JPH0436491A - Device for producing electrolytic copper foil - Google Patents

Device for producing electrolytic copper foil

Info

Publication number
JPH0436491A
JPH0436491A JP2139729A JP13972990A JPH0436491A JP H0436491 A JPH0436491 A JP H0436491A JP 2139729 A JP2139729 A JP 2139729A JP 13972990 A JP13972990 A JP 13972990A JP H0436491 A JPH0436491 A JP H0436491A
Authority
JP
Japan
Prior art keywords
anode
thickness
copper foil
anodes
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2139729A
Other languages
Japanese (ja)
Inventor
Toyoshige Kubo
久保 豊重
Katsuhiko Fujishima
藤嶋 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKO GUURUDO FOIL KK
Nippon Mining Holdings Inc
Original Assignee
NIKKO GUURUDO FOIL KK
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKO GUURUDO FOIL KK, Nikko Materials Co Ltd filed Critical NIKKO GUURUDO FOIL KK
Priority to JP2139729A priority Critical patent/JPH0436491A/en
Publication of JPH0436491A publication Critical patent/JPH0436491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To obtain the high-quality electrolytic copper foil uniform in thickness in the cross and longitudinal directions, by forming a part of an electrode as the plural split foil thickness uniformizing anodes and separately controlling the quantity of electricity to be supplied to each anode. CONSTITUTION:A cathode drum 1 as a rotary cylinder is partially dipped in an electrolyte and confronted with at least one circular insoluble anode 3. The anode 3 on the copper foil discharge side is formed as a foil thickness uniformizing anode 4. An electrolyte is supplied from a gap between the anodes 3 and 4 and flows through the gap between the cathode drum 1 and the anodes 3 and 4. Under these conditions, a specified voltage is maintained between the cathode drum 1 and the anode 3 by a rectifier 5. As the cathode drum 1 rotates, copper is deposited from the electrolyte, and the crude foil in specified thickness is released by an appropriate releasing means. Furthermore, a slave rectifier 7 is connected between the discrete split anodes 4 and the cathode drum 1 to separately control the quantity of electricity to be supplied to each anode, and the thickness of the electrolytic copper foil produced is uniformized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電解銅箔の製造装置に関するものであり、特
には製造される電解銅箔の厚みが均一となるよう箔厚み
均一化用分割陽極を配設しそして箔厚み均一化用分割陽
極に供給される電気量を個別に制御する手段を備えるこ
とを特徴とする電解銅箔の製造装置に関する。本発明に
より、巾方向及び長手方向に厚みの均一な高品質電解銅
箔が得られる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an apparatus for manufacturing electrolytic copper foil, and in particular, a dividing device for making the thickness of the electrolytic copper foil uniform so that the thickness of the electrolytic copper foil produced is uniform. The present invention relates to an apparatus for manufacturing electrolytic copper foil, characterized in that it is provided with anodes and means for individually controlling the amount of electricity supplied to the divided anodes for making the foil thickness uniform. According to the present invention, a high quality electrolytic copper foil having a uniform thickness in the width direction and the length direction can be obtained.

(従来技術) 電解銅箔は、不溶性金属製の陽極(アノード)と表面を
鏡面研磨された金属製陰極(カソード)胴(ドラム)と
の間に電解液を流しそして陽極及び陰極胴間に電位を与
えることにより、陰極胴表面に銅を電着させそして所定
厚となった電着物を陰極胴から剥離することにより製造
される。得られる銅箔は主筒と呼ばれ、爾後に様々の表
面処理を施して製品とされる。
(Prior art) Electrolytic copper foil is produced by flowing an electrolytic solution between an anode made of an insoluble metal and a cathode drum made of a metal whose surface is polished to a mirror finish, and then creating an electric potential between the anode and the cathode drum. It is produced by electrodepositing copper on the surface of the cathode shell, and peeling off the electrodeposited material from the cathode shell once it has reached a predetermined thickness. The resulting copper foil is called the main tube, and is then subjected to various surface treatments and made into products.

電解銅箔製造設備においては、陽極は成る一定期間の運
転を終ると、特に陽極の減耗により陽極及び陰極間の間
隔にムラが生じ、使用に耐えない状態となる。特に巾方
向の厚みのバラツキが生じる。第4図は、従来からの電
解銅箔製造における陰極胴と陽極との配置関係を示す説
明図である。
In an electrolytic copper foil production facility, after the anode has been operated for a certain period of time, the distance between the anode and the cathode becomes uneven, especially due to wear and tear, and the equipment becomes unusable. In particular, variations in thickness occur in the width direction. FIG. 4 is an explanatory diagram showing the arrangement relationship between a cathode body and an anode in conventional electrolytic copper foil production.

電解液を収蔵する電解槽(図示なし)において、陰極胴
1は電解液に部分的に浸漬された状態で回転しうるよう
設!される(ここでは時計方向)。
In an electrolytic cell (not shown) that stores an electrolytic solution, the cathode body 1 is designed to be able to rotate while being partially immersed in the electrolytic solution. (clockwise here).

陰極胴1の浸漬された、おおよそ下半部分を覆って且つ
回転胴表面から一定間隔をおいて例えば2枚の陽極3が
配設される。電解槽内で2枚の陽極3の間の6時(短針
の位置、以下同じ)の位置から電解液が供給されそして
電解液は陰極胴と陽極との間の間隙を通して流れて陽極
上縁から濡出して循環される。整流器5が陰極胴と陽極
との間に所定の電圧を維持している。
For example, two anodes 3 are disposed to cover approximately the immersed lower half of the cathode barrel 1 and at a constant distance from the surface of the rotating barrel. In the electrolytic cell, electrolyte is supplied from the 6 o'clock position (the position of the hour hand, the same applies hereinafter) between the two anodes 3, and the electrolyte flows through the gap between the cathode body and the anode and from the upper edge of the anode. It gets wet and gets circulated. A rectifier 5 maintains a predetermined voltage between the cathode shell and the anode.

陰極胴1が回転するにつれ、電解液から電着する銅は厚
みを増し、おおよそ12時の位置において所定の厚さと
なった主筋が適宜の剥離手段により剥離されて巻き取ら
れる。
As the cathode body 1 rotates, the thickness of the copper electrodeposited from the electrolytic solution increases, and at approximately the 12 o'clock position, the main strip having a predetermined thickness is peeled off by an appropriate peeling means and wound up.

陽極は、使用中局所的に減耗する。そのため、陰極胴と
陽極との間隔が変動し、第4図に示すように生成する主
筋は巾方向に厚みの変動を生じるようになる。
The anode is locally depleted during use. As a result, the distance between the cathode body and the anode varies, and the thickness of the main bars produced varies in the width direction, as shown in FIG.

電解銅箔においては、その一つの重要な品質要件として
巾方向の厚みの均一化が挙げられる。
One of the important quality requirements for electrolytic copper foil is uniformity of thickness in the width direction.

電解銅箔の巾方向の厚みの均一化を達成するために、従
来広のような対策がとられてきた。
In order to achieve uniformity in the thickness of electrolytic copper foil in the width direction, conventional measures have been widely taken.

(1)アノードミリング:電解銅箔製造設備においては
、陽極は成る一定期間の運転を終ると、減耗により陽極
及び陰極間にムラが生じ、使用に耐えない状態となる。
(1) Anode milling: In electrolytic copper foil production equipment, after a certain period of operation, the anode becomes unusable due to wear and tear and unevenness occurs between the anode and cathode.

使用に耐えない状態とは、電解電圧が異常に上昇した状
態或いは製造された銅箔の厚みのバラツキが激しい状態
を云う。この状態を回避するために、一定期間使用され
たアノードは特殊な切削機械で表面を円筒加工する。
A state that cannot be used refers to a state in which the electrolytic voltage has increased abnormally or a state in which the thickness of the manufactured copper foil has large variations. To avoid this situation, the surface of anodes that have been used for a certain period of time is machined into a cylinder using a special cutting machine.

(2)アノード部分削りニアノードミリング後製造され
た銅箔の巾方向の厚みのバラツキを測定し、そのデータ
に応じて陽極の表面を部分的に削り取り、銅箔の厚みを
修正する。
(2) Partially scraping the anode After near-node milling, the thickness variation in the width direction of the copper foil manufactured is measured, and according to the data, the surface of the anode is partially scraped to correct the thickness of the copper foil.

(発明が解決しようとする課題) 以上2つの従来からの対策は、操業中の修正が出来ない
こと、陽極以外の不確定な原因による巾方向の厚みのバ
ラツキ、例えば陰極胴起因の厚みのバラツキ、電解液の
流れの変化やムラによる厚みのバラツキに対応出来ない
こと、アノード部分削りが時間のかかる面倒な作業であ
り、所期の効果をあげることが必ずしも容易ではないこ
と等の短所を有する。
(Problems to be Solved by the Invention) The above two conventional countermeasures are the inability to make corrections during operation, the variation in thickness in the width direction due to uncertain causes other than the anode, and the variation in thickness due to the cathode body, for example. , it has disadvantages such as not being able to deal with variations in thickness due to changes in the flow of the electrolyte or unevenness, shaving the anode part is a time-consuming and troublesome process, and it is not always easy to achieve the desired effect. .

本発明の課題は、操業中の厚み修正、特に巾方向の厚み
修正を可能とし、陽極以外の不確定な原因による厚みの
修正をも可能とする新たな電解銅箔製造装置を開発する
ことである。
The object of the present invention is to develop a new electrolytic copper foil manufacturing apparatus that enables thickness correction during operation, especially thickness correction in the width direction, and also enables thickness correction due to uncertain causes other than the anode. be.

(課題を解決するための手段) 本発明者等は、陽極の少な(とも−枚の一部を巾方向に
分割された複数個の箔厚み均一化用陽極として構成し、
電解銅箔の巾方向厚みが均一となるよう厚み均一化用分
割陽極を個別に制御することを想到した。箔厚み均一化
用分割補助陽極に供給する電気量かを個別に制御される
(Means for Solving the Problems) The present inventors configured a small number of anodes (some of which are divided in the width direction as a plurality of foil thickness equalizing anodes,
We came up with the idea of individually controlling the divided anodes for thickness uniformity so that the thickness of the electrolytic copper foil in the width direction is uniform. The amount of electricity supplied to the divided auxiliary anodes for equalizing the foil thickness is individually controlled.

この知見に基づいて、本発明は、回転自在の陰極胴と、
該陰極胴に対面する少なくとも1枚の陽極とを具備し、
該陰極胴と陽極との間に電解液を流し、該陰極胴表面に
銅を電着させそして電着した銅箔を該陰極胴から剥離す
る電解銅箔の製造装置において、前記陽極の一部を巾方
向に分割された複数個の箔厚み均一化用陽極として構成
し、そして該箔厚み均一化用分割陽極に供給する電気量
を個別に制御する手段を備えることを特徴とする電解銅
箔の製造装置を提供する。
Based on this knowledge, the present invention provides a rotatable cathode shell,
at least one anode facing the cathode body,
In an electrolytic copper foil production apparatus that flows an electrolytic solution between the cathode body and the anode, electrodeposit copper on the surface of the cathode body, and peel the electrodeposited copper foil from the cathode body, a part of the anode An electrolytic copper foil comprising a plurality of foil thickness equalizing anodes divided in the width direction, and comprising means for individually controlling the amount of electricity supplied to the foil thickness equalizing divided anodes. We provide manufacturing equipment for

(実施例の説明) 本発明に従えば、第4図において既に説明した陽極の一
部、好ましくは少な(とも銅箔取り出し側の1枚の一部
が巾方向に分割された複数個の箔厚み均一化用分割陽極
として構成される。もちろん、既存の陽極に追加して分
割陽極を補助陽極として設置することも出来る。
(Explanation of Embodiments) According to the present invention, a portion of the anode already explained in FIG. It is configured as a divided anode for making the thickness uniform.Of course, the divided anode can also be installed as an auxiliary anode in addition to the existing anode.

第1及び2図には、2枚の陽極のうちの銅箔弓比し側の
陽極の上端部を箔厚み均一化用分割陽極として構成した
例を示す。
FIGS. 1 and 2 show an example in which the upper end of the copper foil side of the two anodes is configured as a divided anode for uniformizing the foil thickness.

第3図は、銅箔引出し側のみならず、電着開始側の陽極
の上端部をも箔厚み均一化用分割陽極として構成した例
を示す。電着開始時と電着終了時の両方で制御を行なう
FIG. 3 shows an example in which not only the upper end of the anode on the copper foil draw-out side but also the electrodeposition start side is configured as a divided anode for making the foil thickness uniform. Control is performed both at the start of electrodeposition and at the end of electrodeposition.

分割数は、多い程きめ細かな制御が出来るが、それだけ
作製及びメンテナンスが大変であり、製造すべき銅箔の
巾並びに電解銅箔製造設備の状況に応じて10〜40個
、通常20〜30個前後に分割される。
The larger the number of divisions, the more finely controlled the control, but the more difficult it is to manufacture and maintain, and the number of divisions varies from 10 to 40 pieces, usually 20 to 30 pieces, depending on the width of the copper foil to be manufactured and the status of the electrolytic copper foil manufacturing equipment. It is divided into front and back.

本発明装置による電解銅箔製造の操業態様を説明すると
、硫酸銅の硫酸溶液のような電解液を収蔵する電解槽(
図示なし)において、例えばステンレス鋼或いはチタン
製の、回転円筒体である陰極層1は電解液に部分的に浸
漬され、ここでは時計方向に回転しつるよう支持装置に
よって設置される。陰極層1の浸漬された、おおよそ下
半部分を覆って且つ陰極胴表面から一定間隔をおいて例
えば2枚の円弧状の不溶性陽極3が配設される。
To explain the operation mode of producing electrolytic copper foil using the apparatus of the present invention, an electrolytic tank (
(not shown), a rotating cylindrical cathode layer 1, for example made of stainless steel or titanium, is partially immersed in an electrolyte and is here mounted by means of a support device so as to rotate clockwise. For example, two arcuate insoluble anodes 3 are disposed to cover approximately the immersed lower half of the cathode layer 1 and at a constant distance from the surface of the cathode body.

陽極も適宜の装置によって電解液中に支持されており、
陰極層に対する若干の位置調整は可能である。陽極は、
鉛、鉛とアンチモン、銀、インジウム等との鉛合金等か
ら作製される。別様には、陽極は、DSE或いはD S
 A (Dimension 5tableElect
rode 、Anode)と呼ばれる、チタンに代表さ
れるバルブ金属上に主として白金族金属或いはその酸化
物を被覆した構造のものとなしつる。陽極は、図示のよ
うに陰極層のおおよそ下174部分に沿って配設される
2枚の陽極シートから構成するのが好ましいが、場合に
よっては1枚、3枚或いは4枚といった、もつと多くの
陽極シートから構成することも出来る。
The anode is also supported in the electrolyte by a suitable device,
Some positional adjustment with respect to the cathode layer is possible. The anode is
It is made from lead, a lead alloy of lead and antimony, silver, indium, etc. Alternatively, the anode is a DSE or D S
A (Dimension 5tableElect
It has a structure in which a valve metal represented by titanium is coated with a platinum group metal or an oxide thereof. The anode preferably consists of two anode sheets disposed along approximately the lower 174 portion of the cathode layer as shown, but in some cases there may be one, three, or even four anode sheets. It can also be constructed from an anode sheet of

本発明に従えば、こうした陽極の好ましくは少なくとも
銅箔取り出し側の1枚の一部が前述したような箔厚み均
一化用分割陽極4として構成される。適宜数の分割陽極
4°、4”、4″″、・・・が形成される。
According to the present invention, preferably at least a portion of one of the anodes on the copper foil extraction side is configured as the divided anode 4 for equalizing the foil thickness as described above. An appropriate number of divided anodes 4°, 4'', 4'''', . . . are formed.

陰極層と陽極との間隔は通常2〜100mmの範囲で一
定位置に維持される。間隔が狭い程、電気量が少なくて
すむが、膜厚及び品質の管理が難しくなる。
The spacing between the cathode layer and the anode is generally maintained at a constant position in the range of 2 to 100 mm. The narrower the spacing, the less electricity is required, but it becomes more difficult to control film thickness and quality.

陰極層と陽極との間隔は電解液の流通路を形成する。陽
極3と4の間の6時の位置から電解液が槽内の適宜のポ
ンプ(図示なし)を通して供給されそして電解液は陰極
層と陽極との間の間隙を通して両側に流れて各陽極上縁
から濡出して循環される。
The spacing between the cathode layer and the anode forms a flow path for the electrolyte. Electrolyte is supplied from the 6 o'clock position between anodes 3 and 4 through a suitable pump (not shown) in the bath, and the electrolyte flows to both sides through the gap between the cathode layer and the anode to the upper edge of each anode. It leaks out and is circulated.

整流器5が陰極層と陽極との間に所定の電圧を維持して
いる。
A rectifier 5 maintains a predetermined voltage between the cathode layer and the anode.

陰極層1が回転するにつれ、電解液からの銅の電着は、
はぼ3時の位置から始まり、次第に厚みを増し、はぼ9
時の位置において電着を終えて所定の厚さとなり、おお
よそ12時の位置において所定の厚さとなった主筋が適
宜の剥離手段により剥離されて巻き取られる。陽極は、
特に鉛系の陽極は使用中局所的に減耗する。そのため、
陰極層と陽極との間隔が変動する。そのほか、陰極層に
起因する厚みのバラツキが生じうるし、また電解液の流
れの一定の偏向や流れむらが生じつる。これらがあいま
って、第4図で示したような主筋に厚さの局所的変動が
生ずる傾向がある。
As the cathode layer 1 rotates, the electrodeposition of copper from the electrolyte is
It starts at the 3 o'clock position and gradually increases in thickness until it reaches the 9 o'clock position.
At the 12 o'clock position, the electrodeposition is completed to a predetermined thickness, and at approximately the 12 o'clock position, the main strip, which has a predetermined thickness, is peeled off by an appropriate peeling means and wound up. The anode is
In particular, lead-based anodes are locally worn out during use. Therefore,
The spacing between the cathode layer and the anode varies. In addition, variations in thickness may occur due to the cathode layer, and certain deflections or uneven flow of the electrolyte may occur. Together, these tend to cause local variations in the thickness of the main reinforcement as shown in FIG.

本発明に従えば、主筋の巾方向の厚さが剥離後検知され
そして厚みのバラツキが許容以上となると、その巾方向
特定部位に相当する特定の分割陽極4に供給される電力
がバラツキを解消する方向に個別制御される。分割陽極
4の個別の制御を可能とするように、電気量を個別に制
御する手段として子整流器7が、個々の分割陽極4と陰
極層との間に接続される。銅箔の巾方向の各位置での厚
さの測定は、適宜のサンプリングによって単位面積当た
りの重量を測定することにより簡易に行ないうるし、静
電容量検知型のような厚さ測定装置を巻き取り行路に配
設して厚さを監視し、フィードバック装置を用いて子整
流器7と連動せしめることも出来る。
According to the present invention, when the thickness of the main reinforcing bars in the width direction is detected after peeling and the variation in thickness exceeds an allowable value, the variation in power supplied to a specific divided anode 4 corresponding to a specific portion in the width direction is eliminated. individually controlled in the direction of In order to enable individual control of the segmented anodes 4, a child rectifier 7 is connected between the individual segmented anodes 4 and the cathode layer as means for individually controlling the quantity of electricity. The thickness at each position in the width direction of the copper foil can be easily measured by measuring the weight per unit area through appropriate sampling, or by winding up a thickness measuring device such as a capacitance sensing type. It can also be placed in the path to monitor the thickness and linked to the child rectifier 7 using a feedback device.

各分割陽極間には好ましくは、絶縁シールが設けられる
。絶縁材としては、PvC板、常温加硫ゴム(RTV:
商品名)等が使用出来る。この外にも、例えば、絶縁性
接着剤で隣り合う分割陽極を接合することにより或いは
絶縁膜を挟んで分割陽極を一体化することによりもたら
される。
An insulating seal is preferably provided between each segmented anode. Insulating materials include PvC board, room temperature vulcanized rubber (RTV:
Product name) etc. can be used. In addition to this, it can also be achieved, for example, by joining adjacent divided anodes with an insulating adhesive or by integrating the divided anodes with an insulating film in between.

こうして本発明装置を使用することにより、箔厚み均一
化用分割陽極を利用して、そこに供給する電気量を個別
に制御することにより製造される電解銅箔の厚みを均一
化することができる。
In this way, by using the device of the present invention, it is possible to make the thickness of the electrolytic copper foil produced uniform by using the divided anode for foil thickness uniformity and individually controlling the amount of electricity supplied thereto. .

次に、本発明装置の使用例を示す。Next, an example of use of the device of the present invention will be shown.

(実施例1) 直径2.0m及び巾1.3mの陰極胴と図示したように
陰極胴のほぼ下半部分に沿って配設された巾1.3mの
、2枚の陽極を使用して硫酸銅溶液を用いて厚さ35μ
mの銅箔の製造を行なった。本発明に従う陽極構成とし
ては、第1及び2図に示した構成を使用し、20個の分
割陽極から構成した。剥離した銅箔の単位面積あたりの
重量を測定して個々の陽極を0.1〜1. OA/di
”の範囲で調節した。この結果、本発明装置によって巾
方向の厚さの変動は小さくなり、従来の約3%の変動か
ら0.5%以下の変動へと低減することができた。
(Example 1) Using a cathode shell with a diameter of 2.0 m and a width of 1.3 m, and two anodes with a width of 1.3 m disposed along approximately the lower half of the cathode shell as shown. 35μ thick using copper sulfate solution
m copper foil was manufactured. As the anode structure according to the present invention, the structure shown in FIGS. 1 and 2 was used, and it was composed of 20 divided anodes. The weight per unit area of the peeled copper foil was measured and the weight of each anode was 0.1 to 1. OA/di
As a result, with the device of the present invention, the variation in the thickness in the width direction was reduced from the conventional variation of about 3% to 0.5% or less.

(実施例2) 本発明に従う陽極構成としては、第4図に示した銅箔の
引出し側の既存の陽極上に20個の分割陽極を配設する
ことにより構成し、実施例1と同様に厚さ35μmの銅
箔を製造した。得られた銅箔の巾方向の厚さの変動は0
.5%以下であった。
(Example 2) The anode structure according to the present invention is constructed by arranging 20 divided anodes on the existing anode on the drawer side of the copper foil shown in FIG. A copper foil with a thickness of 35 μm was manufactured. The thickness variation in the width direction of the obtained copper foil was 0.
.. It was less than 5%.

(発明の効果) 1、従来、理想的な箔厚を得るまでには、数回の陽極修
正(部分削り)を必要とした。修正と修正との間は、約
1〜2週間の操業期間があるので、修正が完了するまで
に3〜4週間を要していたものが、本発明により操業中
でも厚さ調整が可能となり、箔厚良好な銅箔の製造が可
能となった。
(Effects of the invention) 1. Conventionally, several anode corrections (partial scraping) were required to obtain the ideal foil thickness. Since there is an operating period of about 1 to 2 weeks between corrections, it used to take 3 to 4 weeks to complete the correction, but with the present invention, it is now possible to adjust the thickness even during operation. It has become possible to manufacture copper foil with good thickness.

2o従来陽極交換の都度行なっていた陽極部分削りが排
除若しくは著しく低減しつるので、設備のメンテナンス
に伴う様々の負担が軽減される。
2o The need to scrape the anode part, which was conventionally performed every time the anode was replaced, is eliminated or significantly reduced, so various burdens associated with equipment maintenance are reduced.

3、更に、本発明装置は、従来不可能であった長さ方向
の厚のバラツキの修正をも可能とする。長さ方向の厚み
のバラツキは陰極胴の構造に起因するものであるが、周
期性があり、本発明により電流条件を制御することによ
り修正可能となった。
3. Furthermore, the device of the present invention makes it possible to correct variations in thickness in the longitudinal direction, which was previously impossible. Although the variation in the thickness in the length direction is caused by the structure of the cathode shell, it has periodicity and can be corrected by controlling the current conditions according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、2枚の陽極の内の銅箔引出し側の陽極の一部
を箔厚み均一化用分割陽極として構成した実施例の、陰
極胴と陽極との配置関係を示す概略斜視図である。 第2図は、第1図の陽極の斜視図である。 第3図は、銅箔引出し側のみならず、電着開始側の陽極
の一部をも箔厚み均一化用分割陽極として構成した例を
示す。 第4図は、従来からの電解銅箔製造における陰極胴と陽
極との配置関係を示す説明図である。 l:陰極胴 3:陽極 4:分割陽極 5:整流器 7:子整流器 !il1図 第2図
FIG. 1 is a schematic perspective view showing the arrangement relationship between the cathode body and the anode in an embodiment in which a part of the anode on the copper foil drawer side of the two anodes is configured as a divided anode for equalizing the foil thickness. be. 2 is a perspective view of the anode of FIG. 1; FIG. FIG. 3 shows an example in which not only the copper foil draw-out side but also a part of the anode on the electrodeposition start side is configured as a divided anode for making the foil thickness uniform. FIG. 4 is an explanatory diagram showing the arrangement relationship between a cathode body and an anode in conventional electrolytic copper foil production. l: Cathode body 3: Anode 4: Split anode 5: Rectifier 7: Child rectifier! il1 figure 2 figure

Claims (1)

【特許請求の範囲】[Claims] 1)回転自在の陰極胴と、該陰極胴に対面する少なくと
も1枚の陽極とを具備し、該陰極胴と陽極との間に電解
液を流し、該陰極胴表面に銅を電着させそして電着した
銅箔を該陰極胴から剥離する電解銅箔の製造装置におい
て、前記陽極の一部を巾方向に分割された複数個の箔厚
み均一化用陽極として構成し、そして該箔厚み均一化用
分割陽極に供給する電気量を個別に制御する手段を備え
ることを特徴とする電解銅箔の製造装置。
1) It is equipped with a rotatable cathode shell and at least one anode facing the cathode shell, an electrolyte is flowed between the cathode shell and the anode, copper is electrodeposited on the surface of the cathode shell, and In an electrolytic copper foil manufacturing apparatus for peeling electrodeposited copper foil from the cathode body, a part of the anode is configured as a plurality of foil thickness equalizing anodes divided in the width direction, and the foil thickness is uniform. An apparatus for manufacturing electrolytic copper foil, characterized by comprising means for individually controlling the amount of electricity supplied to the divided anodes.
JP2139729A 1990-05-31 1990-05-31 Device for producing electrolytic copper foil Pending JPH0436491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139729A JPH0436491A (en) 1990-05-31 1990-05-31 Device for producing electrolytic copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139729A JPH0436491A (en) 1990-05-31 1990-05-31 Device for producing electrolytic copper foil

Publications (1)

Publication Number Publication Date
JPH0436491A true JPH0436491A (en) 1992-02-06

Family

ID=15252032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139729A Pending JPH0436491A (en) 1990-05-31 1990-05-31 Device for producing electrolytic copper foil

Country Status (1)

Country Link
JP (1) JPH0436491A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436489A (en) * 1990-05-31 1992-02-06 Nikko Guurudo Foil Kk Production of electrolytic copper foil
JPH04221092A (en) * 1990-12-19 1992-08-11 Nikko Guurudo Foil Kk Production of electrolytic copper foil and apparatus therefor
JPH04221091A (en) * 1990-12-19 1992-08-11 Nikko Guurudo Foil Kk Production of electrolytic copper foil and apparatus therefor
KR100729895B1 (en) * 2006-03-14 2007-06-18 엘에스전선 주식회사 Apparatus for compensating weight declination of electrolytic copper foil and manufacturing apparatus having the same
WO2012066991A1 (en) * 2010-11-15 2012-05-24 Jx日鉱日石金属株式会社 Electrolytic copper foil
JP5329696B1 (en) * 2012-05-14 2013-10-30 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery current collector
JP5329697B1 (en) * 2012-05-14 2013-10-30 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery current collector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436489A (en) * 1990-05-31 1992-02-06 Nikko Guurudo Foil Kk Production of electrolytic copper foil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436489A (en) * 1990-05-31 1992-02-06 Nikko Guurudo Foil Kk Production of electrolytic copper foil

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436489A (en) * 1990-05-31 1992-02-06 Nikko Guurudo Foil Kk Production of electrolytic copper foil
JP2594840B2 (en) * 1990-05-31 1997-03-26 日鉱グールド・フォイル株式会社 Method and apparatus for producing electrolytic copper foil
JPH04221092A (en) * 1990-12-19 1992-08-11 Nikko Guurudo Foil Kk Production of electrolytic copper foil and apparatus therefor
JPH04221091A (en) * 1990-12-19 1992-08-11 Nikko Guurudo Foil Kk Production of electrolytic copper foil and apparatus therefor
KR100729895B1 (en) * 2006-03-14 2007-06-18 엘에스전선 주식회사 Apparatus for compensating weight declination of electrolytic copper foil and manufacturing apparatus having the same
CN103210124A (en) * 2010-11-15 2013-07-17 吉坤日矿日石金属株式会社 Electrolytic copper foil
WO2012066991A1 (en) * 2010-11-15 2012-05-24 Jx日鉱日石金属株式会社 Electrolytic copper foil
JP2013167025A (en) * 2010-11-15 2013-08-29 Jx Nippon Mining & Metals Corp Electrolytic copper foil
JP5329715B2 (en) * 2010-11-15 2013-10-30 Jx日鉱日石金属株式会社 Electrolytic copper foil
JP2015014051A (en) * 2010-11-15 2015-01-22 Jx日鉱日石金属株式会社 Electrolytic copper foil
KR20150091192A (en) * 2010-11-15 2015-08-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Electrolytic copper foil
JP5329696B1 (en) * 2012-05-14 2013-10-30 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery current collector
JP5329697B1 (en) * 2012-05-14 2013-10-30 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery current collector

Similar Documents

Publication Publication Date Title
US5326455A (en) Method of producing electrolytic copper foil and apparatus for producing same
JPH0436489A (en) Production of electrolytic copper foil
TWI553162B (en) Electrolytic copper foil
EP0554793B1 (en) Electroplating method and apparatus for the preparation of metal foil and split insoluble electrode used therein
US4318794A (en) Anode for production of electrodeposited foil
EP0848765A1 (en) Method and apparatus for electrochemical surface treatment
JP6970603B2 (en) Metal leaf manufacturing equipment, electrode plate and metal leaf manufacturing method
JP2012107266A (en) Method and apparatus for manufacturing electrolytic copper foil
JP2506574B2 (en) Method and apparatus for producing electrolytic copper foil
JPH0436491A (en) Device for producing electrolytic copper foil
JPH0693490A (en) Manufacture of electrolytic metallic foil
US5489368A (en) Insoluble electrode structural material
AU648599B2 (en) Apparatus for electrodepositing metal
JPH0436494A (en) Device for producing electrolytic copper foil
KR940007609B1 (en) Method and apparatus for producing electrolytic copper foil
JPH0436490A (en) Device for producing electrolytic copper foil
JP2506573B2 (en) Method and apparatus for producing electrolytic copper foil
JPH0436492A (en) Device for producing electrolytic copper foil
JPH06346270A (en) Electroplating method and split insoluble electrode for electroplating
JPH0436493A (en) Device for producing electrolytic copper foil
JP2506575B2 (en) Method and apparatus for producing electrolytic copper foil
US2870068A (en) Electroformed screens
EP0585586A1 (en) Method for electrolytic treatment
US3856653A (en) Platinum clad tantalum anode assembly
US3920524A (en) Method for high speed continuous electroplating using platinum clad anode assembly