JP2015155563A - Apparatus and method for continuous electrolytic plating, metalized resin film and production method of the film - Google Patents

Apparatus and method for continuous electrolytic plating, metalized resin film and production method of the film Download PDF

Info

Publication number
JP2015155563A
JP2015155563A JP2014031019A JP2014031019A JP2015155563A JP 2015155563 A JP2015155563 A JP 2015155563A JP 2014031019 A JP2014031019 A JP 2014031019A JP 2014031019 A JP2014031019 A JP 2014031019A JP 2015155563 A JP2015155563 A JP 2015155563A
Authority
JP
Japan
Prior art keywords
plating
electrolytic plating
film
resin film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014031019A
Other languages
Japanese (ja)
Other versions
JP6221817B2 (en
Inventor
均 越智
Hitoshi Ochi
均 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014031019A priority Critical patent/JP6221817B2/en
Publication of JP2015155563A publication Critical patent/JP2015155563A/en
Application granted granted Critical
Publication of JP6221817B2 publication Critical patent/JP6221817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for continuous electrolytic plating which can improve smoothness of a plated surface efficiently by simple means.
SOLUTION: In last electrolytic cells C11 and C12 highest in the set current density, among a plurality of electrolytic cells, there is provided a throttle shield plate 9a consisting of a shield plate 10 which extends in one direction and has a cross section U-shaped in the extension direction, with surfaces mutually in parallel in the extension direction being nearly rectangular, and a movable plate 11 attached to at least one surface of the nearly rectangular surfaces of the shield plate 10 so as to be swingable with 0-2° with respect to the shield plate 10 with the support point 12 as the center. The region shielding a to-be-treated article F1 is adjusted so as to be wide in the upper end part close to the liquid surface LL of the plating solution 5 and become narrow in the lower end part far from the liquid surface LL of the plating liquid 5.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、配線材料の母材となる金属化樹脂フィルム、および、この金属化樹脂フィルムを製造するために使用される、金属薄膜付き樹脂フィルムや金属ストリップなどの被処理物に対して電解めっきを施すための連続電解めっき装置および方法に関する。   The present invention relates to a metallized resin film used as a base material of a wiring material, and electroplating to an object to be processed such as a resin film with a metal thin film or a metal strip, which is used for producing the metallized resin film. The present invention relates to a continuous electroplating apparatus and method for applying the above.

金属化樹脂フィルムの一種である金属化ポリイミドフィルムは、サブトラクティブ法やセミアディティブ法などによる配線加工により、フレキシブルプリント配線板(FPC)となるように、電子機器内の配線材料の母材として広く使用されている。   Metalized polyimide film, a type of metallized resin film, is widely used as a base material for wiring materials in electronic devices so that it can be made into a flexible printed wiring board (FPC) by wiring processing by subtractive method or semi-additive method. It is used.

現在、液晶ディスプレイ(LCD)、携帯電話、デジタルカメラ、その他の電子機器において、薄型化、小型化、軽量化、低コスト化が求められており、それらに搭載される電子部品にもこれらの特性が要求されている。この結果、その配線材料であるFPCの配線ピッチもより狭くなっている。特に、LCDのドライバ用配線板などでは、配線ピッチのファイン化が顕著であり、LCD用のドライバICチップの実装には、ファインピッチ実装が可能なFPCであるCOF(Chip on film)が用いられている。このような配線ピッチのさらなるファイン化に伴い、その配線材料の母材としての金属化ポリイミドフィルムには、その金属層表面の平滑化が一層求められている。   Currently, liquid crystal displays (LCDs), mobile phones, digital cameras, and other electronic devices are required to be thinner, smaller, lighter, and lower in cost. Is required. As a result, the wiring pitch of the FPC that is the wiring material is also narrower. Particularly in LCD driver wiring boards and the like, the finer wiring pitch is remarkable, and COF (Chip on film), which is an FPC capable of fine pitch mounting, is used for mounting a driver IC chip for LCD. ing. As the wiring pitch is further refined, the metallized polyimide film as the base material of the wiring material is further required to smooth the surface of the metal layer.

現在、金属化ポリイミドフィルムにおいては、接着剤を介さず、ポリイミドフィルムに金属層を直接積層した二層金属化ポリイミドフィルムが主流となりつつある。二層金属化ポリイミドフィルムを得る方法としては、特開2003−342787号公報に記載されているように、ポリイミドフィルム表面に、スパッタリング法や蒸着法などの乾式めっき法を用いて、直接、下地金属(シード)層および金属薄膜層を積層させた後、金属薄膜層のめっき面に、ロール・ツー・ロール方式の連続電解めっき方法を用いて、金属めっき層を厚付けする方法がある。   At present, in a metallized polyimide film, a two-layer metallized polyimide film in which a metal layer is directly laminated on a polyimide film without using an adhesive is becoming mainstream. As a method for obtaining a double-layer metallized polyimide film, as described in JP-A-2003-342787, the surface of the polyimide film is directly applied to the surface of the polyimide film using a dry plating method such as sputtering or vapor deposition. After laminating the (seed) layer and the metal thin film layer, there is a method of thickening the metal plating layer on the plating surface of the metal thin film layer by using a roll-to-roll continuous electrolytic plating method.

この際、電解めっき工程において、めっき面の端部で電流密度が増大することに起因して、端部のめっき量が多くなることが知られている。金属化樹脂フィルムの製造工程においても、長尺の金属薄膜付き樹脂フィルム上に、連続電解めっき方法を用いて金属めっき層の厚付けを行う際に、めっき面の端部でめっき量が多くなる。このため、金属化樹脂フィルムにおいて、電流密度が増大する両端部に、ヤケと呼ばれる外観異常が発生して、光沢性が低下したり、めっき面の凹凸により給電ロールとの接触が不均一になって、給電ロールへの異常析出が生じたり、あるいは、めっき面の凹凸が激しくなったりすることがある。さらに、金属化樹脂フィルムは、連続電解めっき後にロール状に巻き取られるが、めっき面の凹凸が激しくなると位置ずれを起こして、長尺の巻き取りが困難になる場合もある。   At this time, it is known that in the electrolytic plating process, the amount of plating at the end portion is increased due to an increase in current density at the end portion of the plating surface. Also in the metallized resin film manufacturing process, when the metal plating layer is thickened using a continuous electrolytic plating method on a long resin film with a metal thin film, the amount of plating increases at the end of the plating surface. . For this reason, in the metallized resin film, an appearance abnormality called “bake” occurs at both ends where the current density increases, resulting in a decrease in gloss or uneven contact with the power supply roll due to unevenness of the plating surface. As a result, abnormal deposition on the power supply roll may occur, or the unevenness of the plating surface may become severe. Furthermore, the metallized resin film is wound up in a roll shape after continuous electrolytic plating. However, when the unevenness of the plated surface becomes severe, the metallized resin film may be misaligned, and it may be difficult to wind the long film.

これに対して、特開2011−58057号公報には、長尺ポリイミドフィルムの片面に乾式めっき法で金属薄膜層を成膜した後、このフィルムを幅方向が略水平方向になるように搬送し、金属薄膜層の表面に、複数の不溶解性アノード(陽極)を用いて、搬送方向に対して、段階的に電流密度を上昇させる湿式めっき法により、銅めっき被膜層を形成することが記載されている。具体的には、銅めっき被膜層を形成する際に、複数の不溶解性アノードの中で、印加される電流による電流密度が35mA/cm2以上となる不溶解性アノードにおいて、不溶解性アノードとフィルムの間に略長方形の遮蔽板を配置し、不溶解性アノードの上端から下端に向かって少なくとも40cmの位置までの部分の幅を、銅めっき被膜層の幅の80%〜90%となるように制御することにより、銅めっき被膜層の厚みの平滑性を向上させている。たとえば470mm幅の銅めっき被膜層を形成する場合に、銅層の膜厚の最大値と最小値の差を0.5μm以下に抑制できることになる。 In contrast, JP 2011-58057 A discloses that after a metal thin film layer is formed on one side of a long polyimide film by a dry plating method, the film is conveyed so that the width direction is substantially horizontal. It is described that a copper plating film layer is formed on a surface of a metal thin film layer by a wet plating method using a plurality of insoluble anodes (anodes) to increase the current density stepwise in the transport direction. Has been. Specifically, when forming a copper plating film layer, an insoluble anode in which a current density due to an applied current is 35 mA / cm 2 or more among a plurality of insoluble anodes. A substantially rectangular shielding plate is disposed between the film and the film, and the width of the portion from the upper end of the insoluble anode to the position of at least 40 cm from the upper end to the lower end is 80% to 90% of the width of the copper plating layer. By controlling in this way, the smoothness of the thickness of the copper plating film layer is improved. For example, when a copper plating film layer having a width of 470 mm is formed, the difference between the maximum value and the minimum value of the film thickness of the copper layer can be suppressed to 0.5 μm or less.

また、ロール・ツー・ロール方式の連続電解めっき方法ではないが、特開2006−316322号公報には、シート状の金属薄膜付き樹脂フィルムが搬送される際に、アノード電極に対向して電解めっきが行われる領域において、金属薄膜付き樹脂フィルムの端部の両側に、金属薄膜付き樹脂フィルムの搬送方向に延伸し、延伸方向に対する横断面がV字形と方形を組み合わせた開口断面形状を有するエッジ遮蔽治具を配置して、めっき面の端部に電流が集中することを防止する技術が記載されている。   Further, although it is not a roll-to-roll type continuous electrolytic plating method, Japanese Patent Application Laid-Open No. 2006-316322 discloses electrolytic plating opposite to the anode electrode when a sheet-like resin film with a metal thin film is conveyed. In the region where the resin film with a metal thin film is stretched in the conveyance direction of the resin film with a metal thin film, and the cross section with respect to the stretching direction has an opening cross-sectional shape combining a V shape and a square A technique is described in which a jig is arranged to prevent current from concentrating on the end of the plating surface.

いずれの文献に記載の技術においても、エッジ遮蔽治具は、金属薄膜付き樹脂フィルムのめっき面を覆う量(かぶり量)が搬送方向に対して一定となるように、金属薄膜付きフィルムに対向して設置される。また、エッジ遮蔽治具は、その延伸方向に平行な面の形状が略長方形となっており、エッジ遮蔽治具と金属薄膜付き樹脂フィルムとは互いに平行となるように設置される。   In any of the techniques described in any of the documents, the edge shielding jig faces the film with the metal thin film so that the amount (covering amount) covering the plated surface of the resin film with the metal thin film is constant with respect to the transport direction. Installed. The edge shielding jig has a substantially rectangular shape parallel to the extending direction, and the edge shielding jig and the resin film with a metal thin film are installed so as to be parallel to each other.

ところで、金属化樹脂フィルムでは、フィルムの一方の面の全面にめっきされるのではなく、その両端部に一定幅のめっきされない部分が設けられる。さらに、ロール・ツー・ロール方式の連続電解めっき方法において、金属化樹脂フィルムを連続的に電解めっきする工程では、連続的に複数の電解めっきセルを通過することで段階的にめっき量を増加させているが、この際、電解めっきセルを経るごとに、電流密度を段階的に大きく設定することが一般的である。   By the way, in the metallized resin film, the entire surface of one surface of the film is not plated, but portions having a certain width that are not plated are provided at both ends thereof. Furthermore, in the continuous electroplating method of the roll-to-roll method, in the process of continuously electroplating the metallized resin film, the amount of plating is increased step by step through a plurality of electroplating cells. However, at this time, the current density is generally set to be increased step by step every time the electrolytic plating cell is passed.

このため、かぶり量の設定によっては、めっき面の端部に凸部が、その内側に凹部が形成されてしまうことがある。また、凸部や凹部の位置関係は電流密度などの電解めっき条件やめっき厚などにも左右される。したがって、現状においては、めっき面の端部近傍まで所望のめっき厚が確保され、長手方向に対してめっき面の幅が一定であり、かつ、両端部まで平滑性が良好なめっき面を得るためには、エッジ遮蔽治具の電解めっき装置への取り付け位置を微調整して、電解めっきセル単位でかぶり量を変化させることが必要である。   For this reason, depending on the setting of the fogging amount, a convex portion may be formed at the end portion of the plating surface and a concave portion may be formed inside the convex portion. Further, the positional relationship between the convex portions and the concave portions depends on electrolytic plating conditions such as current density and plating thickness. Therefore, in the present situation, a desired plating thickness is ensured up to the vicinity of the end of the plating surface, the plating surface width is constant with respect to the longitudinal direction, and smoothness is obtained up to both ends. For this, it is necessary to finely adjust the mounting position of the edge shielding jig to the electroplating apparatus and change the fogging amount in units of electroplating cells.

なお、特開2003−342787号公報や特開2011−58057号公報に記載された連続電解めっきを施す装置と同様の装置は、特開2004−99950号公報に記載されているように、銅箔や鋼帯などの金属ストリップに連続電解めっきを施す装置としても利用されている。   In addition, the apparatus similar to the apparatus which performs the continuous electrolytic plating described in Unexamined-Japanese-Patent No. 2003-342787 or Unexamined-Japanese-Patent No. 2011-58057 is copper foil, as described in Unexamined-Japanese-Patent No. 2004-99950. It is also used as a device that applies continuous electrolytic plating to metal strips such as steel strips.

特開2003−342787号公報JP 2003-342787 A 特開2011−58075号公報JP 2011-58075 A 特開2006−316322号公報JP 2006-316322 A 特開2004−99950号公報Japanese Patent Laid-Open No. 2004-99950

上述のように、ロール・ツー・ロール方式の連続電解めっき方法において、電解めっきセルごとにかぶり量を調整しても、めっき面の凹凸や外観異常を完全に解消するには至っていない。また、かぶり量の調整には時間と手間を要し、このことがロール・ツー・ロール方式の連続電解めっき方法における金属化樹脂フィルムの生産性を妨げる一因となっている。   As described above, in the roll-to-roll continuous electrolytic plating method, even if the fog amount is adjusted for each electrolytic plating cell, the unevenness of the plated surface and the appearance abnormality have not been completely eliminated. Moreover, adjustment of the amount of fog requires time and labor, and this is one factor that hinders the productivity of the metallized resin film in the roll-to-roll type continuous electrolytic plating method.

そこで、本発明は、簡便な手段で効率よくめっき面の平滑性を向上させる連続電解めっき方法および連続電解めっき装置を提供することを目的とする。また、本発明は、電解めっき面の平滑性に優れた金属化樹脂フィルムおよびその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the continuous electroplating method and continuous electroplating apparatus which improve the smoothness of a plating surface efficiently with a simple means. Moreover, an object of this invention is to provide the metallized resin film excellent in the smoothness of the electrolytic plating surface, and its manufacturing method.

本発明者らは、上記目的を達成するために、エッジ遮蔽治具として、被処理物を遮蔽する領域が、めっき液の液面に近い上端部では広く、液面から遠い下端部では狭くなるように構成したものを用いることにより、効率的に、めっき面の平滑性を向上させることができることを確認し、本発明を完成させるに至ったものである。   In order to achieve the above object, the inventors of the present invention as an edge shielding jig, the region for shielding the object to be processed is wide at the upper end near the liquid surface of the plating solution and narrow at the lower end far from the liquid surface. By using what was constituted in this way, it was confirmed that the smoothness of the plated surface can be improved efficiently, and the present invention has been completed.

本発明は、めっき層と、該めっき層の上方に配置された複数の給電ロールと、該めっき層内に略垂直に配置された複数のアノードと、該めっき槽内で該複数のアノードよりも下方に配置された複数の搬送ロールとを備え、長尺の被処理物を、前記複数の給電ロールと前記複数の搬送ロールとを介して、その幅方向を略水平方向に保ちつつ、かつ、前記めっき槽内のめっき液内で、前記複数のアノードのそれぞれと略平行となるように搬送し、該複数のアノードと、該複数の給電ロールのうちの対応する給電ロールに接触した該被処理物のめっき面とにより電解めっきセルを複数構成して、該被処理物のめっき面に金属めっき層を順次積層するように構成されている、ロール・ツー・ロール方式の連続電解めっき装置に関する。   The present invention provides a plating layer, a plurality of power supply rolls disposed above the plating layer, a plurality of anodes disposed substantially vertically in the plating layer, and the plurality of anodes in the plating tank. A plurality of conveying rolls disposed below, and maintaining a long object to be processed in a substantially horizontal direction through the plurality of power supply rolls and the plurality of conveying rolls, and In the plating solution in the plating tank, the object to be processed is conveyed so as to be substantially parallel to each of the plurality of anodes, and is in contact with the plurality of anodes and a corresponding power supply roll among the plurality of power supply rolls. The present invention relates to a roll-to-roll type continuous electrolytic plating apparatus configured such that a plurality of electrolytic plating cells are configured with a plating surface of an object, and a metal plating layer is sequentially laminated on the plating surface of the object to be processed.

特に、本発明の連続電解めっき装置には、前記複数の電解めっきセルに、前記被処理物の搬送方向に伸長し、伸長方向に対して横断面がU字形状であり、該伸長方向に互いに平行な面は略長方形の形状を有し、該被処理物の両端部を覆うように配置され、該被処理物の両端部を前記複数のアノードのそれぞれの少なくとも一部から遮蔽する遮蔽板を備えるエッジ遮蔽治具が、かぶり量が0mm〜60mmとなるように設けられており、かつ、前記複数の電解めっきセルのうち、設定電流密度が3.0A/dm2以上である少なくとも1つの電解めっきセルに、前記エッジ遮蔽治具の少なくともアノードに対向する面に、前記被処理物を遮蔽する領域が、めっき液の液面に近い上端部では広く、液面から遠い下端部では狭くなるように構成された傾斜部を備えるエッジ遮蔽治具が、該エッジ遮蔽治具の上端部における最大かぶり量が、前記傾斜部を備えないエッジ遮蔽治具のかぶり量よりも大きく、かつ、100mm以下となるように、設けられていることを特徴とする。 In particular, in the continuous electrolytic plating apparatus of the present invention, each of the plurality of electrolytic plating cells extends in the conveying direction of the workpiece, and has a U-shaped cross section with respect to the extending direction. A parallel surface has a substantially rectangular shape, and is arranged so as to cover both ends of the object to be processed, and a shielding plate that shields both ends of the object to be processed from at least a part of each of the plurality of anodes. The edge shielding jig provided is provided so that the fogging amount is 0 mm to 60 mm, and among the plurality of electrolytic plating cells, at least one electrolysis having a set current density of 3.0 A / dm 2 or more. In the plating cell, at least on the surface of the edge shielding jig facing the anode, the region for shielding the object to be processed is wide at the upper end near the liquid surface of the plating solution and narrow at the lower end far from the liquid surface. Configured In the edge shielding jig having the inclined portion, the maximum fogging amount at the upper end portion of the edge shielding jig is larger than the fogging amount of the edge shielding jig not having the inclined portion, and is 100 mm or less. It is provided.

前記傾斜部を備えるエッジ遮蔽治具は、少なくとも設定電流密度が最も高い電解めっきセルに設置されていることが好ましい。なお、通常は、前記設定電流密度が最も高い電解めっきセルを、前記複数の電解めっきセルのうちの最後の電解めっきセルとする。   It is preferable that the edge shielding jig provided with the inclined portion is installed in an electroplating cell having the highest set current density. In general, the electrolytic plating cell having the highest set current density is the last electrolytic plating cell among the plurality of electrolytic plating cells.

このような本発明の連続電解めっき装置において、前記傾斜部を備えるエッジ遮蔽治具は、前記遮蔽板と、該遮蔽板の略長方形の面のうち、少なくともアノードに対向する面に、該遮蔽板の液面から遠い側に設けられた支点を中心に回動可能に付設された可動板とを備える、スロットル遮蔽板から構成され、前記可動板が、前記遮蔽板に対して回動することにより、前記傾斜部が形成されることが好ましい。なお、前記可動板は、前記遮蔽板に対して、少なくとも0°〜2°の範囲で回動可能であることが好ましい。   In such a continuous electrolytic plating apparatus according to the present invention, the edge shielding jig including the inclined portion includes at least one of the shielding plate and the substantially rectangular surface of the shielding plate facing the anode. And a movable plate attached so as to be rotatable about a fulcrum provided on the side far from the liquid level of the liquid, and the movable plate rotates with respect to the shield plate. The inclined portion is preferably formed. The movable plate is preferably rotatable with respect to the shielding plate in a range of at least 0 ° to 2 °.

本発明の連続電解めっき方法は、本発明の連続電解めっき装置を用い、前記長尺の被処理物を、前記複数の給電ロールと前記複数の搬送ロールとを介して、その幅方向を略水平方向に保ちつつ、かつ、前記めっき槽内のめっき液内で、前記複数のアノードのそれぞれと略平行となるように搬送し、該複数のアノードと、該複数の給電ロールのうちの対応する給電ロールに接触した該被処理物のめっき面とにより電解めっきセルを複数構成して、該被処理物のめっき面に金属めっき層を順次積層するロール・ツー・ロール方式の連続電解めっき方法である。   The continuous electrolytic plating method of the present invention uses the continuous electrolytic plating apparatus of the present invention, and the width direction of the long object to be processed is substantially horizontal via the plurality of power supply rolls and the plurality of transport rolls. In the plating solution in the plating tank, while being kept in the direction, it is conveyed so as to be substantially parallel to each of the plurality of anodes, and the plurality of anodes and the corresponding power supply among the plurality of power supply rolls A roll-to-roll type continuous electrolytic plating method in which a plurality of electrolytic plating cells are configured with the plating surface of the workpiece to be in contact with the roll, and a metal plating layer is sequentially laminated on the plating surface of the workpiece. .

特に、本発明の連続電解めっき方法においては、前記複数の電解めっきセルに、前記被処理物の搬送方向に伸長し、伸長方向に対して横断面がU字形状であり、該伸長方向に互いに平行な面は略長方形の形状を有し、該被処理物の両端部を覆うように配置され、該被処理物の両端部を前記複数のアノードのそれぞれの少なくとも一部から遮蔽する遮蔽板を備えるエッジ遮蔽治具を、かぶり量が0mm〜60mmとなるように設置し、かつ、前記複数の電解めっきセルのうち、設定電流密度が3.0A/dm2以上である少なくとも1つの電解めっきセルに、前記エッジ遮蔽治具の少なくともアノードに対向する面に、前記被処理物を遮蔽する領域が、めっき液の液面に近い上端部では広く、液面から遠い下端部では狭くなるように構成された傾斜部を備えるエッジ遮蔽治具を、該エッジ遮蔽治具の上端部における最大かぶり量が、前記傾斜部を備えないエッジ遮蔽治具のかぶり量よりも大きく、かつ、100mm以下となるように、設置することを特徴とする。 In particular, in the continuous electrolytic plating method of the present invention, the plurality of electrolytic plating cells extend in the conveying direction of the workpiece, and have a U-shaped cross section with respect to the extending direction. A parallel surface has a substantially rectangular shape, and is arranged so as to cover both ends of the object to be processed, and a shielding plate that shields both ends of the object to be processed from at least a part of each of the plurality of anodes. The edge shielding jig provided is installed so that the fogging amount is 0 mm to 60 mm, and among the plurality of electrolytic plating cells, at least one electrolytic plating cell having a set current density of 3.0 A / dm 2 or more Further, at least the surface of the edge shielding jig facing the anode is configured such that a region for shielding the object to be processed is wide at the upper end near the liquid surface of the plating solution and narrow at the lower end far from the liquid surface. Was In the edge shielding jig provided with the inclined portion, the maximum fogging amount at the upper end portion of the edge shielding jig is larger than the fogging amount of the edge shielding jig not provided with the inclined portion, and 100 mm or less. It is characterized by installing.

前記傾斜部を備えるエッジ遮蔽治具を、少なくとも設定電流密度が最も高い電解めっきセルに設置することが好ましい。なお、通常は、前記複数の電解めっきセルのうちの最後の電解めっきセルを、前記設定電流密度が最も高い電解めっきセルとする。   It is preferable to install the edge shielding jig provided with the inclined portion in at least an electrolytic plating cell having the highest set current density. Normally, the last electrolytic plating cell among the plurality of electrolytic plating cells is an electrolytic plating cell having the highest set current density.

前記傾斜部を備えるエッジ遮蔽治具として、前記スロットル遮蔽板から構成されるものを使用する場合、前記傾斜部の開き角度を0.5°〜2°とすることが好ましい。   In the case of using an edge shielding jig provided with the inclined portion, the opening portion of the inclined portion is preferably set to 0.5 ° to 2 °.

本発明の金属化樹脂フィルムの製造方法は、絶縁樹脂フィルムの少なくとも片面に接着剤を介することなく乾式めっき法にて下地金属層を成膜する下地金属成膜工程と、該下地金属層に乾式めっき法にて銅薄膜層を積層して金属薄膜付き樹脂フィルムを形成する乾式めっき工程と、該金属薄膜付き樹脂フィルムに電解めっきにて銅めっき層を積層する電解めっき工程とを備える、金属化樹脂フィルムの製造方法であって、前記電解めっき工程に、該金属薄膜付き樹脂フィルムを前記被処理物とする、本発明の連続電解めっき方法を用いることを特徴とする。   The method for producing a metallized resin film according to the present invention includes a base metal film forming step of forming a base metal layer on at least one surface of an insulating resin film by a dry plating method without using an adhesive, and a dry process on the base metal layer. Metallization comprising a dry plating process in which a copper thin film layer is laminated by a plating method to form a resin film with a metal thin film, and an electroplating process in which a copper plating layer is laminated on the resin film with a metal thin film by electrolytic plating It is a manufacturing method of a resin film, Comprising: The said electrolytic plating process uses the continuous electrolytic plating method of this invention which uses this resin film with a metal thin film as the said to-be-processed object.

本発明の金属化樹脂フィルムは、本発明の金属化樹脂フィルムの製造方法により得られ、前記銅めっき層の幅方向の膜厚分布における膜厚の最大値と最小値との差が、0.25μm以下であることを特徴とする。   The metallized resin film of the present invention is obtained by the method for producing a metallized resin film of the present invention, and the difference between the maximum value and the minimum value of the film thickness distribution in the width direction of the copper plating layer is 0. It is characterized by being 25 μm or less.

本発明のエッジ遮蔽治具は、一方向に延伸し、延伸方向に対して横断面がU字形状であり、延伸方向に互いに平行な面は略長方形の形状を有する遮蔽板と、該遮蔽板の略長方形の面の少なくとも一方に、支点を中心に、該遮蔽板に対して0°〜2°の範囲で回動可能に付設された可動板とを備え、連続電解めっき装置を構成する、設定電流密度が3.0A/cm2以上である少なくとも1つの電解めっきセルにおいて、該電解めっきセルのアノードに略平行に搬送される被処理物の両端部を覆うように設置されるスロットル遮蔽板により構成される。 The edge shielding jig of the present invention has a shielding plate that extends in one direction, has a U-shaped cross section with respect to the stretching direction, and has a substantially rectangular shape in parallel to the stretching direction. Comprising a movable plate attached to at least one of the substantially rectangular surfaces so as to be rotatable in a range of 0 ° to 2 ° with respect to the shielding plate, with a fulcrum as a center, and constitutes a continuous electrolytic plating apparatus. In at least one electrolytic plating cell having a set current density of 3.0 A / cm 2 or more, a throttle shielding plate is installed so as to cover both ends of the workpiece to be conveyed substantially parallel to the anode of the electrolytic plating cell Consists of.

本発明の連続電解めっき方法および連続電解めっき装置によれば、エッジ遮蔽治具のめっき液の液面に近い端部ではかぶり量が大きく、めっき液の液面から遠い端部ではかぶり量を小さくすることが、簡便な手段で効率よく達成され、めっき面の平滑性を従来よりも向上させることができる。また、本発明によれば、このようなかぶり量の調整をきわめて短時間で行うことが可能となる。さらに、本発明を金属化樹脂フィルムの電解めっき工程に適用することにより、電解めっき面の平滑性が向上し、フレキシブル配線板の配線ピッチのファイン化に対してきわめて有用であるばかりでなく、その生産性を大幅に向上させることが可能となる。このため、本発明の工業的意義はきわめて大きい。   According to the continuous electrolytic plating method and the continuous electrolytic plating apparatus of the present invention, the fogging amount is large at the end portion near the liquid surface of the plating solution of the edge shielding jig, and the covering amount is small at the end portion far from the liquid surface of the plating solution. This is achieved efficiently by simple means, and the smoothness of the plated surface can be improved as compared with the prior art. Further, according to the present invention, it is possible to adjust the fog amount in a very short time. Furthermore, by applying the present invention to the electroplating process of the metallized resin film, the smoothness of the electroplating surface is improved, and not only is it extremely useful for the finer wiring pitch of the flexible wiring board, Productivity can be greatly improved. For this reason, the industrial significance of the present invention is extremely large.

図1は、本発明が適用される連続電解めっき装置の概略図である。FIG. 1 is a schematic view of a continuous electrolytic plating apparatus to which the present invention is applied. 図2は、U字形状の横断面を備えた遮蔽板を用いた電解めっきセルついての説明図である。FIG. 2 is an explanatory view of an electrolytic plating cell using a shielding plate having a U-shaped cross section. 図3は、U字形状の横断面を備えた、可動板付きの遮蔽板を用いた電解めっきセルについての図2と同様の説明図である。FIG. 3 is an explanatory view similar to FIG. 2 for an electroplating cell using a shielding plate with a movable plate having a U-shaped cross section. 図4は、U字形状の横断面を備えた、可動板付きの遮蔽板の模式図およびかぶり量について説明するものであり、図4(a)は、可動板の収納時の平面図、図4(b)は、可動板の収納時の正面図、図4(c)は、可動板の展開時の平面図、図4(d)は、可動板の展開時の正面図である。FIG. 4 is a schematic diagram of a shielding plate with a movable plate having a U-shaped cross section and a cover amount. FIG. 4A is a plan view when the movable plate is stored, FIG. 4 (b) is a front view when the movable plate is stored, FIG. 4 (c) is a plan view when the movable plate is deployed, and FIG. 4 (d) is a front view when the movable plate is deployed.

以下、本発明について、「1.連続電解めっき装置および連続電解めっき方法」と、「2.金属化樹脂フィルムの製造方法および金属化樹脂フィルム」に分けて説明する。なお、以下では、金属薄膜付き樹脂フィルムに電解めっきを施す場合を例に挙げて説明しているが、本発明は、これに限定されることはなく、たとえば、銅箔、銅帯などの金属ストリップなどの、ロール・ツー・ロール方式で搬送でき、給電ロールに接触する面とアノードに対向する面との間で電気的導通が得られる長尺材料であれば、いずれに対しても好適に適用可能である。   Hereinafter, the present invention will be described by being divided into “1. Continuous electrolytic plating apparatus and continuous electrolytic plating method” and “2. Manufacturing method of metallized resin film and metallized resin film”. In the following, a case where electrolytic plating is applied to a resin film with a metal thin film is described as an example. However, the present invention is not limited to this, for example, a metal such as a copper foil or a copper strip. Any material that can be transported in a roll-to-roll manner, such as a strip, and can provide electrical continuity between the surface that contacts the power supply roll and the surface that faces the anode Applicable.

1.連続電解めっき装置および連続電解めっき方法
(1)基本構成
図1〜図4に、本発明の実施態様の1例である連続電解めっき装置1を示す。連続電解めっき装置1は、図1に示すように、その基本構造は従来と同様であり、長尺の被処理物である金属薄膜付き樹脂フィルムF1を巻き出しロール2より巻き出して、この金属薄膜付き樹脂フィルムF1を、幅方向を略水平方向に保って搬送し、液面LLに対して略垂直に設置された複数のアノード(陽極)6a〜6lを備えためっき槽4内で、めっき液5に浸漬し、かつ、アノード6a〜6lのそれぞれと略平行に対向させて搬送しながら、複数の電解めっきセルC1〜C12により電解めっきを施し、金属薄膜付き樹脂フィルムF1の金属薄膜層のめっき面に金属めっき層14を順次積層して、金属化樹脂フィルムF2を得て、巻き取りロール3に巻き取るロール・ツー・ロール方式の装置である。ここで、「略水平」、「略垂直」または「略平行」とは、完全に水平、垂直または平行である場合のみならず、金属薄膜付き樹脂フィルムF1の搬送や、めっき面に対する金属めっき層14の形成に影響を及ぼさない限り、完全に水平、垂直または平行といえない場合も許容するという意味である。
1. Continuous Electroplating Apparatus and Continuous Electroplating Method (1) Basic Configuration FIGS. 1 to 4 show a continuous electroplating apparatus 1 that is an example of an embodiment of the present invention. As shown in FIG. 1, the basic structure of the continuous electrolytic plating apparatus 1 is the same as that of the prior art. The metal film with metal thin film F1, which is a long object to be treated, is unwound from an unwinding roll 2, and this metal The thin film-attached resin film F1 is conveyed while maintaining the width direction in a substantially horizontal direction, and is plated in a plating tank 4 having a plurality of anodes (anodes) 6a to 6l installed substantially perpendicular to the liquid level LL. While being immersed in the liquid 5 and transporting the anodes 6a to 6l so as to face each of the anodes 6a to 6l, electrolytic plating is performed by a plurality of electrolytic plating cells C1 to C12, and the metal thin film layer of the resin film F1 with a metal thin film This is a roll-to-roll system apparatus in which the metal plating layer 14 is sequentially laminated on the plating surface to obtain a metallized resin film F <b> 2 and is wound around the winding roll 3. Here, “substantially horizontal”, “substantially vertical” or “substantially parallel” not only means completely horizontal, vertical or parallel, but also transport of the resin film F1 with a metal thin film and a metal plating layer on the plating surface. As long as it does not affect the formation of 14, it means that even if not completely horizontal, vertical or parallel, it is allowed.

なお、本例では、金属薄膜付き樹脂フィルムF1とは、樹脂フィルムの少なくとも片面に接着剤を介さずに下地金属層および金属薄膜層を積層させたものである。また、金属めっき層14を形成する金属としては、銅、金、ニッケル、亜鉛などの電解めっきが適用される金属および合金があり、被処理物としては、この金属薄膜付き樹脂フィルムのほか、少なくとも片面に同種金属の電解めっきが施される銅箔、鋼帯などの金属ストリップがある。   In addition, in this example, the resin film F1 with a metal thin film is obtained by laminating a base metal layer and a metal thin film layer on at least one surface of the resin film without using an adhesive. Moreover, as a metal which forms the metal plating layer 14, there are metals and alloys to which electrolytic plating such as copper, gold, nickel, and zinc is applied, and as an object to be processed, in addition to the resin film with a metal thin film, at least There are metal strips such as copper foil and steel strip that are electroplated with the same kind of metal on one side.

より具体的には、巻き出された金属薄膜付き樹脂フィルムF1は、複数の給電ロール7a〜7gと、複数の搬送ロール8a〜8fとにより、その幅方向を略水平方向に保ちながら、めっき液5への浸漬を繰り返すように搬送される。その間に、電解めっきにより金属薄膜付き樹脂フィルムF1に金属めっき層14が順次積層され、得られた金属化樹脂フィルムF2は巻き取りロール3に巻き取られる。なお、連続電解めっき装置1には、金属薄膜付き樹脂フィルムF1の張力を制御する制御ロールなどの長尺フィルムや金属ストリップを搬送するために用いられる公知の各種装置や、めっき液5の撹拌や供給などに用いられる公知の各種装置が追加的に設置可能である。   More specifically, the unrolled resin film F1 with a metal thin film is plated with a plurality of power supply rolls 7a to 7g and a plurality of transport rolls 8a to 8f while maintaining the width direction in a substantially horizontal direction. It is conveyed so that the immersion to 5 is repeated. In the meantime, the metal plating layer 14 is sequentially laminated | stacked on the resin film F1 with a metal thin film by electrolytic plating, and the obtained metallized resin film F2 is wound up by the winding roll 3. FIG. In addition, the continuous electrolytic plating apparatus 1 includes various known apparatuses used for transporting a long film such as a control roll for controlling the tension of the resin film F1 with a metal thin film or a metal strip, stirring of the plating solution 5, Various known devices used for supply and the like can be additionally installed.

めっき液5とアノード6a〜6lは、成膜すべき金属めっき層14に応じて公知のものを用いることができる。たとえば、銅電解めっきを行うのであれば、公知の銅めっき液を用いることができ、アノード6a〜6lも銅製のアノードもしくは公知の不溶解性アノードを用いることができる。ただし、金属めっき層14の膜厚分布を良好にする観点からは、不溶解性アノードを用いることが好ましい。また、アノード6a〜6l、給電ロール7a〜7gおよび搬送ロール8a〜8fの数は、必要に応じて任意に定めることができる。   As the plating solution 5 and the anodes 6a to 6l, known ones can be used according to the metal plating layer 14 to be formed. For example, if copper electrolytic plating is performed, a known copper plating solution can be used, and the anodes 6a to 6l can also be made of a copper anode or a known insoluble anode. However, from the viewpoint of improving the film thickness distribution of the metal plating layer 14, it is preferable to use an insoluble anode. Further, the numbers of the anodes 6a to 6l, the power supply rolls 7a to 7g, and the transport rolls 8a to 8f can be arbitrarily determined as necessary.

図1に示すように、給電ロール7a〜7gに接触する金属薄膜付き樹脂フィルムF1とアノード6a〜6lの間にそれぞれ、電位差が生じて電解めっきセルC1〜C12が形成される。アノード6a〜6lは、フレーム(図示せず)を介してめっき槽4に設置される。アノード6a〜6lのそれぞれの上端部は、通常、めっき液5の液面LLよりもわずかに上にあり、液面が多少波打ったとしてもアノード6a〜6lの上端部が、液面LLより下方に位置しないように配置される。なお、アノード6a〜6lは、図1〜図3に示すように単一のアノードにより構成するほか、垂直方向に2分割し、上部アノードと下部アノードとにより構成することも可能である。   As shown in FIG. 1, a potential difference is generated between the resin film F1 with a metal thin film and the anodes 6a to 6l that are in contact with the power supply rolls 7a to 7g, thereby forming electrolytic plating cells C1 to C12. The anodes 6a to 6l are installed in the plating tank 4 through a frame (not shown). The upper ends of the anodes 6a to 6l are usually slightly above the liquid level LL of the plating solution 5, and the upper ends of the anodes 6a to 6l are more than the liquid level LL even if the liquid level is somewhat wavy. It arrange | positions so that it may not be located below. The anodes 6a to 6l may be configured by a single anode as shown in FIGS. 1 to 3, or may be divided into two in the vertical direction and configured by an upper anode and a lower anode.

アノード6a〜6lのそれぞれには、個別に電源装置(図示せず)が接続されており、電解めっきセルC1〜C12の電流密度をそれぞれ個別に設定することが可能となっている。また、上下分割アノードの場合、上部アノードと下部アノードとを個別に電流制御することにより、1つの電解めっきセルにおける電流密度について、より均一化を図ることが可能である。   A power supply device (not shown) is individually connected to each of the anodes 6a to 6l, and the current densities of the electrolytic plating cells C1 to C12 can be individually set. In the case of a vertically divided anode, the current density in one electrolytic plating cell can be made more uniform by individually controlling the current of the upper anode and the lower anode.

電解めっきセルC1〜C12の電流密度は、すべて同一であってもよいが、通常は、金属薄膜付き樹脂フィルムF1の搬送方向に沿って段階的に上昇するように制御される。たとえば、図1に示した連続めっき装置1において、アノード6aからアノード6lまで、電解めっきセルC1からC12の順で連続的かつ段階的に電流密度を上昇させるように構成することも可能である。また、アノード6aと6bの電解めっきセルC1とC2において電流密度が最小値となり、アノード6cからアノード6jまでの電解めっきセルC3〜C10において電流密度が段階的に上昇し、アノード6kと6lの電解めっきセルC11とC12において電流密度が最大値となるように制御することもできる。   The current densities of the electroplating cells C1 to C12 may all be the same, but are usually controlled so as to increase stepwise along the transport direction of the resin film F1 with a metal thin film. For example, the continuous plating apparatus 1 shown in FIG. 1 may be configured to increase the current density continuously and stepwise from the anode 6a to the anode 6l in the order of the electrolytic plating cells C1 to C12. Further, the current density becomes the minimum value in the electroplating cells C1 and C2 of the anodes 6a and 6b, and the current density gradually increases in the electroplating cells C3 to C10 from the anode 6c to the anode 6j, so that the electrolysis of the anodes 6k and 6l is performed. It is also possible to control so that the current density becomes the maximum value in the plating cells C11 and C12.

(2)エッジ遮蔽治具
図1に示すような連続電解めっき装置1では、上述したように、金属めっき層14の両端部に電流が集中しやすく、金属めっき層14のめっき面の両端部に凸部が、その幅方向内側に凹部が形成される。また、電解めっきセルC1〜C12のそれぞれにおいて、カソード側の電流が、めっき液5の液面LLの上方に設置された給電ロール7a〜7gにより、金属めっき層14のめっき面に供給されるため、電流密度は垂直方向にも変化し、一般的に、金属めっき層14のめっき面内の給電ロール7a〜7gに近い液面LL近傍では電流密度が高く、液面LLから深さ方向に進むにつれて電流密度が漸減し、搬送ロール8a〜8f近傍が最も電流密度が低くなる傾向がある。特に、この傾向は、電流密度が高い電解めっきセル(通常は、下流側(巻き取りロール3側)の電解めっきセルC11およびC12)で顕著となる。この結果、最終的に得られる金属化樹脂フィルムF2において、その幅方向のみならず、搬送方向(長手方向)においても金属めっき層14の膜厚分布が広くなってしまう。
(2) Edge shielding jig In the continuous electrolytic plating apparatus 1 as shown in FIG. 1, as described above, current tends to concentrate on both ends of the metal plating layer 14, and on both ends of the plating surface of the metal plating layer 14. The convex portion is formed with a concave portion on the inner side in the width direction. Further, in each of the electroplating cells C1 to C12, the current on the cathode side is supplied to the plating surface of the metal plating layer 14 by the power supply rolls 7a to 7g installed above the liquid surface LL of the plating solution 5. The current density also changes in the vertical direction. Generally, the current density is high in the vicinity of the liquid level LL near the power supply rolls 7a to 7g in the plating surface of the metal plating layer 14, and proceeds from the liquid level LL in the depth direction. As the current density gradually decreases, the current density tends to be lowest in the vicinity of the transport rolls 8a to 8f. In particular, this tendency becomes prominent in electrolytic plating cells having high current density (usually, electrolytic plating cells C11 and C12 on the downstream side (winding roll 3 side)). As a result, in the metallized resin film F2 finally obtained, the film thickness distribution of the metal plating layer 14 becomes wide not only in the width direction but also in the transport direction (longitudinal direction).

したがって、たとえば、特開2006−316322号公報に記載の技術を応用して、金属薄膜付き樹脂フィルムF1の両端部をエッジ遮蔽治具によって遮蔽した場合、金属薄膜付き樹脂フィルムF1の幅方向の膜厚分布のばらつきを抑制することができたとしても、同時に、搬送方向の膜厚分布のばらつきを抑制することはきわめて困難である。すなわち、このようなエッジ遮蔽治具によって、幅方向と搬送方向の膜厚分布のばらつきを同時に抑制するためには、電解めっきセルC1〜C12ごとに、エッジ遮蔽治具のかぶり量を調整する必要があるところ、この調整を行うには、めっき槽4内のめっき液5の一部を槽外に排出し、液面LLの位置を低下させなければならない。このため、電解めっきセルC1〜C12のそれぞれについて、エッジ遮蔽治具のかぶり量を最適なものとするには、エッジ遮蔽板のかぶり量の調整時間に加えて、めっき液5の充填および排出に要する時間が必要となり、生産性が著しく低下する。   Therefore, for example, when the technology described in JP-A-2006-316322 is applied and both ends of the resin film F1 with a metal thin film are shielded by an edge shielding jig, the film in the width direction of the resin film F1 with a metal thin film Even if variations in thickness distribution can be suppressed, it is extremely difficult to suppress variations in thickness distribution in the transport direction at the same time. That is, in order to suppress the variation in the film thickness distribution in the width direction and the conveyance direction at the same time by such an edge shielding jig, it is necessary to adjust the fogging amount of the edge shielding jig for each of the electrolytic plating cells C1 to C12. However, in order to perform this adjustment, a part of the plating solution 5 in the plating tank 4 must be discharged out of the tank and the position of the liquid level LL must be lowered. For this reason, in order to optimize the fogging amount of the edge shielding jig for each of the electrolytic plating cells C1 to C12, in addition to the adjustment time of the fogging amount of the edge shielding plate, filling and discharging of the plating solution 5 are performed. Time required is required, and productivity is significantly reduced.

これに対して、本発明では、図2〜図4に示すように、電解めっきセルC1〜C12に、金属薄膜付き樹脂フィルムF1の搬送方向に伸長し、伸長方向に対して横断面がU字形状であり、伸長方向に互いに平行な面は略長方形の形状を有し、金属薄膜付き樹脂フィルムF1の両端部を覆うように配置され、複数のアノード6a〜6lのそれぞれの少なくとも一部から遮蔽する遮蔽板10からなるエッジ遮蔽治具9を設置するとともに(図2)、電解めっきセルC1〜C12のうち、設定電流密度が3.0A/dm2以上である少なくとも1つの電解めっきセルに、エッジ遮蔽治具として、エッジ遮蔽治具9に、少なくともアノードに対向する面に、金属薄膜付き樹脂フィルムF1を遮蔽する領域が、めっき液5の液面LLに近い上端部では広く、液面LLから遠い下端部では狭くなるように構成された傾斜部が追加されているエッジ遮蔽治具9aを、エッジ遮蔽治具9に代替して設置している(図3および図4)。そして、これらのエッジ遮蔽治具9および傾斜部を備えるエッジ遮蔽治具9aのかぶり量を所定の範囲に制御している。ここで、設定電流密度とは、電解めっきセルC1〜C12のそれぞれにおいて、所望の電着量、被電解めっき面の面積、電着時間を達成するために予め設定された電流密度をいう。 On the other hand, in this invention, as shown in FIGS. 2-4, it extends to the electroplating cell C1-C12 in the conveyance direction of the resin film F1 with a metal thin film, and a cross section is U character with respect to the expansion | extension direction. The surfaces parallel to each other in the extending direction have a substantially rectangular shape, are arranged so as to cover both end portions of the resin film F1 with a metal thin film, and are shielded from at least a part of each of the plurality of anodes 6a to 6l. The edge shielding jig 9 comprising the shielding plate 10 is installed (FIG. 2), and among the electroplating cells C1 to C12, at least one electroplating cell having a set current density of 3.0 A / dm 2 or more, As the edge shielding jig, the edge shielding jig 9 has a region where the resin film F1 with a metal thin film is shielded at least on the surface facing the anode at the upper end near the liquid surface LL of the plating solution 5. The edge shielding jig 9a to which an inclined portion configured to be narrow at the lower end far from the liquid level LL is added is installed instead of the edge shielding jig 9 (FIGS. 3 and 4). . The fogging amount of the edge shielding jig 9 and the edge shielding jig 9a having the inclined portion is controlled within a predetermined range. Here, the set current density refers to a current density set in advance in order to achieve a desired amount of electrodeposition, an area of an electroplating surface, and an electrodeposition time in each of the electroplating cells C1 to C12.

すなわち、本発明では、エッジ遮蔽治具9と組み合わせて、金属めっき層14のめっき面のめっき厚を左右する設定電流密度が3.0A/dm2以上の少なくとも1つの電解めっきセルにおいて、エッジ遮蔽治具9に代替して、傾斜部を備えるエッジ遮蔽治具9aを使用することにより、幅方向のみならず、搬送方向の電流密度の分布に対応してめっき面を遮断することができるため、工業規模の生産において、高い平滑性を有する金属化樹脂フィルムF2を容易に得ることができる。しかも、本発明では、このような電流密度の均一化を、主として、設定電流密度の高い電解めっきセルに設置した、傾斜部を備えるエッジ遮蔽治具9aのかぶり量を調整することによって実現しているため、その調整時間の削減を図ることができる。特に、傾斜部を備えるエッジ遮蔽治具9aとして、後述するスロットル遮蔽板を採用した場合には、めっき層4内からめっき液5を排出することなく、かぶり量を調整することが可能となるため、調整時間を大幅に削減することが可能となる。 That is, in the present invention, in combination with the edge shielding jig 9, edge shielding is performed in at least one electrolytic plating cell having a set current density of 3.0 A / dm 2 or more that affects the plating thickness of the plating surface of the metal plating layer 14. By using the edge shielding jig 9a having an inclined portion instead of the jig 9, the plating surface can be cut off corresponding to the current density distribution in the conveying direction as well as in the width direction. In industrial scale production, a metallized resin film F2 having high smoothness can be easily obtained. Moreover, in the present invention, such a uniform current density is realized mainly by adjusting the fogging amount of the edge shielding jig 9a provided with the inclined portion installed in the electrolytic plating cell having a high set current density. Therefore, the adjustment time can be reduced. In particular, when a throttle shielding plate, which will be described later, is employed as the edge shielding jig 9 a having an inclined portion, it is possible to adjust the fogging amount without discharging the plating solution 5 from the plating layer 4. The adjustment time can be greatly reduced.

なお、本発明は、特開2011−58057号公報に記載されるような、アノード6a〜6lの幅を調整するためのエッジ遮蔽治具と併用することもでき、これによって、得られる金属化樹脂フィルムF2のめっき面の平滑性を一段と向上させることが可能となる。   In addition, this invention can also be used together with the edge shielding jig | tool for adjusting the width | variety of anode 6a-6l as described in Unexamined-Japanese-Patent No. 2011-58057, The metallized resin obtained by this It becomes possible to further improve the smoothness of the plated surface of the film F2.

[設置位置]
上述したように、本発明では、設定電流密度が3.0A/dm2以上である少なくとも1つの電解めっきセルに、傾斜部を備えるエッジ遮蔽治具9aが設置され、その他の電解めっきセルには、エッジ遮蔽治具9が設置される。なお、すべての電解めっきセルC1〜C12において、傾斜部を備えるエッジ遮蔽治具9aを設置することも可能であるが、設定電流密度がもっと高い電解めっきセルに設置することが好ましい。特に、最下流側(巻き取りロール3側)にある最後の電解めきセルC12またはC11とC12を、設定電流密度がもっとも高い電解めっきセルとなるように調整して、この電解めっきセルC12またはC11とC12に、傾斜部を備えるエッジ遮蔽治具9aを設置することが好ましい。このような構成により、金属薄膜付き樹脂フィルムF1の金属めっき層14のめっき面のめっき厚を左右する、設定電流密度の高い電解めっきセルにおける電着挙動が適切に制御されるばかりでなく、実質的に、かぶり量の調整作業を、電解めっきセルC11またはC11とC12に設置された傾斜部を備えるエッジ遮蔽治具9aに対してのみ行えばよいため、調整時間を短縮し、金属樹脂化フィルムF2の生産性を改善することも可能となる。
[Installation position]
As described above, in the present invention, the edge shielding jig 9a having an inclined portion is installed in at least one electrolytic plating cell having a set current density of 3.0 A / dm 2 or more. The edge shielding jig 9 is installed. In all the electroplating cells C1 to C12, it is possible to install the edge shielding jig 9a having an inclined portion, but it is preferable to install it in an electroplating cell having a higher set current density. In particular, the last electrolytic plating cell C12 or C11 and C12 on the most downstream side (winding roll 3 side) is adjusted so as to be an electrolytic plating cell having the highest set current density, and this electrolytic plating cell C12 or C11. It is preferable to install an edge shielding jig 9a having an inclined portion at C12. With such a configuration, not only the electrodeposition behavior in an electrolytic plating cell having a high set current density, which affects the plating thickness of the plating surface of the metal plating layer 14 of the resin film F1 with a metal thin film, is appropriately controlled, but also substantially In particular, the adjustment of the fogging amount has only to be performed on the edge shielding jig 9a having the inclined portions installed in the electrolytic plating cells C11 or C11 and C12, so that the adjustment time is shortened and the metal resin film is obtained. It is also possible to improve the productivity of F2.

なお、電解めっきによる電着は、金属薄膜付き樹脂フィルムF1がめっき液5に浸漬している面全体で施される。また、電流密度は、めっき液5の液面LL近傍において最も大きくなる。このため、電解めっきセルC1〜C12において、エッジ遮蔽治具9およびエッジ遮蔽治具9aは、少なくともめっき液5の液面LLの位置から配置することが好ましく、めっき液5の液面LLから上方に突出するように配置することがより好ましい。また、エッジ遮蔽治具9および傾斜部を備えるエッジ遮蔽治具9の高さ(長手方向の長さ)は、めっき液5の液面LLの位置から下方に伸長する部分の長さ、すなわち、めっき液5に浸漬している部分の長さが、めっき液5の液面LLの位置から搬送ロール8a〜8fの回転軸までの距離の70%以上であることが好ましく、95%以上であることがより好ましい。   The electrodeposition by electrolytic plating is performed on the entire surface where the resin film F1 with a metal thin film is immersed in the plating solution 5. In addition, the current density is greatest in the vicinity of the liquid level LL of the plating solution 5. For this reason, in the electrolytic plating cells C1 to C12, the edge shielding jig 9 and the edge shielding jig 9a are preferably arranged at least from the position of the liquid level LL of the plating solution 5, and above the liquid level LL of the plating solution 5 It is more preferable to arrange so as to protrude. Further, the height (length in the longitudinal direction) of the edge shielding jig 9 and the edge shielding jig 9 provided with the inclined portion is the length of the portion extending downward from the position of the liquid level LL of the plating solution 5, that is, The length of the portion immersed in the plating solution 5 is preferably 70% or more of the distance from the position of the liquid level LL of the plating solution 5 to the rotation shaft of the transport rolls 8a to 8f, and is 95% or more. It is more preferable.

[エッジ遮蔽治具の態様]
本発明のエッジ遮蔽治具9および傾斜部を備えるエッジ遮蔽治具9aを構成する遮蔽板10は、金属薄膜付き樹脂フィルムF1の搬送方向に伸長し、伸長方向に対して横断面がU字形状であり、伸長方向に互いに平行な面は略長方形の形状を有する。ここで、「略長方形」とは、遮蔽板10の伸長方向に互いに平行な面の形状が、完全な長方形である場合のほか、金属薄膜付き樹脂フィルムF1の両端部を遮蔽することができる限り、完全な長方形とはいえない場合を含む。このように、遮蔽板10の横断面の形状がU字形状であることにより、側面や裏面からの電気(めっき被着物)の回り込みを防止することができ、得られる金属化樹脂フィルムF1の平滑性を向上させることができる。
[Mode of edge shielding jig]
The shielding plate 10 constituting the edge shielding jig 9 and the edge shielding jig 9a having an inclined portion of the present invention extends in the conveying direction of the resin film F1 with a metal thin film, and has a U-shaped cross section with respect to the extending direction. The surfaces parallel to each other in the extending direction have a substantially rectangular shape. Here, “substantially rectangular” means that the shape of the surfaces parallel to the extending direction of the shielding plate 10 is a perfect rectangle, as long as both ends of the resin film F1 with a metal thin film can be shielded. Including cases that are not completely rectangular. Thus, when the shape of the cross section of the shielding plate 10 is U-shaped, it is possible to prevent the wraparound of electricity (plating adherend) from the side surface and the back surface, and smoothness of the resulting metallized resin film F1. Can be improved.

なお、遮蔽板10の幅は、後述するかぶり量Dを確保することができれば、使用する電解めっき装置の特性に応じて適宜設定すればよいが、一例として、50mm〜150mm程度とすることができる。また、対抗する内側面の間隔は、電気の回り込みを抑えるため、可能な限り狭くすべきである。しかしながら、この間隔が狭すぎると、金属薄膜付き樹脂フィルムF1の搬送時に、遮蔽板10と干渉するおそれがある。このため、厚さ10μm〜100μm程度の金属薄膜付き樹脂フィルムF1に対して、めっき処理を行う場合には、遮蔽板10の対抗する内側面の間隔を、20mm〜50mm程度とすることが好ましい。   Note that the width of the shielding plate 10 may be appropriately set according to the characteristics of the electroplating apparatus to be used as long as the fogging amount D to be described later can be secured, but as an example, the width can be about 50 mm to 150 mm. . In addition, the interval between the opposing inner surfaces should be as narrow as possible in order to suppress wraparound of electricity. However, if this interval is too narrow, there is a risk of interference with the shielding plate 10 during the transport of the resin film F1 with a metal thin film. For this reason, when performing a plating process with respect to the resin film F1 with a metal thin film of thickness about 10 micrometers-100 micrometers, it is preferable that the space | interval of the inner surface which the shielding board 10 opposes shall be about 20 mm-50 mm.

また、エッジ遮蔽治具9および傾斜部を備えるエッジ遮蔽治具9aは、従来のエッジ遮蔽治具に用いられる公知の電気絶縁性プラスチッ製またはセラミック製であり、プラスチックの折り曲げ成形や射出成形、セラミックの金型成形などにより得ることができ、その厚さは2mm〜5mm程度とすることが好ましい。   Further, the edge shielding jig 9 and the edge shielding jig 9a having an inclined portion are made of a well-known electrically insulating plastic or ceramic used for a conventional edge shielding jig, and are formed by plastic bending or injection molding, ceramic. The thickness is preferably about 2 mm to 5 mm.

本発明では、特に設定電流密度が3.0A/dm2以上である少なくとも1つの電解めっきセルにおいて、エッジ遮蔽治具として、エッジ遮蔽治具9の少なくともアノードに対向する面に、金属薄膜付き樹脂フィルムF1を遮蔽する領域が、めっき液5の液面LLに近い上端部では広く、液面LLから遠い下端部では狭くなるように構成された傾斜部を備えるエッジ遮蔽治具9aを使用する必要がある。このような傾斜部を備えるエッジ遮蔽治具9aの一例として、以下、図3および4に示されるスロットル遮蔽板について説明する。 In the present invention, particularly in at least one electrolytic plating cell having a set current density of 3.0 A / dm 2 or more, a resin with a metal thin film is provided on at least the surface of the edge shielding jig 9 facing the anode as the edge shielding jig. It is necessary to use an edge shielding jig 9a having an inclined portion configured such that the region shielding the film F1 is wide at the upper end portion near the liquid level LL of the plating solution 5 and narrows at the lower end portion far from the liquid level LL. There is. As an example of the edge shielding jig 9a having such an inclined portion, a throttle shielding plate shown in FIGS. 3 and 4 will be described below.

スロットル遮蔽板9aは、エッジ遮蔽治具9と同様の遮蔽板10を有し、遮蔽板10のアノードに対向する面に可動板11を付設した構成を備える。本例では、可動板11も、公知の電気絶縁性プラスチック製またはセラミック製で、その幅を遮蔽板10と同様としている。この際、可動板11の下端部を、遮蔽板10の給電ロール7g側に付設して、可動板11の上端部を、めっき液5の液面LLから上方に突出するように伸長させることが好ましい。これにより電流密度が相対的に高くなるめっき液5の液面LL近傍におけるかぶり量Dを十分に確保できる。   The throttle shielding plate 9a includes a shielding plate 10 similar to the edge shielding jig 9, and has a configuration in which a movable plate 11 is attached to the surface of the shielding plate 10 facing the anode. In this example, the movable plate 11 is also made of a known electrically insulating plastic or ceramic and has the same width as the shielding plate 10. At this time, the lower end portion of the movable plate 11 is attached to the feeding roll 7 g side of the shielding plate 10, and the upper end portion of the movable plate 11 is extended so as to protrude upward from the liquid level LL of the plating solution 5. preferable. Thereby, it is possible to sufficiently secure the fogging amount D in the vicinity of the liquid level LL of the plating solution 5 in which the current density becomes relatively high.

また、可動板11の高さ(長手方向の長さ)は、めっき液5の液面LLの位置から下方に伸長する部分の長さが、めっき液5の液面LLの位置から搬送ロール8fの回転軸までの距離の40%以上、好ましくは70%以上となるように設置されるが、スロットル遮蔽板9aのうちアノード6lに対向する面と同様の形状および大きさとすることもできる。より具体的には、スロットル遮蔽板9aの高さが1000mmの場合、可動板11の高さはその50%〜100%とする。可動板11の高さが、めっき液5の液面LLの位置から搬送ロール8fの回転軸の距離の40%を下回ると、液面から搬送ロールに至る電着領域の中央部でのかぶり量Dの調整効果が減少するため、可動板11による効果が得られなくなる可能性がある。   Further, the height (length in the longitudinal direction) of the movable plate 11 is such that the length of the portion extending downward from the position of the liquid level LL of the plating solution 5 is from the position of the liquid level LL of the plating solution 5 to the transport roll 8f. The distance to the rotation axis is set to be 40% or more, preferably 70% or more, but may be the same shape and size as the surface of the throttle shielding plate 9a facing the anode 6l. More specifically, when the height of the throttle shielding plate 9a is 1000 mm, the height of the movable plate 11 is 50% to 100%. If the height of the movable plate 11 falls below 40% of the distance of the rotation axis of the transport roll 8f from the position of the liquid level LL of the plating solution 5, the amount of fogging at the center of the electrodeposition region from the liquid surface to the transport roll Since the adjustment effect of D decreases, the effect of the movable plate 11 may not be obtained.

さらに、可動板11は、めっき液5の液面LLとは反対側の搬送ロール8f側で、かつ、金属薄膜付き樹脂フィルムF1を覆う部分とは反対側の隅(下端部両端側;図4(b)および(d)では向かって左下部)に支点12を、めっき液5の液面LLに近い給電ロール7g側で、かつ、金属薄膜付き樹脂フィルムF1を覆う部分とは反対の隅(上端部両端側;図4(b)および(d)では向かって左上部)に長孔13をそれぞれ設けている。   Furthermore, the movable plate 11 is on the side of the transport roll 8f opposite to the liquid level LL of the plating solution 5 and on the opposite side of the portion covering the resin film F1 with a metal thin film (both ends on the lower end portion; FIG. 4). In (b) and (d), the fulcrum 12 is located on the lower left side) on the side of the power supply roll 7g close to the liquid level LL of the plating solution 5 and the corner opposite to the portion covering the resin film F1 with metal thin film ( Long holes 13 are respectively provided on both ends of the upper end portion; on the upper left side in FIGS. 4B and 4D.

可動板11は、その支点12において、ネジなどの枢支可能な固定治具(図示せず)により、遮蔽板10に枢支されている。このため、スロットル遮蔽板9aは、支点12を中心として、可動板11を、金属薄膜付き樹脂フィルムF1を覆う方向に回動させることで、エッジ遮蔽治具の少なくともアノードに対向する面に、金属薄膜付き樹脂フィルムF1を覆うように遮蔽する領域が、めっき液5の液面LLに近い上端部では広く、めっき液5の液面LLから遠い下端部では狭くなるように構成された傾斜部を形成することが可能となっている。   The movable plate 11 is pivotally supported by the shielding plate 10 at a fulcrum 12 by a fixing jig (not shown) such as a screw. For this reason, the throttle shielding plate 9a has a metal plate on at least the surface of the edge shielding jig facing the anode by rotating the movable plate 11 around the fulcrum 12 in a direction covering the resin film F1 with a metal thin film. An inclined portion configured to cover the thin resin film F1 with a thin film is wide at the upper end near the liquid level LL of the plating solution 5 and narrow at the lower end far from the liquid level LL of the plating solution 5. It is possible to form.

なお、可動板11は、長孔13を介して、ネジなどの固定治具(図示せず)により、任意の位置に固定することが可能となっていることが好ましく、長孔13が、めっき液5の液面LLよりも上方に設けられていることがより好ましい。このような構成を採ることにより、めっき層4内のめっき液5を槽外に排出することなく、かぶり量Dを調整することが可能となるため、その調整時間を大幅に短縮することができる。   In addition, it is preferable that the movable plate 11 can be fixed at an arbitrary position through a long hole 13 by a fixing jig (not shown) such as a screw. More preferably, it is provided above the liquid level LL of the liquid 5. By adopting such a configuration, it is possible to adjust the fogging amount D without discharging the plating solution 5 in the plating layer 4 to the outside of the tank, so that the adjustment time can be greatly shortened. .

また、可動板11の回動範囲は、特に制限されることはないが、電解めっき時における可動板11の開き角度αを後述する範囲で調整可能とするため、遮蔽板10に対して、少なくとも0°〜2°の範囲で回動可能であることが好ましい。   Further, the rotation range of the movable plate 11 is not particularly limited, but at least with respect to the shielding plate 10, the opening angle α of the movable plate 11 at the time of electrolytic plating can be adjusted within a range described later. It is preferable to be able to rotate in the range of 0 ° to 2 °.

以上、傾斜部を備えるエッジ遮蔽治具9aの一例として、スロットル遮蔽治具について説明したが、本発明においては、電流密度が高い部分のかぶり量Dが相対的に大きくなり、電流密度の低い部分のかぶり量Dが相対的に小さくなることが可能である限り、傾斜部を備えるエッジ遮蔽治具として種々の態様のものを採用することができ、たとえば、1対の遮蔽板10の互いに対向する内側面のうち、中間部から上板部にかけての部分を、互いに近づく方向に傾斜するように構成して、可動板11を省略することも可能である。また、1対の遮蔽板10にそれぞれ付設された1対の可動板11の互いに対向する内側面の形状を、階段状や略円弧状といった直線以外の形状とすることもできる。しかしながら、上述したスロットル遮蔽板9aの構成は、遮蔽板10に回動可能な可動板11を付設させるだけの簡便な手段であり、製作が容易で、かつ、高い調整自由度を有しているため、好ましいといえる。ただし、傾斜部を備えるエッジ遮蔽治具9aとして、どのような態様のものを用いる場合であっても、かぶり量Dの設定と同様に、設定電流密度が、3.0A/dm2未満となる電解めっきセルにおいては、後述する最大かぶり量Dmaxが過剰に設定されないように留意する必要がある。 As described above, the throttle shielding jig has been described as an example of the edge shielding jig 9a having the inclined portion. However, in the present invention, the fogging amount D of the portion where the current density is high becomes relatively large, and the portion where the current density is low. As long as the fogging amount D can be relatively reduced, various types of edge shielding jigs having inclined portions can be employed. For example, the pair of shielding plates 10 face each other. Of the inner surface, the portion from the middle part to the upper plate part may be configured to incline toward each other, and the movable plate 11 may be omitted. Further, the shape of the inner side surfaces of the pair of movable plates 11 respectively attached to the pair of shielding plates 10 facing each other can be a shape other than a straight line such as a stepped shape or a substantially arc shape. However, the above-described configuration of the throttle shielding plate 9a is a simple means that simply attaches the rotatable movable plate 11 to the shielding plate 10, is easy to manufacture, and has a high degree of freedom of adjustment. Therefore, it can be said that it is preferable. However, the set current density is less than 3.0 A / dm 2 in the same manner as the setting of the fogging amount D, regardless of the form of the edge shielding jig 9 a having the inclined portion. In the electrolytic plating cell, it is necessary to pay attention so that the maximum fogging amount Dmax described later is not set excessively.

[かぶり量]
エッジ遮蔽治具9および傾斜部を備えるエッジ遮蔽治具9aは、少なくともアノード6a〜6lに対向する面が、金属薄膜付き樹脂フィルムF1の両端部の非めっき部を超えて、内側の金属めっき層14のめっき面を覆うように配置され、金属めっき層14のめっき面と重なる領域が設けられる。この領域の幅方向の寸法をかぶり量Dとし、この領域の面積をかぶり面積とする。エッジ遮蔽治具9および傾斜部を備えるエッジ遮蔽治具9aは、電解めっき装置1への取り付け位置を微調整することにより、このかぶり量Dが調整可能な構造であることが好ましく、電流密度などの電解めっき条件やめっき厚に応じて、かぶり量Dを調整することで、金属めっき層14の平滑性を高めることが可能となる。なお、エッジ遮蔽治具9および傾斜部を備えるエッジ遮蔽治具9aにおいて、かぶり量Dに影響を与えない範囲内で、電解めっき装置1への取り付け時に干渉しないように、金属薄膜付き樹脂フィルムF1に平行な略長方形の面に、切欠き、突起などを設けることは妨げられない。
[Cover amount]
The edge shielding jig 9a and the edge shielding jig 9a provided with the inclined portion are such that at least the surface facing the anodes 6a to 6l exceeds the non-plating portions at both ends of the resin film F1 with a metal thin film, and the inner metal plating layer 14 is provided so as to cover the plated surface of 14, and a region overlapping the plated surface of the metal plated layer 14 is provided. The dimension in the width direction of this region is defined as the fogging amount D, and the area of this region is defined as the fogging area. The edge shielding jig 9 and the edge shielding jig 9a having an inclined portion preferably have a structure in which the fogging amount D can be adjusted by finely adjusting the attachment position to the electroplating apparatus 1, such as current density. It is possible to improve the smoothness of the metal plating layer 14 by adjusting the fogging amount D according to the electrolytic plating conditions and plating thickness. In addition, in the edge shielding jig 9a including the edge shielding jig 9 and the inclined portion, the resin film F1 with a metal thin film is used so as not to interfere with the attachment to the electroplating apparatus 1 within a range that does not affect the fogging amount D. It is not hindered to provide notches, protrusions, etc. on a substantially rectangular surface parallel to the surface.

より具体的には、アノード6a〜6lのそれぞれに対向する金属薄膜付き樹脂フィルムF1の両端部を覆うように設置される、エッジ遮蔽治具9および傾斜部を備えるエッジ遮蔽治具9aを構成する遮蔽板10のかぶり量Dは、両端部のかぶり量Dの合計で、0mm〜60mm、好ましくは10mm〜60mmの範囲で調整可能とする。遮蔽板10のかぶり量Dを過剰に設定すると、金属めっき層14のめっき面を所望の幅とすることができなかったり、その膜厚を十分なものとすることができなかったり、あるいは、めっき面を十分に平滑なものとすることができなかったりする場合がある。なお、本発明において、遮蔽板10のかぶり量Dは、電解めっきセルC1〜C12ごとに、設定電流密度などの条件に応じて個別に設定されるべきものである。このため、特に設定電流密度の小さい電解めっきセルにおいては、遮蔽板10を設置しなくても、金属めっき層14のめっき面の幅、膜厚および平滑性を十分に確保することができる場合もあり、このような場合には、遮蔽板10のかぶり量Dを0とすることができる。   More specifically, an edge shielding jig 9 and an edge shielding jig 9a having an inclined portion are installed so as to cover both ends of the resin film F1 with a metal thin film facing each of the anodes 6a to 6l. The fogging amount D of the shielding plate 10 is the sum of the fogging amounts D at both ends, and can be adjusted in the range of 0 mm to 60 mm, preferably 10 mm to 60 mm. If the cover amount D of the shielding plate 10 is set excessively, the plating surface of the metal plating layer 14 cannot be set to a desired width, the film thickness cannot be made sufficient, or plating is performed. There are cases where the surface cannot be made sufficiently smooth. In the present invention, the fogging amount D of the shielding plate 10 should be set individually for each of the electroplating cells C1 to C12 according to conditions such as a set current density. For this reason, especially in an electroplating cell having a small set current density, the width, film thickness and smoothness of the plating surface of the metal plating layer 14 can be sufficiently ensured without installing the shielding plate 10. In such a case, the fogging amount D of the shielding plate 10 can be set to zero.

また、設定電流密度が3.0A/dm2以上である少なくとも1つの電解めっきセルに配置される、傾斜部を備えるエッジ遮蔽治具9aでは、電流密度が高い液面LL近傍のかぶり量(以下、「最大かぶり量」という)Dmaxを相対的に大きく、電流密度が低い搬送ロール8f近傍のかぶり量(以下、「最小かぶり量」という)Dminを相対的に小さくすることが必要となる。これにより、金属めっき層14の両端部において、傾斜部を備えるエッジ遮蔽治具9aにより遮蔽される範囲を、電流密度に応じて変化させることができ、電着量の調整が可能となるばかりでなく、めっき液5の液面LL近傍における金属めっき層14のめっき面の電流密度を抑制し、ヤケなどの発生を防止することができる。 Further, in the edge shielding jig 9a having an inclined portion that is disposed in at least one electrolytic plating cell having a set current density of 3.0 A / dm 2 or more, the amount of fog in the vicinity of the liquid surface LL having a high current density (hereinafter referred to as “the current density”) It is necessary to relatively reduce the fogging amount (hereinafter referred to as “minimum fogging amount”) Dmin in the vicinity of the transport roll 8f having a relatively large Dmax and a low current density. Thereby, at both ends of the metal plating layer 14, the range shielded by the edge shielding jig 9a having the inclined portion can be changed according to the current density, and the amount of electrodeposition can be adjusted. In addition, the current density of the plating surface of the metal plating layer 14 in the vicinity of the liquid surface LL of the plating solution 5 can be suppressed, and the occurrence of burns or the like can be prevented.

特に、傾斜部を備えるエッジ遮蔽治具9aとして、上述したスロットル遮蔽板を使用する場合には、可動板11の開き角度αの調整により、最大かぶり量Dmaxを高い自由度で、かつ、容易に制御することができるため、金属めっき層14のめっき面の平滑性を大幅に向上させることが可能となる。ここで、可動板11の開き角度αとは、電解めっき時における、遮蔽板10に対する可動板11の回転角をいう(図4(d)参照)。   In particular, when the above-described throttle shielding plate is used as the edge shielding jig 9a having an inclined portion, the maximum fogging amount Dmax can be easily set with a high degree of freedom by adjusting the opening angle α of the movable plate 11. Since it can control, it becomes possible to improve the smoothness of the plating surface of the metal plating layer 14 significantly. Here, the opening angle α of the movable plate 11 refers to the rotation angle of the movable plate 11 with respect to the shielding plate 10 during electrolytic plating (see FIG. 4D).

より具体的には、設定電流密度が最も高い電解めっきセルC12にスロットル遮蔽板9aを設置し、全幅が520mm、金属めっき層14のめっき面の幅が500mmである金属薄膜付き樹脂フィルムF1を電解めっきする場合、可動板11の開き角度αを調整することにより、最大かぶり量Dmaxを、エッジ遮蔽治具のかぶり量D(0mm〜60mm)よりも大きく、かつ、100mm以下、好ましくは、エッジ遮蔽治具のかぶり量Dよりも10mm程度大きく、かつ、100mm以下に制御することが必要となる。最大かぶり量Dmaxが100mmを超えると、スロットル遮蔽板9aの上端部における電着量が過剰に制限され、めっき面を十分に平滑なものとすることができなくなる。   More specifically, the throttle shielding plate 9a is installed in the electroplating cell C12 having the highest set current density, and the resin film F1 with a metal thin film having an overall width of 520 mm and a plating surface width of the metal plating layer 14 of 500 mm is electrolyzed. In the case of plating, by adjusting the opening angle α of the movable plate 11, the maximum fogging amount Dmax is larger than the fogging amount D (0 mm to 60 mm) of the edge shielding jig and 100 mm or less, preferably edge shielding. It is necessary to control it to be about 10 mm larger than the fogging amount D of the jig and 100 mm or less. When the maximum fogging amount Dmax exceeds 100 mm, the amount of electrodeposition at the upper end of the throttle shielding plate 9a is excessively limited, and the plated surface cannot be made sufficiently smooth.

なお、可動板11を付設する位置や電流密度などの条件にもよるが、電解めっき時における可動板11の開き角度αは、好ましくは0.5°〜2°、より好ましくは1°〜2°、さらに好ましくは1°〜1.5°の範囲に制御する。開き角度αが0.5°未満では、可動板11を設けた効果が十分に得られない場合がある。一方、開き角度が2°を超えると、最大かぶり量Dmaxが大きくなりすぎて、必要な電着量が得られない場合がある。   The opening angle α of the movable plate 11 at the time of electrolytic plating is preferably 0.5 ° to 2 °, more preferably 1 ° to 2 although it depends on conditions such as the position where the movable plate 11 is attached and the current density. More preferably, it is controlled in the range of 1 ° to 1.5 °. If the opening angle α is less than 0.5 °, the effect of providing the movable plate 11 may not be sufficiently obtained. On the other hand, if the opening angle exceeds 2 °, the maximum fogging amount Dmax becomes too large, and the necessary electrodeposition amount may not be obtained.

また、スロット遮蔽板9aにおいては、可動板11の開き角度αが0°のときのかぶり量D、すなわち、スロットル遮蔽板9aを構成する遮蔽板10のかぶり量Dは、上述したように、両端部のかぶり量Dの合計で、0mm〜60mm、好ましくは10mm〜60mmの範囲とする。ただし、このかぶり量Dは、必ずしもエッジ遮蔽治具9を構成する遮蔽板10のかぶり量Dと同量にする必要はなく、可動板11によるかぶり量を考慮した上で、適宜調整することが好ましい。   Further, in the slot shielding plate 9a, the fog amount D when the opening angle α of the movable plate 11 is 0 °, that is, the fog amount D of the shielding plate 10 constituting the throttle shielding plate 9a is as described above. The total amount of fogging D of the part is in the range of 0 mm to 60 mm, preferably 10 mm to 60 mm. However, the amount of fog D is not necessarily the same as the amount of fog D of the shielding plate 10 constituting the edge shielding jig 9, and can be adjusted as appropriate in consideration of the amount of fog by the movable plate 11. preferable.

2.金属化樹脂フィルムの製造方法および金属化樹脂フィルム
(1)金属化樹脂フィルムの製造方法
本発明の連続電解めっき方法は、金属化樹脂フィルムF2の電解めっき工程に好適に適用可能である。金属化樹脂フィルムF2の製造方法は、順に、絶縁樹脂フィルムの少なくとも片面に、接着剤を介することなく、乾式めっき法により下地金属(シード)層を成膜する下地金属成膜工程、下地金属層へ乾式めっき法により銅薄膜層を積層する乾式めっき工程、下地金属層および銅薄膜層を介して給電して、電解めっきにより、銅薄膜層のめっき面に銅めっき層を積層する電解めっき工程を備える。
2. Metallized Resin Film Manufacturing Method and Metallized Resin Film (1) Metallized Resin Film Manufacturing Method The continuous electrolytic plating method of the present invention can be suitably applied to the electrolytic plating process of the metallized resin film F2. The manufacturing method of the metallized resin film F2 is, in order, a base metal film forming step of forming a base metal (seed) layer by dry plating on at least one surface of the insulating resin film without using an adhesive, and a base metal layer A dry plating process for laminating a copper thin film layer by dry plating, and an electroplating process for laminating a copper plating layer on the plated surface of the copper thin film layer by supplying power through the base metal layer and the copper thin film layer. Prepare.

このように銅めっき層が形成された金属化樹脂フィルムF2は、セミアディティブ法やサブトラクティブ法などによるパターニングを経て配線層が形成され、フレキシブルプリント配線板として電子機器内の配線材料として広く利用される。   In this way, the metallized resin film F2 having the copper plating layer formed thereon is subjected to patterning by a semi-additive method or a subtractive method, and is widely used as a wiring material in electronic equipment as a flexible printed wiring board. The

[下地金属成膜工程]
金属化樹脂フィルムF2の基材となる絶縁樹脂フィルムとしては、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルム、ポリテトラフルオロエチレン系フィルム、ポリフィニレンサルファイド系フィルム、ポリエチレンナフタレート系フィルム、液晶ポリマー系フィルムなどの樹脂フィルムが挙げられるが、ポリイミド系フィルムは、はんだリフローなどの高温の接続が必要な用途にも適用できる点で好適である。なお、配線材料としての用途では、絶縁樹脂フィルムとしては、その厚みが8μm〜75μm程度のものが好適である。
[Base metal film formation process]
Examples of the insulating resin film used as the base material of the metallized resin film F2 include polyimide films, polyamide films, polyester films, polytetrafluoroethylene films, polyfinylene sulfide films, polyethylene naphthalate films, and liquid crystal polymers. Although resin films, such as a system film, are mentioned, a polyimide system film is suitable at the point applicable also to the use which requires high temperature connections, such as solder reflow. For use as a wiring material, an insulating resin film having a thickness of about 8 μm to 75 μm is suitable.

下地金属層の材料には、ニッケルまたはニッケルを含む合金が好適に用いられる。また、耐食性を向上させる目的で、その他の金属を添加させることも可能である。添加金属としては、クロム、バナジウム、チタン、モリブデン、コバルト、タングステンなどを用いることができる。   As the material for the base metal layer, nickel or an alloy containing nickel is preferably used. Moreover, it is also possible to add another metal in order to improve corrosion resistance. As the additive metal, chromium, vanadium, titanium, molybdenum, cobalt, tungsten, or the like can be used.

下地金属層の形成工程に用いる乾式めっき法は、特に限定されないが、真空蒸着法、スパッタリング法、イオンプレーティング法のいずれかであることが好ましく、スパッタリング法であることがより好ましい。たとえば、巻き取り式スパッタリング装置を用いて下地金属層を形成する場合、所望の下地金属層の組成を有する合金ターゲットをスパッタリング用カソードに装着し、絶縁樹脂フィルムをセットし、装置内を真空排気後、アルゴンガスを導入して、装置内を0.13Pa〜1.3Pa程度に保持した状態で、カソードに接続したスパッタリング用直流電源より電力を供給して、スパッタリング放電を行い、絶縁樹脂フィルム上に、所望の下地金属層を連続成膜することができる。また、乾式めっきを行う前に、絶縁樹脂フィルムの表面に、プラズマ処理、紫外線照射処理、コロナ放電処理、イオンビーム処理、フッ素ガス処理などの公知の種々の処理を施してもよい。   The dry plating method used in the step of forming the base metal layer is not particularly limited, but is preferably any one of a vacuum deposition method, a sputtering method, and an ion plating method, and more preferably a sputtering method. For example, when forming a base metal layer using a winding-type sputtering apparatus, an alloy target having a desired base metal layer composition is attached to a sputtering cathode, an insulating resin film is set, and the inside of the apparatus is evacuated. Then, argon gas is introduced and the apparatus is held at about 0.13 Pa to 1.3 Pa, and power is supplied from a DC power source for sputtering connected to the cathode, and sputtering discharge is performed on the insulating resin film. A desired base metal layer can be continuously formed. Moreover, you may perform well-known various processes, such as a plasma process, an ultraviolet irradiation process, a corona discharge process, an ion beam process, a fluorine gas process, before performing dry plating.

下地金属層の膜厚は、3nm〜50nmとすることが好ましい。この下地金属層の膜厚が3nm未満では、配線部以外の金属被膜層(下地金属層、銅薄膜層、銅めっき層)をエッチングなどで除去して最終的に配線を作製したときに、エッチング液が下地金属層を浸食して、絶縁樹脂フィルムと下地金属層の間に染み込み、配線が浮いてしまう場合がある。一方、下地金属層の膜厚が50nmを超えると、エッチングなどで最終的に配線を作製する場合に、下地金属層が完全に除去されず、残渣として配線間に残るため、配線間の絶縁不良を発生させる可能性がある。   The thickness of the base metal layer is preferably 3 nm to 50 nm. If the thickness of the underlying metal layer is less than 3 nm, the metal coating layer (underlying metal layer, copper thin film layer, copper plating layer) other than the wiring portion is removed by etching or the like, and finally the wiring is etched. The liquid may erode the base metal layer, soak into the insulating resin film and the base metal layer, and the wiring may float. On the other hand, if the thickness of the base metal layer exceeds 50 nm, when the wiring is finally produced by etching or the like, the base metal layer is not completely removed and remains as a residue between the wirings. May occur.

[乾式めっき工程]
銅薄膜層は、下地金属層の製造工程と同様に、銅ターゲットをスパッタリング用カソードに装着したスパッタリング装置を用い、乾式めっき法により形成することができる。この場合、下地金属層と銅薄膜層を、同一の真空室内で連続して形成することが好ましい。銅薄膜層の膜厚は、特に限定されるものではないが、10nm〜0.3μmであることが好ましい。銅薄膜層の膜厚が10nm未満では、導電性が低く、電解銅めっき処理を行う際に十分な給電量を確保できないので好ましくない。一方、銅薄膜層の膜厚が0.3μmを超えると、成膜時の生産性が低下するので好ましくない。
[Dry plating process]
The copper thin film layer can be formed by a dry plating method using a sputtering apparatus in which a copper target is mounted on a sputtering cathode, similarly to the manufacturing process of the base metal layer. In this case, it is preferable to continuously form the base metal layer and the copper thin film layer in the same vacuum chamber. Although the film thickness of a copper thin film layer is not specifically limited, It is preferable that they are 10 nm-0.3 micrometer. If the film thickness of the copper thin film layer is less than 10 nm, it is not preferable because the conductivity is low and a sufficient power supply amount cannot be secured when performing the electrolytic copper plating process. On the other hand, when the film thickness of the copper thin film layer exceeds 0.3 μm, productivity at the time of film formation decreases, which is not preferable.

[電解めっき工程]
本発明の金属化樹脂フィルムF2は、銅薄膜付き絶縁樹脂フィルムF1の銅薄膜層の上に、本発明の連続電解めっき方法により、銅めっき層を積層することにより形成される。本発明の連続電解めっき方法が用いられることを除き、電解めっき方法の条件は、特に限定されるものではなく、めっき浴の構成、電流密度、搬送速度などは、公知の諸条件を採用することができる。
[Electrolytic plating process]
The metallized resin film F2 of the present invention is formed by laminating a copper plating layer on the copper thin film layer of the insulating resin film F1 with a copper thin film by the continuous electrolytic plating method of the present invention. Except that the continuous electrolytic plating method of the present invention is used, the conditions of the electrolytic plating method are not particularly limited, and various known conditions are adopted for the configuration of the plating bath, the current density, the conveyance speed, and the like. Can do.

下地金属層上に形成された銅薄膜層と、この銅薄膜層の上に電解めっき方法で形成された銅めっき層を合わせた銅被膜の膜厚は、2層フレキシブル基板を用いて製造されるプリント配線板の製造手法に応じて適宜設定されるものであるが、概ね、0.5μm〜18μmとすることが好ましい。なお、プリント配線板の製造手法には、主にセミアディティブ法とサブトラクティブ法があるが、セミアディティブ法には、銅被膜の膜厚が比較的薄い2層フレキシブル基板が、サブトラクティブ法には銅被膜の膜厚が比較的厚い2層フレキシブル基板が、それぞれ用いられる。銅被膜の膜厚が0.5μmよりも薄い場合、セミアディティブ法で配線を形成する際に、電気めっき法による銅めっき層の形成が困難となるため好ましくない。また、膜厚が18μmよりも厚い場合、サブトラクティブ法で配線を形成する際に、エッチング時間が長くなり、生産性が低下するため好ましくない。   The film thickness of the copper film formed by combining the copper thin film layer formed on the base metal layer and the copper plating layer formed on the copper thin film layer by the electrolytic plating method is manufactured using a two-layer flexible substrate. Although it is appropriately set according to the manufacturing method of the printed wiring board, it is generally preferable to set the thickness to 0.5 μm to 18 μm. There are mainly semi-additive and subtractive methods for manufacturing printed wiring boards, but the semi-additive method uses a two-layer flexible substrate with a relatively thin copper coating, while the subtractive method Two-layer flexible substrates having a relatively thick copper coating are used. When the film thickness of the copper coating is less than 0.5 μm, it is not preferable because it becomes difficult to form a copper plating layer by an electroplating method when wiring is formed by a semi-additive method. Further, when the film thickness is larger than 18 μm, it is not preferable because the etching time becomes long and the productivity is lowered when the wiring is formed by the subtractive method.

(2)金属化樹脂フィルム
本発明の連続電解めっき方法が適用された金属化樹脂フィルムF2の製造方法によれば、得られる金属化樹脂フィルムF2の銅被膜の幅方向にわたる膜厚分布における膜厚の最大値と最小値との差を、0.25μm以下、好ましくは0.20μm以下とすることができる。このように、本発明の連続電解めっき方法およびこれを用いた金属化樹脂フィルムF2の製造方法により、銅被膜層のめっき面の平滑性を、従来よりもさらに向上させることが可能となる。
(2) Metalized resin film According to the manufacturing method of the metallized resin film F2 to which the continuous electrolytic plating method of the present invention is applied, the film thickness in the film thickness distribution over the width direction of the copper film of the metallized resin film F2 obtained. The difference between the maximum value and the minimum value can be 0.25 μm or less, preferably 0.20 μm or less. Thus, the smoothness of the plated surface of the copper coating layer can be further improved as compared with the conventional method by the continuous electrolytic plating method of the present invention and the manufacturing method of the metallized resin film F2 using the same.

以下、実施例を用いて、本発明をより詳細に説明する。なお、本発明は、これらの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited at all by these Examples.

(実施例1)
スパッタリング法により、ポリイミドフィルムの片面に下地金属層および銅薄膜層が積層された金属薄膜付きポリイミドフィルムF1に対して、図1と同様の構成を備えた連続電解めっき装置1を用いて、金属薄膜層に銅を連続電解めっきにより積層して、銅めっき層を備えた金属化ポリイミドフィルムF2を製造した。なお、ポリイミドフィルムには、東レ・デュポン株式会社製のポリイミドフィルム(厚さ38μm、幅524mm、商品名:150EN−F)を用いた。また、下地金属層としては、7質量%クロムを含有したニッケル合金薄膜層(膜厚7.5nm)を成膜し、かつ、このニッケル合金薄膜層の上に銅薄膜層(膜厚100nm)を形成した。下地金属層および銅薄膜層の幅は510mmであった。
Example 1
Using a continuous electrolytic plating apparatus 1 having the same configuration as that shown in FIG. 1, a metal thin film is formed on a polyimide film F1 with a metal thin film in which a base metal layer and a copper thin film layer are laminated on one side of a polyimide film by sputtering. Copper was laminated | stacked on the layer by continuous electrolytic plating, and the metallized polyimide film F2 provided with the copper plating layer was manufactured. In addition, the polyimide film (Thickness 38micrometer, width 524mm, brand name: 150EN-F) by Toray DuPont Co., Ltd. was used for the polyimide film. Further, as the base metal layer, a nickel alloy thin film layer (film thickness 7.5 nm) containing 7% by mass of chromium is formed, and a copper thin film layer (film thickness 100 nm) is formed on the nickel alloy thin film layer. Formed. The width of the base metal layer and the copper thin film layer was 510 mm.

アノード6a〜6lには、いずれも酸化イリジウム系の不溶解性アノード6a〜6lを使用し、電気絶縁性フレームを介して、その上端部が、めっき液5の液面LLからわずかに突出するように設置した。この際、アノード6a〜6l側に設置した遮蔽板(図示せず)を用いて、アノード6a〜6lの、金属薄膜付きポリイミドフィルムF1のめっき面に対向する面の幅(以下、「アノード幅」という)が、金属薄膜付きポリイミドフィルムF1の幅に対して85%となるように調整した。   As the anodes 6a to 6l, iridium oxide-based insoluble anodes 6a to 6l are used, and their upper ends slightly protrude from the liquid surface LL of the plating solution 5 through the electrically insulating frame. Installed. At this time, using a shielding plate (not shown) installed on the anodes 6a to 6l side, the width of the surface of the anodes 6a to 6l facing the plating surface of the polyimide film F1 with a metal thin film (hereinafter referred to as “anode width”). Is adjusted to 85% with respect to the width of the polyimide film F1 with a metal thin film.

また、エッジ遮蔽治具として、電気絶縁性プラスチック製で、高さ1280mm、幅105mm、厚さ4mm、対向する内側面の間隔が40mmであり、U字形状の横断面を有し、略長方形の遮蔽板10を備えるエッジ遮蔽治具9と、遮蔽板10に、高さ975mm、幅105mm、厚さ3mmの可動板11をネジによって枢支し、このネジを中心として、遮蔽板10に対して0°〜2°の範囲で回動可能に付設したスロットル遮蔽板9aを用意した。なお、可動板11は、開き角度αが0°の位置で、その上端が遮蔽板の上端と一致するように、その下端から295mm、水平方向外端から90mmの位置で枢支されており、その上端から25mm、水平方向外端から100mmの位置に、長さ45mm、幅10mmの長円形状の長孔が設けられたものであった。   Further, the edge shielding jig is made of electrically insulating plastic, has a height of 1280 mm, a width of 105 mm, a thickness of 4 mm, a distance between opposing inner surfaces of 40 mm, a U-shaped cross section, and a substantially rectangular shape. An edge shielding jig 9 having a shielding plate 10 and a movable plate 11 having a height of 975 mm, a width of 105 mm, and a thickness of 3 mm are pivotally supported on the shielding plate 10 by screws, and the shielding plate 10 is centered on the screws. A throttle shielding plate 9a provided so as to be rotatable in the range of 0 ° to 2 ° was prepared. The movable plate 11 is pivotally supported at a position of 295 mm from the lower end and 90 mm from the horizontal outer end so that the upper end of the movable plate 11 coincides with the upper end of the shielding plate. An oblong slot having a length of 45 mm and a width of 10 mm was provided at a position 25 mm from the upper end and 100 mm from the horizontal outer end.

電解めっきセルC1〜C10においては、アノード6a〜6jに略平行に対向して搬送される金属薄膜付きポリイミドフィルムF1の両端部にエッジ遮蔽治具9を設置した。一方、電解めっきセルC11およびC12においては、アノード6kおよび6lに略平行に対向して搬送される金属薄膜付きポリイミドフィルムF1の両端部にスロットル遮蔽板9aを設置した。エッジ遮蔽治具9とスロットル遮蔽板9aのいずれにおいても、それぞれの上端部がめっき液5の液面LLよりも40mm上方に位置し、上端部およびスロットル遮蔽板9aの長孔13がめっき液5の液面LLから突出するように配置し、所望の電着量と電着した金属化ポリイミドフィルムF2の銅めっき層14の表面ができるだけ平滑になるようにかぶり量Dを調整して設置した。具体的には、電解めっきセルC1〜C10においては、かぶり量Dを、30mmを基準として、電解めっきセルC1〜C10を通過した後のめっき面が十分に平滑となるように微調整した。この結果、電解めっきセルC1〜C10におけるかぶり量Dは、すべて27mm〜33mmの範囲内にあった。同時に、電解めっきセルC11およびC12においては、スロットル遮蔽板9aの可動板11の開き角度αをいずれも2°とし、最大かぶり量Dmaxが88mmとなるように調整した。なお、電界めっきセルC11および12においては、可動板11により液面LL近傍の電流密度が抑制されることを考慮して、遮蔽板10のかぶり量Dが20mmとなるように調整した。   In the electroplating cells C1 to C10, the edge shielding jigs 9 were installed at both ends of the polyimide film F1 with a metal thin film that is conveyed so as to be substantially parallel to the anodes 6a to 6j. On the other hand, in the electroplating cells C11 and C12, the throttle shielding plates 9a are installed at both ends of the polyimide film F1 with a metal thin film that is conveyed facing the anodes 6k and 6l substantially in parallel. In each of the edge shielding jig 9 and the throttle shielding plate 9a, the upper end portions of the edge shielding jig 9 and the throttle shielding plate 9a are located 40 mm above the liquid level LL of the plating solution 5, and the upper end portion and the long hole 13 of the throttle shielding plate 9a are formed in the plating solution 5. It was arranged so as to protrude from the liquid level LL, and the fogging amount D was adjusted and installed so that the desired electrodeposition amount and the surface of the copper plating layer 14 of the electrodeposited metalized polyimide film F2 were as smooth as possible. Specifically, in the electrolytic plating cells C1 to C10, the fogging amount D was finely adjusted on the basis of 30 mm so that the plating surface after passing through the electrolytic plating cells C1 to C10 was sufficiently smooth. As a result, the fogging amounts D in the electrolytic plating cells C1 to C10 were all in the range of 27 mm to 33 mm. At the same time, in the electrolytic plating cells C11 and C12, the opening angle α of the movable plate 11 of the throttle shielding plate 9a was set to 2 °, and the maximum fogging amount Dmax was adjusted to 88 mm. In the electroplating cells C11 and C12, considering that the current density in the vicinity of the liquid level LL is suppressed by the movable plate 11, the fogging amount D of the shielding plate 10 was adjusted to 20 mm.

連続電解めっきで得られる銅めっき層の膜厚を8μmとし、電解めっきセルC1〜C12におけるアノード6a〜6lに対する電流密度を表1の通り設定し、搬送速度を調整して上記の膜厚の銅めっき層を得た。めっき液5は硫酸濃度100g/L、硫酸銅180g/L、塩素濃度50mg/Lとし、これに銅めっき層の平滑性などを確保する目的で、有機系の添加剤を所定量添加した。また、めっき液5の温度は27℃に設定した。   The film thickness of the copper plating layer obtained by continuous electroplating is 8 μm, the current density for the anodes 6a to 6l in the electroplating cells C1 to C12 is set as shown in Table 1, and the transport speed is adjusted to adjust the copper film thickness as described above. A plating layer was obtained. The plating solution 5 had a sulfuric acid concentration of 100 g / L, a copper sulfate of 180 g / L, and a chlorine concentration of 50 mg / L, and a predetermined amount of an organic additive was added thereto for the purpose of ensuring the smoothness of the copper plating layer. The temperature of the plating solution 5 was set to 27 ° C.

得られた金属化ポリイミドフィルムF2の銅層(銅薄膜層+銅めっき層)の膜厚を、蛍光X線膜厚計(エスアイアイ・ナノテクノロジー株式会社製、型式:SFT9250)により測定した。測定は金属化ポリイミドフィルムF2の長手方向中心線から80mm以内の中央部、中心線から左側に230mm〜80mmの左部、中心線から右側に230mm〜80mmの右部の3ヵ所に分割して、それぞれの箇所で最大値と最小値との差を指標とした。また、本実施例において、エッジ遮蔽治具9、スロットル遮蔽板9aおよびアノード6a〜6l側の遮蔽板の調整に要した時間を測定し、これを連続電解めっき処理の効率性の指標とした。これらの結果を表2に示す。   The film thickness of the copper layer (copper thin film layer + copper plating layer) of the obtained metallized polyimide film F2 was measured with a fluorescent X-ray film thickness meter (manufactured by SII Nanotechnology Inc., model: SFT9250). The measurement is divided into a central part within 80 mm from the longitudinal center line of the metallized polyimide film F2, a left part from 230 mm to 80 mm on the left side from the center line, and a right part from 230 mm to 80 mm on the right side from the center line, The difference between the maximum value and the minimum value at each location was used as an index. In this example, the time required for adjusting the edge shielding jig 9, the throttle shielding plate 9a, and the shielding plates on the anodes 6a to 6l side was measured, and this was used as an index of the efficiency of the continuous electrolytic plating process. These results are shown in Table 2.

(実施例2)
電解めっきセルC1〜C11にエッジ遮蔽治具9を使用し、電解めっきセルC12のみにスロットル遮蔽板9aを使用するとともに、これらのかぶり量Dを表2の数値のように設定したこと以外は、実施例1と同様にして、金属化ポリイミドフィルムF2を作製し、その銅層の膜厚、並びに、エッジ遮蔽治具9、スロットル遮蔽板9aおよびアノード6a〜6l側の遮蔽板の調整に要した時間を測定した。これらの結果を表2に示す。
(Example 2)
Except that the edge shielding jig 9 is used for the electrolytic plating cells C1 to C11, the throttle shielding plate 9a is used only for the electrolytic plating cell C12, and the fogging amount D is set as the numerical values in Table 2. In the same manner as in Example 1, a metalized polyimide film F2 was prepared, and it was necessary to adjust the film thickness of the copper layer, and the edge shielding jig 9, the throttle shielding plate 9a, and the shielding plates on the anodes 6a to 6l side. Time was measured. These results are shown in Table 2.

(実施例3)
電解めっきセルC1〜C8にエッジ遮蔽治具9を使用し、電解めっきセルC9〜C12にスロットル遮蔽板9aを使用するとともに、これらのかぶり量Dを表2の数値のように設定したこと以外は、実施例1と同様にして、金属化ポリイミドフィルムF2を作製し、その銅層の膜厚、並びに、エッジ遮蔽治具9、スロットル遮蔽板9aおよびアノード6a〜6l側の遮蔽板の調整に要した時間を測定した。これらの結果を表2に示す。
(Example 3)
Except that the edge shielding jig 9 is used for the electrolytic plating cells C1 to C8, the throttle shielding plate 9a is used for the electrolytic plating cells C9 to C12, and these fogging amounts D are set as the numerical values in Table 2. In the same manner as in Example 1, a metallized polyimide film F2 was prepared, and it was necessary to adjust the film thickness of the copper layer, and the edge shielding jig 9, the throttle shielding plate 9a, and the shielding plates on the anodes 6a to 6l side. The measured time was measured. These results are shown in Table 2.

(実施例4)
電解めっきセルC11およびC12において、スロットル遮蔽板9aの可動板11の開き角度αをいずれも0.5°とし、最大かぶり量Dmaxが40mmとなるように調整したこと以外は、実施例1と同様にして、金属化ポリイミドフィルムF2を作製し、その銅層の膜厚、並びに、エッジ遮蔽治具9、スロットル遮蔽板9aおよびアノード6a〜6l側の遮蔽板の調整に要した時間を測定した。これらの結果を表2に示す。
Example 4
In the electroplating cells C11 and C12, the opening angle α of the movable plate 11 of the throttle shielding plate 9a is both 0.5 ° and the maximum fogging amount Dmax is adjusted to be 40 mm. Then, the metallized polyimide film F2 was prepared, and the thickness of the copper layer and the time required for adjusting the edge shielding jig 9, the throttle shielding plate 9a, and the shielding plates on the anodes 6a to 6l side were measured. These results are shown in Table 2.

(比較例1)
電解めっきセルC1〜C12にエッジ遮蔽治具9を使用し、これらのかぶり量Dを、30mmを基準として、電解めっきセルC1〜C12を通過した後のめっき面が十分に平滑となるように微調整したこと以外は、実施例1と同様にして、金属化ポリイミドフィルムF2を作製し、その銅層の膜厚、並びに、エッジ遮蔽治具9およびアノード6a〜6l側の遮蔽板の調整に要した時間を測定した。これらの結果を表2に示す。なお、本比較例においては、電解めっきセルC1〜C12におけるかぶり量Dは、すべて27mm〜33mmの範囲内にあった。
(Comparative Example 1)
The edge shielding jig 9 is used for the electroplating cells C1 to C12, and the fogging amount D is set so that the plating surface after passing through the electroplating cells C1 to C12 is sufficiently smooth with 30 mm as a reference. Except for the adjustment, a metalized polyimide film F2 was prepared in the same manner as in Example 1, and it was necessary to adjust the film thickness of the copper layer, and the edge shielding jig 9 and the shielding plate on the anodes 6a to 6l side. The measured time was measured. These results are shown in Table 2. In this comparative example, the fogging amounts D in the electroplating cells C1 to C12 were all in the range of 27 mm to 33 mm.

(比較例2)
電解めっきセルC11およびC12において、スロットル遮蔽板9aの可動板11の開き角度αをいずれも2.5°とし、最大かぶり量Dmaxが105mmとなるように調整したこと以外は、実施例1と同様にして、金属化ポリイミドフィルムF2を作製し、その銅層の膜厚、並びに、エッジ遮蔽治具9、スロットル遮蔽板9aおよびアノード6a〜6l側の遮蔽板の調整に要した時間を測定した。これらの結果を表2に示す。
(Comparative Example 2)
In the electroplating cells C11 and C12, the same as in Example 1 except that the opening angle α of the movable plate 11 of the throttle shielding plate 9a is both adjusted to 2.5 ° and the maximum fogging amount Dmax is set to 105 mm. Then, the metallized polyimide film F2 was prepared, and the thickness of the copper layer and the time required for adjusting the edge shielding jig 9, the throttle shielding plate 9a, and the shielding plates on the anodes 6a to 6l side were measured. These results are shown in Table 2.

(比較例3)
設定電流密度が3.0A/dm2未満の電解めっきセルC1〜C8のうち、電解めっきセルC5〜C8において、エッジ遮蔽治具9のかぶり量Dを65mm〜75mmの範囲とし、この範囲で、電解めっきせるC5〜C8を通過した後のめっき面が十分に平滑となるように微調整したこと以外は、実施例1と同様にして、金属化ポリイミドフィルムF2を作製し、その銅層の膜厚、並びに、エッジ遮蔽治具9、スロットル遮蔽板9aおよびアノード6a〜6l側の遮蔽板の調整に要した時間を測定した。これらの結果を表2に示す。
(Comparative Example 3)
Among the electroplating cells C1 to C8 having a set current density of less than 3.0 A / dm 2 , in the electroplating cells C5 to C8, the fogging amount D of the edge shielding jig 9 is set to a range of 65 mm to 75 mm. A metallized polyimide film F2 was prepared in the same manner as in Example 1 except that the plated surface after passing through C5 to C8 to be electrolytically plated was sufficiently smooth, and the film of the copper layer. The thickness and the time required for adjusting the edge shielding jig 9, the throttle shielding plate 9a, and the shielding plates on the anodes 6a to 6l side were measured. These results are shown in Table 2.

(比較例4)
電解めっきセルC11およびC12において、アノード6kおよび6l側の遮蔽板を、めっき面の平滑性が最も良好になるように調整したこと以外は、比較例1と同様にして、金属化ポリイミドフィルムF2を作製し、その銅層の膜厚、並びに、エッジ遮蔽治具9、スロットル遮蔽板9aおよびアノード6a〜6l側の遮蔽板の調整に要した時間を測定した。これらの結果を表2に示す。なお、本比較例では、アノード6kおよび6lのアノード幅は、金属薄膜付きポリイミドフィルムF1の幅に対して80%であった。
(Comparative Example 4)
In the electrolytic plating cells C11 and C12, the metallized polyimide film F2 was prepared in the same manner as in Comparative Example 1 except that the shielding plate on the anode 6k and 6l side was adjusted so that the smoothness of the plating surface was the best. The thickness of the copper layer and the time required for adjusting the edge shielding jig 9, the throttle shielding plate 9a and the shielding plates on the anodes 6a to 6l side were measured. These results are shown in Table 2. In this comparative example, the anode width of the anodes 6k and 6l was 80% with respect to the width of the polyimide film F1 with a metal thin film.

(参考例)
アノード6a〜6l側に遮蔽板を使用しなかったこと以外は、比較例1と同様にして、金属化ポリイミドフィルムF2を作製し、その銅層の膜厚およびエッジ遮蔽治具9の調整に要した時間を測定した。これらの結果を表2に示す。
(Reference example)
A metallized polyimide film F2 was prepared in the same manner as in Comparative Example 1 except that no shielding plate was used on the anodes 6a to 6l side, and required for adjusting the film thickness of the copper layer and the edge shielding jig 9. The measured time was measured. These results are shown in Table 2.

Figure 2015155563
Figure 2015155563

Figure 2015155563
Figure 2015155563

[評価]
表1および表2より、実施例1〜4の金属化ポリイミドフィルムF2は、左部、中央部および右部のいずれの位置においても、膜厚の最大値と最小値の差が0.25μm以下であり、めっき面の平滑性に優れていることが確認される。また、実施例1〜4では、かぶり量の調整に要した時間も70分以内に収まっており、めっき面の平滑性に優れた金属化ポリイミドフィルムを、比較的短時間で製造できたことが確認される。
[Evaluation]
From Table 1 and Table 2, in the metallized polyimide film F2 of Examples 1 to 4, the difference between the maximum value and the minimum value of the film thickness is 0.25 μm or less at any position of the left part, the center part, and the right part. It is confirmed that the smoothness of the plated surface is excellent. In Examples 1 to 4, the time required for adjusting the fogging amount was within 70 minutes, and the metallized polyimide film excellent in smoothness of the plating surface could be produced in a relatively short time. It is confirmed.

これに対して、エッジ遮蔽治具9のみを使用した比較例1、スロットル遮蔽板9aの開き角度αおよび最大かぶり量Dmaxが本発明から外れる比較例2、設定電流密度が3.0A/dm2未満である電解めっきセルの一部においてかぶり量が60mmを超える比較例3では、めっき面の平滑性を十分に向上させることができなかった。また、アノード側の遮蔽板のかぶり量を調整した比較例4では、めっき面の平滑性は比較的良好であるが、この調整に2時間以上の時間を要した。 In contrast, Comparative Example 1 in which only the edge shielding jig 9 is used, Comparative Example 2 in which the opening angle α and the maximum fogging amount Dmax of the throttle shielding plate 9a are out of the present invention, and the set current density is 3.0 A / dm 2. In Comparative Example 3 in which the amount of fog exceeds 60 mm in a part of the electrolytic plating cell that is less than 1, the smoothness of the plated surface could not be sufficiently improved. Further, in Comparative Example 4 in which the fogging amount of the shielding plate on the anode side was adjusted, the smoothness of the plated surface was relatively good, but this adjustment took 2 hours or more.

1 連続電解めっき装置
2 巻き出しロール
3 巻き取りロール
4 めっき槽
5 めっき液
6a〜6l アノード
7a〜7g 給電ロール
8a〜8f 搬送ロール
9 エッジ遮蔽治具
9a 傾斜部を備えるエッジ遮蔽治具(スロットル遮蔽板)
10 遮蔽板
11 可動板
12 支点
13 長孔
14 金属(銅)めっき層
F1 金属薄膜付き樹脂(ポリイミド)フィルム
F2 金属化樹脂(ポリイミド)フィルム
C1〜C12 電解めっきセル
LL めっき液の液面
W めっき面の幅
D かぶり量
Dmax 最大かぶり量
Dmin 最小かぶり量
α 開き角度
DESCRIPTION OF SYMBOLS 1 Continuous electroplating apparatus 2 Unwinding roll 3 Winding roll 4 Plating tank 5 Plating solution 6a-6l Anode 7a-7g Feeding roll 8a-8f Conveyance roll 9 Edge shielding jig 9a Edge shielding jig provided with an inclined part (throttle shielding) Board)
DESCRIPTION OF SYMBOLS 10 Shielding plate 11 Movable plate 12 Support point 13 Long hole 14 Metal (copper) plating layer F1 Resin (polyimide) film with a metal thin film F2 Metallized resin (polyimide) film C1 to C12 Electroplating cell LL Plating liquid level W Plating surface Width D Cover amount Dmax Maximum cover amount Dmin Minimum cover amount α Opening angle

特開2003−342787号公報JP 2003-342787 A 特開2011−58057号公報JP 2011-58057 A 特開2006−316322号公報JP 2006-316322 A 特開2004−99950号公報Japanese Patent Laid-Open No. 2004-99950

本発明は、めっきと、該めっきの上方に配置された複数の給電ロールと、該めっき内に略垂直に配置された複数のアノードと、該めっき槽内で該複数のアノードよりも下方に配置された複数の搬送ロールとを備え、長尺の被処理物を、前記複数の給電ロールと前記複数の搬送ロールとを介して、その幅方向を略水平方向に保ちつつ、かつ、前記めっき槽内のめっき液内で、前記複数のアノードのそれぞれと略平行となるように搬送し、該複数のアノードと、該複数の給電ロールのうちの対応する給電ロールに接触した該被処理物のめっき面とにより電解めっきセルを複数構成して、該被処理物のめっき面に金属めっき層を順次積層するように構成されている、ロール・ツー・ロール方式の連続電解めっき装置に関する。 The present invention comprises a plating tank, a plurality of feed rolls disposed above the plating tank, a plurality of anodes arranged substantially perpendicularly to the plating tank, than the anode of the plurality of in the plating tank A plurality of conveying rolls disposed below, and maintaining a long object to be processed in a substantially horizontal direction through the plurality of power supply rolls and the plurality of conveying rolls, and In the plating solution in the plating tank, the object to be processed is conveyed so as to be substantially parallel to each of the plurality of anodes, and is in contact with the plurality of anodes and a corresponding power supply roll among the plurality of power supply rolls. The present invention relates to a roll-to-roll type continuous electrolytic plating apparatus configured such that a plurality of electrolytic plating cells are configured with a plating surface of an object, and a metal plating layer is sequentially laminated on the plating surface of the object to be processed.

すなわち、本発明では、エッジ遮蔽治具9と組み合わせて、金属めっき層14のめっき面のめっき厚を左右する設定電流密度が3.0A/dm2以上の少なくとも1つの電解めっきセルにおいて、エッジ遮蔽治具9に代替して、傾斜部を備えるエッジ遮蔽治具9aを使用することにより、幅方向のみならず、搬送方向の電流密度の分布に対応してめっき面を遮断することができるため、工業規模の生産において、高い平滑性を有する金属化樹脂フィルムF2を容易に得ることができる。しかも、本発明では、このような電流密度の均一化を、主として、設定電流密度の高い電解めっきセルに設置した、傾斜部を備えるエッジ遮蔽治具9aのかぶり量を調整することによって実現しているため、その調整時間の削減を図ることができる。特に、傾斜部を備えるエッジ遮蔽治具9aとして、後述するスロットル遮蔽板を採用した場合には、めっき4内からめっき液5を排出することなく、かぶり量を調整することが可能となるため、調整時間を大幅に削減することが可能となる。
That is, in the present invention, in combination with the edge shielding jig 9, edge shielding is performed in at least one electrolytic plating cell having a set current density of 3.0 A / dm 2 or more that affects the plating thickness of the plating surface of the metal plating layer 14. By using the edge shielding jig 9a having an inclined portion instead of the jig 9, the plating surface can be cut off corresponding to the current density distribution in the conveying direction as well as in the width direction. In industrial scale production, a metallized resin film F2 having high smoothness can be easily obtained. Moreover, in the present invention, such a uniform current density is realized mainly by adjusting the fogging amount of the edge shielding jig 9a provided with the inclined portion installed in the electrolytic plating cell having a high set current density. Therefore, the adjustment time can be reduced. In particular, when a later-described throttle shielding plate is employed as the edge shielding jig 9 a having an inclined portion, it is possible to adjust the fogging amount without discharging the plating solution 5 from the plating tank 4. The adjustment time can be greatly reduced.

なお、可動板11は、長孔13を介して、ネジなどの固定治具(図示せず)により、任意の位置に固定することが可能となっていることが好ましく、長孔13が、めっき液5の液面LLよりも上方に設けられていることがより好ましい。このような構成を採ることにより、めっき4内のめっき液5を槽外に排出することなく、かぶり量Dを調整することが可能となるため、その調整時間を大幅に短縮することができる。

In addition, it is preferable that the movable plate 11 can be fixed at an arbitrary position through a long hole 13 by a fixing jig (not shown) such as a screw. More preferably, it is provided above the liquid level LL of the liquid 5. By adopting such a configuration, it is possible to adjust the fogging amount D without discharging the plating solution 5 in the plating tank 4 to the outside of the tank , so that the adjustment time can be greatly shortened. .

Claims (12)

めっき層と、該めっき層の上方に配置された複数の給電ロールと、該めっき層内に略垂直に配置された複数のアノードと、該めっき槽内で該複数のアノードよりも下方に配置された複数の搬送ロールとを備え、長尺の被処理物を、前記複数の給電ロールと前記複数の搬送ロールとを介して、その幅方向を略水平方向に保ちつつ、かつ、前記めっき槽内のめっき液内で、前記複数のアノードのそれぞれと略平行となるように搬送し、該複数のアノードと、該複数の給電ロールのうちの対応する給電ロールに接触した該被処理物のめっき面とにより電解めっきセルを複数構成して、該被処理物のめっき面に金属めっき層を順次積層するように構成されているロール・ツー・ロール方式の連続電解めっき装置であって、
前記複数の電解めっきセルに、前記被処理物の搬送方向に伸長し、伸長方向に対して横断面がU字形状であり、該伸長方向に互いに平行な面は略長方形の形状を有し、該被処理物の両端部を覆うように配置され、該被処理物の両端部を前記複数のアノードのそれぞれの少なくとも一部から遮蔽する遮蔽板を備えるエッジ遮蔽治具が、かぶり量が0mm〜60mmとなるように設けられており、かつ、
前記複数の電解めっきセルのうち、設定電流密度が3.0A/dm2以上である少なくとも1つの電解めっきセルに、前記エッジ遮蔽治具の少なくともアノードに対向する面に、前記被処理物を遮蔽する領域が、めっき液の液面に近い上端部では広く、液面から遠い下端部では狭くなるように構成された傾斜部を備えるエッジ遮蔽治具が、該エッジ遮蔽治具の上端部における最大かぶり量が、前記傾斜部を備えないエッジ遮蔽治具のかぶり量よりも大きく、かつ、100mm以下となるように、設けられている、
連続電解めっき装置。
A plating layer, a plurality of power supply rolls disposed above the plating layer, a plurality of anodes disposed substantially vertically in the plating layer, and a position below the plurality of anodes in the plating tank. A plurality of transport rolls, and a long object to be processed while maintaining the width direction in a substantially horizontal direction through the plurality of power supply rolls and the plurality of transport rolls, and in the plating tank In the plating solution, the plating surface of the object to be processed is conveyed so as to be substantially parallel to each of the plurality of anodes, and is in contact with the plurality of anodes and the corresponding power supply roll among the plurality of power supply rolls. A plurality of electrolytic plating cells, and a roll-to-roll type continuous electrolytic plating apparatus configured to sequentially laminate a metal plating layer on the plating surface of the workpiece,
The plurality of electrolytic plating cells extend in the conveying direction of the workpiece, the cross section is U-shaped with respect to the extending direction, and surfaces parallel to the extending direction have a substantially rectangular shape, An edge shielding jig that includes a shielding plate that is disposed so as to cover both ends of the object to be processed and shields both ends of the object to be processed from at least a part of each of the plurality of anodes. Provided to be 60 mm, and
Among the plurality of electroplating cells, at least one electroplating cell having a set current density of 3.0 A / dm 2 or more is shielded on the surface of the edge shielding jig facing at least the anode. The edge shielding jig provided with an inclined portion configured to be wide at the upper end portion near the liquid surface of the plating solution and narrow at the lower end portion far from the liquid surface is the maximum at the upper end portion of the edge shielding jig. The fogging amount is provided so as to be larger than the fogging amount of the edge shielding jig not provided with the inclined portion and 100 mm or less.
Continuous electrolytic plating equipment.
前記傾斜部を備えるエッジ遮蔽治具は、少なくとも設定電流密度が最も高い電解めっきセルに設置されている、請求項1に記載の連続電解めっき装置。   The continuous electroplating apparatus according to claim 1, wherein the edge shielding jig including the inclined portion is installed in an electroplating cell having at least a set current density. 前記設定電流密度が最も高い電解めっきセルが、前記複数の電解めっきセルのうちの最後の電解めっきセルである、請求項2に記載の連続電解めっき装置。   The continuous electrolytic plating apparatus according to claim 2, wherein the electrolytic plating cell having the highest set current density is the last electrolytic plating cell of the plurality of electrolytic plating cells. 前記傾斜部を備えるエッジ遮蔽治具は、前記遮蔽板と、該遮蔽板の略長方形の面のうち、少なくともアノードに対向する面に、該遮蔽板の液面から遠い側に設けられた支点を中心に回動可能に付設された可動板とを備えるスロットル遮蔽板から構成され、
前記可動板が、前記遮蔽板に対して回動することにより前記傾斜部が形成される、請求項1に記載の連続電解めっき装置。
The edge shielding jig provided with the inclined portion has a supporting point provided on a side far from the liquid surface of the shielding plate on at least a surface facing the anode among the shielding plate and the substantially rectangular surface of the shielding plate. It is composed of a throttle shielding plate provided with a movable plate attached to the center so as to be rotatable,
The continuous electrolytic plating apparatus according to claim 1, wherein the inclined portion is formed by rotating the movable plate with respect to the shielding plate.
前記可動板は、前記遮蔽板に対して、少なくとも0°〜2°の範囲で回動可能である、請求項4に記載の連続電解めっき装置。   The continuous electrolytic plating apparatus according to claim 4, wherein the movable plate is rotatable with respect to the shielding plate in a range of at least 0 ° to 2 °. 請求項1〜5のいずれかに記載の連続電解めっき装置を用い、前記長尺の被処理物を、前記複数の給電ロールと前記複数の搬送ロールとを介して、その幅方向を略水平方向に保ちつつ、かつ、前記めっき槽内のめっき液内で、前記複数のアノードのそれぞれと略平行となるように搬送し、該複数のアノードと、該複数の給電ロールのうちの対応する給電ロールに接触した該被処理物のめっき面とにより電解めっきセルを複数構成して、該被処理物のめっき面に金属めっき層を順次積層するロール・ツー・ロール方式の連続電解めっき方法であって、
前記複数の電解めっきセルに、前記被処理物の搬送方向に伸長し、伸長方向に対して横断面がU字形状であり、該伸長方向に互いに平行な面は略長方形の形状を有し、該被処理物の両端部を覆うように配置され、該被処理物の両端部を前記複数のアノードのそれぞれの少なくとも一部から遮蔽する遮蔽板を備えるエッジ遮蔽治具を、かぶり量が0mm〜60mmとなるように設置し、かつ、
前記複数の電解めっきセルのうち、設定電流密度が3.0A/dm2以上である少なくとも1つの電解めっきセルに、前記エッジ遮蔽治具の少なくともアノードに対向する面に、前記被処理物を遮蔽する領域が、めっき液の液面に近い上端部では広く、液面から遠い下端部では狭くなるように構成された傾斜部を備えるエッジ遮蔽治具を、該エッジ遮蔽治具の上端部における最大かぶり量が、前記傾斜部を備えないエッジ遮蔽治具のかぶり量よりも大きく、かつ、100mm以下となるように設置する、
連続電解めっき方法。
The continuous electrolytic plating apparatus according to any one of claims 1 to 5, wherein the long object to be processed is arranged in a substantially horizontal direction through the plurality of power supply rolls and the plurality of transport rolls. And in the plating solution in the plating tank, the plurality of anodes and the corresponding feeding rolls among the plurality of feeding rolls are conveyed so as to be substantially parallel to each of the plurality of anodes. A roll-to-roll type continuous electrolytic plating method in which a plurality of electrolytic plating cells are configured with the plating surface of the object to be processed in contact with the plating surface, and a metal plating layer is sequentially laminated on the plating surface of the object to be processed. ,
The plurality of electrolytic plating cells extend in the conveying direction of the workpiece, the cross section is U-shaped with respect to the extending direction, and surfaces parallel to the extending direction have a substantially rectangular shape, An edge shielding jig provided with a shielding plate that is arranged so as to cover both ends of the object to be processed and shields both ends of the object to be processed from at least a part of each of the plurality of anodes. Installed to be 60 mm, and
Among the plurality of electroplating cells, at least one electroplating cell having a set current density of 3.0 A / dm 2 or more is shielded on the surface of the edge shielding jig facing at least the anode. The edge shielding jig provided with an inclined portion configured such that the region to be wide is wide at the upper end portion near the liquid surface of the plating solution and narrow at the lower end portion far from the liquid surface is the maximum at the upper end portion of the edge shielding jig. The fogging amount is set to be larger than the fogging amount of the edge shielding jig not provided with the inclined portion and 100 mm or less.
Continuous electrolytic plating method.
前記傾斜部を備えるエッジ遮蔽治具を、少なくとも設定電流密度が最も高い電解めっきセルに設置する、請求項6に記載の連続電解めっき方法。   The continuous electrolytic plating method according to claim 6, wherein the edge shielding jig including the inclined portion is installed in an electrolytic plating cell having at least the highest set current density. 前記複数の電解めっきセルのうちの最後の電解めっきセルを、前記設定電流密度が最も高い電解めっきセルとする、請求項7に記載の連続電解めっき方法。   The continuous electrolytic plating method according to claim 7, wherein the last electrolytic plating cell among the plurality of electrolytic plating cells is an electrolytic plating cell having the highest set current density. 前記傾斜部の開き角度が0.5°〜2°である、請求項4または5を引用する請求項6に記載の連続電解めっき方法。   The continuous electrolytic plating method according to claim 6, wherein the opening angle of the inclined portion is 0.5 ° to 2 °. 絶縁樹脂フィルムの少なくとも片面に接着剤を介することなく乾式めっき法にて下地金属層を成膜する下地金属成膜工程と、該下地金属層に乾式めっき法にて銅薄膜層を積層して金属薄膜付き樹脂フィルムを形成する乾式めっき工程と、該金属薄膜付き樹脂フィルムに電解めっきにて銅めっき層を積層する電解めっき工程とを備える、金属化樹脂フィルムの製造方法であって、
前記電解めっき工程に、該金属薄膜付き樹脂フィルムを前記被処理物とする、請求項6〜9のいずれかに記載の連続電解めっき方法を用いる、金属化樹脂フィルムの製造方法。
A base metal film forming step of forming a base metal layer by dry plating without using an adhesive on at least one surface of the insulating resin film, and a copper thin film layer laminated on the base metal layer by dry plating A method for producing a metallized resin film, comprising: a dry plating process for forming a resin film with a thin film; and an electroplating process for laminating a copper plating layer on the resin film with a metal thin film by electrolytic plating,
The manufacturing method of the metallized resin film using the continuous electrolytic plating method in any one of Claims 6-9 which uses this resin film with a metal thin film for the said to-be-processed object for the said electrolytic plating process.
請求項10に記載の金属化樹脂フィルムの製造方法により得られ、前記銅めっき層の幅方向の膜厚分布における膜厚の最大値と最小値との差が、0.25μm以下である、金属化樹脂フィルム。   A metal obtained by the method for producing a metallized resin film according to claim 10, wherein a difference between the maximum value and the minimum value of the film thickness distribution in the width direction of the copper plating layer is 0.25 μm or less. Resin film. 一方向に延伸し、延伸方向に対して横断面がU字形状であり、延伸方向に互いに平行な面は略長方形の形状を有する遮蔽板と、該遮蔽板の略長方形の面の少なくとも一方に、支点を中心に、該遮蔽板に対して0°〜2°の範囲で回動可能に付設された可動板とを備え、連続電解めっき装置を構成する、設定電流密度が3.0A/cm2以上である少なくとも1つの電解めっきセルにおいて、該電解めっきセルのアノードに略平行に搬送される被処理物の両端部を覆うように設置されるスロットル遮蔽板により構成される、連続電解めっき装置用のエッジ遮蔽治具。 Stretching in one direction and having a U-shaped cross section with respect to the stretching direction, surfaces parallel to the stretching direction are at least one of a shielding plate having a substantially rectangular shape and a substantially rectangular surface of the shielding plate. And a movable plate attached so as to be rotatable in a range of 0 ° to 2 ° with respect to the shielding plate around the fulcrum, and constitutes a continuous electrolytic plating apparatus, and a set current density is 3.0 A / cm Continuous electroplating apparatus comprising at least one electrolytic plating cell that is 2 or more and configured by a throttle shielding plate installed so as to cover both end portions of the workpiece to be conveyed substantially parallel to the anode of the electrolytic plating cell Edge shielding jig for.
JP2014031019A 2014-02-20 2014-02-20 Continuous electrolytic plating apparatus and method, metallized resin film and method for producing the same Active JP6221817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014031019A JP6221817B2 (en) 2014-02-20 2014-02-20 Continuous electrolytic plating apparatus and method, metallized resin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014031019A JP6221817B2 (en) 2014-02-20 2014-02-20 Continuous electrolytic plating apparatus and method, metallized resin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015155563A true JP2015155563A (en) 2015-08-27
JP6221817B2 JP6221817B2 (en) 2017-11-01

Family

ID=54775029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014031019A Active JP6221817B2 (en) 2014-02-20 2014-02-20 Continuous electrolytic plating apparatus and method, metallized resin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP6221817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183249A (en) * 2018-04-17 2019-10-24 住友金属鉱山株式会社 Anode shielding plate, electrolytic plating device, and method for manufacturing metal-clad laminate
JP2022105808A (en) * 2021-01-05 2022-07-15 住友金属鉱山株式会社 Copper clad laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023173133A1 (en) * 2022-03-11 2023-09-14 Energy Exploration Technologies, Inc. Methods for lithium metal production direct from lithium brine solutions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185769U (en) * 1981-05-19 1982-11-25
JPS60245799A (en) * 1984-05-18 1985-12-05 Sumitomo Metal Ind Ltd Method for controlling amount of plating deposited
JPS61190096A (en) * 1985-02-18 1986-08-23 Nippon Steel Corp Electroplating installation
JPH0673158U (en) * 1993-03-31 1994-10-11 住友金属工業株式会社 Edge mask device for electroplating equipment
JP2009293114A (en) * 2008-06-09 2009-12-17 Hitachi Cable Ltd Electrolytic plating device and electrolytic plating method
JP2011058057A (en) * 2009-09-10 2011-03-24 Sumitomo Metal Mining Co Ltd Method of manufacturing copper coating polyimide substrate and electroplating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185769U (en) * 1981-05-19 1982-11-25
JPS60245799A (en) * 1984-05-18 1985-12-05 Sumitomo Metal Ind Ltd Method for controlling amount of plating deposited
JPS61190096A (en) * 1985-02-18 1986-08-23 Nippon Steel Corp Electroplating installation
JPH0673158U (en) * 1993-03-31 1994-10-11 住友金属工業株式会社 Edge mask device for electroplating equipment
JP2009293114A (en) * 2008-06-09 2009-12-17 Hitachi Cable Ltd Electrolytic plating device and electrolytic plating method
JP2011058057A (en) * 2009-09-10 2011-03-24 Sumitomo Metal Mining Co Ltd Method of manufacturing copper coating polyimide substrate and electroplating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183249A (en) * 2018-04-17 2019-10-24 住友金属鉱山株式会社 Anode shielding plate, electrolytic plating device, and method for manufacturing metal-clad laminate
JP7070012B2 (en) 2018-04-17 2022-05-18 住友金属鉱山株式会社 Electroplating equipment and method for manufacturing metal-clad laminates
JP2022105808A (en) * 2021-01-05 2022-07-15 住友金属鉱山株式会社 Copper clad laminate

Also Published As

Publication number Publication date
JP6221817B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP3058445B2 (en) Characterized electrodeposited foils for printed circuit boards and methods for producing the same and electrolytic cell solutions
JP5652587B2 (en) Method for producing copper-coated polyimide substrate and electroplating apparatus
WO2012066991A1 (en) Electrolytic copper foil
JP5862917B2 (en) Method for electroplating long conductive substrate, method for producing copper-coated long conductive substrate using this method, and roll-to-roll type electroplating apparatus
JP2012107266A (en) Method and apparatus for manufacturing electrolytic copper foil
JP2014082320A (en) Double-layer flexible substrate, and printed wiring board having double-layer flexible substrate used as base material
JP2009026990A (en) Manufacturing method for metal coated polyimide substrate
JP2013019037A (en) Copper electroplating method and metallized resin film having copper plating film deposited using copper electroplating method
JP6221817B2 (en) Continuous electrolytic plating apparatus and method, metallized resin film and method for producing the same
JP2020084280A (en) Copper-clad laminate and manufacturing method copper-clad laminate
JP7070012B2 (en) Electroplating equipment and method for manufacturing metal-clad laminates
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP2022547336A (en) Manufacturing equipment and manufacturing method for lead frame surface roughness
WO2015008564A1 (en) Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
JP5440386B2 (en) Method for producing metallized resin film substrate
JP2007246962A (en) Method for producing two layer circuit board by plating process and plating device therefor
JP5751530B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
CN108425135B (en) Production equipment of electrolytic copper foil and current adjusting and controlling device thereof
JP2020084279A (en) Copper-clad laminate and manufacturing method copper-clad laminate
JPH0722473A (en) Continuous plating method
JP6403097B2 (en) Insoluble anode, plating apparatus, electroplating method, and copper clad laminate manufacturing method
JP2017222907A (en) Plating device
TWI627311B (en) Apparatus for production of electrolytic copper foil and current adjusting device thereof
KR101630980B1 (en) Apparatus for continuous electroforming
JP2008075113A (en) Plating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6221817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150