JP4426127B2 - Metal foil electrolytic manufacturing equipment - Google Patents

Metal foil electrolytic manufacturing equipment Download PDF

Info

Publication number
JP4426127B2
JP4426127B2 JP2001095612A JP2001095612A JP4426127B2 JP 4426127 B2 JP4426127 B2 JP 4426127B2 JP 2001095612 A JP2001095612 A JP 2001095612A JP 2001095612 A JP2001095612 A JP 2001095612A JP 4426127 B2 JP4426127 B2 JP 4426127B2
Authority
JP
Japan
Prior art keywords
metal foil
rotating cathode
plate
supply port
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001095612A
Other languages
Japanese (ja)
Other versions
JP2002294481A (en
Inventor
文彰 細越
尚光 井上
悟 藤田
龍義 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001095612A priority Critical patent/JP4426127B2/en
Priority to TW091104071A priority patent/TW567249B/en
Priority to CNB028008383A priority patent/CN1272473C/en
Priority to US10/275,289 priority patent/US20030102209A1/en
Priority to KR1020027014971A priority patent/KR100864753B1/en
Priority to PCT/JP2002/002650 priority patent/WO2002079547A1/en
Publication of JP2002294481A publication Critical patent/JP2002294481A/en
Application granted granted Critical
Publication of JP4426127B2 publication Critical patent/JP4426127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属箔の電解製造装置に関し、特に、金属箔の箔幅方向における厚みの均一化を図る製造技術に関する。
【0002】
【従来の技術】
近年、金属箔は、プリント配線板材料である電解銅箔を代表として、様々な用途に利用されて、大量に製造されている。このような金属箔の製造方法としては、電解反応を利用したものが知られている。
【0003】
この電解反応を利用した金属箔の電解製造装置としては、例えば、図4に示すドラム状の回転陰極を用いて、金属箔を連続的に製造するものが用いられる。この図4に示す金属箔電解製造装置1は、金属箔を電着させるドラム状の回転陰極2と、該回転陰極2の周面形状に沿って対向配置した陽極3と、回転陰極2と陽極3との間に回転陰極2の下方側から電解液を供給する電解液供給口4を有する液供給手段5とを備え、この液供給手段5から電解液を供給しながら電解反応により回転陰極2周面に金属を電着し、電着した金属箔6を回転陰極2から連続的に剥がし取るようにされたものである。
【0004】
このような電解製造装置により得られる金属箔は、各用途に対応できる強度、表面性状、厚み均一性等の多くの特性要求があり、それらを満足したものを製造しなければならない。特に、プリント配線板材料として用いられる銅箔では、強度特性や表面性状はもとより、箔厚みの均一性が金属箔の品質として非常に重要なものとされる。
【0005】
この金属箔電解製造装置により得られる金属箔は、回転陰極に電析した金属を連続的に剥がし取ることで、長尺の金属箔をロール状にして製造されることが多い。このような場合、長手方向における金属箔の厚みは、回転陰極の回転速度をコントロールすることにより比較的容易に均一制御できるものの、金属箔の幅方向おいて、その厚みを均一に制御することは容易ではない。
【0006】
従来より、この金属箔電解製造装置により得られる金属箔の幅方向における厚み均一性を向上するために、回転陰極と対向する陽極を幅方向に分割し、電解電流の供給を幅方向で制御する対策が提案されている。
【発明が解決しようとする課題】
【0007】
しかしながら、このような電流供給方法の改善は、金属箔の幅方向における厚みの均一性をある程度は制御できるものの、十分に満足できるものではない。また、分割した陽極に異なる電解電流を供給できるようにするためには、金属箔電解製造装置構造が複雑になり、装置設計的にも好ましくない。
【0008】
更に、昨今の金属箔に対する品質要求は、各用途の技術進歩に伴い厳しくなってきており、特に、薄い箔厚みの金属箔を強く要望する傾向がある。例えば、プリント配線板材料として用いられている電解銅箔で見ると、従来35μm、18μmの箔厚みが主流であったが、最近では、12μm、9μmという極薄銅箔の要求が高まっている。このような極薄銅箔を上記金属箔電解製造装置で製造する場合、幅方向の厚み均一性が精密に維持されていないと、回転陰極から金属箔を剥がして巻き取りする際、箔にシワを生じてしまい製品として使用が困難となる。従来提案されている金属箔幅方向の厚みの均一性を図るための対応では、このような極薄の金属箔を製造するために必要な幅方向厚みの均一性を精密に制御することが難しい。そのため、極薄銅箔のような薄い厚みの金属箔を安定して市場に供給するには、従来よりも更に精密に幅方向厚みを均一化できる金属箔電解製造技術を確立することが必要不可欠なものといえる。
【0009】
本発明は、上記のような事情を背景になされたもので、ドラム状の回転陰極を用いて電析により金属箔を連続的に製造する場合において、金属箔の幅方向における箔厚みを精密に均一制御できる金属箔電解製造装置の提供を目的としている。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明者等は、ドラム状の回転陰極を用いる金属箔電解製造装置を詳細に検討をしたところ、回転陰極と陽極との間に供給する電解液の液流動状態が、金属箔の幅方向における厚みの均一性に大きく影響することに着目し、本発明を想到するに至った。
【0011】
本発明は、金属箔を電着させるドラム状の回転陰極と、該回転陰極の周面形状に沿って対向配置した陽極と、回転陰極と陽極との間に回転陰極の下方側から電解液を供給する電解液供給口を有する液供給手段とを備え、液供給手段から電解液を供給しながら電解反応により回転陰極周面に金属を電着し、電着した金属箔を回転陰極から連続的に剥がし取るものである金属箔電解製造装置において、液供給手段は、電解液供給口の上方に、回転陰極幅方向にわたる板状ダンパー体を備えたものとした。
【0012】
金属箔を電着させるドラム状の回転陰極と該回転陰極の周面形状に沿って対向配置した陽極との間に、回転陰極の下方側からに電解液を供給する場合、図4の破線矢印で示すように、供給される電解液は、電解液供給口と対向する位置の回転陰極表面に衝突し、回転陰極の周面形状に沿って二方向に分かれて上昇する液流動を形成する。
【0013】
この電解液供給口と対向する位置の回転陰極表面近傍では、電解液が回転陰極表面に衝突するため、渦流状態を生じやすく、回転陰極周面形状に沿って上昇する液流動状態と比べ、非常に複雑な液流動となる。また、この電解液供給口と対向する位置の回転陰極表面では、新たな電解液が連続的に供給されるので、電析に供することになる金属イオンは常に十分に供給されている状態である。このことを考慮すると、電解液供給口と対向する位置の回転陰極表面では、その液流動は複雑なため、他の回転陰極表面に比べ、幅方向で見た場合の電解液の供給量は不均一になり易いものと考えられる。そして、電解液が衝突する回転陰極表面では、電析に供する金属イオンが常時十分に供給されているため、金属箔の幅方向における厚みの不均一を引き起こす電析が生じているものと、本発明者等は推測したのである。
【0014】
そこで、本発明者等は、この電解液供給口と対向する位置の回転陰極表面で生じる複雑な液流動状態を解消すべく、電解液供給口の上方に、回転陰極幅方向にわたる板状ダンパー体を設けるようにしたのである。この板状ダンパー体を設けて、電解液供給口と対向する位置の回転陰極表面付近で生じる複雑な液流動状態を解消した結果、本発明者等の推測通り、幅方向における厚みの均一性が大きく向上できることを見出したのである。そして、この板状ダンパー体を設置することで、金属箔表面に生じる異常析出も低減される効果が有ることも判明したのである。
【0015】
本発明に係る金属箔電解製造装置の板状ダンパー体は、電解液供給口から回転陰極表面に向けて供給される電解液が、直接的に回転陰極表面に衝突するような液流動状態となることを解消できればよく、その形状、配置等に制約はない。要するに、電解供給口と回転陰極表面との間に、回転陰極幅方向にわたって設けられた板状ダンパー体が、電解液供給口から回転陰極表面に向けて供給される電解液の流動方向を妨げる状態となるものであれば、どのような形状、配置を行っても構わないものである。
【0016】
そして、本発明に係る金属箔電解製造装置の板状ダンパー体には、板幅中心に、板長手方向に延びる分流用突起部を設けることが望ましい。電解液供給口の上方に板状ダンパー体を設けると、供給される電解液は板状ダンパー体に直接衝突し、その部分で渦流等の複雑な液流動を形成しやすい。そこで、この板状ダンパー体の板幅中心に、分流用の突起部を板長手方向に設けておけば、板状ダンパー体に直接衝突する電解液は分流用突起部により2方向に分けられ、回転陰極周面形状に沿ってスムーズに上昇することになる。この分流用突起部を板状ダンパー体へ設けることにより、金属箔の幅方向における厚み均一性をより確実に向上できるものとなる。
【0017】
また、本発明に係る金属箔電解製造装置では、電解液供給口が回転陰極幅方向に複数に分割されており、分割された電解液供給口から供給する電解液流量を調整できるものであることが好ましい。このようにすると、金属箔の幅方向における厚みの均一性をより精密に制御することが容易となる。本発明に係る金属箔電解製造装置は、高い生産効率を実現するため、比較的大型の回転陰極や陽極を使用されることが多いが、このような大型の金属箔電解製造装置では、装置を構成する回転陰極や陽極の材質を均一に形成することが難しく、大型になるほど、装置毎の電析の偏りが生じやすい。そのため、製造される金属箔の幅方向における厚みバラツキも、装置毎に異なる傾向がある。このような装置毎の電析の偏りがある場合であっても、各装置での箔幅方向の厚みバラツキに合わせて、分割された電解液供給口から供給する電解液の流量を調節するようにすると、本発明に係る板状ダンパー体の効果と相乗して、金属箔幅方向における厚みの均一性を精密に制御することが容易に行えることになる。
【0018】
【発明の実施の形態】
以下、本発明の好適な実施形態について説明する。
【0019】
本実施形態の金属箔電解製造装置は、従来から使用されている装置と基本的に同様な構造で、その断面概略を図4に示している。金属箔電解製造装置1は、金属箔を電着させるドラム状の回転陰極2と、回転陰極2の周面形状に沿って対向配置した陽極3とを備えている。この回転陰極2と陽極3とは、図示せぬ給電装置と接続されている。そして、回転陰極2は、容積のほぼ半分が電解液に浸漬するようにされている。陽極3は、二分割されており、その分割された陽極3の間には、回転陰極2下方から電解液を供給するための電解液供給口4を有する電解液供給手段5が設けられている。この電解液供給口4から回転陰極2に向けて電解液を供給すると、図4の破線で示すように、電解液は回転陰極2周面形状に沿って上昇するように流動し、電解槽7にオーバーフローするようになっている。回転陰極2周面に電析した金属箔6は、回転陰極2から剥がされ、ガイドロール8を介して巻き取りロール9に巻き取られる。
【0020】
図1には、図4のAで囲まれた部分を拡大した斜視図を示している。電解液供給手段5の電解液供給口4は、回転陰極2の幅方向に複数分割されており、この分割された各電解液供給口4’、4’・・・・には、図示を省略するが、供給する電解液の流量を調整する流量調整手段がそれぞれ備えられている。
【0021】
図2には、本実施形態における金属箔電解製造装置1に板状ダンパー体を電解液供給口4の上部に配置した断面拡大図を示している。また、図3は、その板状ダンパー体を部分的に拡大して斜視図として示している。板状ダンパー体10は、回転陰極2の幅と略等しい長さで、電解液供給口4の幅よりも若干長い板幅を有したものであり、その板幅中央に、分流用突起部11が板長手方向にわたって形成されている。また、板状ダンパー体10の下面側、即ち、電解液供給口4に対面する側には、分割された電解液供給口4’に合わせて仕切壁12が設けられている。そして、この仕切壁12は、電解液供給口4の両側に位置する固定板13に立設されている。従って、板状ダンパー体10の下部には、分割された電解液供給口4’、4’・・・に合わせて液流出口14を形成するようになっている。
【0022】
この図2及び図3で示す板状ダンパー体10を電解液供給口4の上部に配置すると、図2の矢印で示すように、電解液供給口4から供給される電解液は、板状ダンパー体10に衝突することになり、また、分流用突起部11により、その流動方向を変更し二方向に分かれ、回転陰極2周面形状に沿って上昇する液流動状態を形成することになる。
【0023】
次ぎに、本実施形態に係る金属箔電解製造装置により、金属箔として銅箔を製造し、製造された銅箔の箔幅方向における厚み分布及び表面性状を調査した結果について説明する。
【0024】
金属箔として銅箔を製造する場合、周面表面がTi製のドラム状回転陰極(直径3m、幅1.35m)と、DSAと呼ばれる不溶性陽極とを用い、回転陰極と不溶性陽極との間隙が約20mmとなるように配置した銅箔電解製造装置を使用した。そして、分流用突起部を設けた板状ダンパー体はTi材により形成し(仕切板、固定板もTi材にて形成)、回転陰極と陽極との間の中間位置で、電解液供給口の上方に配置した。この板状ダンパー体の設置は、陽極と固定板との間に絶縁材を介在させて行い、板状ダンパー体に電解電流が流れないようにした。また、電解液には硫酸銅溶液を用いた。
【0025】
この銅箔電解製造装置において、板状ダンパー体を配置した場合と配置してない場合とで、それぞれ電解処理をして銅箔を製造し、銅箔幅方向における厚み分布及び表面性状を比較調査した。
【0026】
まず、銅箔幅方向における厚み分布を測定した結果について述べる。この幅方向における厚み分布測定は、回転陰極を静止した状態で電解液を供給して電解処理した銅箔によって行った。幅方向の厚み分布状態を測定したサンプルは、厚さ70μm相当の銅箔が形成されるように電解処理を行い、電解処理停止後、回転陰極の半周面に電析した銅箔を剥がし取ったものを用いた。この静止電解により得られたサンプルから、回転陰極周面の円周方向で、長さ150mm×幅1350mm(回転陰極幅)の帯状試料を、電解液供給口と対向する部分を中心に、前後2枚ずつ、合計4枚切り出した(A〜D)。
【0027】
そして、この切り出した各帯状試料は、さらに、幅10mm×長さ100mmの短冊状に細分した。この細分により帯状試料は、幅方向に84個の短冊に分割された。そして、この短冊の各質量を測定することで、質量厚み(g/m)を算出し、この値を銅箔の厚みとした。
【0028】
静止電解から切り出した4つ帯状試料(A〜D)について、84分割した短冊の各質量を測定し、その幅方向位置に合わせてプロットしたものを図5及び図6に示す。
【0029】
図5は板状ダンパー体を配置した場合であり、図6は板状ダンパー体を配位置していない場合を示している。この帯状試料A〜Dにおいて、帯状試料BとCとの間が電解液供給口に対向する部分に相当する位置である。尚、図5及び図6では、帯状試料から84分割した短冊のうち最大質量厚み値を特定し、各短冊の質量厚み値と最大質量厚み値との差をそれぞれ計算し、各質量厚み差を最大質量厚み値で割ることより、各厚み比率(%)値を算出して、その値をプロットしている。
【0030】
板状ダンパー体を配置していない場合、A〜Dの帯状試料の全てで見ると、最大14.2%の質量厚みの相違が生じており、平均6.5%の質量厚みの相違があった。また、図6を見ると判るように、板状ダンパー体を配置しないと、A〜Dの各帯状試料における幅方向の質量厚みにかなりのバラツキが生じており、このときの標準偏差は3.05(A〜Dの全てのデータより算出した値)であった。
【0031】
一方、板状ダンパー体を配置した場合、最大でも10.8%の質量厚みの相違に低減しており、平均3.4%の質量厚みの相違となっていた。そして、図5を見ると判るように、板状ダンパー体を配置すると、A〜Dの各帯状試料における幅方向の質量厚みは非常に均一となり、標準偏差も1.89(A〜Dの全てのデータより算出した値)となっていることが確認された。尚、本実施形態での幅方向の厚み分布調査は、幅10mm×長さ100mmの短冊に細分化したものより行っているが、銅箔幅方向でこのような精密なレベルで分割した場合において、標準偏差1.89という低いバラツキに制御できたことは、従来の銅箔製造装置で全く成し得なかったことである。
【0032】
続いて、銅箔の表面性状調査を行った結果について述べる。表面性状の比較調査は、厚さ35μmの銅箔を長さ10m製造して、得られた銅箔の粗面(マット面;電析終了面に相当する表面)における異常析出を観察することで行った。この異常析出とは、製造される金属箔表面の電析終了面側において、周辺よりも異常に突起した状態で析出している部分をいうものである。この表面性状の調査は、製造した銅箔から100mm×100mm角のサンプルをランダムに採取して、そのサンプルの粗面側を実体顕微鏡で観察し、異常析出の存在有無を確認することによって行った。
【0033】
その結果、板状ダンパー体を設けていない場合の銅箔では、殆どすべてのサンプルにおいて、異常析出と見られるものが多く確認された。一方、板状ダンパー体を設けた場合の銅箔では、どのサンプルにおいても、異常析出と見られるものは非常に少なく、板状ダンパー体が異常析出の低減に効果的であることが確認された。
【0034】
【発明の効果】
本発明によれば、ドラム状の回転陰極を用いて電析により金属箔を連続的に製造する場合において、金属箔の幅方向における厚みの均一性を精密に制御することができ、金属箔表面に生じる異常析出の発生を抑制することも可能となる。
【図面の簡単な説明】
【図1】金属箔電解製造装置の部分拡大斜視図。
【図2】板状ダンパー体を配置した金属箔電解製造装置の部分拡大断面図。
【図3】板状ダンパー体の部分拡大斜視図。
【図4】金属箔電解製造装置の概略断面図。
【図5】板状ダンパー体を配置した場合の幅方向厚み分布グラフ。
【図6】板状ダンパー体を配置しない場合の幅方向厚み分布グラフ。
【符号の説明】
1 金属箔電解製造装置
2 回転陰極
3 陽極
4、4’ 電解液供給口
5 液供給手段
6 金属箔
7 電解槽
8 ガイドロール
9 巻き取りロール
10 板状ダンパー体
11 分流用突起
12 仕切壁
13 固定板
14 液流出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic production apparatus for metal foil, and more particularly to a production technique for achieving uniform thickness in the foil width direction of metal foil.
[0002]
[Prior art]
In recent years, metal foils have been produced in large quantities by being used in various applications, typically electrolytic copper foil, which is a printed wiring board material. As a method for producing such a metal foil, a method using an electrolytic reaction is known.
[0003]
As an apparatus for electrolytically producing metal foil utilizing this electrolytic reaction, for example, an apparatus for continuously producing metal foil using a drum-shaped rotating cathode shown in FIG. 4 is used. The metal foil electrolysis production apparatus 1 shown in FIG. 4 includes a drum-shaped rotating cathode 2 on which a metal foil is electrodeposited, an anode 3 disposed opposite to the circumferential surface of the rotating cathode 2, a rotating cathode 2 and an anode. 3 is provided with a liquid supply means 5 having an electrolyte supply port 4 for supplying an electrolyte from the lower side of the rotary cathode 2, and the rotary cathode 2 by an electrolytic reaction while supplying the electrolyte from the liquid supply means 5. A metal is electrodeposited on the peripheral surface, and the electrodeposited metal foil 6 is continuously peeled off from the rotating cathode 2.
[0004]
The metal foil obtained by such an electrolytic production apparatus has many characteristic requirements such as strength, surface properties, and thickness uniformity that can be used for each application, and must satisfy those requirements. In particular, in a copper foil used as a printed wiring board material, not only strength characteristics and surface properties, but also uniformity of the foil thickness is very important as the quality of the metal foil.
[0005]
The metal foil obtained by this metal foil electrolysis production apparatus is often produced in a roll shape from a long metal foil by continuously peeling off the metal deposited on the rotating cathode. In such a case, the thickness of the metal foil in the longitudinal direction can be controlled relatively easily by controlling the rotation speed of the rotating cathode, but it is possible to control the thickness uniformly in the width direction of the metal foil. It's not easy.
[0006]
Conventionally, in order to improve the thickness uniformity in the width direction of the metal foil obtained by this metal foil electrolytic manufacturing apparatus, the anode facing the rotating cathode is divided in the width direction, and the supply of the electrolytic current is controlled in the width direction. Countermeasures have been proposed.
[Problems to be solved by the invention]
[0007]
However, such an improvement in the current supply method can control the uniformity of the thickness in the width direction of the metal foil to some extent, but is not fully satisfactory. Moreover, in order to be able to supply different electrolysis currents to the divided anodes, the structure of the metal foil electrolysis production apparatus becomes complicated, which is not preferable in terms of apparatus design.
[0008]
Furthermore, the quality requirements for recent metal foils have become stricter with the technological progress of each application, and in particular, there is a tendency to strongly demand a metal foil with a thin foil thickness. For example, when viewed from an electrolytic copper foil used as a printed wiring board material, the conventional foil thicknesses of 35 μm and 18 μm have been mainstream, but recently, the demand for ultra-thin copper foils of 12 μm and 9 μm is increasing. When manufacturing such an ultra-thin copper foil with the above-described metal foil electrolysis manufacturing apparatus, if the thickness uniformity in the width direction is not accurately maintained, when the metal foil is peeled off from the rotating cathode and wound, It becomes difficult to use as a product. It is difficult to precisely control the uniformity of the thickness in the width direction necessary for manufacturing such an extremely thin metal foil in the conventionally proposed measures for the uniformity of the thickness in the width direction of the metal foil. . Therefore, in order to stably supply a thin metal foil such as ultra-thin copper foil to the market, it is essential to establish a metal foil electrolytic manufacturing technology that can make the thickness in the width direction even more precise than before. It can be said that.
[0009]
The present invention has been made in the background as described above. When a metal foil is continuously produced by electrodeposition using a drum-shaped rotating cathode, the foil thickness in the width direction of the metal foil is precisely determined. An object of the present invention is to provide a metal foil electrolytic production apparatus that can be uniformly controlled.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have studied in detail a metal foil electrolysis production apparatus using a drum-shaped rotating cathode, and the liquid flow state of the electrolyte supplied between the rotating cathode and the anode However, focusing on the fact that the thickness uniformity in the width direction of the metal foil is greatly affected, the present invention has been conceived.
[0011]
The present invention provides a drum-shaped rotating cathode on which a metal foil is electrodeposited, an anode disposed oppositely along the circumferential shape of the rotating cathode, and an electrolyte solution from the lower side of the rotating cathode between the rotating cathode and the anode. A liquid supply means having an electrolyte supply port for supplying the electrode, and while supplying the electrolyte solution from the liquid supply means, a metal is electrodeposited on the peripheral surface of the rotating cathode by an electrolytic reaction, and the electrodeposited metal foil is continuously formed from the rotating cathode. In the metal foil electrolysis manufacturing apparatus that is to be peeled off, the liquid supply means is provided with a plate-like damper body extending in the width direction of the rotating cathode above the electrolyte supply port.
[0012]
When supplying the electrolyte from the lower side of the rotating cathode between the drum-shaped rotating cathode on which the metal foil is electrodeposited and the anode arranged opposite to the peripheral surface of the rotating cathode, the broken line arrow in FIG. As shown, the supplied electrolytic solution collides with the surface of the rotating cathode at a position facing the electrolytic solution supply port, and forms a liquid flow that rises in two directions along the circumferential shape of the rotating cathode.
[0013]
In the vicinity of the surface of the rotating cathode facing the electrolyte supply port, the electrolyte collides with the surface of the rotating cathode, so that an eddy current state is likely to occur, and compared with a liquid flow state that rises along the shape of the surface of the rotating cathode. Complicated liquid flow. In addition, since a new electrolyte is continuously supplied on the surface of the rotating cathode facing the electrolyte supply port, the metal ions to be subjected to electrodeposition are always sufficiently supplied. . Considering this, the liquid flow is complicated on the surface of the rotating cathode facing the electrolyte supply port, so the amount of electrolyte supplied when viewed in the width direction is less than that of other rotating cathode surfaces. It is thought that it becomes easy to become uniform. And, on the surface of the rotating cathode where the electrolytic solution collides, metal ions for electrodeposition are always sufficiently supplied, so that electrodeposition causing non-uniform thickness in the width direction of the metal foil occurs. The inventors have speculated.
[0014]
Accordingly, the present inventors have provided a plate-like damper body that extends in the width direction of the rotary cathode above the electrolyte supply port in order to eliminate the complicated liquid flow state that occurs on the surface of the rotary cathode that faces the electrolyte supply port. It was made to provide. As a result of eliminating this complicated liquid flow state that occurs near the surface of the rotating cathode at a position facing the electrolyte supply port by providing this plate-like damper body, the thickness uniformity in the width direction is as estimated by the present inventors. They found that it can be greatly improved. It was also found that the installation of this plate-like damper body has an effect of reducing abnormal precipitation that occurs on the surface of the metal foil.
[0015]
The plate-like damper body of the metal foil electrolysis production apparatus according to the present invention is in a liquid flow state in which the electrolyte supplied from the electrolyte supply port toward the surface of the rotating cathode directly collides with the surface of the rotating cathode. There is no restriction on its shape, arrangement, etc. In short, the state where the plate-like damper provided between the electrolytic supply port and the rotating cathode surface across the width direction of the rotating cathode obstructs the flow direction of the electrolytic solution supplied from the electrolytic solution supply port toward the rotating cathode surface. Any shape and arrangement may be used as long as they are.
[0016]
The plate-like damper body of the metal foil electrolytic production apparatus according to the present invention is desirably provided with a branching projection extending in the plate longitudinal direction at the plate width center. When a plate-like damper body is provided above the electrolyte solution supply port, the supplied electrolyte solution directly collides with the plate-like damper body, and a complicated liquid flow such as a vortex is easily formed in that portion. Therefore, if a projection for shunting is provided in the longitudinal direction of the plate at the center of the plate width of the plate-like damper body, the electrolytic solution that directly collides with the plate-like damper body is divided into two directions by the shunting projection, It rises smoothly along the rotating cathode peripheral surface shape. By providing the branching projections on the plate-like damper body, the thickness uniformity in the width direction of the metal foil can be improved more reliably.
[0017]
Moreover, in the metal foil electrolysis production apparatus according to the present invention, the electrolyte supply port is divided into a plurality in the width direction of the rotating cathode, and the flow rate of the electrolyte supplied from the divided electrolyte supply port can be adjusted. Is preferred. If it does in this way, it will become easy to control the thickness uniformity in the width direction of metal foil more precisely. In order to achieve high production efficiency, the metal foil electrolytic production apparatus according to the present invention often uses a relatively large rotating cathode or anode. In such a large metal foil electrolytic production apparatus, the apparatus is It is difficult to form the material of the rotating cathode and anode to be formed uniformly, and the larger the size, the easier the electrodeposition of each apparatus. Therefore, the thickness variation in the width direction of the manufactured metal foil also tends to be different for each apparatus. Even if there is a bias in electrodeposition for each device, the flow rate of the electrolyte supplied from the divided electrolyte supply port is adjusted in accordance with the thickness variation in the foil width direction of each device. Then, in synergy with the effect of the plate-like damper body according to the present invention, it is possible to easily control the thickness uniformity in the metal foil width direction with precision.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0019]
The metal foil electrolysis production apparatus of this embodiment has a structure basically similar to that of a conventionally used apparatus, and a schematic cross section thereof is shown in FIG. The metal foil electrolysis production apparatus 1 includes a drum-shaped rotating cathode 2 for electrodepositing a metal foil, and an anode 3 disposed so as to face the circumferential surface of the rotating cathode 2. The rotating cathode 2 and the anode 3 are connected to a power supply device (not shown). The rotating cathode 2 is so arranged that approximately half of its volume is immersed in the electrolyte. The anode 3 is divided into two parts, and an electrolyte supply means 5 having an electrolyte supply port 4 for supplying an electrolyte from below the rotary cathode 2 is provided between the divided anodes 3. . When the electrolytic solution is supplied from the electrolytic solution supply port 4 toward the rotating cathode 2, the electrolytic solution flows so as to rise along the circumferential shape of the rotating cathode 2 as shown by the broken line in FIG. It is supposed to overflow. The metal foil 6 electrodeposited on the peripheral surface of the rotating cathode 2 is peeled off from the rotating cathode 2 and wound on a winding roll 9 via a guide roll 8.
[0020]
FIG. 1 shows an enlarged perspective view of a portion surrounded by A in FIG. The electrolyte solution supply port 4 of the electrolyte solution supply means 5 is divided into a plurality of parts in the width direction of the rotary cathode 2, and the divided electrolyte solution supply ports 4 ′, 4 ′,. However, a flow rate adjusting means for adjusting the flow rate of the electrolyte to be supplied is provided.
[0021]
In FIG. 2, the cross-sectional enlarged view which has arrange | positioned the plate-shaped damper body to the upper part of the electrolyte solution supply port 4 in the metal foil electrolysis manufacturing apparatus 1 in this embodiment is shown. FIG. 3 is a partially enlarged perspective view of the plate-like damper body. The plate-like damper body 10 has a length substantially equal to the width of the rotary cathode 2 and slightly longer than the width of the electrolyte solution supply port 4. Is formed over the longitudinal direction of the plate. Further, a partition wall 12 is provided on the lower surface side of the plate-like damper body 10, that is, on the side facing the electrolyte solution supply port 4 according to the divided electrolyte solution supply port 4 ′. The partition wall 12 is erected on fixed plates 13 located on both sides of the electrolyte supply port 4. Therefore, a liquid outlet 14 is formed in the lower part of the plate-like damper body 10 in accordance with the divided electrolyte supply ports 4 ′, 4 ′,.
[0022]
When the plate-like damper body 10 shown in FIGS. 2 and 3 is arranged on the upper part of the electrolyte solution supply port 4, as shown by the arrow in FIG. 2, the electrolyte solution supplied from the electrolyte solution supply port 4 is the plate-like damper. It collides with the body 10, and the flow direction is changed by the diverting projection 11 to be divided into two directions, and a liquid flow state rising along the shape of the peripheral surface of the rotating cathode 2 is formed.
[0023]
Next, the result of investigating the thickness distribution and surface properties in the foil width direction of the produced copper foil by producing a copper foil as the metal foil by the metal foil electrolysis production apparatus according to the present embodiment will be described.
[0024]
When copper foil is manufactured as a metal foil, a drum-shaped rotating cathode (diameter 3 m, width 1.35 m) having a circumferential surface made of Ti and an insoluble anode called DSA are used, and the gap between the rotating cathode and the insoluble anode is small. A copper foil electrolytic production apparatus arranged to be about 20 mm was used. The plate-like damper body provided with the diverting projections is made of Ti material (the partition plate and the fixing plate are also made of Ti material), and at the intermediate position between the rotating cathode and the anode, Arranged above. The plate-like damper body was installed by interposing an insulating material between the anode and the fixed plate so that no electrolytic current flowed through the plate-like damper body. Moreover, the copper sulfate solution was used for electrolyte solution.
[0025]
In this copper foil electrolysis production apparatus, a copper foil is produced by performing an electrolytic treatment with and without a plate-like damper body, and the thickness distribution and surface properties in the copper foil width direction are comparatively investigated. did.
[0026]
First, the results of measuring the thickness distribution in the copper foil width direction will be described. The thickness distribution measurement in the width direction was performed with a copper foil that was electrolytically treated by supplying an electrolytic solution while the rotating cathode was stationary. The sample in which the thickness distribution in the width direction was measured was subjected to electrolytic treatment so that a copper foil having a thickness of 70 μm was formed, and after the electrolytic treatment was stopped, the electrodeposited copper foil was peeled off on the semicircular surface of the rotating cathode. Things were used. From the sample obtained by this static electrolysis, in the circumferential direction of the rotating cathode peripheral surface, a belt-like sample having a length of 150 mm × width of 1350 mm (rotating cathode width) is arranged in the front-rear direction around the portion facing the electrolyte supply port. A total of 4 sheets were cut out one by one (A to D).
[0027]
The cut strip samples were further subdivided into strips having a width of 10 mm and a length of 100 mm. By this subdivision, the strip sample was divided into 84 strips in the width direction. And by measuring each mass of this strip, mass thickness (g / m < 2 >) was computed and this value was made into the thickness of copper foil.
[0028]
The four strip samples (A to D) cut out from the static electrolysis were measured for each mass of the 84 divided strips and plotted according to the position in the width direction as shown in FIG. 5 and FIG.
[0029]
FIG. 5 shows a case where a plate-like damper body is arranged, and FIG. 6 shows a case where the plate-like damper body is not arranged. In the strip samples A to D, a position between the strip samples B and C corresponds to a portion facing the electrolyte supply port. 5 and 6, the maximum mass thickness value is specified from 84 strips divided from the strip sample, the difference between the mass thickness value and the maximum mass thickness value of each strip is calculated, and each mass thickness difference is calculated. By dividing by the maximum mass thickness value, each thickness ratio (%) value is calculated and plotted.
[0030]
When the plate-like damper body is not arranged, when all the band-shaped samples A to D are viewed, a difference in mass thickness of 14.2% at maximum occurs, and there is a difference in mass thickness of 6.5% on average. It was. Further, as can be seen from FIG. 6, if the plate-like damper body is not arranged, the mass thickness in the width direction of each of the strip samples A to D varies considerably, and the standard deviation at this time is 3. 05 (value calculated from all data of A to D).
[0031]
On the other hand, when the plate-like damper body was arranged, the difference in mass thickness was reduced to 10.8% at the maximum, and the difference in mass thickness was 3.4% on average. Then, as can be seen from FIG. 5, when the plate-shaped damper body is arranged, the mass thickness in the width direction in each of the strip samples A to D becomes very uniform, and the standard deviation is 1.89 (all of A to D). It was confirmed that the value was calculated from the data of In addition, although the thickness distribution investigation in the width direction in the present embodiment is performed from those subdivided into strips having a width of 10 mm × a length of 100 mm, in the case of division at such a precise level in the copper foil width direction, The fact that it was possible to control the variation as small as the standard deviation of 1.89 was impossible at all with the conventional copper foil manufacturing apparatus.
[0032]
Then, the result of having investigated the surface property of copper foil is described. A comparative investigation of surface properties was performed by manufacturing a copper foil having a thickness of 35 μm and a length of 10 m, and observing abnormal precipitation on the rough surface (mat surface; surface corresponding to the electrodeposition end surface) of the obtained copper foil. went. This abnormal deposition refers to a portion that is deposited in an abnormally protruding state from the periphery on the electrodeposition end surface side of the surface of the metal foil to be manufactured. The surface property was examined by randomly collecting a 100 mm × 100 mm square sample from the produced copper foil, and observing the rough surface side of the sample with a stereomicroscope to confirm the presence or absence of abnormal precipitation. .
[0033]
As a result, many copper foils in which no plate-like damper body was provided were confirmed to be abnormal precipitation in almost all samples. On the other hand, in the copper foil in the case where the plate-like damper body is provided, in any sample, there are very few things that are seen as abnormal precipitation, and it was confirmed that the plate-like damper body is effective in reducing abnormal precipitation. .
[0034]
【The invention's effect】
According to the present invention, when a metal foil is continuously produced by electrodeposition using a drum-shaped rotating cathode, the thickness uniformity in the width direction of the metal foil can be precisely controlled. It is also possible to suppress the occurrence of abnormal precipitation.
[Brief description of the drawings]
FIG. 1 is a partially enlarged perspective view of a metal foil electrolytic production apparatus.
FIG. 2 is a partially enlarged cross-sectional view of a metal foil electrolytic manufacturing apparatus in which a plate-like damper body is disposed.
FIG. 3 is a partially enlarged perspective view of a plate-like damper body.
FIG. 4 is a schematic cross-sectional view of a metal foil electrolytic production apparatus.
FIG. 5 is a thickness distribution graph in the width direction when a plate-like damper body is arranged.
FIG. 6 is a thickness distribution graph in the width direction when a plate-like damper body is not arranged.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal foil electrolysis production apparatus 2 Rotating cathode 3 Anode 4, 4 'Electrolyte supply port 5 Liquid supply means 6 Metal foil 7 Electrolytic tank 8 Guide roll 9 Winding roll 10 Plate-shaped damper body 11 Dividing protrusion 12 Partition wall 13 Fixing Plate 14 Liquid outlet

Claims (3)

金属箔を電着させるドラム状の回転陰極と、該回転陰極の周面形状に沿って対向配置した陽極と、回転陰極と陽極との間に回転陰極の下方側から電解液を供給する電解液供給口を有する液供給手段とを備え、
液供給手段から電解液を供給しながら電解反応により回転陰極周面に金属を電着し、電着した金属箔を回転陰極から連続的に剥がし取るものである金属箔電解製造装置において、
液供給手段は、電解液供給口の上方に、回転陰極幅方向にわたる板状ダンパー体を備えたことを特徴とする金属箔電解製造装置。
An electrolytic solution for supplying an electrolytic solution from below the rotating cathode between the rotating cathode and the anode, a drum-shaped rotating cathode for electrodepositing a metal foil, an anode disposed facing the circumferential surface of the rotating cathode, and the anode Liquid supply means having a supply port,
In the metal foil electrolysis production apparatus in which the metal is electrodeposited on the peripheral surface of the rotating cathode by electrolytic reaction while supplying the electrolyte from the liquid supply means, and the electrodeposited metal foil is continuously peeled off from the rotating cathode.
The liquid supply means comprises a plate-like damper body extending in the width direction of the rotating cathode above the electrolyte supply port.
板状ダンパー体は、板幅中心に、板長手方向に延びる分流用突起部を設けたものである請求項1に記載の金属箔電解製造装置。2. The metal foil electrolytic manufacturing apparatus according to claim 1, wherein the plate-like damper body is provided with a branching projection extending in the plate longitudinal direction at the plate width center. 電解液供給口は、回転陰極幅方向に複数に分割されており、分割された電解液供給口から供給する電解液流量を調整できるものである請求項1又は請求項2に記載の金属箔電解製造装置。3. The metal foil electrolysis according to claim 1, wherein the electrolytic solution supply port is divided into a plurality of portions in the width direction of the rotating cathode, and the flow rate of the electrolytic solution supplied from the divided electrolytic solution supply port can be adjusted. Manufacturing equipment.
JP2001095612A 2001-03-29 2001-03-29 Metal foil electrolytic manufacturing equipment Expired - Fee Related JP4426127B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001095612A JP4426127B2 (en) 2001-03-29 2001-03-29 Metal foil electrolytic manufacturing equipment
TW091104071A TW567249B (en) 2001-03-29 2002-03-05 Apparatus for electrolytically manufacturing metal foil
CNB028008383A CN1272473C (en) 2001-03-29 2002-03-20 Metal foil electrolytic mfg. apparatus
US10/275,289 US20030102209A1 (en) 2001-03-29 2002-03-20 Metal foil electrolytic manufacturing apparatus
KR1020027014971A KR100864753B1 (en) 2001-03-29 2002-03-20 Metal Foil Electrolytic Manufacturing Apparatus
PCT/JP2002/002650 WO2002079547A1 (en) 2001-03-29 2002-03-20 Metal foil electrolytic manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095612A JP4426127B2 (en) 2001-03-29 2001-03-29 Metal foil electrolytic manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2002294481A JP2002294481A (en) 2002-10-09
JP4426127B2 true JP4426127B2 (en) 2010-03-03

Family

ID=18949632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095612A Expired - Fee Related JP4426127B2 (en) 2001-03-29 2001-03-29 Metal foil electrolytic manufacturing equipment

Country Status (6)

Country Link
US (1) US20030102209A1 (en)
JP (1) JP4426127B2 (en)
KR (1) KR100864753B1 (en)
CN (1) CN1272473C (en)
TW (1) TW567249B (en)
WO (1) WO2002079547A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554527C (en) * 2003-04-03 2009-10-28 福田金属箔粉工业株式会社 Low uneven surface electrolytic copper foil and manufacture method thereof
KR100813353B1 (en) * 2006-03-14 2008-03-12 엘에스전선 주식회사 Electrolyzing machine for manufacturing metal foil capable of reducing transverse deviation of weight
KR100700799B1 (en) * 2006-03-20 2007-03-28 엘에스전선 주식회사 Continuous winding methods of copper foil
JP4866706B2 (en) * 2006-11-08 2012-02-01 赤星工業株式会社 Metal foil electrolytic manufacturing equipment
JP4642120B2 (en) * 2009-04-01 2011-03-02 三井金属鉱業株式会社 Electrolytic metal foil manufacturing apparatus, method for manufacturing thin plate insoluble metal electrode used in electrolytic metal foil manufacturing apparatus, and electrolytic metal foil obtained using the electrolytic metal foil manufacturing apparatus
KR101037245B1 (en) * 2010-11-16 2011-05-26 경북대학교 산학협력단 Apparatus for sterilization disposal of shoes
JPWO2012121020A1 (en) * 2011-03-04 2014-07-17 Jx日鉱日石金属株式会社 Electrolytic copper foil with high strength and less protrusion shape due to abnormal electrodeposition and method for producing the same
KR101343951B1 (en) * 2011-06-23 2013-12-24 코닉이앤씨 주식회사 Manufacturing method and manufacturing apparatus of metal foil
JP5175992B1 (en) * 2012-07-06 2013-04-03 Jx日鉱日石金属株式会社 Ultrathin copper foil, method for producing the same, and ultrathin copper layer
CN103233249A (en) * 2013-05-09 2013-08-07 南京顺捷机械设备有限公司 Upper-electrolyte-inlet copper foil all-in-one equipment
CN104087977B (en) * 2014-07-06 2016-05-11 湖北中一科技有限公司 A kind of electrolytic copper foil feed arrangement and method with mixing feed integrative-structure
KR102045630B1 (en) * 2017-11-28 2019-11-15 주식회사 포스코 Electroforming Device
KR102209616B1 (en) * 2018-12-05 2021-01-28 주식회사 포스코 Electroforming Apparatus
CN109652826A (en) * 2019-02-22 2019-04-19 圣达电气有限公司 The electrolytic copper foil the thickness uniformity control method of cathode roll
JP7005558B2 (en) * 2019-06-10 2022-01-21 日鉄工材株式会社 Metal leaf manufacturing equipment
CN114657607B (en) * 2022-03-01 2022-12-20 广东嘉元科技股份有限公司 Electronic copper foil manufacturing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318794A (en) * 1980-11-17 1982-03-09 Edward Adler Anode for production of electrodeposited foil
US4529486A (en) * 1984-01-06 1985-07-16 Olin Corporation Anode for continuous electroforming of metal foil
US4647345A (en) * 1986-06-05 1987-03-03 Olin Corporation Metallurgical structure control of electrodeposits using ultrasonic agitation
US5228965A (en) 1990-10-30 1993-07-20 Gould Inc. Method and apparatus for applying surface treatment to metal foil

Also Published As

Publication number Publication date
US20030102209A1 (en) 2003-06-05
CN1272473C (en) 2006-08-30
CN1460133A (en) 2003-12-03
WO2002079547A1 (en) 2002-10-10
TW567249B (en) 2003-12-21
KR20030007594A (en) 2003-01-23
JP2002294481A (en) 2002-10-09
KR100864753B1 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4426127B2 (en) Metal foil electrolytic manufacturing equipment
KR101886914B1 (en) Electrolytic copper foil
JP2012107266A (en) Method and apparatus for manufacturing electrolytic copper foil
JPH0693490A (en) Manufacture of electrolytic metallic foil
JP2001342590A (en) Method for manufacturing electrolytic copper foil and apparatus
KR101879080B1 (en) Apparatus for preparing fe-ni alloy foil
JP2007308783A (en) Apparatus and method for electroplating
US6183607B1 (en) Anode structure for manufacture of metallic foil
CN108425135B (en) Production equipment of electrolytic copper foil and current adjusting and controlling device thereof
JPH0338352B2 (en)
JP2015155563A (en) Apparatus and method for continuous electrolytic plating, metalized resin film and production method of the film
JP3416620B2 (en) Electrolytic copper foil manufacturing apparatus and electrolytic copper foil manufacturing method
US6291080B1 (en) Thin copper foil, and process and apparatus for the manufacture thereof
JP3753114B2 (en) Electroplating electrode and metal strip electroplating method using the same
KR100425595B1 (en) Coating thickness control apparatus of electronic coating steel by electronic field and its control method
TW201925547A (en) Electroplating apparatus
JP2004190112A (en) Method for manufacturing electrolytic copper foil, and apparatus used therefor
JP3303548B2 (en) Plating test equipment
KR101325390B1 (en) Metal Foil Manufacturing Apparatus Comprising Perpendicular Type Cell
JP3178373B2 (en) Continuous electroplating method and equipment
JP2018165378A (en) Masking material for partial plating, partial plating apparatus, and partial plating method
KR102065221B1 (en) Apparatus for preparing alloy foil and alloy foil prepared using the same
JPS59215495A (en) Radial cell type electroplating device
JPH06306695A (en) Equipment for continuously electropoplating metallic strip and method for controlling coating weight in width direction
TW201928128A (en) Electroforming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees