary cathode, and the arrangement mode of the insulator and the auxiliary cathode can be the same as those in the edge overcoat prevention device described above.
The present invention is not limited to the above embodiment, and as long as the insulator is disposed to face the material to be plated, for example, the surface of the insulator may be disposed obliquely with respect to the end surface of the material to be plated. In short, it is only necessary to adjust the positions of the auxiliary cathode and the insulator so that the current flowing from the main electrode to the material to be plated is consumed by the auxiliary cathode.
Further, the auxiliary cathode and the insulator may be in close contact with each other or may be separated from each other.

以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

<実験1>
図1に示した垂直型連続電気めっき装置を用い、被めっき材(ストリップ)として圧延銅箔(7.8μm)の片面に厚さ3μmの接着層を介してPETフィルム(12.5μm)をラミネートしたもの(幅(W)600mm)を用い、ストリップの片面(銅露出面)にめっきした。めっきライン速度 5m/min、電流密度 10A/dm2、めっき時間 15sとして約1μm厚のSnめっきを行った。
エッジオーバーコート防止装置として、図3に記載のものを用いた。補助陰極4としては、長手方向長さ1500mm(液面内 720mm)、幅50mm、厚み0.05mmのSn(99.9%)を使用した。ストリップ両端と補助陰極の距離は60mmとした。絶縁体2Bの寸法は、図9のd = 1200mm(液面内 720mm), e=50mm、f=55mm、g=10mmとした。
又、実験1において、被めっき材と補助陰極の電流密度及び距離の違いによる効果を求めた。このため、発明例1においては、図4の電源配置(電源が共通)とし、発明例2においては、図5の電源配置(電源が別個)とした。又、補助陰極の電流密度の閾値を見出すため、発明例2より補助陰極の電流密度を低くしたものを参考例1とした。
<Experiment 1>
Using a vertical continuous electroplating apparatus shown in FIG. 1, a PET film (12.5 μm) is laminated on one side of a rolled copper foil (7.8 μm) as a material to be plated (strip) with an adhesive layer having a thickness of 3 μm. (Width (W) 600 mm) was used, and plating was performed on one side (copper exposed surface) of the strip. Sn plating with a thickness of about 1 μm was performed at a plating line speed of 5 m / min, a current density of 10 A / dm 2 , and a plating time of 15 s.
As the edge overcoat prevention device, the one shown in FIG. 3 was used. As the auxiliary cathode 4, Sn (99.9%) having a length of 1500 mm in the longitudinal direction (720 mm in the liquid surface), a width of 50 mm, and a thickness of 0.05 mm was used. The distance between the strip ends and the auxiliary cathode was 60 mm. The dimensions of the insulator 2B are as follows: d = 1200 mm in FIG. 9 (720 mm in the liquid surface), e = 50 mm, f = 55 mm, and g = 10 mm.
Moreover, in Experiment 1, the effect by the difference in the current density and distance of a to-be-plated material and an auxiliary cathode was calculated | required. Therefore, the power supply arrangement of FIG. 4 (common power supply) is used in Invention Example 1, and the power supply arrangement (power supply is separate) of FIG. 5 is used in Invention Example 2. In addition, in order to find out the threshold value of the current density of the auxiliary cathode, a reference example 1 was obtained in which the current density of the auxiliary cathode was lower than that of Invention Example 2.

<評価>
1.被めっき材へのエッジオーバーコート
被めっき材の中央部と両端部のめっき厚を蛍光X線膜厚計 SFT8000(SII社製)で測定した。被めっき材のエッジから内側200〜400mmの部分を中央部とし、幅方向に10mmの測定間隔でめっき厚を数点測定し、測定群の平均値を中央部のめっき厚とした。
又、被めっき材の両端部のめっき厚については、エッジから内側10mmまでをエッジ部とみなし、測定長さ1000mm以上、長さ方向に100mm間隔で数点測定し、測定群の平均値を両端部(エッジ部)のめっき厚とした。
そして、以下の基準でエッジオーバーコートを評価した。評価が△か〇であれば実用上問題がない。
〇:被めっき材の中央部のめっき厚を1とすると、両端部のめっき厚が0.7〜1.3の間にある。
△:被めっき材の中央部のめっき厚を1とすると、両端部のめっき厚が0.7以下。
×:被めっき材の中央部のめっき厚を1とすると、両端部のめっき厚が1.3以上。
なお、両端部のめっき厚のうち、片端でも上記基準から外れた場合は、外れた値に基づく評価を行った。従って、両端部のめっき厚のうち片端でも膜厚が1.3以上の場合は、評価×とした。
<Evaluation>
1. Edge overcoat on the material to be plated The plating thickness at the center and both ends of the material to be plated was measured with a fluorescent X-ray film thickness meter SFT8000 (manufactured by SII). The portion 200 to 400 mm inside from the edge of the material to be plated was used as the center, and several plating thicknesses were measured at a measurement interval of 10 mm in the width direction, and the average value of the measurement group was determined as the plating thickness at the center.
Also, regarding the plating thickness at both ends of the material to be plated, the edge from 10mm to the inside is regarded as the edge, the measurement length is 1000mm or more, several points are measured at 100mm intervals in the length direction, and the average value of the measurement group is measured at both ends. It was set as the plating thickness of the part (edge part).
The edge overcoat was evaluated according to the following criteria. If the evaluation is Δ or ◯, there is no practical problem.
A: If the plating thickness at the center of the material to be plated is 1, the plating thickness at both ends is between 0.7 and 1.3.
(Triangle | delta): If the plating thickness of the center part of a to-be-plated material is 1, the plating thickness of both ends is 0.7 or less.
X: When the plating thickness at the center of the material to be plated is 1, the plating thickness at both ends is 1.3 or more.
In addition, when the plating thickness at both ends deviates from the above standard even at one end, evaluation based on the deviated value was performed. Therefore, if the film thickness is 1.3 or more at one end of the plating thicknesses at both ends, the evaluation is x.

2.補助陰極へのめっき金属(Sn)の析出
24時間連続めっき後に補助陰極から被めっき材(ストリップ)へ向かってSnの析出物が延びたか否かを目視で判定した。又、補助陰極を取り出し、補助陰極表面のSn析出量を測定した。測定は、まず試験前の補助電極の厚みを幅方向に10mmづつの間隔でマイクロメーターで測定し、試験後に同様に厚みを測定した。そして、試験前後の厚みの差からSn析出量を換算した(Sn析出量=補助電極の面積×めっき厚平均値×Snの比重)。
上記目視判定、及びSn析出量の結果から、以下の総合評価を行った。
◎:被めっき部方向のSnの析出無し、Sn析出量が一番少(0.21g/分)
○:被めっき部方向のSnの析出無し、Sn析出量が少(1.11g/分)
被めっき部方向のSnの析出無し、Sn析出量が多(1.38g/分)
×:被めっき部方向のSnの析出あり
2. Precipitation of plating metal (Sn) on the auxiliary cathode
After 24 hours of continuous plating, it was visually determined whether Sn precipitates extended from the auxiliary cathode toward the material to be plated (strip). Further, the auxiliary cathode was taken out and the amount of Sn deposited on the auxiliary cathode surface was measured. In the measurement, the thickness of the auxiliary electrode before the test was first measured with a micrometer at intervals of 10 mm in the width direction, and the thickness was similarly measured after the test. And Sn precipitation amount was converted from the difference in thickness before and after the test (Sn precipitation amount = Auxiliary electrode area × Plating thickness average value × Sn specific gravity).
The following comprehensive evaluation was performed from the results of the visual determination and the Sn precipitation amount.
A: No precipitation of Sn in the direction of the plated part, the smallest amount of Sn precipitation (0.21 g / min)
○: Sn does not precipitate in the direction of the plated part, Sn precipitation is small (1.11 g / min)
No precipitation of Sn in the direction of the plated part, large amount of Sn precipitation (1.38 g / min)
×: Sn is deposited in the direction of the plated part

<実験2>
エッジオーバーコート防止装置として、図3に記載のものの代わりに図2に記載のものを用いたこと以外は、実験1と同様に実験及び評価を行った。
絶縁体2の寸法は、図10のa = 50mm、b = 30mm、c = 60mm、d = 1200mm(液面内 720mm、)とした。補助陰極とストリップ端面の距離は60mmとした。
又、実験1においても、被めっき材と補助陰極の電流密度及び距離の違いによる効果を求めた。このため、発明例3においては、図4の電源配置(電源が共通)とし、発明例4においては、図5の電源配置(電源が別個)とした。又、補助陰極の電流密度の閾値を見出すため、発明例4より補助陰極の電流密度を低くしたものを参考例2とした。
<Experiment 2>
Experiments and evaluations were performed in the same manner as in Experiment 1 except that the apparatus shown in FIG. 2 was used instead of the apparatus shown in FIG.
The dimensions of the insulator 2 were set to a = 50 mm, b = 30 mm, c = 60 mm, and d = 1200 mm (720 mm in the liquid surface) in FIG. The distance between the auxiliary cathode and the strip end face was 60 mm.
Moreover, also in Experiment 1, the effect by the difference in the current density and distance of a to-be-plated material and an auxiliary cathode was calculated | required. Therefore, the power supply arrangement shown in FIG. 4 (common power supply) is used in Invention Example 3, and the power supply arrangement shown in FIG. 5 (power supply is separate) is used in Invention Example 4. Further, in order to find out the threshold value of the current density of the auxiliary cathode, a reference example 2 was obtained in which the current density of the auxiliary cathode was lower than that of Invention Example 4.

<実験3>
図8に記載のアノードマスクをさらに用いたこと以外は、実験2と同様に実験及び評価を行った。
アノードマスク11Bの寸法は図8のp=5mm、q=200mm、r=600mmとし、図8の紙面方向のアノードマスク11Bの長さ=850mmとした。
又、実験3においても、被めっき材と補助陰極の電流密度及び距離の違いによる効果を求めた。このため、発明例5においては、図4の電源配置(電源が共通)とし、発明例6,7においては、図5の電源配置(電源が別個)とした。又、補助陰極の電流密度の閾値を見出すため、発明例7より補助陰極の電流密度を低くしたものを参考例3とした。
<Experiment 3>
Experiments and evaluations were performed in the same manner as Experiment 2 except that the anode mask shown in FIG. 8 was further used.
The dimensions of the anode mask 11B were p = 5 mm, q = 200 mm, and r = 600 mm in FIG. 8, and the length of the anode mask 11B in the paper surface direction in FIG. 8 was 850 mm.
Also in Experiment 3, the effect of the difference in current density and distance between the material to be plated and the auxiliary cathode was determined. For this reason, the power supply arrangement shown in FIG. 4 (common power supply) is used in Invention Example 5, and the power supply arrangement shown in FIG. Further, in order to find out the threshold value of the current density of the auxiliary cathode, a reference example 3 was obtained in which the current density of the auxiliary cathode was lower than that of Invention Example 7.

得られた結果を表1に示す。なお、表1において実験1Aの付記「A」は、被めっき材(ストリップ)と補助陰極の間隔(最も被めっき材に近接した距離)を60mmで一定とした場合を示す。又、実験1Bの付記「B」は、上記間隔を変えた場合を示す。実験2,3も同様である。   The obtained results are shown in Table 1. In Table 1, “A” in Experiment 1A indicates a case where the distance between the material to be plated (strip) and the auxiliary cathode (distance closest to the material to be plated) is constant at 60 mm. In addition, the appendix “B” in Experiment 1B shows the case where the interval is changed. Experiments 2 and 3 are the same.

Figure 0004977046
Figure 0004977046

(実験1A)
上記間隔が60mmである実験1Aの場合、被めっき材と補助陰極の電流密度が同一であっても(発明例1)、エッジオーバーコートと補助陰極へのめっき金属の析出が共に△の評価であり、実用上問題はなかった。又、被めっき材の電流密度より補助陰極の電流密度を低くした発明例2の場合、エッジオーバーコートと補助陰極へのめっき金属の析出は共に〇の評価であり、電流密度を同一とした発明例1より評価が優れていた。
一方、補助陰極の電流密度を6A/dm まで低減した参考例1の場合、エッジオーバーコートの評価が劣化した。このことより、補助陰極の電流密度には下限(7A/dm )があり、補助陰極の電流密度を下限より高くし、かつ被めっき材の電流密度より低くすることが好ましいことがわかる。
(Experiment 1A)
In the case of Experiment 1A in which the distance is 60 mm, even when the current density of the material to be plated and the auxiliary cathode is the same (Invention Example 1), the deposition of the plating metal on the edge overcoat and the auxiliary cathode is evaluated by Δ. There was no problem in practical use. In the case of Invention Example 2 in which the current density of the auxiliary cathode was made lower than the current density of the material to be plated, the plating metal deposition on the edge overcoat and the auxiliary cathode was both evaluated as ◯, and the current density was the same. The evaluation was superior to that of Example 1.
On the other hand, in the case of Reference Example 1 in which the current density of the auxiliary cathode was reduced to 6 A / dm 2 , the evaluation of the edge overcoat deteriorated. This shows that the current density of the auxiliary cathode has a lower limit (7 A / dm 2 ), and it is preferable to make the current density of the auxiliary cathode higher than the lower limit and lower than the current density of the material to be plated.

(実験2A,3A)
実験2Aにおいても同様な結果が得られ、実験2Aにおける補助陰極の電流密度の下限は7A/dm であった(発明例4)。
実験3Aにおいても同様な結果が得られたが、実験3Aにおける補助陰極の電流密度の下限は1.5A/dm であり(発明例7)、アノードマスクを用いると補助陰極の電流密度の下限が低くなり、補助陰極の電流密度の操作範囲が広がることが判明した。


(Experiment 2A, 3A)
Similar results were obtained in Experiment 2A, and the lower limit of the current density of the auxiliary cathode in Experiment 2A was 7 A / dm 2 (Invention Example 4).
Similar results were obtained in Experiment 3A, but the lower limit of the current density of the auxiliary cathode in Experiment 3A was 1.5 A / dm 2 (Invention Example 7). When an anode mask was used, the lower limit of the current density of the auxiliary cathode was It has been found that the operating range of the current density of the auxiliary cathode is widened.


(実験1B)
上記間隔を60mmより広げていくと、間隔が85mmの場合は、実験1Aと同様に被めっき材と補助陰極の電流密度が同一であっても(発明例1)、エッジオーバーコートがなく、補助陰極へのめっき金属の析出が共に△の評価であり、実用上問題はなかった。一方、間隔を260mmまで広げると、被めっき材と補助陰極の電流密度が同一の場合は(参考例1)、エッジオーバーコートが生じた。そこで、補助陰極の電流密度を被めっき材の電流密度より上昇させると(発明例2)、エッジオーバーコートを防止することができた。
以上より、補助陰極の電流密度、及び/又は補助陰極と被めっき材との間隔を調整することにより、確実にエッジオーバーコートを抑制できることがわかる。
(Experiment 1B)
When the interval is increased from 60 mm, when the interval is 85 mm, the current density of the material to be plated and the auxiliary cathode is the same as in Experiment 1A (Invention Example 1), and there is no edge overcoat and auxiliary The deposition of the plating metal on the cathode was evaluated as Δ, and there was no practical problem. On the other hand, when the interval was increased to 260 mm, an edge overcoat occurred when the current density of the material to be plated and the auxiliary cathode was the same ( Reference Example 1). Therefore, when the current density of the auxiliary cathode was increased from the current density of the material to be plated (Invention Example 2), edge overcoat could be prevented.
From the above, it can be seen that edge overcoat can be reliably suppressed by adjusting the current density of the auxiliary cathode and / or the distance between the auxiliary cathode and the material to be plated.

(実験2B,3B)
実験2Bにおいても実験1Bと同様な結果が得られた。
実験3Bにおいては、上記間隔を広げても、被めっき材と補助陰極の電流密度を同一としたり(発明例5)、補助陰極の電流密度を被めっき材の電流密度より低くして(発明例6,7)、エッジオーバーコートを抑制することができた。
(Experiment 2B, 3B)
In Experiment 2B, the same results as in Experiment 1B were obtained.
In Experiment 3B, even if the interval is increased, the current density of the material to be plated and the auxiliary cathode is made the same (Invention Example 5), or the current density of the auxiliary cathode is made lower than the current density of the material to be plated (Invention Example). 6, 7), edge overcoat could be suppressed.

<実験4>
実験2A又は実験3Aと同様に上記間隔を60mmとして実験及び評価を行った。但し、図2においてストリップの位置を中央部から左に40mm動かし、ストリップ端面と左側の補助陰極の距離を20mmとした。一方、右側のエッジオーバーコート防止装置において、補助陰極とストリップ端面との距離を20mmとした。
実験4においては、左右の補助陰極の電流密度を変えるため、図6の電源配置(主電源と別個に補助陰極用電源を持ち、かつ左右の補助陰極にそれぞれ別の補助陰極用電源を設けた)とした。又、アノードマスクの効果を判定するため、アノードマスクを用いないものを発明例7とし、図8のアノードマスクを用いたものを発明例8とした。
一方、左右の補助陰極の電流密度を同一としたものを参考例4,5とした。但し、参考例4はアノードマスクを用いず、参考例5はアノードマスクを用いた。
得られた結果を表2に示す。
<Experiment 4>
In the same manner as in Experiment 2A or Experiment 3A, the interval was set to 60 mm, and the experiment and evaluation were performed. However, in FIG. 2, the strip position was moved 40 mm to the left from the center, and the distance between the strip end face and the left auxiliary cathode was 20 mm. On the other hand, in the right edge overcoat prevention device, the distance between the auxiliary cathode and the strip end face was 20 mm.
In Experiment 4, in order to change the current density of the left and right auxiliary cathodes, the power supply arrangement shown in FIG. 6 (the auxiliary cathode power source was provided separately from the main power source, and separate auxiliary cathode power sources were provided for the left and right auxiliary cathodes, respectively. ). Further, in order to determine the effect of the anode mask, Example 7 was used without using the anode mask, and Example 8 was used with the anode mask of FIG.
On the other hand, reference examples 4 and 5 were obtained in which the current densities of the left and right auxiliary cathodes were the same. However, Reference Example 4 did not use an anode mask, and Reference Example 5 used an anode mask.
The obtained results are shown in Table 2.

Figure 0004977046
Figure 0004977046

表2から明らかなように、発明例8,9の場合、左右の補助陰極の電流密度を変え、被めっき材との間隔の狭くなった左側の補助陰極の電流密度を低く、間隔の広くなった右側の補助陰極の電流密度を高くしたため、被めっき材の両エッジ部のめっき厚をほぼ同等にすることができ、被めっき材の片方の端部にエッジオーバーコートが発生したり顕著になることがなかった。
なお、アノードマスクを用いた発明例9の場合、発明例8に比べて補助陰極の電流密度を低くすることができた。
一方、左右の補助陰極の電流密度を同じとした参考例4,5の場合、被めっき材の左側端部にエッジオーバーコートが発生し、右側端部では中央部よりめっき厚が薄くなった。つまり、被めっき材の両エッジ部のめっき厚が大幅に異なるものとなった。


As is clear from Table 2, in the case of Invention Examples 8 and 9, the current density of the left and right auxiliary cathodes is changed, the current density of the left auxiliary cathode, which is narrower from the material to be plated, is lowered, and the distance is increased. Since the current density of the auxiliary cathode on the right side is increased, the plating thicknesses at both edges of the material to be plated can be made substantially equal, and an edge overcoat occurs or becomes noticeable at one end of the material to be plated. It never happened.
In the case of Invention Example 9 using the anode mask, the current density of the auxiliary cathode could be made lower than that of Invention Example 8.
On the other hand, in Reference Examples 4 and 5 in which the current densities of the left and right auxiliary cathodes were the same, an edge overcoat occurred at the left end of the material to be plated, and the plating thickness was thinner at the right end than at the center. That is, the plating thicknesses at both edge portions of the material to be plated were significantly different.


次に、本発明に含まれない比較例について、実験1〜3と同様に実験及び評価を行った。
但し、比較例6、7は、それぞれ発明例1、2において絶縁体を用いず、比較例8は、比較例1において絶縁体を用いなかった。又、比較例9、10は、それぞれ発明例5,6において絶縁体を用いなかった。比較例11は、本発明のエッジオーバーコート防止装置を用いず、図8のアノードマスクを用いてめっきを行った。比較例12は、本発明のエッジオーバーコート防止装置を用いず、図2のエッジマスクと図8のアノードマスクのみを用いてめっきを行った。比較例12は、本発明のエッジオーバーコート防止装置を用いず、図2のエッジマスクのみを用いてめっきを行った。なお、比較例6〜11において、被めっき材(ストリップ)と補助陰極の間隔(最も被めっき材に近接した距離)を60mmで一定とした。
Next, experiments and evaluations were performed on Comparative Examples not included in the present invention in the same manner as Experiments 1 to 3.
However, Comparative Examples 6 and 7 did not use an insulator in Invention Examples 1 and 2, respectively, and Comparative Example 8 did not use an insulator in Comparative Example 1. Comparative Examples 9 and 10 did not use an insulator in Invention Examples 5 and 6, respectively. In Comparative Example 11, plating was performed using the anode mask of FIG. 8 without using the edge overcoat prevention device of the present invention. In Comparative Example 12, plating was performed using only the edge mask of FIG. 2 and the anode mask of FIG. 8 without using the edge overcoat prevention device of the present invention. In Comparative Example 12, plating was performed using only the edge mask of FIG. 2 without using the edge overcoat prevention device of the present invention. In Comparative Examples 6 to 11, the distance between the material to be plated (strip) and the auxiliary cathode (the distance closest to the material to be plated) was constant at 60 mm.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0004977046
Figure 0004977046

表3から明らかなように、補助陰極のみを用いた比較例6〜10の場合、被めっき材の方向に、補助陰極上にSnの析出が確認された。これは、析出したSnと被めっき材が衝突する可能性を示す。
又、補助陰極を用いなかった比較例11〜13の場合、エッジオーバーコートを防止できなかった。
As is apparent from Table 3, in Comparative Examples 6 to 10 using only the auxiliary cathode, Sn deposition was confirmed on the auxiliary cathode in the direction of the material to be plated. This indicates the possibility that the deposited Sn and the material to be plated collide.
In Comparative Examples 11 to 13 where no auxiliary cathode was used, edge overcoat could not be prevented.

エッジオーバーコート防止装置が配置される連続電気めっき装置の全体構成図である。It is a whole block diagram of the continuous electroplating apparatus by which an edge overcoat prevention apparatus is arrange | positioned. 図1の紙面方向に平行な面で銅箔ストリップを切断したときの、本発明の第1の実施形態に係るエッジオーバーコート防止装置を示す断面図である。It is sectional drawing which shows the edge overcoat prevention apparatus which concerns on the 1st Embodiment of this invention when a copper foil strip is cut | disconnected by the surface parallel to the paper surface direction of FIG. 本発明の第2の実施形態に係るエッジオーバーコート防止装置を示す断面図である。It is sectional drawing which shows the edge overcoat prevention apparatus which concerns on the 2nd Embodiment of this invention. 本発明の実施形態に係るエッジオーバーコート防止装置への電源配線を示す図である。It is a figure which shows the power supply wiring to the edge overcoat prevention apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るエッジオーバーコート防止装置への電源配線を示す別の図である。It is another figure which shows the power supply wiring to the edge overcoat prevention apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るエッジオーバーコート防止装置への電源配線を示すさらに別の図である。It is another figure which shows the power supply wiring to the edge overcoat prevention apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るエッジオーバーコート防止装置におけるアノードマスクを示す断面図である。It is sectional drawing which shows the anode mask in the edge overcoat prevention apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るエッジオーバーコート防止装置における別のアノードマスクを示す断面図である。It is sectional drawing which shows another anode mask in the edge overcoat prevention apparatus which concerns on embodiment of this invention. 図2に対応するエッジオーバーコート防止装置の実際の寸法を示す図である。It is a figure which shows the actual dimension of the edge overcoat prevention apparatus corresponding to FIG. 図3に対応するエッジオーバーコート防止装置の実際の寸法を示す図である。It is a figure which shows the actual dimension of the edge overcoat prevention apparatus corresponding to FIG. 従来のエッジマスクを片面めっきに用いた場合の電気力線を示す断面図である。It is sectional drawing which shows the electric lines of force at the time of using the conventional edge mask for single-sided plating.

符号の説明Explanation of symbols

2 絶縁体
4 補助陰極
6 エッジオーバーコート防止装置
10 主電極(アノード)
20 被めっき材(銅箔ストリップ)
20c 被めっき材の端部
2 Insulator 4 Auxiliary cathode 6 Edge overcoat prevention device 10 Main electrode (anode)
20 Material to be plated (copper foil strip)
20c Edge of material to be plated

Claims (9)

ストリップを電気めっきする際に用いられ、
前記ストリップの両端に対向してそれぞれ配置される絶縁体と、
前記絶縁体を挟んで前記ストリップの近傍に配置される補助陰極とを備え、
前記絶縁体の一部が前記ストリップの端部より内側に延びて該端部を覆うエッジマスクを構成し、
前記ストリップの厚み方向に沿って、前記補助陰極の外周縁が前記絶縁体の外周縁より内側に位置するエッジオーバーコート防止装置。
Used when electroplating strips ,
Insulators respectively disposed opposite to both ends of the strip ;
An auxiliary cathode disposed in the vicinity of the strip across the insulator,
A portion of the insulator extends inward from the end of the strip to form an edge mask covering the end;
An edge overcoat prevention device in which an outer peripheral edge of the auxiliary cathode is positioned inside an outer peripheral edge of the insulator along a thickness direction of the strip .
前記ストリップの片面が絶縁性である請求項1に記載のエッジオーバーコート防止装置。 Edge overcoat protection device according to claim 1 one side Ru insulating der of the strip. 前記補助陰極と前記ストリップとの間隔を調整する間隔調整手段、及び/又は前記補助陰極の電流を調整する電流調整手段を有する請求項1又は2に記載のエッジオーバーコート防止装置。 The auxiliary cathode and the gap adjusting means for adjusting the distance between the strips, and / or the edge overcoat protection device according to claim 1 or 2 that have a current adjusting means for adjusting the current of the auxiliary cathode. 前記電流調整手段は、前記ストリップに印加される電流と独立して前記補助陰極の電流を調整可能である請求項に記載のエッジオーバーコート防止装置。 4. The edge overcoat prevention device according to claim 3 , wherein the current adjusting means is capable of adjusting the current of the auxiliary cathode independently of the current applied to the strip . 前記補助陰極は前記ストリップの両端に対向してそれぞれ配置され、前記電流調整手段は各補助陰極の電流をそれぞれ独立して調整可能である請求項3又は4に記載のエッジオーバーコート防止装置。 The auxiliary cathode is disposed opposite the ends of the strip, said current adjusting means edge overcoat prevention device according to claim 3 or 4 Ru adjustable der the auxiliary cathode current independently. 前記ストリップに対向するアノードにアノードマスクを備えた請求項5に記載のエッジオーバーコート防止装置。 The edge overcoat prevention device according to claim 5, further comprising an anode mask on an anode facing the strip . 前記補助陰極の電流密度を7A/dm 以上、かつストリップの電流密度より低く設定する請求項1〜6のいずれかに記載のエッジオーバーコート防止装置。 The edge overcoat prevention device according to any one of claims 1 to 6, wherein the current density of the auxiliary cathode is set to 7 A / dm 2 or more and lower than the current density of the strip. 前記補助陰極と前記ストリップとの間隔を85mm以下に調整する請求項1〜7のいずれかに記載のエッジオーバーコート防止装置。  The edge overcoat prevention apparatus in any one of Claims 1-7 which adjusts the space | interval of the said auxiliary cathode and the said strip to 85 mm or less. ストリップの両端に対向してそれぞれ絶縁体を配置し、前記絶縁体の一部が前記ストリップの端部より内側に延びて該端部を覆うエッジマスクを構成させ、
前記絶縁体を挟んで前記ストリップと反対側に補助陰極を配置し、かつ前記ストリップの厚み方向に沿って、前記補助陰極の外周縁を前記絶縁体の外周縁より内側に位置させ、
前記ストリップと前記補助陰極とをカソードとして前記ストリップに電気めっきする電気めっき材の製造方法。
Insulators are respectively disposed opposite to both ends of the strip, and an edge mask is formed in which a part of the insulator extends inward from the end of the strip and covers the end,
An auxiliary cathode is disposed on the opposite side of the strip across the insulator, and the outer peripheral edge of the auxiliary cathode is positioned inside the outer peripheral edge of the insulator along the thickness direction of the strip ,
A method of manufacturing an electroplating material for electroplating the strip using the strip and the auxiliary cathode as a cathode.
JP2008010549A 2008-01-21 2008-01-21 Edge overcoat prevention device and electroplating material manufacturing method using the same Active JP4977046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010549A JP4977046B2 (en) 2008-01-21 2008-01-21 Edge overcoat prevention device and electroplating material manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010549A JP4977046B2 (en) 2008-01-21 2008-01-21 Edge overcoat prevention device and electroplating material manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2009173952A JP2009173952A (en) 2009-08-06
JP4977046B2 true JP4977046B2 (en) 2012-07-18

Family

ID=41029353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010549A Active JP4977046B2 (en) 2008-01-21 2008-01-21 Edge overcoat prevention device and electroplating material manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP4977046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103334137A (en) * 2013-04-02 2013-10-02 中冶南方工程技术有限公司 Edge cover covering anode edge and edge cover group

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368928B2 (en) * 2009-09-29 2013-12-18 株式会社Shカッパープロダクツ Copper foil continuous electrolytic plating equipment
JP5356968B2 (en) * 2009-09-30 2013-12-04 Jx日鉱日石金属株式会社 Sn plating film and composite material having the same
KR101421783B1 (en) 2011-12-12 2014-07-30 재단법인 포항산업과학연구원 Electro plating equipment using virtual cathode
KR101495419B1 (en) * 2013-04-10 2015-02-24 주식회사 포스코 Electro-plating apparatus utilizing edge mask to prevent the edge overcoating
KR101628061B1 (en) * 2014-12-03 2016-06-08 주식회사 포스코 Electroplating system with movable virtual cathode
US10480094B2 (en) 2016-07-13 2019-11-19 Iontra LLC Electrochemical methods, devices and compositions
KR20200075843A (en) * 2017-10-20 2020-06-26 아루멕쿠스 피이 가부시키가이샤 Surface treatment device
CN116419991B (en) * 2021-06-01 2024-03-01 株式会社荏原制作所 Plating apparatus and plating method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601399B2 (en) * 1977-08-29 1985-01-14 新日本製鐵株式会社 Dummy cathode for electrolytic treatment of metals
JPS5727816Y2 (en) * 1978-04-18 1982-06-17
JPS62103392A (en) * 1985-10-31 1987-05-13 Nippon Kokan Kk <Nkk> Continuous electroplating method for metallic strip
JPS62103393A (en) * 1985-10-31 1987-05-13 Nippon Kokan Kk <Nkk> Continuous electroplating method for metallic strip
JPH0126771Y2 (en) * 1985-12-09 1989-08-10
JP2551092B2 (en) * 1988-03-15 1996-11-06 日本鋼管株式会社 Method and apparatus for preventing over-plating of end portions of metal strip in electric plating line
JPH0617298A (en) * 1992-07-03 1994-01-25 Sumitomo Metal Mining Co Ltd Electroplating method
JPH06306695A (en) * 1993-04-27 1994-11-01 Kawasaki Steel Corp Equipment for continuously electropoplating metallic strip and method for controlling coating weight in width direction
JP2789576B2 (en) * 1993-08-06 1998-08-20 日本軽金属株式会社 Conductive jig for plating printing rolls
JP2775232B2 (en) * 1994-07-25 1998-07-16 富士電気化学株式会社 Plating method in thin film magnetic head manufacturing process
JPH08239796A (en) * 1995-03-01 1996-09-17 Nippon Steel Corp Edge mask for electroplating and electroplating method
JPH09213834A (en) * 1996-02-02 1997-08-15 Sumitomo Kinzoku Electro Device:Kk Ni plating treatment for ceramic plate board
JP4290354B2 (en) * 2001-08-09 2009-07-01 株式会社リコー Method for producing seamless endless member
JP2004232063A (en) * 2003-01-31 2004-08-19 Microhard Corp Surface plating device for metallic foil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103334137A (en) * 2013-04-02 2013-10-02 中冶南方工程技术有限公司 Edge cover covering anode edge and edge cover group
CN103334137B (en) * 2013-04-02 2016-03-30 中冶南方工程技术有限公司 Cover on side cover and the side cover group of anode edge

Also Published As

Publication number Publication date
JP2009173952A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP4977046B2 (en) Edge overcoat prevention device and electroplating material manufacturing method using the same
JP5329715B2 (en) Electrolytic copper foil
KR101495419B1 (en) Electro-plating apparatus utilizing edge mask to prevent the edge overcoating
JP4426127B2 (en) Metal foil electrolytic manufacturing equipment
WO2020071321A1 (en) Plating device
JP5212225B2 (en) Copper foil plating method and plating apparatus therefor
JP2009293114A (en) Electrolytic plating device and electrolytic plating method
JP2019183249A (en) Anode shielding plate, electrolytic plating device, and method for manufacturing metal-clad laminate
US6183607B1 (en) Anode structure for manufacture of metallic foil
JP6221817B2 (en) Continuous electrolytic plating apparatus and method, metallized resin film and method for producing the same
JP6646331B2 (en) Partial plating method and apparatus therefor
US6291080B1 (en) Thin copper foil, and process and apparatus for the manufacture thereof
KR102065220B1 (en) Electroplating apparatus with edge mask
KR101325390B1 (en) Metal Foil Manufacturing Apparatus Comprising Perpendicular Type Cell
JP6839992B2 (en) Plating method and its equipment
JP2018165378A (en) Masking material for partial plating, partial plating apparatus, and partial plating method
JP6893849B2 (en) Plating equipment for printed wiring boards and metal jigs
KR100297636B1 (en) Availability anodes of electroplating equipment
CN101538733A (en) Electrolytic treatment device and electrolytic treatment method
JPH08100292A (en) Formation of plating film and device therefor
JPH06306695A (en) Equipment for continuously electropoplating metallic strip and method for controlling coating weight in width direction
JPH09279391A (en) Continuous electroplating cell for metallic strip
JP2004083969A (en) Electrode for electroplating and electroplating method for metallic strip using the same
JPH10204698A (en) Continuous electrolytic etching apparatus
JP2015034341A (en) Continuous electric plating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4977046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250