JPH0693490A - Manufacture of electrolytic metallic foil - Google Patents

Manufacture of electrolytic metallic foil

Info

Publication number
JPH0693490A
JPH0693490A JP26680992A JP26680992A JPH0693490A JP H0693490 A JPH0693490 A JP H0693490A JP 26680992 A JP26680992 A JP 26680992A JP 26680992 A JP26680992 A JP 26680992A JP H0693490 A JPH0693490 A JP H0693490A
Authority
JP
Japan
Prior art keywords
thickness
metal foil
electrolytic
metallic foil
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26680992A
Other languages
Japanese (ja)
Inventor
Masato Ito
真人 伊藤
Koujirou Eda
晃二郎 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP26680992A priority Critical patent/JPH0693490A/en
Publication of JPH0693490A publication Critical patent/JPH0693490A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a manufacturing method for an electrolytic metallic foil which easily uniformalizes the irregular thickness, particularly in the width direction thereof, at the time of energizing during the electrolization without interrupting the electrolization in obtaining an electrolytic metallic foil. CONSTITUTION:The electrolytic metallic foil 4 is manufactured by using an electrolytic metallic foil manufacturing device consisting of a cathode drum 1 rotating at constant speed and an anode 2 arranged so as to face thereto on the both side of the approximately lower half of the drum surface, energizing while supplying an electrolytic liquid into the spacing 7 between the both electrodes, electrodeposition-forming the metallic foil 4 having a prescribed thickness on the cathode drum surface and continuously winding up the metallic foil 4 to an outside take-up roll 5. In manufacturing the electrolytic metallic foil 4 in the above-mentioned manner, a part of at least one side anode surface is covered with an insulating material 6 having a prescribed shape in accordance with the metallic foil thickness distribution at the time of energizing, thereby uniformalizing the thickness of the electrolytic metallic foil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は箔厚みが均一な電解金属
箔の製造方法に関し、詳しくは、電解中に通電を中断す
ることなく、金属箔の幅方向の厚みの不均一を簡易に解
消することができる電解金属箔の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electro-deposited metal foil having a uniform foil thickness. More specifically, it is possible to easily eliminate a non-uniform thickness in the width direction of the metal foil without interrupting energization during electrolysis. The present invention relates to a method for producing an electrolytic metal foil that can be manufactured.

【0002】[0002]

【従来の技術】金属箔を量産する方法としては電解法が
知られている。この電解法は、定速回転する陰極ドラム
と該ドラム面の下方略半分の両側に対向配置させた陽極
とから構成される電解金属箔製造装置を用いて、前記両
極の間隙にメッキ液を供給しながら通電し、陰極ドラム
面に所定厚みの金属箔を電着形成し、これを外部へ連続
的に巻き取って電解金属箔を得る方法である。
2. Description of the Related Art An electrolytic method is known as a method for mass-producing metal foil. In this electrolysis method, a plating solution is supplied to the gap between the two electrodes by using an electrolytic metal foil manufacturing apparatus composed of a cathode drum that rotates at a constant speed and an anode that is arranged to face each other on both sides of a lower half of the drum surface. While energizing, a metal foil having a predetermined thickness is electrodeposited on the surface of the cathode drum, and the metal foil is continuously wound outside to obtain an electrolytic metal foil.

【0003】電解法においては、メッキ液の金属イオン
を適宜選定することにより各種の金属箔が得られる。例
えば、銅箔、亜鉛箔、ニッケル箔などの純金属箔や、例
えば、鉄・ニッケル箔、ニッケル−コバルト箔、鉄・コ
バルト箔、ニッケル−クロム−コバルト箔、ニッケル−
コバルト−鉄箔などの二元、三元の合金箔等が得られ
る。
In the electrolysis method, various metal foils can be obtained by appropriately selecting the metal ions of the plating solution. For example, pure metal foil such as copper foil, zinc foil, and nickel foil, and, for example, iron / nickel foil, nickel-cobalt foil, iron / cobalt foil, nickel-chromium-cobalt foil, nickel-
Binary and ternary alloy foils such as cobalt-iron foil can be obtained.

【0004】これら電解法により得られる金属箔の基本
的な要求特性として厚みがある。厚みはバラツキがなく
均一であることが重要であり、この厚みを均一にさせる
ための要件としては、 供給するメッキ液の濃度、温度、流速、pHなどを一
定に保つ。 陰極と陽極の間隙(極間距離)を一定に保つ。 通電量を一定に保つ。 陰極回転ドラムの回転速度を一定に保つ。 などがあり、これらの要件を常に保持することが大切で
ある。
Thickness is a basic required property of the metal foil obtained by these electrolysis methods. It is important that the thickness is uniform without variation, and the requirements for making the thickness uniform are to keep the concentration, temperature, flow rate, pH, etc. of the plating solution supplied constant. Keep the gap between the cathode and anode (distance between the electrodes) constant. Keep the power supply constant. Keep the rotation speed of the cathode rotating drum constant. It is important to always keep these requirements.

【0005】しかしながら、上記する装置を用いて例え
ば、陽極に不溶性陽極といわれる鉛、鉛合金、白金系被
覆チタンなどを用いて電解を連続的に長時間実施してい
ると、得られる金属箔の厚み分布、特に幅方向の厚み分
布が変動することがある。これは、均一の厚みが得られ
るように当初設定した陰陽両極の間隙が変動することに
よるものと考えられる。この間隙の変動は、通電時間に
比例して、不溶性陽極といえども陽極の損耗が局部的に
大きくなることによるものと考えられ、この損耗現象は
陽極両端部に著しい傾向がある。その結果、陰極面への
単位面積あたりの電流密度に影響を与え、電解金属箔の
両端部が中央部より薄くなって幅方向の厚み分布にバラ
ツキを生じることになる。そしてこのまま電解を続けた
場合、得られる金属箔には品質上許容し難い厚み不良が
発生する。
However, when electrolysis is continuously carried out for a long time using the above-mentioned device, for example, lead, which is called an insoluble anode, lead alloy, platinum-coated titanium, etc. The thickness distribution, especially the thickness distribution in the width direction may vary. It is considered that this is because the gap between the positive and negative electrodes, which was initially set so as to obtain a uniform thickness, fluctuates. It is considered that the variation in the gap is caused by the local increase in the wear of the anode even in the insoluble anode, in proportion to the energization time, and this wear phenomenon tends to be remarkable at both ends of the anode. As a result, the current density per unit area to the cathode surface is affected, and both ends of the electrolytic metal foil become thinner than the central part, resulting in variation in the thickness distribution in the width direction. When the electrolysis is continued as it is, a thickness defect which is unacceptable in terms of quality occurs in the obtained metal foil.

【0006】従来、この厚み不良を解消させ、厚みを均
一化させるための操作としては、通電の停止、メッキ液
供給の停止、陰極ドラムの電解装置外への移設などの一
連の工程を経て、通電停止前の厚み分布データに基づい
て厚みの均一化のための陽極板の位置調整又は陽極面の
研削などを実施することが行なわれていた。したがっ
て、厚みの調整は上記工程で多くの時間と手間を要する
とともに、電解中断による生産量の低下を避けることが
できなかった。
Conventionally, as an operation for eliminating this thickness defect and making the thickness uniform, a series of steps such as stopping the energization, stopping the supply of the plating solution, and relocating the cathode drum to the outside of the electrolysis device are carried out. It has been performed to adjust the position of the anode plate or grind the anode surface for equalizing the thickness based on the thickness distribution data before stopping the energization. Therefore, the adjustment of the thickness requires a lot of time and labor in the above process, and it is inevitable to reduce the production amount due to the interruption of electrolysis.

【0007】特開平4−36489〜36494号公報
によれば、箔厚み均一化用分割陽極を用いて、供給する
電気量を各分割陽極毎に個別に制御するか、あるいは、
その分割陽極の位置を個別に制御することにより、操業
中において厚みの修正を行うことが提案されている。し
かし、この先行技術は分割陽極を多数設けることにより
厚みを個別に制御することが可能という利点を有する反
面、多数の分割陽極から生じる電気的、構造的なトラブ
ルも多くなること、また、電源の設置に費用がかかるこ
と、メンテナンスが複雑で管理面上容易でないこと、仮
に一つの分割陽極にトラブルが発生したとき、やむを得
ず操業を中断せざるを得なくなることなどの問題点が予
想される。
According to Japanese Unexamined Patent Publication No. 4-36489-36494, the divided anodes for equalizing the foil thickness are used to individually control the amount of electricity supplied for each divided anode, or
It has been proposed to correct the thickness during operation by individually controlling the positions of the divided anodes. However, this prior art has an advantage that the thickness can be individually controlled by providing a large number of divided anodes, but on the other hand, electrical and structural troubles caused by a large number of divided anodes also increase, and the power supply There are problems that installation is expensive, maintenance is complicated and management is not easy, and if a problem occurs with one split anode, the operation will be forced to be interrupted.

【0008】[0008]

【発明が解決しようとする課題】本発明は、電解金属箔
を得るにあたり、電解を中断することなく電解中、通電
時に、特には幅方向の不均一な厚みを簡易に均一化する
ことが可能な電解金属箔の製造方法を提供することを目
的とする。
DISCLOSURE OF THE INVENTION In the present invention, in obtaining an electrolytic metal foil, it is possible to easily homogenize a non-uniform thickness in the width direction during electrolysis without interruption of electrolysis and during energization. An object of the present invention is to provide a method for producing a simple electrolytic metal foil.

【0009】[0009]

【課題を解決するための手段】本発明の目的を達成する
ため本発明者等は鋭意検討した結果、電解中、通電時に
少なくとも片側の陽極面の一部に、該面を被覆するため
の金属箔厚み分布に応じた所定形状の絶縁体を設けるこ
とにより、箔厚みの均一な電解金属箔が得られることを
見出し、この知見に基づき本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies by the present inventors in order to achieve the object of the present invention, as a result, during electrolysis, at least a part of the anode surface on one side at the time of energization, a metal for coating the surface. It has been found that an electrolytic metal foil having a uniform foil thickness can be obtained by providing an insulator having a predetermined shape according to the foil thickness distribution, and the present invention has been completed based on this finding.

【0010】すなわち、本発明は定速回転する陰極ドラ
ムと、該ドラム面の下方略半分の両側に対向配置させた
陽極とから構成される電解金属箔製造装置を用いて、前
記両極の間隙にメッキ液を供給しながら通電し、陰極ド
ラム面に所定厚みの金属箔を電着形成し、これを外部の
巻取ロールへ連続的に巻き取ることにより電解金属箔を
製造するにあたり、通電時に、少なくとも片側の陽極面
の一部を、金属箔厚み分布に応じた所定形状の絶縁体で
被覆して電解金属箔の厚みを均一化することを特徴とす
る電解金属箔の製造方法を提供するものである。
That is, the present invention employs an electrolytic metal foil manufacturing apparatus composed of a cathode drum which rotates at a constant speed and an anode which is opposed to both sides of the lower half of the drum surface. Energizing while supplying the plating solution, electrodepositing a metal foil of a predetermined thickness on the cathode drum surface, in producing an electrolytic metal foil by continuously winding this on an external winding roll, at the time of energizing, A method for producing an electrolytic metal foil, characterized in that at least a part of the anode surface on one side is covered with an insulator having a predetermined shape according to the metal foil thickness distribution to make the thickness of the electrolytic metal foil uniform. Is.

【0011】本発明の電解金属箔の製造方法は、前述の
各種電解金属箔のうちで電解銅箔を製造する方法として
好適に用いられる。
The method for producing an electrolytic metal foil of the present invention is preferably used as a method for producing an electrolytic copper foil among the various electrolytic metal foils described above.

【0012】以下、本発明を図面を参照して詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0013】図1は電解金属箔を連続的に製造する電解
装置の断面図であり、本発明の方法に用いる絶縁体を片
側の陽極面上方部に設けた状態を例示している。
FIG. 1 is a cross-sectional view of an electrolysis apparatus for continuously producing an electro-deposited metal foil, illustrating an example of a state in which an insulator used in the method of the present invention is provided above one side of an anode surface.

【0014】図2は図1の平面図である。FIG. 2 is a plan view of FIG.

【0015】図3は図1及び図2に示した片側の陽極の
斜視図であり、陽極面上方部に本発明の方法に用いる絶
縁体を設けた状態を例示している。
FIG. 3 is a perspective view of the anode on one side shown in FIGS. 1 and 2, and illustrates an example in which an insulator used in the method of the present invention is provided above the anode surface.

【0016】図1〜図3において、電解金属箔の製造
は、次のように行なわれる。
In FIGS. 1 to 3, the electrolytic metal foil is manufactured as follows.

【0017】定速回転(図1では矢印方向左回転)する
ステンレス、チタン、又はチタン合金などから選ばれる
金属製の陰極ドラム1と、該ドラム面の下方略半分の両
側に対向配置させた、例えば鉛、鉛合金、又は白金系な
どから選ばれる金属製の不溶性の円弧状の陽極2とから
構成される電解装置を用いて、前記陰陽両極の間隙7を
一定とし、その間隙7にメッキ液を一定量供給する。メ
ッキ液は所望する金属箔を電着形成することのできる金
属イオンを含有するメッキ液が適宜選択される。
A cathode drum 1 made of a metal selected from stainless steel, titanium, titanium alloy, or the like, which rotates at a constant speed (counterclockwise rotation in the direction of arrow in FIG. 1) and a lower half of the drum surface are disposed so as to face each other. For example, by using an electrolysis device composed of an insoluble arc-shaped anode 2 made of a metal selected from lead, lead alloy, platinum, etc., the gap 7 between the positive and negative electrodes is made constant, and the plating liquid is placed in the gap 7. Supply a fixed amount. As the plating solution, a plating solution containing metal ions capable of electrodepositing a desired metal foil is appropriately selected.

【0018】本発明においては金属箔が銅箔の場合、好
ましくは酸性硫酸銅メッキ液が用いられる。
In the present invention, when the metal foil is a copper foil, an acidic copper sulfate plating solution is preferably used.

【0019】メッキ液を供給しながら直流を通電する
と、陰極ドラム1面上に金属箔4が電着形成され、得ら
れた金属箔4は外部の巻取ロール5に巻き取られる。
When a direct current is applied while supplying the plating solution, the metal foil 4 is electrodeposited on the surface of the cathode drum 1 and the obtained metal foil 4 is wound on an external winding roll 5.

【0020】金属箔の厚みは、陰極ドラムの回転速度、
メッキ液濃度、温度等、他の条件を一定とした場合、通
電する電流量に比例するが、電流を含めた他の条件を一
定とし、陰極ドラムの回転速度を加減することにより、
所望する適宜な厚みを有する金属箔が容易に得られる。
The thickness of the metal foil depends on the rotational speed of the cathode drum,
When other conditions such as plating solution concentration and temperature are constant, it is proportional to the amount of current to be passed, but other conditions including the current are constant, and by adjusting the rotation speed of the cathode drum,
A metal foil having a desired appropriate thickness can be easily obtained.

【0021】本発明の方法は、上記する図1に示される
ような電解金属箔製造装置を用いて、例えば厚み5〜2
00μmの銅箔、亜鉛箔、ニッケル箔などの各種純金属
箔や、前記した合金箔を連続的に電解を行って製造する
方法に適用するものであり、特には、金属箔の幅方向の
厚みにバラツキが生じた場合、これを解消させて均一な
厚みの金属箔を得るものである。本発明の方法は、次の
ように実施される。
The method of the present invention uses, for example, an electrolytic metal foil manufacturing apparatus as shown in FIG.
The present invention is applied to various pure metal foils such as a copper foil, zinc foil, and nickel foil having a thickness of 00 μm, and a method for producing the above alloy foil by continuously electrolyzing, and particularly, the thickness of the metal foil in the width direction. When the variation occurs in the metal foil, this is eliminated to obtain a metal foil having a uniform thickness. The method of the present invention is carried out as follows.

【0022】本発明の方法においては、電解中、通電時
に、電解槽3中の陽極2の少なくとも片側の陽極面の一
部を、金属箔4の厚み分布に応じた所定形状の絶縁体6
で被覆することにより、金属箔の厚みを制御する。金属
箔の厚み分布は電解中にに予め測定しておき、厚み分布
が均一でなくなったときに、絶縁体を設ける。金属箔の
厚みの測定は、例えば幅方向の厚みを測定するときには
少なくとも両端部と中央部の3箇所を測定し、必要なら
ば更に10箇所以上を細かく測定しておく。このときの
測定箇所を同一の間隔にすると、後記する絶縁体の形状
と大きさを決定する際に好都合である。厚みの測定手段
は非破壊・非接触式膜厚計、マイクロメータ、一定面積
の重量を求め、各金属の固有の密度から算出する重量法
などがあり、要求される厚みの品質水準を考慮して適宜
な手段を選択することができる。例えば、プリント配線
板用の電解銅箔の場合は重量法により簡単に厚み測定を
することができる。重量法は、電解銅箔の所定部分を切
り出し、切り出した部分の重量を測定することにより厚
み分布を測定する方法である。
In the method of the present invention, at the time of energization during electrolysis, at least a part of the anode surface on one side of the anode 2 in the electrolytic cell 3 is made into an insulator 6 having a predetermined shape according to the thickness distribution of the metal foil 4.
The thickness of the metal foil is controlled by coating with. The thickness distribution of the metal foil is previously measured during electrolysis, and an insulator is provided when the thickness distribution is not uniform. For the measurement of the thickness of the metal foil, for example, at the time of measuring the thickness in the width direction, at least three positions of both ends and the central part are measured, and if necessary, 10 or more positions are finely measured. It is convenient to determine the shape and size of the insulator, which will be described later, by setting the measurement points at the same intervals at this time. Thickness measuring means include non-destructive / non-contact type film thickness meter, micrometer, and gravimetric method to calculate the weight of a certain area and calculate from the unique density of each metal. Considering the required quality level of thickness. Therefore, an appropriate means can be selected. For example, in the case of an electrolytic copper foil for a printed wiring board, the thickness can be easily measured by the gravimetric method. The gravimetric method is a method in which a predetermined portion of an electrolytic copper foil is cut out, and the weight of the cut out portion is measured to measure the thickness distribution.

【0023】絶縁体の形状や大きさは厚み分布に応じて
決定されるが、その形状の代表例は三角形、半円形、円
形、台形などや帯状などがあり、これら各種の形状、大
きさの絶縁材を用いて陽極面の一部を被覆することによ
り、陰極面の単位面積あたりの電流密度を低下させ、絶
縁体を設置した部分の厚みを薄くすることができる。
The shape and size of the insulator are determined according to the thickness distribution, and typical examples of the shape include a triangle, a semicircle, a circle, a trapezoid, and a band. These various shapes and sizes are available. By covering a part of the anode surface with an insulating material, the current density per unit area of the cathode surface can be reduced and the thickness of the portion where the insulator is installed can be reduced.

【0024】また、絶縁体の材料はその表面が不導体で
あって、機械的強度や耐熱性、耐化学薬品性などに優れ
ていることが望ましい。例えば、プラスチック類が用い
られ、その中で硬質の塩化ビニル、ポリエチレン、ポリ
プロピレン、PTFE(ポリテトラフルオロエチレ
ン)、アクリル樹脂などが好ましく使用される。また、
金属板に不導体樹脂、例えばフッ素樹脂、エポキシ樹脂
などを被覆したものや、絶縁テープ、メッキ用レジスト
インクなどを被覆したものでもよい。あるいは、表面が
不導体化したチタン板なども使用可能である。
Further, it is desirable that the surface of the material of the insulator is a non-conductor and that it has excellent mechanical strength, heat resistance and chemical resistance. For example, plastics are used, of which hard vinyl chloride, polyethylene, polypropylene, PTFE (polytetrafluoroethylene), acrylic resin and the like are preferably used. Also,
A metal plate coated with a non-conductive resin, for example, a fluororesin, an epoxy resin, or the like, an insulating tape, a resist ink for plating, or the like may be used. Alternatively, a titanium plate having a non-conductive surface can also be used.

【0025】絶縁体の厚みは陰陽両極の間隙にもよるが
0.02〜20mm程度が好ましく、作製加工、取り扱
い強度などを考慮すれば実用上0.1〜10mmである
ことが特に好ましい。
The thickness of the insulator is preferably about 0.02 to 20 mm, though it depends on the gap between the positive and negative electrodes, and it is particularly preferably 0.1 to 10 mm in practical use in consideration of fabrication processing, handling strength and the like.

【0026】また、絶縁体の大きさは絶縁体によって被
覆される陽極面の被覆面積に相当し、電圧上昇から生じ
るコストアップを考えると被覆面積が陽極全面積の20
%以下となるようにし、特には10%以下となるように
被覆することが望ましい。
Further, the size of the insulator corresponds to the covering area of the anode surface covered with the insulator, and considering the cost increase resulting from the voltage increase, the covering area is 20 of the total area of the anode.
% Or less, and particularly preferably 10% or less.

【0027】また、絶縁体は少なくとも片側の陽極面に
陽極の曲面に沿って密着させるように外部の固定手段
(図示せず)と連結させて設けることが望ましく、厚み
分布に応じた前記種々の形状や大きさの絶縁体を厚みの
バラツキに応じて自在に設けられるようにすることが望
ましい。
It is desirable that the insulator is provided so as to be adhered to at least one side of the anode surface along the curved surface of the anode so as to be connected to an external fixing means (not shown). It is desirable that an insulator having a shape and a size can be freely provided according to variations in thickness.

【0028】次に、電解中に得られた金属箔の厚み分布
データとそれに基づいて作製される絶縁体の形状につい
て図4により説明するが、絶縁体形状はこれらに限定さ
れるものではない。
Next, the thickness distribution data of the metal foil obtained during electrolysis and the shape of the insulator produced based on the data will be described with reference to FIG. 4, but the shape of the insulator is not limited to these.

【0029】図4は、本発明の方法を実施する場合の絶
縁体を設ける前の電解金属箔の幅方向の厚み分布の基本
的例と、これと対応して作製する絶縁体形状例を、陽極
面の一部に設けた斜視図により例示する説明図である。
FIG. 4 shows a basic example of the thickness distribution in the width direction of the electro-deposited metal foil before providing an insulator when the method of the present invention is carried out, and an example of an insulator shape produced corresponding to this. It is explanatory drawing illustrated by the perspective view provided in a part of anode surface.

【0030】図4を説明するとNo.1の厚み分布例は
金属箔の幅方向の左端部、中央部、右端部(第2図で示
される場合の位置)の厚みを3点測定し、その傾向を示
したものである。この例の場合は、厚みが左端部>中央
部>右端部となるバラツキが認められるから厚みが大の
領域(左端部)の厚みを小さくさせるとともに厚みが小
の領域(右端部)の厚みを大きくさせることにより均一
化することが考えられる。そこでこれに対応する絶縁体
の形状は、左端部の厚みに対応する陽極面の被覆面積を
最も大きくし、右端部の厚みに対応する陽極被覆面積は
最も小さくさせるような三角形状の絶縁体61を作製し
て陽極面を被覆すれば、被覆部周辺の陰極面における電
流密度分布としては、左端部<中央部<右端部となり、
電着形成される金属箔の厚み分布はこれにより調整され
て左端部=中央部=右端部となり厚み分布の均一化が図
れる。
Referring to FIG. In the thickness distribution example of No. 1, the thickness of the left end portion, the central portion, and the right end portion (positions shown in FIG. 2) of the metal foil in the width direction is measured at three points, and the tendency is shown. In the case of this example, the thickness is varied such that the left end portion> the central portion> the right end portion. Therefore, the thickness of the region having a large thickness (left end portion) is reduced and the thickness of the region having a small thickness (right end portion) is reduced. It is possible to make it uniform by increasing the size. Therefore, the shape of the insulator corresponding to this is a triangular insulator 61 that maximizes the coverage area of the anode surface corresponding to the thickness of the left end portion and minimizes the anode coverage area corresponding to the thickness of the right end portion. And coating the anode surface, the current density distribution on the cathode surface around the coating portion is left end portion <center portion <right end portion,
The thickness distribution of the metal foil formed by electrodeposition is adjusted by this, and the left end portion = the central portion = the right end portion can be made uniform in thickness distribution.

【0031】No.2の厚み分布例はNo.1の逆の傾
向を示す例であり、No.1と同様の考え方に基づき、
絶縁体62を作製し、No.1と同様に陽極面を被覆し
て設けられる。
No. No. 2 is the thickness distribution example. No. 1 is an example showing the reverse tendency of No. 1. Based on the same idea as in 1,
Insulator 62 was produced and No. As in No. 1, it is provided by covering the anode surface.

【0032】No.3、No.4の厚み分布例は中央部
に比べ両端部の厚みが大又は小の場合の例であり、N
o.1と同様の考え方に基づき、絶縁体63、64を作
製し、No.1と同様に陽極面を被覆して設けられる。
No. 3, No. The thickness distribution example of No. 4 is an example in which the thickness of both end portions is larger or smaller than that of the central portion.
o. Insulators 63 and 64 were produced based on the same idea as in No. 1, and No. As in No. 1, it is provided by covering the anode surface.

【0033】No.5、No.6は両端部のいずれかが
厚み大であり、中央部と両端部のいずれかがほぼ同一の
厚みの場合の例を示すものであり、これもNo.1と同
様の考え方に基づいて絶縁体65又は66を作製し、N
o.1と同様に陽極面の一部を被覆して設けられる。
No. 5, No. No. 6 shows an example in which one of both ends has a large thickness and one of the center part and both ends has substantially the same thickness. Insulator 65 or 66 is produced based on the same idea as in No. 1, and N
o. Similar to No. 1, it is provided by covering a part of the anode surface.

【0034】また、No.1〜No.6で例示した陽極
面に設けられる絶縁体の位置は、陽極面の上方部の一
部、また全部を被覆しているが、上方部に限定されるも
のではない。例えば、陽極面上方部から下方部までに達
するような帯形状の絶縁体67、68を作製してNo.
5、No.6の厚み分布例に対応させた被覆であっても
上記とほぼ同様の厚み分布均一化の効果が得られる。
No. 1-No. The position of the insulator provided on the anode surface illustrated in 6 covers a part or the whole of the upper part of the anode surface, but is not limited to the upper part. For example, the strip-shaped insulators 67 and 68 which reach from the upper part to the lower part of the anode surface are manufactured and No.
5, No. Even with the coating corresponding to the thickness distribution example of No. 6, almost the same effect of thickness distribution as above can be obtained.

【0035】[0035]

【実施例】図1に示す電解装置(チタン陰極ドラム:直
径100cm、幅150cm、陽極:鉛合金製2枚 極
間距離2cm、ドラム回転速度20m/h)を用いて硫
酸−硫酸銅メッキ液(温度;45℃、濃度;硫酸銅30
0g/l、硫酸80g/l、ゼラチン5ppm)を両極
の間隙に120l/minの流量で供給しながら通電
し、設定厚み30μmの電解銅箔を連続製造中、陰極ド
ラムから剥離して得られる銅箔を幅方向厚み分布の測定
サンプル用として採取した。これを端部(左端部)から
同一間隔で中央を経て右端部まで10×10cmのサイ
ズで5点切りだし、重量法によりそれぞれの厚みを求め
たところ、その厚み分布は図5のようであった。この製
造中の銅箔の厚み分布では中央部より両端部が厚くなっ
ている特徴を示しており、最大厚み(左端部30.8μ
m)−最小厚み(中央部29.3μm)=1.5μmで
あった。また、平均厚みは30.2μmであった。
EXAMPLE A sulfuric acid-copper sulfate plating solution (using a titanium cathode drum: diameter 100 cm, width 150 cm, anode: 2 sheets made of lead alloy, distance between electrodes 2 cm, drum rotation speed 20 m / h) shown in FIG. Temperature: 45 ° C, Concentration: Copper sulfate 30
0 g / l, sulfuric acid 80 g / l, gelatin 5 ppm) is supplied to the gap between both electrodes at a flow rate of 120 l / min to supply electricity, and copper obtained by peeling from the cathode drum during continuous production of an electrolytic copper foil having a set thickness of 30 μm The foil was taken as a sample for measuring the width-direction thickness distribution. This was cut into 5 points from the end (left end) to the right end at the same interval from the center to the right end, and each thickness was determined by the gravimetric method. The thickness distribution is as shown in FIG. It was The thickness distribution of the copper foil during the production shows that both ends are thicker than the center part, and the maximum thickness (the left end part 30.8μ
m) -minimum thickness (central part 29.3 μm) = 1.5 μm. The average thickness was 30.2 μm.

【0036】そこで図5に示される厚み分布データに基
づいて、板厚2mmの硬質塩化ビニル材を絶縁体とし、
これを図6に示されるような中央部にくぼみがある形状
とし、陽極の曲面に当接できるように加工し作製した。
この絶縁体を、最終厚み側の陽極面上方部を被覆するた
め、両極の間隙から陽極面に沿って挿入し、外部の固定
手段(図示せず)と連結して固定した。
Therefore, based on the thickness distribution data shown in FIG. 5, a hard vinyl chloride material having a plate thickness of 2 mm is used as an insulator,
This was formed into a shape having a depression in the center as shown in FIG. 6 and processed so that it could come into contact with the curved surface of the anode.
In order to cover the upper portion of the anode surface on the final thickness side, this insulator was inserted along the anode surface through the gap between both electrodes, and fixed by being connected to an external fixing means (not shown).

【0037】そして、陰極ドラムが挿入位置よりおおよ
そ一回転した後、上記同様に再度幅方向の厚み分布測定
用サンプルを採取し、厚み測定を行なったところ、図7
に示すような幅方向の厚み分布が得られた。
Then, after the cathode drum rotated approximately once from the insertion position, a sample for measuring the thickness distribution in the width direction was sampled again in the same manner as above, and the thickness was measured.
The thickness distribution in the width direction as shown in (3) was obtained.

【0038】この分布図(図7)では最大厚み(左端部
30.3μm)−最小厚み(中央部29.8μm)=
0.5μmであり、また、平均厚み30.08μmであ
った。厚みのバラツキが設定厚み(30μm)に対し、
本発明の方法を実施する前は5%を示していたが、本発
明方法の実施後は1.7%となり、図7からわかるよう
に、厚みが平均化し、均一な幅方向の厚み分布であるこ
とが認められ、電解を中断することなく継続して銅箔の
製造をすることができた。
In this distribution chart (FIG. 7), the maximum thickness (left end portion 30.3 μm) -minimum thickness (center portion 29.8 μm) =
The average thickness was 0.5 μm and the average thickness was 30.08 μm. The thickness variation is relative to the set thickness (30 μm)
Before the method of the present invention was 5%, it was 1.7% after the method of the present invention. As can be seen from FIG. 7, the thicknesses are averaged and a uniform width-direction thickness distribution is obtained. It was confirmed that the copper foil was continuously produced without interruption of electrolysis.

【0039】[0039]

【発明の効果】以上の説明から明らかなように、陰極ド
ラムを回転させることによる電解金属箔の連続的製造法
においては、従来は厚み分布に異常を認めた場合、通電
の停止、メッキ液の供給の停止、更に陰極ドラムを電解
装置から取り外し、陽極面の研削調整などの工程を順次
行なうことが厚みの均一化を図る上で不可欠であった。
これに対して、本発明の方法を適用すれば上記する複雑
な工程を省くことができ、電解操業中に陽極面の一部に
絶縁体を設けることにより、電解金属箔の厚み分布を均
一にすることが可能となった。
As is apparent from the above description, in the continuous method for producing an electrolytic metal foil by rotating the cathode drum, conventionally, when an abnormality was found in the thickness distribution, the energization was stopped and the plating solution In order to make the thickness uniform, it was essential to stop the supply, remove the cathode drum from the electrolysis device, and successively perform steps such as grinding adjustment of the anode surface.
On the other hand, if the method of the present invention is applied, the complicated steps described above can be omitted, and by providing an insulator on a part of the anode surface during the electrolytic operation, the thickness distribution of the electrolytic metal foil can be made uniform. It became possible to do.

【0040】このことは、通常の定期的な点検作業の他
は操業を停止させることなく、連続操業することがで
き、品質の向上とともに、生産量の増大と歩留の向上に
多大に貢献するものである。特に、優れた厚み精度が要
求されるプリント配線板用の電解銅箔の製造において、
本発明の方法が極めて有用であることが実証された。
This enables continuous operation without stopping the operation other than the regular periodical inspection work, which greatly contributes to not only the improvement of quality but also the increase of production amount and the improvement of yield. It is a thing. Especially in the production of electrolytic copper foil for printed wiring boards that require excellent thickness accuracy,
The method of the present invention has proven to be extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】電解金属箔を連続的に製造する電解装置の断面
図。
FIG. 1 is a sectional view of an electrolysis apparatus for continuously producing an electro-deposited metal foil.

【図2】図1の平面図である。FIG. 2 is a plan view of FIG.

【図3】図1及び図2に示した片側の陽極を示した斜視
図。
FIG. 3 is a perspective view showing an anode on one side shown in FIGS. 1 and 2.

【図4】金属箔の幅方向の厚み分布の基本的例とこれに
対応して作製される絶縁体の形状を例示する説明図。
FIG. 4 is an explanatory view illustrating a basic example of a thickness distribution of a metal foil in a width direction and a shape of an insulator produced corresponding to the basic example.

【図5】本発明の方法を実施する前の金属箔の厚み分布
を示す図。
FIG. 5 is a diagram showing a thickness distribution of a metal foil before carrying out the method of the present invention.

【図6】図5の金属箔の厚み分布に対応して、本発明の
方法を適用して陽極面上方部に絶縁体を設けた状態を示
す斜視図。
6 is a perspective view showing a state in which an insulator is provided above the anode surface by applying the method of the present invention, corresponding to the thickness distribution of the metal foil in FIG.

【図7】図5の金属箔の厚み分布に対応し、図6に示す
絶縁体を設けた後の金属箔の厚み分布を示す図。
7 is a diagram corresponding to the thickness distribution of the metal foil of FIG. 5 and showing the thickness distribution of the metal foil after the insulator shown in FIG. 6 is provided.

【符号の説明】[Explanation of symbols]

1 陰極ドラム 2 陽極 3 電解槽 4 金属箔 5 巻取ロール 6 絶縁体 7 間隙 61〜68 絶縁体 1 Cathode drum 2 Anode 3 Electrolyzer 4 Metal foil 5 Winding roll 6 Insulator 7 Gap 61-68 Insulator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 定速回転する陰極ドラムと、該ドラム面
の下方略半分の両側に対向配置させた陽極とから構成さ
れる電解金属箔製造装置を用いて、前記両極の間隙にメ
ッキ液を供給しながら通電し、陰極ドラム面に所定厚み
の金属箔を電着形成し、これを外部の巻取ロールへ連続
的に巻き取ることにより電解金属箔を製造するにあた
り、通電時に、少なくとも片側の陽極面の一部を、金属
箔厚み分布に応じた所定形状の絶縁体で被覆して電解金
属箔の厚みを均一化することを特徴とする電解金属箔の
製造方法。
1. A plating solution is applied to a gap between the two electrodes by using an electrolytic metal foil manufacturing apparatus including a cathode drum that rotates at a constant speed and an anode that is opposed to both sides of a lower half of the drum surface. While supplying electricity, a metal foil having a predetermined thickness is electrodeposited on the surface of the cathode drum, and an electrolytic metal foil is manufactured by continuously winding this on an external winding roll. A method for producing an electrolytic metal foil, characterized in that a part of the anode surface is covered with an insulator having a predetermined shape according to the metal foil thickness distribution to make the thickness of the electrolytic metal foil uniform.
【請求項2】 電解金属箔が銅箔である請求項1記載の
電解金属箔の製造方法。
2. The method for producing an electrolytic metal foil according to claim 1, wherein the electrolytic metal foil is a copper foil.
JP26680992A 1992-09-10 1992-09-10 Manufacture of electrolytic metallic foil Pending JPH0693490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26680992A JPH0693490A (en) 1992-09-10 1992-09-10 Manufacture of electrolytic metallic foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26680992A JPH0693490A (en) 1992-09-10 1992-09-10 Manufacture of electrolytic metallic foil

Publications (1)

Publication Number Publication Date
JPH0693490A true JPH0693490A (en) 1994-04-05

Family

ID=17435980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26680992A Pending JPH0693490A (en) 1992-09-10 1992-09-10 Manufacture of electrolytic metallic foil

Country Status (1)

Country Link
JP (1) JPH0693490A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193297A (en) * 1995-01-13 1996-07-30 Tobata Seisakusho:Kk Insoluble anode for electroplating
JP2003328194A (en) * 2002-05-15 2003-11-19 Nikko Materials Co Ltd Continuous surface treatment method for copper foil and apparatus therefor
KR100729895B1 (en) * 2006-03-14 2007-06-18 엘에스전선 주식회사 Apparatus for compensating weight declination of electrolytic copper foil and manufacturing apparatus having the same
KR100762049B1 (en) * 2006-03-16 2007-09-28 엘에스전선 주식회사 Metal thin film Electrolysing machine for manufacturing metal thin film capable of reducing transverse deviation of weight
JP2007297669A (en) * 2006-04-28 2007-11-15 Kida Seiko Kk Basket for chemical conversion treatment and lining material for basket
WO2011001932A1 (en) 2009-06-29 2011-01-06 日立金属株式会社 Method for manufacturing aluminum foil
WO2011059023A1 (en) 2009-11-11 2011-05-19 日立金属株式会社 Aluminum foil which supports carbonaceous particles scattered thereon
WO2012063920A1 (en) 2010-11-11 2012-05-18 日立金属株式会社 Method for producing aluminium foil
KR101157340B1 (en) * 2009-04-01 2012-06-15 페르메렉덴꾜꾸가부시끼가이샤 Electrolyic metal foil and manufacturing apparatus for the electrolyic metal foil and manufacturing method for insoluble electrode metel using the manufacturing apparatus for electrolyic metal foil
WO2013062026A1 (en) 2011-10-27 2013-05-02 日立金属株式会社 Method for manufacturing porous aluminum foil, porous aluminum foil, positive electrode collector for electricity storage device, electrode for electricity storage device, and electricity storage device
WO2013129479A1 (en) 2012-02-29 2013-09-06 日立金属株式会社 Method for preparing low-melting-point plating solution for electrical aluminum plating, plating solution for electrical aluminum plating, method for producing aluminum foil, and method for lowering melting point of plating solution for electrical aluminum plating
WO2014057747A1 (en) * 2012-10-12 2014-04-17 住友電気工業株式会社 Process for manufacturing aluminum foil and apparatus for manufacturing aluminum foil
CN107761137A (en) * 2017-11-20 2018-03-06 灵宝华鑫铜箔有限责任公司 A kind of device and method for calculating in real time, showing copper foil matter weight
CN107895799A (en) * 2016-10-03 2018-04-10 长春石油化学股份有限公司 Copper foil and its manufacture method with uniform thickness
CN110042441A (en) * 2019-05-17 2019-07-23 九江德福科技股份有限公司 A method of adjusting high tensile copper foil surface density
JP2019157238A (en) * 2018-03-15 2019-09-19 株式会社Uacj Manufacturing method and manufacturing apparatus of electrolytic aluminum foil
JP2020176327A (en) * 2019-04-19 2020-10-29 長春石油化學股▲分▼有限公司 Electrolytic copper foil
CN114910127A (en) * 2022-06-08 2022-08-16 广东嘉元科技股份有限公司 Copper foil production method, copper foil thickness detection method and storage medium

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193297A (en) * 1995-01-13 1996-07-30 Tobata Seisakusho:Kk Insoluble anode for electroplating
JP2003328194A (en) * 2002-05-15 2003-11-19 Nikko Materials Co Ltd Continuous surface treatment method for copper foil and apparatus therefor
KR100729895B1 (en) * 2006-03-14 2007-06-18 엘에스전선 주식회사 Apparatus for compensating weight declination of electrolytic copper foil and manufacturing apparatus having the same
KR100762049B1 (en) * 2006-03-16 2007-09-28 엘에스전선 주식회사 Metal thin film Electrolysing machine for manufacturing metal thin film capable of reducing transverse deviation of weight
JP2007297669A (en) * 2006-04-28 2007-11-15 Kida Seiko Kk Basket for chemical conversion treatment and lining material for basket
KR101157340B1 (en) * 2009-04-01 2012-06-15 페르메렉덴꾜꾸가부시끼가이샤 Electrolyic metal foil and manufacturing apparatus for the electrolyic metal foil and manufacturing method for insoluble electrode metel using the manufacturing apparatus for electrolyic metal foil
WO2011001932A1 (en) 2009-06-29 2011-01-06 日立金属株式会社 Method for manufacturing aluminum foil
WO2011059023A1 (en) 2009-11-11 2011-05-19 日立金属株式会社 Aluminum foil which supports carbonaceous particles scattered thereon
WO2012063920A1 (en) 2010-11-11 2012-05-18 日立金属株式会社 Method for producing aluminium foil
WO2013062026A1 (en) 2011-10-27 2013-05-02 日立金属株式会社 Method for manufacturing porous aluminum foil, porous aluminum foil, positive electrode collector for electricity storage device, electrode for electricity storage device, and electricity storage device
WO2013129479A1 (en) 2012-02-29 2013-09-06 日立金属株式会社 Method for preparing low-melting-point plating solution for electrical aluminum plating, plating solution for electrical aluminum plating, method for producing aluminum foil, and method for lowering melting point of plating solution for electrical aluminum plating
WO2014057747A1 (en) * 2012-10-12 2014-04-17 住友電気工業株式会社 Process for manufacturing aluminum foil and apparatus for manufacturing aluminum foil
JP2014080632A (en) * 2012-10-12 2014-05-08 Sumitomo Electric Ind Ltd Production method of aluminum foil and production apparatus of aluminum foil
CN107895799A (en) * 2016-10-03 2018-04-10 长春石油化学股份有限公司 Copper foil and its manufacture method with uniform thickness
JP2018059202A (en) * 2016-10-03 2018-04-12 長春石油化學股▲分▼有限公司 Copper foil with uniform thickness and production method thereof
JP2019178429A (en) * 2016-10-03 2019-10-17 長春石油化學股▲分▼有限公司 Copper foil with uniform thickness
CN107895799B (en) * 2016-10-03 2020-11-10 长春石油化学股份有限公司 Copper foil having uniform thickness and method for manufacturing the same
CN107761137A (en) * 2017-11-20 2018-03-06 灵宝华鑫铜箔有限责任公司 A kind of device and method for calculating in real time, showing copper foil matter weight
CN107761137B (en) * 2017-11-20 2023-10-20 灵宝华鑫铜箔有限责任公司 Device and method for calculating and displaying copper foil weight in real time
JP2019157238A (en) * 2018-03-15 2019-09-19 株式会社Uacj Manufacturing method and manufacturing apparatus of electrolytic aluminum foil
JP2020176327A (en) * 2019-04-19 2020-10-29 長春石油化學股▲分▼有限公司 Electrolytic copper foil
CN110042441A (en) * 2019-05-17 2019-07-23 九江德福科技股份有限公司 A method of adjusting high tensile copper foil surface density
CN114910127A (en) * 2022-06-08 2022-08-16 广东嘉元科技股份有限公司 Copper foil production method, copper foil thickness detection method and storage medium

Similar Documents

Publication Publication Date Title
JPH0693490A (en) Manufacture of electrolytic metallic foil
US4529486A (en) Anode for continuous electroforming of metal foil
US5326455A (en) Method of producing electrolytic copper foil and apparatus for producing same
KR101157340B1 (en) Electrolyic metal foil and manufacturing apparatus for the electrolyic metal foil and manufacturing method for insoluble electrode metel using the manufacturing apparatus for electrolyic metal foil
WO1997034029A1 (en) Compound electrode for electrolysis
JP2012107266A (en) Method and apparatus for manufacturing electrolytic copper foil
US5393396A (en) Apparatus for electrodepositing metal
US11492717B2 (en) Manufacturing apparatus of electrolytic copper foil
US20030102209A1 (en) Metal foil electrolytic manufacturing apparatus
JP2006249450A (en) Plating method and plating device
JP2506574B2 (en) Method and apparatus for producing electrolytic copper foil
KR101879080B1 (en) Apparatus for preparing fe-ni alloy foil
JPH0436489A (en) Production of electrolytic copper foil
JPS6238436B2 (en)
US3691026A (en) Process for a continuous selective electroplating of strip
KR940007609B1 (en) Method and apparatus for producing electrolytic copper foil
JP2506573B2 (en) Method and apparatus for producing electrolytic copper foil
EP0125707A1 (en) Method and apparatus for unilateral electroplating of a moving metal strip
KR20070079451A (en) Apparatus for metal coating and method thereof
JPH0723553B2 (en) Method for plating three-dimensional network structure
JP3661657B2 (en) Electroplating method and electroplating apparatus
JP2774209B2 (en) Anode for continuous metal foil production equipment
JPH0436491A (en) Device for producing electrolytic copper foil
JP2555892B2 (en) Method and apparatus for identifying life of noble metal electrode for electroplating
KR100425595B1 (en) Coating thickness control apparatus of electronic coating steel by electronic field and its control method