JP4974368B2 - Organic electroluminescence device and method for manufacturing the same - Google Patents

Organic electroluminescence device and method for manufacturing the same Download PDF

Info

Publication number
JP4974368B2
JP4974368B2 JP2007259320A JP2007259320A JP4974368B2 JP 4974368 B2 JP4974368 B2 JP 4974368B2 JP 2007259320 A JP2007259320 A JP 2007259320A JP 2007259320 A JP2007259320 A JP 2007259320A JP 4974368 B2 JP4974368 B2 JP 4974368B2
Authority
JP
Japan
Prior art keywords
inorganic film
film
emitting layer
light emitting
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007259320A
Other languages
Japanese (ja)
Other versions
JP2009087884A (en
Inventor
京丈 内海
秀一 宮本
崇 竹見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2007259320A priority Critical patent/JP4974368B2/en
Publication of JP2009087884A publication Critical patent/JP2009087884A/en
Application granted granted Critical
Publication of JP4974368B2 publication Critical patent/JP4974368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、水分や酸素等による有機発光膜の劣化を防止した有機エレクトロルミネッセンス素子及びその製造方法に関する。   The present invention relates to an organic electroluminescence element that prevents deterioration of an organic light emitting film due to moisture, oxygen, and the like, and a method for manufacturing the same.

有機エレクトロルミネッセンス素子 (有機EL素子)は、陽極と陰極からなる一対の電極間に有機発光層を配置し、陽極(ホール注入電極)から注入された正孔と、陰極(電子注入電極)から注入された電子とを発光層で再結合させて発光させる素子である。
この発光層は有機物からなり、大気中の酸素や水分により劣化し易いため、通常、封止缶や封止キャップと称される筐体で素子表面を密閉している(特許文献1)。さらに封止缶内に湿気や酸素を吸着するゲッター剤を予め塗布しておくことで、発光層の劣化を長期間抑制している。
又、無機膜(窒化シリコン膜)や高分子膜からなる保護膜で有機発光層を被覆する技術も開発されている(特許文献2,3)。
An organic electroluminescence device (organic EL device) has an organic light emitting layer disposed between a pair of electrodes consisting of an anode and a cathode, and holes injected from the anode (hole injection electrode) and the cathode (electron injection electrode). The device emits light by recombining the emitted electrons with the light emitting layer.
Since the light emitting layer is made of an organic substance and easily deteriorates due to oxygen or moisture in the atmosphere, the element surface is usually sealed with a casing called a sealing can or a sealing cap (Patent Document 1). Furthermore, the deterioration of the light emitting layer is suppressed for a long period of time by previously applying a getter agent that adsorbs moisture and oxygen into the sealing can.
In addition, techniques for coating the organic light emitting layer with a protective film made of an inorganic film (silicon nitride film) or a polymer film have been developed (Patent Documents 2 and 3).

特開2007−141803号公報JP 2007-141803 A 特開平8−22891号公報JP-A-8-22891 特開2005−339828号公報JP 2005-339828 A

しかしながら、封止缶を用いる場合、封止缶と素子表面との間に内部空間があるため、その分だけ素子全体が厚くなり(1.5〜3mm)、有機EL素子の薄型化の点で問題がある。
一方、封止缶を用いずに保護膜のみで素子を封止する場合、発光層の劣化を長期間抑制することが困難である。この原因の1つとして、スパッタや蒸着により無機膜を素子表面に被覆する際、素子側面に被膜が充分に回り込まず、有機発光層の側面から酸素や水分が侵入することが考えられる。
However, when a sealing can is used, since there is an internal space between the sealing can and the element surface, the entire element becomes thicker (1.5 to 3 mm), and there is a problem in reducing the thickness of the organic EL element. is there.
On the other hand, when sealing an element only with a protective film without using a sealing can, it is difficult to suppress deterioration of the light emitting layer for a long period of time. As one of the causes, it is considered that when the inorganic film is coated on the element surface by sputtering or vapor deposition, the film does not sufficiently wrap around the element side surface, and oxygen and moisture enter from the side surface of the organic light emitting layer.

本発明は上記の課題を解決するためになされたものであり、有機発光層の側面を完全に封止し、発光特性の劣化が少ないと共に、薄型化が可能な有機エレクトロルミネッセンス素子の提供を目的とする。   The present invention has been made to solve the above-described problems, and aims to provide an organic electroluminescence device capable of completely sealing the side surface of an organic light emitting layer, causing little deterioration in light emission characteristics, and capable of reducing the thickness. And

上記の目的を達成するために、本発明の有機エレクトロルミネッセンス素子は、基板上に形成される基板側電極と、前記基板側電極の上面に形成される有機発光層と、前記有機発光層の上面に形成される上部電極と、前記基板側電極の上面に形成されて互いに間隔を開けた複数の隔壁と、少なくとも前記上部電極の上面及び側面並びに前記有機発光層の側面を連続して覆う第1の無機膜と、前記第1の無機膜を覆うポリマー膜と、前記ポリマー膜を覆う第2の無機膜とを備え、前記有機発光層及び前記上部電極は、前記隔壁をマスクとし、隣接する前記隔壁の間に形成され、前記第1の無機膜は、前記上部電極の上面及び側面並びに前記有機発光層の側面を連続して完全に覆い、さらに前記有機発光層の側面から前記基板側電極表面につながり、前記基板側電極表面から前記隔壁の側面及び上面につながり、前記ポリマー膜は前記第1の無機膜を覆い、さらに隣接する前記隔壁間の凹部を埋めるように前記隔壁間で厚くなっていて、前記第1の無機膜が前記第2の無機膜より疎になっている。
このような構成とすると、最外側の第2の無機膜と、比較的厚いポリマー膜とによって、外部の湿気や酸素が有機発光層に到達することを防止する。又、ポリマー膜には有機発光層を劣化させる有害成分が含まれていることが多いが、比較的疎な第1の無機膜が特性上、有機発光層の側面に回り込んで形成され、有機発光層を完全に覆うので、外部の湿気や酸素、並びに上記有害成分が有機発光層に到達することを防止する。その結果、発光特性の劣化が少なくなる。


In order to achieve the above object, an organic electroluminescent element of the present invention includes a substrate side electrode formed on a substrate, an organic light emitting layer formed on the upper surface of the substrate side electrode, and an upper surface of the organic light emitting layer. an upper electrode formed on the plurality of partition walls are formed on the upper surface of the substrate side electrode spaced from each other, a first continuously covering the upper and side surfaces and side surfaces of the organic light emitting layer of at least the upper electrode An organic film, a polymer film covering the first inorganic film, and a second inorganic film covering the polymer film, and the organic light emitting layer and the upper electrode are adjacent to each other with the partition as a mask. The first inorganic film is formed between the barrier ribs, and continuously covers the upper surface and the side surface of the upper electrode and the side surface of the organic light emitting layer, and further from the side surface of the organic light emitting layer to the surface of the substrate side electrode. Nitsuna Leads from the substrate side electrode surface on the side surfaces and the upper surface of said partition wall, said polymeric membrane covers said first inorganic film, have further thicker between adjacent said partition wall between said partition wall so as to fill the recess, The first inorganic film is sparser than the second inorganic film.
With such a configuration, the outermost second inorganic film and the relatively thick polymer film prevent external moisture and oxygen from reaching the organic light emitting layer. In addition, the polymer film often contains harmful components that degrade the organic light-emitting layer, but the relatively sparse first inorganic film is formed around the side surface of the organic light-emitting layer due to its characteristics. Since the light emitting layer is completely covered, external moisture, oxygen, and the harmful components are prevented from reaching the organic light emitting layer. As a result, the deterioration of the light emission characteristics is reduced.


本発明の有機エレクトロルミネッセンス素子の製造方法は、少なくとも前記上部電極の上面及び側面並びに前記有機発光層の側面を連続して第1の無機膜で覆い、前記第1の無機膜をポリマー膜で覆い、前記ポリマー膜を第2の無機膜で覆い、かつ前記第1の無機膜及び前記第2の無機膜をいずれもスパッタにより形成し、前記第1の無機膜のスパッタ圧力を前記第2の無機膜のスパッタ圧力より高くするものである。
又、本発明の有機エレクトロルミネッセンス素子の製造方法は、少なくとも前記上部電極の上面及び側面並びに前記有機発光層の側面を連続して第1の無機膜で覆い、前記第1の無機膜をポリマー膜で覆い、前記ポリマー膜を第2の無機膜で覆い、かつ前記第1の無機膜を誘導結合プラズマCVDにより形成するものである。
In the method for producing an organic electroluminescence element of the present invention, at least the upper surface and the side surface of the upper electrode and the side surface of the organic light emitting layer are continuously covered with a first inorganic film, and the first inorganic film is covered with a polymer film. The polymer film is covered with a second inorganic film, and both the first inorganic film and the second inorganic film are formed by sputtering, and the sputtering pressure of the first inorganic film is set to the second inorganic film. This is higher than the sputtering pressure of the film.
In the method for producing an organic electroluminescent element of the present invention, at least the upper surface and the side surface of the upper electrode and the side surface of the organic light emitting layer are continuously covered with a first inorganic film, and the first inorganic film is a polymer film. The polymer film is covered with a second inorganic film, and the first inorganic film is formed by inductively coupled plasma CVD.

本発明によれば、有機発光層の側面を完全に封止し、発光特性の劣化が少なく、薄型化が可能な有機エレクトロルミネッセンス素子が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the organic electroluminescent element in which the side surface of an organic light emitting layer is completely sealed, there is little deterioration of a light emission characteristic, and thickness reduction is obtained.

図1は、本発明の第1の実施形態に係る有機エレクトロルミネッセンス素子の断面構造の一例を示す。この図において、透明基板30上に透明な基板側電極(透明導電膜;ITO膜)2が形成されている。基板側電極2の上面に有機発光層4が形成され、有機発光層4の上面に上部電極6が形成されている。
有機発光層4は、陽極から注入された正孔と、陰極から注入された電子とを再結合させて発光させる層である。この実施形態では、有機発光層4からの光は透明基板30の下面側に出射され、ボトムエミッションタイプの有機エレクトロルミネッセンス素子を構成する。又、この実施形態では、基板側電極2は図1の左右方向に短冊状に延びる一方、有機発光層4及び上部電極6は基板側電極2と垂直な方向に短冊状に延び、基板側電極2と上部電極6との重なり部分が画素を構成するパッシブマトリックス方式となっている。
本発明においては、有機発光膜の劣化を防止するために、後述する3層の膜を有機発光膜の上に形成する点から、有機発光膜の上面へ出射するトップエミッションタイプより、ボトムエミッションタイプの方が好ましい。
FIG. 1 shows an example of a cross-sectional structure of an organic electroluminescence element according to the first embodiment of the present invention. In this figure, a transparent substrate side electrode (transparent conductive film; ITO film) 2 is formed on a transparent substrate 30. An organic light emitting layer 4 is formed on the upper surface of the substrate side electrode 2, and an upper electrode 6 is formed on the upper surface of the organic light emitting layer 4.
The organic light emitting layer 4 is a layer that emits light by recombining holes injected from the anode and electrons injected from the cathode. In this embodiment, light from the organic light emitting layer 4 is emitted to the lower surface side of the transparent substrate 30 to constitute a bottom emission type organic electroluminescence element. Further, in this embodiment, the substrate-side electrode 2 extends in a strip shape in the left-right direction in FIG. 1, while the organic light emitting layer 4 and the upper electrode 6 extend in a strip shape in a direction perpendicular to the substrate-side electrode 2. The overlapping portion of 2 and the upper electrode 6 is a passive matrix system that constitutes a pixel.
In the present invention, in order to prevent the deterioration of the organic light emitting film, the bottom emission type is used instead of the top emission type that emits to the upper surface of the organic light emitting film in that a three-layer film described later is formed on the organic light emitting film. Is preferred.

なお、この実施形態では、基板側電極2を形成した後、基板側電極2と垂直な方向に短冊状に複数の隔壁40をフォトリソグラフィ等により形成し、隔壁40の上から有機発光層4及び上部電極6を形成している。これにより、隔壁40自体がマスクとなって有機発光層4及び上部電極6を短冊状に形成させることができる。   In this embodiment, after the substrate-side electrode 2 is formed, a plurality of barrier ribs 40 are formed in a strip shape in a direction perpendicular to the substrate-side electrode 2 by photolithography or the like. An upper electrode 6 is formed. Thereby, the organic light emitting layer 4 and the upper electrode 6 can be formed in a strip shape with the partition 40 itself as a mask.

透明基板30としては、例えばガラス、石英ガラス、合成樹脂(例えば、ポリエチレンテレフタレート、ポリカーボネート、PMMA(ポリメチルメタクリレート)等)を用いることができるが、特にこれらに限定されない。又、半透明の基板であってもよい。
基板側電極2としては、例えば、金;ポリアニリン;ITO(InO−SnO)、SnO:Sb等の酸化スズ、ZnO:Al等の酸化亜鉛からなる導電性透明膜を用いることができる。基板側電極2の極性は陽極(ホール注入電極)でも陰極でもよいが、ITO膜の場合は陽極として機能する。
上部電極6としては、例えばアルミニウム、マグネシウム、Al−Li合金、Al−Mg合金、Al−Nd合金、Al−Mg合金等の金属や合金の膜を用いることができる。基板側電極2を陽極とする場合、対極は陰極となるので、上部電極6として仕事関数の小さい金属又は合金を用いることが好ましい。
As the transparent substrate 30, for example, glass, quartz glass, synthetic resin (for example, polyethylene terephthalate, polycarbonate, PMMA (polymethyl methacrylate), etc.) can be used, but is not particularly limited thereto. Further, it may be a translucent substrate.
As the substrate-side electrode 2, for example, a conductive transparent film made of gold; polyaniline; ITO (InO 3 —SnO 2 ), tin oxide such as SnO: Sb, or zinc oxide such as ZnO: Al can be used. The polarity of the substrate side electrode 2 may be an anode (hole injection electrode) or a cathode, but in the case of an ITO film, it functions as an anode.
As the upper electrode 6, for example, a metal or alloy film such as aluminum, magnesium, Al—Li alloy, Al—Mg alloy, Al—Nd alloy, or Al—Mg alloy can be used. When the substrate-side electrode 2 is used as an anode, the counter electrode serves as a cathode. Therefore, it is preferable to use a metal or alloy having a low work function as the upper electrode 6.

有機発光層4は、単層構造でも多層構造でもよく、有機EL素子に用いる従来公知の有機発光層を用いることができる。多層構造として、例えば、発光層とホール輸送層の二層構造、発光層と電子輸送層の二層構造、電子輸送層と発光層とホール輸送層の三層構造のものが挙げられる。更には、電子注入層と電子輸送層と発光層とホール輸送層とホール注入層の五層構造のものも挙げられる。
有機発光層4の組成も有機EL素子に用いる従来公知の組成(例えば低分子蛍光色素、有機金属錯体、高分子材料等の有機化合物)を用いることができる。有機発光層4として具体的には、例えば8−ハイドロキシキノリンアルミニウム(Alq)が挙げられる。有機発光層4を多層とする場合、例えばホール輸送層としてはトリフェニルアミン誘導体を、発光層および電子輸送層としてAlqを用いることができる。
The organic light emitting layer 4 may have a single layer structure or a multilayer structure, and a conventionally known organic light emitting layer used for an organic EL element can be used. Examples of the multilayer structure include a two-layer structure of a light-emitting layer and a hole transport layer, a two-layer structure of a light-emitting layer and an electron transport layer, and a three-layer structure of an electron transport layer, a light-emitting layer, and a hole transport layer. Furthermore, the thing of the five-layer structure of an electron injection layer, an electron carrying layer, a light emitting layer, a hole transport layer, and a hole injection layer is also mentioned.
As the composition of the organic light emitting layer 4, a conventionally known composition used for the organic EL element (for example, an organic compound such as a low molecular fluorescent dye, an organometallic complex, or a polymer material) can be used. Specific examples of the organic light emitting layer 4 include 8-hydroxyquinoline aluminum (Alq 3 ). When the organic light emitting layer 4 has a multilayer structure, for example, a triphenylamine derivative can be used as the hole transport layer, and Alq 3 can be used as the light emitting layer and the electron transport layer.

次に、有機発光層を覆う被膜構造について説明する。この被膜構造は、第1の無機膜12、ポリマー膜14及び第2の無機膜16の3層の膜から構成されている。
第1の無機膜12は、上部電極6の上面及び側面並びに有機発光層4の側面を連続して完全に覆い、さらに有機発光層4の側面から基板側電極2表面につながり、基板側電極2表面から隔壁40の表面(側面及び上面)につながっている。ポリマー膜14は第1の無機膜12を覆い、特に隣接する隔壁40、40間の凹部を埋めるように隔壁40、40間で厚くなっている。第2の無機膜16はポリマー膜14を覆っている。
Next, the film structure covering the organic light emitting layer will be described. This film structure is composed of three layers of a first inorganic film 12, a polymer film 14 and a second inorganic film 16.
The first inorganic film 12 continuously and completely covers the upper surface and side surface of the upper electrode 6 and the side surface of the organic light emitting layer 4, and is further connected to the surface of the substrate side electrode 2 from the side surface of the organic light emitting layer 4. The surface is connected to the surface (side surface and upper surface) of the partition wall 40. The polymer film 14 covers the first inorganic film 12 and is particularly thick between the partition walls 40 and 40 so as to fill the recesses between the adjacent partition walls 40 and 40. The second inorganic film 16 covers the polymer film 14.

そして、第1の無機膜12は第2の無機膜16より疎(ポーラス)になっている。疎の度合として例えば屈折率が上げられ、第1の無機膜12の屈折率を1.5〜1.55程度とし、第2の無機膜16の屈折率を1.6〜1.65程度とすることができる。
第1の無機膜12を比較的ポーラスとすることにより、成膜材料の回り込みがよくなり、ステップカバレッジに優れる。そのため、上部電極6の上面及び側面並びに有機発光層4の側面に連続して第1の無機膜12が形成され、有機発光層4の側面を完全に封止することができる。
又、第1の無機膜12の外側にポリマー膜14を比較的厚く覆うことにより、有機発光膜4を水分や酸素等から遮断する。さらに、ポリマー膜14の外側に第2の無機膜16を覆うことにより、バリア性能を向上させることができる。これは、ポリマー膜により平坦化された表面の上に無機膜を成膜することにより、無機膜のバリア性能が向上するためである。
The first inorganic film 12 is sparser (porous) than the second inorganic film 16. As the degree of sparseness, for example, the refractive index can be raised, the refractive index of the first inorganic film 12 can be about 1.5 to 1.55, and the refractive index of the second inorganic film 16 can be about 1.6 to 1.65.
By making the first inorganic film 12 relatively porous, the wraparound of the film forming material is improved and the step coverage is excellent. Therefore, the first inorganic film 12 is formed continuously on the upper surface and side surface of the upper electrode 6 and the side surface of the organic light emitting layer 4, and the side surface of the organic light emitting layer 4 can be completely sealed.
Further, the organic light emitting film 4 is shielded from moisture and oxygen by covering the outer side of the first inorganic film 12 with the polymer film 14 relatively thick. Furthermore, the barrier performance can be improved by covering the second inorganic film 16 outside the polymer film 14. This is because the barrier performance of the inorganic film is improved by forming the inorganic film on the surface flattened by the polymer film.

第1の無機膜12及び第2の無機膜16としては、例えば無機酸化物又は無機窒化物の層を用いることができ、具体的には、例えばB、Al,Si、Ga、Ge、In、Sn、Zn、Ti、Y、Zr、Nb、Mo、W、Hf、Ta、及びCeの群から選ばれる一種以上の酸化物若しくは窒化物、又はそれらの複数層を挙げることができる。第1の無機膜及び第2の無機膜、これらの無機酸化物又は無機窒化物を、PVD(物理的蒸着)法またはCVD(化学的蒸着)法で成膜することによって得られる。PVD法としてはスパッタ法が挙げられる。
第1の無機膜12及び第2の無機膜16の例として、Al、Si、SiO、SiO等(x、yは所定の組成比である)が挙げられる。
As the first inorganic film 12 and the second inorganic film 16, for example, an inorganic oxide or inorganic nitride layer can be used. Specifically, for example, B, Al, Si, Ga, Ge, In, Examples thereof include one or more oxides or nitrides selected from the group consisting of Sn, Zn, Ti, Y, Zr, Nb, Mo, W, Hf, Ta, and Ce, or a plurality of layers thereof. The first inorganic film and the second inorganic film, and these inorganic oxides or inorganic nitrides are obtained by film formation by a PVD (physical vapor deposition) method or a CVD (chemical vapor deposition) method. Examples of the PVD method include a sputtering method.
Examples of the first inorganic film 12 and the second inorganic film 16 include Al 2 O 3 , Si 3 N 4 , SiO 2 , SiO x N y and the like (x and y are predetermined composition ratios). .

特に、第1の無機膜12が、スパッタ圧力を第2の無機膜のスパッタ圧力より高く設定したスパッタ法、又は誘導結合プラズマCVDにより形成されていることが好ましい。この理由は以下の通りである。
スパッタ法において、スパッタ圧力(スパッタ雰囲気の圧力)を高くすると、スパッタ材料(成膜材料)の平均自由行程が圧力に反比例して小さくなる。そのため、粒子の回り込みがよくなり、有機発光層4の側面を完全に覆うことができる。この際、被膜はポーラスとなる。
又、誘導結合 (Inductive-Coupling Plasma:ICP) プラズマCVDの場合、反応圧力が数Pa〜数100Paであり、通常の蒸着法やスパッタ法のようなPVDに比べて2桁以上高いため、平均自由行程がさらに小さくなり、粒子の回り込みが一層よくなる。
In particular, the first inorganic film 12 is preferably formed by a sputtering method in which the sputtering pressure is set higher than the sputtering pressure of the second inorganic film, or inductively coupled plasma CVD. The reason is as follows.
In the sputtering method, when the sputtering pressure (pressure in the sputtering atmosphere) is increased, the mean free path of the sputtering material (film forming material) decreases in inverse proportion to the pressure. Therefore, the wraparound of the particles is improved and the side surface of the organic light emitting layer 4 can be completely covered. At this time, the coating becomes porous.
Inductive-Coupling Plasma (ICP) In the case of plasma CVD, the reaction pressure is several Pa to several hundred Pa, which is more than two orders of magnitude higher than that of PVD such as ordinary vapor deposition and sputtering, so the mean free The process is further reduced, and the particles are better circulated.

ポリマー膜14としては、公知の樹脂を用いることができ、モノマーをスピンコート等で塗布後、硬化させてポリマー膜14を形成すればよい。公知の樹脂としては、例えばアクリレート系、メタクリレート系の官能基を有する光硬化型樹脂又は熱硬化型樹脂を使用することができる。ポリマー膜14は透明であってもよく、透明樹脂として、ポリ塩化ビニル樹脂、メラミン樹脂、フェノール樹脂、アルキド樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、マレイン酸樹脂、ポリアミド樹脂等が挙げられる。
上記樹脂の硬化方法は、光硬化型樹脂の場合は紫外線照射を、熱硬化型樹脂の場合は熱硬化を採用することができる。
As the polymer film 14, a known resin can be used, and the polymer film 14 may be formed by applying a monomer by spin coating or the like and then curing it. As a known resin, for example, a photo-curing resin or a thermosetting resin having an acrylate-based or methacrylate-based functional group can be used. The polymer film 14 may be transparent, and examples of the transparent resin include polyvinyl chloride resin, melamine resin, phenol resin, alkyd resin, epoxy resin, polyurethane resin, polyester resin, maleic acid resin, and polyamide resin.
As the method for curing the resin, ultraviolet irradiation can be employed in the case of a photocurable resin, and thermosetting can be employed in the case of a thermosetting resin.

又、ポリマー膜14として、例えば所定のモノマー又はオリゴマーを蒸発させて蒸着した後、重合硬化させて成膜することができる(真空蒸着法)。重合方法としては、モノマーの熱分解温度に応じて熱重合、紫外線重合を適宜用いることができる。この方法に用いるモノマーとしては、例えば米国特許4499520号明細書に記載のモノマーを用いることができる。 Further, the polymer film 14 can be formed by evaporating and vapor-depositing a predetermined monomer or oligomer, followed by polymerization and curing (vacuum deposition method). As the polymerization method, thermal polymerization or ultraviolet polymerization can be appropriately used depending on the thermal decomposition temperature of the monomer. As a monomer used in this method, for example, a monomer described in US Pat. No. 4,499,520 can be used.

ポリマー膜14の塗布厚は、例えば0.5〜5μmとすることができるが、膜厚が1μm以上の場合は、複数回の塗布により所望の厚さを確保することができる。   The coating thickness of the polymer film 14 can be set to, for example, 0.5 to 5 μm, but when the film thickness is 1 μm or more, a desired thickness can be ensured by a plurality of coatings.

なお、有機EL素子を構成する基板側電極2、有機発光層4、上部電極6は、側面に比べて上面の面積の方が大きいが、第1の無機膜12によって上面から有害成分が侵入することを防止できる。   The substrate-side electrode 2, the organic light emitting layer 4, and the upper electrode 6 constituting the organic EL element have a larger upper surface area than the side surface, but harmful components enter from the upper surface by the first inorganic film 12. Can be prevented.

本発明によれば、最外側の第2の無機膜16と、比較的厚いポリマー膜14とによって、外部の湿気や酸素が有機発光層4に到達することを防止する。又、ポリマー膜14には有機発光層4を劣化させる有害成分が含まれていることが多いが、有機発光層4の表面(側面を含む)が第1の無機膜12によって完全に覆われているので、外部の湿気や酸素、上記有害成分が有機発光層4に到達することを防止する。その結果、発光特性の劣化が少なくなる。
又、本発明によれば、上記したように封止缶を用いなくとも有機発光層4への湿気や酸素の到達を確実に防止することができるので、素子の薄型化が可能となる。
According to the present invention, the outermost second inorganic film 16 and the relatively thick polymer film 14 prevent external moisture and oxygen from reaching the organic light emitting layer 4. Further, the polymer film 14 often contains harmful components that degrade the organic light emitting layer 4, but the surface (including side surfaces) of the organic light emitting layer 4 is completely covered by the first inorganic film 12. Therefore, external moisture, oxygen, and the harmful components are prevented from reaching the organic light emitting layer 4. As a result, the deterioration of the light emission characteristics is reduced.
Further, according to the present invention, it is possible to reliably prevent moisture and oxygen from reaching the organic light emitting layer 4 without using a sealing can as described above, so that the device can be thinned.

透明基板30上にITO膜からなる基板側電極2が形成され、基板側電極2の上面に有機発光層4が形成され、有機発光層4の上面に上部電極6が形成され、さらに隔壁40を有する図1に示した構造の有機EL素子を用いた。なお、有機発光層4としてAlq3を、上部電極6としてAlを用いた。
この有機EL素子をスパッタ装置に設置し、Alターゲットにメッシュ(開孔率30〜70%)を介して対向させた。キャリアガスとしてArガスを用いると共に、有機EL素子の表面に向かって流量10〜20sccmで酸素を流した。スパッタ装置内のArガスと酸素の合計圧力を1〜2Paとし、有機EL素子表面にAl2O3を厚み100nmでスパッタ成膜して第1の無機膜12を形成した。
A substrate side electrode 2 made of an ITO film is formed on a transparent substrate 30, an organic light emitting layer 4 is formed on the upper surface of the substrate side electrode 2, an upper electrode 6 is formed on the upper surface of the organic light emitting layer 4, and a partition 40 is further formed. The organic EL element having the structure shown in FIG. 1 was used. Note that Alq 3 was used as the organic light emitting layer 4 and Al was used as the upper electrode 6.
This organic EL element was installed in a sputtering apparatus, and opposed to the Al target through a mesh (a porosity of 30 to 70%). Ar gas was used as a carrier gas, and oxygen was flowed toward the surface of the organic EL element at a flow rate of 10 to 20 sccm. A total pressure of Ar gas and oxygen in the sputtering apparatus was set to 1 to 2 Pa, and Al 2 O 3 was sputtered to a thickness of 100 nm on the surface of the organic EL element to form a first inorganic film 12.

次に、ポリマー膜14を上記真空蒸着法で厚み4μm成膜(隔壁高さが4μmのため)し紫外線硬化法させて、第1の無機膜12の表面にポリマー膜14を形成した。
さらに、ポリマー膜14成膜後の有機EL素子を上記スパッタ装置に設置した。キャリアガスの流量を絞って合計圧力を0.2〜0.5Paに低減したこと以外は第1の無機膜12の成膜と同様にして、ポリマー膜14表面にAl2O3を厚み100nmスパッタ成膜して第2の無機膜16を形成した。
分光エリプソメトリーにより、第1の無機膜12及び第2の無機膜16の屈折率を測定したところ、それぞれ1.5〜1.55、1.6〜1.65であり、第1の無機膜12の方が疎(ポーラス)であることがわかった。
なお、有機EL素子(有機発光層4、上部電極6)の側面に第1の無機膜12が回り込んで形成されていることを、SEM(走査型電顕)像で確認した。
Next, the polymer film 14 was formed into a film having a thickness of 4 μm by the vacuum vapor deposition method (because the partition wall height was 4 μm), and was subjected to ultraviolet curing to form the polymer film 14 on the surface of the first inorganic film 12.
Further, the organic EL element after the polymer film 14 was formed was placed in the sputtering apparatus. A 100 nm-thick Al 2 O 3 film is formed on the surface of the polymer film 14 in the same manner as the first inorganic film 12 except that the total pressure is reduced to 0.2 to 0.5 Pa by reducing the flow rate of the carrier gas. Thus, the second inorganic film 16 was formed.
When the refractive indexes of the first inorganic film 12 and the second inorganic film 16 are measured by spectroscopic ellipsometry, they are 1.5 to 1.55 and 1.6 to 1.65, respectively, and the first inorganic film 12 is sparser (porous). I found out that
The SEM (scanning electron microscope) image confirmed that the first inorganic film 12 was formed around the side surface of the organic EL element (the organic light emitting layer 4 and the upper electrode 6).

実施例1と同一の有機EL素子を用いた。この有機EL素子を誘導結合プラズマCVD(トッキ社製 ELVESS-PE-CVD装置)に設置し、SiH4,NH3,N2のガスをそれぞれモル比で1:1:10の割合で装置に導入した。装置内の圧力を20Paとし、RF(Radio Frequency)パワー0.5W/cm2、RF周波数13.56MHzとしてプラズマCVD成膜を行った。成膜速度は100nm/分とし、成膜厚み0.5μmとして第1の無機膜12を形成した。
第1の無機膜12の組成は蛍光X線分析によりSi3N4であることがわかった。
ポリマー膜14及び第2の無機膜16は実施例1とまったく同様にして成膜した。
第1の無機膜12の屈折率を測定したところ、1.9〜1.95であった。
又、実施例2においても有機EL素子(有機発光層4、上部電極6)の側面に第1の無機膜12が回り込んで形成されていることを、SEM(走査型電顕)像で確認した。
The same organic EL element as in Example 1 was used. This organic EL device is installed in inductively coupled plasma CVD (ELVESS-PE-CVD equipment manufactured by Tokki), and SiH 4 , NH 3 , and N 2 gases are introduced into the equipment at a molar ratio of 1: 1: 10, respectively. did. Plasma CVD film formation was performed at a pressure of 20 Pa in the apparatus, an RF (Radio Frequency) power of 0.5 W / cm 2 , and an RF frequency of 13.56 MHz. The first inorganic film 12 was formed at a deposition rate of 100 nm / min and a deposition thickness of 0.5 μm.
The composition of the first inorganic film 12 was found to be Si 3 N 4 by fluorescent X-ray analysis.
The polymer film 14 and the second inorganic film 16 were formed in exactly the same manner as in Example 1.
The refractive index of the first inorganic film 12 was measured and found to be 1.9 to 1.95.
Also in Example 2, it is confirmed by an SEM (scanning electron microscope) image that the first inorganic film 12 is formed around the side surface of the organic EL element (the organic light emitting layer 4 and the upper electrode 6). did.

実施例1と同一の有機EL素子を用い、実施例2とまったく同様にして第1の無機膜12及びポリマー膜14を成膜した。
次に、誘導結合プラズマCVD(トッキ社製 ELVESS-PE-CVD装置)を用い、SiH4,NH3,N2のガスをそれぞれモル比で1:1:10の割合として導入し、装置内の圧力を100Paとし、RF(Radio Frequency)パワー0.5W/cm2、RF周波数13.56MHzとし、成膜厚み1.0μmとしてプラズマCVD成膜を行って、ポリマー膜14表面に第2の無機膜16を成膜した。
第2の無機膜16の屈折率は、1.8〜1.85であった。
Using the same organic EL element as in Example 1, a first inorganic film 12 and a polymer film 14 were formed in exactly the same manner as in Example 2.
Next, using inductively coupled plasma CVD (ELVESS-PE-CVD equipment manufactured by Tokki Co., Ltd.), SiH 4 , NH 3 , and N 2 gases were introduced at a molar ratio of 1: 1: 10, respectively. The second inorganic film 16 is formed on the surface of the polymer film 14 by performing plasma CVD film formation with a pressure of 100 Pa, RF (Radio Frequency) power 0.5 W / cm 2 , RF frequency 13.56 MHz, film thickness 1.0 μm. Filmed.
The refractive index of the second inorganic film 16 was 1.8 to 1.85.

本発明は、パッシブマトリクス型の有機エレクトロルミネッセンス素子に限定されることはなく、本発明の趣旨を逸脱しない限り、アクティブマトリクス型の有機エレクトロルミネッセンス素子や他の方式の有機エレクトロルミネッセンス素子に制限なく本発明を適用することが可能である。   The present invention is not limited to passive matrix organic electroluminescent elements, and is not limited to active matrix organic electroluminescent elements or other types of organic electroluminescent elements without departing from the spirit of the present invention. The invention can be applied.

本発明の実施形態に係る有機エレクトロルミネッセンス素子の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the organic electroluminescent element which concerns on embodiment of this invention.

符号の説明Explanation of symbols

2 基板側電極
4 有機発光層
6 上部電極
12 第1の無機膜
14 ポリマー膜
16 第2の無機膜
30 基板
2 substrate side electrode 4 organic light emitting layer 6 upper electrode 12 first inorganic film 14 polymer film 16 second inorganic film 30 substrate

Claims (3)

基板上に形成される基板側電極と、前記基板側電極の上面に形成される有機発光層と、前記有機発光層の上面に形成される上部電極と、前記基板側電極の上面に形成されて互いに間隔を開けた複数の隔壁と、少なくとも前記上部電極の上面及び側面並びに前記有機発光層の側面を連続して覆う第1の無機膜と、前記第1の無機膜を覆うポリマー膜と、前記ポリマー膜を覆う第2の無機膜とを備え、
前記有機発光層及び前記上部電極は、前記隔壁をマスクとし、隣接する前記隔壁の間に形成され、
前記第1の無機膜は、前記上部電極の上面及び側面並びに前記有機発光層の側面を連続して完全に覆い、さらに前記有機発光層の側面から前記基板側電極表面につながり、前記基板側電極表面から前記隔壁の側面及び上面につながり、
前記ポリマー膜は前記第1の無機膜を覆い、さらに隣接する前記隔壁間の凹部を埋めるように前記隔壁間で厚くなっていて、
前記第1の無機膜が前記第2の無機膜より疎になっている有機エレクトロルミネッセンス素子。
A substrate-side electrode formed on the substrate; an organic light-emitting layer formed on the upper surface of the substrate-side electrode ; an upper electrode formed on the upper surface of the organic light-emitting layer; and an upper surface of the substrate-side electrode. A plurality of partitions spaced apart from each other, a first inorganic film continuously covering at least the upper surface and side surfaces of the upper electrode and the side surfaces of the organic light emitting layer, a polymer film covering the first inorganic film, A second inorganic film covering the polymer film,
The organic light emitting layer and the upper electrode are formed between adjacent barrier ribs using the barrier ribs as a mask,
The first inorganic film continuously and completely covers the upper surface and side surface of the upper electrode and the side surface of the organic light emitting layer, and is further connected to the substrate side electrode surface from the side surface of the organic light emitting layer. Connected from the surface to the side and top surfaces of the partition,
The polymer film covers the first inorganic film, and is thicker between the partition walls so as to fill the recesses between the adjacent partition walls,
An organic electroluminescence element in which the first inorganic film is sparser than the second inorganic film.
請求項1記載の有機エレクトロルミネッセンス素子の製造方法であって、
少なくとも前記上部電極の上面及び側面並びに前記有機発光層の側面を連続して第1の無機膜で覆い、前記第1の無機膜をポリマー膜で覆い、前記ポリマー膜を第2の無機膜で覆い、かつ前記第1の無機膜及び前記第2の無機膜をいずれもスパッタにより形成し、前記第1の無機膜のスパッタ圧力を前記第2の無機膜のスパッタ圧力より高くする有機エレクトロルミネッセンス素子の製造方法。
It is a manufacturing method of the organic electroluminescent element of Claim 1,
At least the upper and side surfaces of the upper electrode and the side surface of the organic light emitting layer are continuously covered with a first inorganic film, the first inorganic film is covered with a polymer film, and the polymer film is covered with a second inorganic film. And the first inorganic film and the second inorganic film are both formed by sputtering, and the sputtering pressure of the first inorganic film is made higher than the sputtering pressure of the second inorganic film. Production method.
請求項1記載の有機エレクトロルミネッセンス素子の製造方法であって、
少なくとも前記上部電極の上面及び側面並びに前記有機発光層の側面を連続して第1の無機膜で覆い、前記第1の無機膜をポリマー膜で覆い、前記ポリマー膜を第2の無機膜で覆い、かつ前記第1の無機膜を誘導結合プラズマCVDにより形成する有機エレクトロルミネッセンス素子の製造方法。
It is a manufacturing method of the organic electroluminescent element of Claim 1,
At least the upper and side surfaces of the upper electrode and the side surface of the organic light emitting layer are continuously covered with a first inorganic film, the first inorganic film is covered with a polymer film, and the polymer film is covered with a second inorganic film. And the manufacturing method of the organic electroluminescent element which forms the said 1st inorganic film by inductively coupled plasma CVD.
JP2007259320A 2007-10-03 2007-10-03 Organic electroluminescence device and method for manufacturing the same Expired - Fee Related JP4974368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259320A JP4974368B2 (en) 2007-10-03 2007-10-03 Organic electroluminescence device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259320A JP4974368B2 (en) 2007-10-03 2007-10-03 Organic electroluminescence device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009087884A JP2009087884A (en) 2009-04-23
JP4974368B2 true JP4974368B2 (en) 2012-07-11

Family

ID=40661018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259320A Expired - Fee Related JP4974368B2 (en) 2007-10-03 2007-10-03 Organic electroluminescence device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4974368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101086880B1 (en) * 2009-05-28 2011-11-24 네오뷰코오롱 주식회사 Method of fabricating organic light emitting display device having getter layer
JP6055789B2 (en) * 2014-02-21 2016-12-27 富士フイルム株式会社 Substrate with organic functional layer and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3302262B2 (en) * 1996-06-10 2002-07-15 ティーディーケイ株式会社 Organic electroluminescence display device and method of manufacturing the same
JP3999837B2 (en) * 1997-02-10 2007-10-31 Tdk株式会社 Organic electroluminescence display device
JP3817081B2 (en) * 1999-01-29 2006-08-30 パイオニア株式会社 Manufacturing method of organic EL element
JP4346459B2 (en) * 2004-01-20 2009-10-21 三洋電機株式会社 Light emitting device
JP2005339828A (en) * 2004-05-24 2005-12-08 Shimadzu Corp Organic electroluminescent element and its manufacturing method
JP4792717B2 (en) * 2004-07-07 2011-10-12 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP2007005138A (en) * 2005-06-23 2007-01-11 Fuji Electric Holdings Co Ltd Organic el element and thin organic electroluminescent panel using it
JP2007098931A (en) * 2005-09-09 2007-04-19 Seiko Epson Corp Screen printing device, manufacturing method and manufacturing device of illuminating device
JP2007220646A (en) * 2006-01-19 2007-08-30 Toppan Printing Co Ltd Organic electroluminescent element

Also Published As

Publication number Publication date
JP2009087884A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US6872473B2 (en) Panel display device and method for forming protective layer within the same
EP2765627B1 (en) Organic light emitting diode device and manufacturing method thereof
US7102176B2 (en) Organic electroluminescent display panel and manufacturing method therefor
EP0977469B1 (en) Improved transparent, flexible permeability barrier for organic electroluminescent devices
US7696683B2 (en) Organic electroluminescent element and the manufacturing method
EP2097939B1 (en) OLED with protective bi-layer electrode
JP4981242B2 (en) Organic EL device
JP4896729B2 (en) Electronic device with protective barrier stack
JP4795779B2 (en) Organic electroluminescence display panel
US8772760B2 (en) Organic light emitting diode device and method for manufacturing the same
US9685633B2 (en) Organic light-emitting element and method of producing an organic light-emitting element
US20080136320A1 (en) Organic electroluminescent element and method of manufacturing the same
EP1489889A1 (en) Organic electroluminescence display panel and method for manufacturing the same
KR101292297B1 (en) Organic electroluminescent element and method of manufacturing the same
EP1622211B1 (en) Organic electroluminescent device
US8928217B2 (en) Organic light emitting display device and manufacturing method thereof
JP4974368B2 (en) Organic electroluminescence device and method for manufacturing the same
JP2005319678A (en) Laminate, light emitting element and its use
JP4736348B2 (en) Manufacturing method of organic EL element
JP5595421B2 (en) Moisture-proof film, method for producing the same, and organic electronic device including the same
JP2007311219A (en) Organic electroluminescent element
KR100300425B1 (en) Plastic base plate used in organic electro luminescence display
Lee et al. P‐214: Ultra Thin‐Film Encapsulation for AMOLED Displays
KR20190099890A (en) Organic light emitting display and method for manufacturing encapsulation film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees