JP4971050B2 - 半導体装置の寸法測定装置 - Google Patents

半導体装置の寸法測定装置 Download PDF

Info

Publication number
JP4971050B2
JP4971050B2 JP2007163743A JP2007163743A JP4971050B2 JP 4971050 B2 JP4971050 B2 JP 4971050B2 JP 2007163743 A JP2007163743 A JP 2007163743A JP 2007163743 A JP2007163743 A JP 2007163743A JP 4971050 B2 JP4971050 B2 JP 4971050B2
Authority
JP
Japan
Prior art keywords
dimension
width
region
representative value
dimension measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007163743A
Other languages
English (en)
Other versions
JP2009002785A (ja
Inventor
優 栗原
勝 伊澤
潤一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007163743A priority Critical patent/JP4971050B2/ja
Priority to US12/128,364 priority patent/US7720632B2/en
Publication of JP2009002785A publication Critical patent/JP2009002785A/ja
Application granted granted Critical
Publication of JP4971050B2 publication Critical patent/JP4971050B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application

Description

本発明は、半導体装置の寸法測定技術に関し、例えば、活性化領域上のゲート電極寸法を測定する技術に関する。
近年、半導体装置の寸法の微細化が進み、精度に関しては0.1μm以下のゲート電極を10%以下の寸法精度で加工しなければならないほど厳しくなっている。例えば、ゲート電極の寸法は、半導体装置の動作特性を決定する主要因の一つであり、特に活性化領域上のゲート電極寸法を管理する必要がある。製造工程においては、ゲート電極の加工工程だけでなく、ゲート電極の膜厚や加工時のマスクとなるレジストパターンの寸法などのゲート電極の加工工程より前の工程の影響を受けることにより、ゲート電極寸法が変動する。そのため、同一の処理条件、同一の加工工程によりゲート電極を加工した場合においても、各工程の微小な変動の累積により、ゲート電極の加工寸法は一定の値にならず、ある範囲、例えばゲート電極の加工寸法の目標値90nmに対し、3σで10nm程度の範囲で寸法変動が発生する。したがって、寸法精度が悪化し、ひいては生産性の低下を引き起こす。そのため、ゲート電極寸法の管理は半導体装置の製造工程において必須の技術となっている。
半導体装置の製造工程では、ゲート電極寸法の計測結果から、管理値を外れた場合には、そのウエハを破棄する、または再処理を施すといった処理をすることにより、歩留まり向上や生産性の向上を行っている。また近年ではこの計測値を用いたプロセス制御の導入が進んでいる。例えば、制御工程の処理条件を修正する方法としては、特許文献1に示されている。この特許文献1には、半導体ウエハに第1のプロセスを実行し、このプロセスに関連した統合計測データ取得する。この統合計測データから、少なくとも一つの誤差を特定し、この誤差を補償するべく、第2のプロセスに対して調整プロセスを実行する方法が開示されている。
また、もう一つの例が、特許文献2に示されている。この特許文献2には、ワークピースを加工するステップと、測定された特徴パラメータからトランジスタモデルを用いて特徴パラメータを出力するステップがある。この出力ステップを用いてウエハ電気テストを予測するステップとその予測値に基づき欠陥のある工程を検出するステップと、欠陥のある工程を訂正するステップを用いる方法が開示されている。
また、フィードフォワードにより素子分離領域の寸法を制御する方法が、特許文献3に記されている。この特許文献3には、素子分離領域と活性化領域の表面の段差のモデル式を作成し、CMP(Chemical Mechanical Polishing)後の膜厚計測データから、モデル式を用い、埋め込み酸化膜を除去する洗浄工程の時間を制御することにより、上記段差を一定に制御する方法が開示されている。
以上のようなプロセス制御を行う場合、計測結果の測定精度やスループットの向上が、プロセス制御の精度に対し重要な要因となる。
一方、近年のリソグラフィ技術では、配線幅の微細化に対応するため、光源波長が短くなり、それに伴いレジスト材料も変更されている。非特許文献1に記すように、特に光源波長193nmのArFエキシマレーザに対応したレジスト材料(以下、ArFレジスト)では、ラインエッジラフネス(LER:Line Edge Roughness)という配線幅の変動が顕著になっている。その配線幅の変動は3σで6nm程度ある。そのため、配線幅の寸法計測では、たとえ同一配線上であっても、異なる箇所の配線幅を測定した場合には、それぞれ測定した寸法が異なる問題が発生する。そのため、このLERが大きいレジストパターンを用いた半導体装置の製造工程の寸法検査工程では、寸法の測定精度が悪化するという問題がある。また、配線幅が0.1μm以下の微細なパターンを高精度、かつ高速に測定する方法が必要とされる。
このような状況の中、配線幅の測定方法がいくつか提案されている。そのうちの一つは、現在最も広く使用されている走査型電子顕微鏡CD−SEM(Critical Dimension−Scanning Electron Microscope)を用いた配線幅の測定方法である。このCD−SEMの特徴は、電子線を使用するため、配線幅が0.1μm以下であっても高解像度の画像を取得することが可能であり、また任意の測定対象を計測することが可能である。また、一般的にArFレジストは電子線照射によりシュリンクする事が知られており、そのシュリンク量は電子線の照射量に依存する。しかし、最新型のCD−SEMでは、測定を自動化することにより、測定対象毎のシュリンク量を最低限にする機能や、電子線の走査間隔を広くとることによりシュリンク量を低減する機能(Rectangular Scan)を有している。このRectangular Scan機能は電子線の走査間隔を変えることにより、縦方向と横方向の倍率が異なる画像を取得することが可能である。このCD−SEMによる配線幅の測定方法は比較的高速であり、任意な測定対象に対し高精度な測定ができる特徴を持つ。CD−SEMではこのように取得した配線パターンの画像を用いて、その輝度プロファイルから、配線の両端のエッジポイントを多数検出し、そのエッジ間の距離の平均値を配線寸法とする処理が行われている。またこのように測定する際、測定領域の長さが長いほどLERによる測定バラツキを低減できる。このようにCD−SEMを用いた計測方法は、電子線を使うために、非常に高精度で計測することが可能である。
もう一つの方法としては、非特許文献2に示すようにスキャトロメトリを使用した方法がある。この方法は、50μm角以上の領域にわたって、ピッチ的に配列されたパターンに対し、光の干渉波形を取得する。そして、測定対象の構造モデルからシミュレーションした干渉波形と、実際に取得した干渉波形とを比較することにより、測定対象の寸法を計測する方法である。このスキャトロメトリを使用した配線幅の測定方法は、上記のようなシミュレーションする上で単純な構造であり、かつ50μm以上の領域に渡りピッチ的に配列されているような限定されたパターンに対しては、比較的高速に測定できる特徴を持つ。
また、もう一つの方法としては、非特許文献3に示すように原子間力顕微鏡を用いたCD−AFM(Critical Dimension−Atomic Force Microscope)による配線幅の測定方法がある。この方法は、微細なプローブを用いて、測定対象を直接3次元計測することにより、配線幅を測定する方法である。また、測定対象を直接測定するため、測定対象の3次元構造を把握することが可能である。また、その測定精度は測定対象の大きさと、プローブの形状および寸法に大きく依存する。以上のように配線寸法を計測する手法は複数有り、計測の目的に応じて使い分けられている。
寸法管理における計測対象は、通常管理(QC: Quality Check)パターンと呼ばれる。QCパターンは、製品チップの隙間のスクライブラインと呼ばれるダイシングで切断される箇所の上に配置されることが多い。また、QCパターンのレイアウトは、計測しやすいように単純な1本のラインや、複数のライン/スペースで形成されることが多い。しかし、実際に半導体装置の性能や歩留まりを決めるのは、動作する回路パターンにおける配線寸法であり、特に活性化領域上の配線寸法である。回路パターンとQCパターンでは、下層レイヤも含めたパターン形状の複雑性が大きく異なるため、寸法変動に対する挙動も異なることが多い。そのため、寸法管理において、QCパターンの寸法を管理しても、実際の半導体装置の性能や歩留まりを管理するのは限界がある。直接回路パターンのゲート電極寸法を計測すればよいのだが、回路内の特定箇所の配線寸法を計測するのは、計測レシピの作成が煩雑であること、また先に述べたLERの影響により、一点一点の寸法の測定精度が低くなるため、寸法管理に使用するのは困難である。非特許文献4には、回路パターン内の寸法計測用の計測レシピを簡便に作成できる技術が記載されている。これは設計データを用いて、計測レシピを作成する技術であり、複数のレイヤを考慮して測定位置を計測することが可能である。つまり、活性化領域上の配線寸法を計測することも可能である。
また回路パターンでは活性化領域と素子分離領域が周期的に配置されていることが多い。このように下層レイヤに構造がある場合、その構造に応じてゲート電極寸法が変動することが非特許文献5に記載されている。つまりゲート電極の活性化領域上の寸法と、素子分離上の寸法が異なることを意味する。そのため、下層レイヤに構造がある場合には、配線全体の平均寸法と活性化領域上の寸法は異なることになる。またエッチング時のマスクとなるレジストパターンにおいても、この下層レイヤの影響により、活性化領域上と素子分離上で配線寸法が変動する現象が確認されている。このように半導体装置の性能や歩留まりに直接影響する配線寸法としては、活性化領域上の寸法を計測する必要がある。
以上述べてきたように、半導体装置の製造工程においては、微細な測定対象を高精度に測定する方法が提案されている。
特表2005−510083号公報 特表2003−531491号公報 特開2002−151465号公報 A.Yamaguchi,et.al.,Proceedings of SPIE vol.5375,p468−476(2004) B.Cheung,et.al.,Proceedings of SPIE vol.5752,p30−40(2005) V.A.Ukraintsev,et.al.,Proceedings of SPIE vol.5752,p127−139(2005) C.Tabery,et.al.,Proceedings of SPIE vol.5752,p1424−1434(2005) M. Kurihara, et.al.,Proceedings of DPS ,p181−182(2006)
近年の加工精度の厳しい要求に対し、個々の加工工程の高精度化のみでは、要求される加工精度を実現するのが困難になっている。そのため管理対象の寸法を一定の規格値に安定化するため、プロセス制御をする方法がある。また半導体製品の性能や歩留まりを決めるのは、QCパターンではなく、回路パターンの配線寸法、特に活性化領域上の配線寸法である。そのため、活性化領域上の寸法を高精度かつ高速に計測する必要があり、その配線寸法を管理する必要がある。
また配線寸法の計測方法として、非特許文献1にはCD−SEMを用いて、配線の長さ方向に長い領域の画像を用いて、配線寸法を計測する手法が記載されている。この方法はLERに起因した測定バラツキを低減し、測定精度を向上する効果が期待できる。しかし、全測定領域の平均値を配線幅として算出するため、活性化領域上のみの寸法を計測するには、不十分である。また測定箇所の特定には、画像認識が使用されており、測定のスループットを低下する要因のひとつとなっている。
また別の計測方法として、非特許文献2にはスキャトロメトリを使用した計測方法が記載されている。この手法は高速に計測することが可能であるが、50ミクロン角の領域の平均寸法しか計測することができないため、活性化領域上の寸法を算出するには十分でない。
また別の計測方法として、非特許文献3に分子間力顕微鏡(AFM)を使用した方法が記載されている。この方法は計測パターンの3次元像を取得するには有効な手法である。しかし、1点あたりの計測時間が長くかかること、また活性化領域上の寸法を抽出する機構がないため、半導体装置の製造工程における配線寸法の検査装置としては不十分である。
また別の配線寸法の計測手法として、非特許文献4に、CD−SEMを用いて活性化領域上の配線寸法を計測する方法が記載されている。この方法は設計データを使用するため、回路パターン内の任意の活性化領域上の配線寸法を計測することが可能である。また活性化領域上の測定値を特定するには、設計データから作成したパターンレイアウトと実際のSEM画像から得られたパターンを比較し、画像認識により測定箇所を特定する。しかしこの方法は、先に述べたLERによる測定バラツキがあるため、一点あたりの計測精度が低い。また測定点数を増加することにより、LERによる測定バラツキを低減することは可能であるが、画像認識により測定箇所を特定するため、一点あたりの測定時間が長くなるため、配線寸法の検査工程に適用するにはスループットが不十分である。
以上をまとめると、半導体装置の性能向上、歩留まり向上するには、回路パターンの活性化領域上の寸法を計測する手段が必要であり、かつその計測した寸法を管理し、制御する方法が必要とされる。しかし既存の技術では、活性化領域上の配線寸法を高精度かつ高速に計測するには不十分である。
通常、寸法を管理する時に計測するパターンは、半導体チップの間にあり、ダイシングで切断される部分に配置されたQCパターンを計測する。QCパターンは計測しやすいように比較的簡単なレイアウトである。寸法管理ではこの簡単なレイアウトの寸法を計測し、異常値等がないか検査している。またプロセス制御においても、このQCパターンの計測データが使用されている。しかしながら、実際に動作する回路パターンのレイアウトはQCパターンのレイアウトに比べ、ゲート電極だけでなく、素子分離等の下層レイヤも含めて複雑な形状をしているため、回路パターンの寸法とQCパターンの寸法の挙動、つまりウエハ面内でのばらつきやウエハ間、ロット間での変動といいた挙動が必ずしも一致しない。半導体装置の製造において重要なのは、デバイス特性の向上や、歩留まりの向上である。またその向上に直接的に影響するのは、QCパターンの寸法ではなく、回路パターンの寸法である。特に活性化領域上のゲートパターンの寸法を正確に管理することが必要不可欠となる。また回路パターンをスクライブライン上に配置し、QCパターンとして扱いその寸法を管理する方法も考えられるが、レイアウトが複雑なため精度の高い計測をすることは難しい。しかしながら、この回路パターンにおける活性化領域上のゲート電極寸法を計測することは、計測装置における計測レシピの作成が煩雑であること、またLERによる測定バラツキがあるため、測定精度が低いという2点の理由により、実際の生産ラインでは、回路パターンの寸法管理は導入が困難である。
この回路パターンにおける活性化領域上のゲート電極寸法を計測する手段としては、非特許文献4に示すように、設計データから計測装置の計測レシピを作成する方法がある。この方法はゲート電極のレイアウトだけでなく、下層レイヤの設計データを利用するため、回路パターンの中の任意の箇所の活性化領域上の寸法を計測する計測レシピを容易に作成することができる。しかし、この方法を用いても、LERによるバラツキのため、一点一点の測定データの精度は低い。また測定点数を多くして、その平均値を取ることにより測定誤差を低減する方法も考えられるが、測定点数の増加は、測定のスループットとトレードオフの関係にあるため、良い方法とは言いがたい。以上のことから、半導体装置の安定的な生産のためには、回路パターンと挙動が同等であり、かつ計測しやすいQCパターンを設計し、そのQCパターンの活性化領域上の寸法を高精度かつ高速に計測する方法が必要である。
本発明は、上記課題を解決するべく成されたものであり、その目的は、半導体装置の特定の部分の寸法を高精度かつ高速に測定する技術を提供することにある。
上記課題を解決すべく、本発明は、下層レイヤに周期構造を有し、その周期構造を跨いで形成されたラインパターンを有する半導体装置の寸法測定に用いられる寸法測定装置であって、前記ラインパターンを含む領域の顕微境画像を取得する画像取得手段と、前記画像取得手段で取得した画像を用いて、前記ラインパターンの幅方向のエッジ点からライン幅を求め、エッジ点の位置とライン幅とを対応つけたデータ系列を生成するエッジプロファイル生成手段と、前記ラインパターンの長手方向に沿った前記周期構造を構成する領域の幅とピッチの情報を取得する手段と、前記エッジプロファイル生成手段で生成したデータ系列上で、前記周期構造を構成する領域の幅とピッチに対応させた解析領域を配置し、当該解析領域に含まれるエッジ点の位置に対応付けられたライン幅を抽出し、当該解析領域内における前記ラインパターンのライン幅の代表値を計算する一連の処理を、前記解析領域の位置を前記ラインパターンの長手方向に沿って前記データ系列上で所定の長さだけ移動させながら行い、当該解析領域の配置位置ごとのライン幅の代表値を計算する代表値算出手段と、得られた代表値を用いて、予め定めた規則に従って、前記ラインパターンの寸法を決定する寸法決定手段とを備える。
以下、図面を参照して、本願発明の実施形態の例について説明する。
<第1の実施形態> 図1は、半導体装置の製造工程におけるゲート電極形成工程を示す図である。通常の半導体装置の製造工程は、加工工程と計測を含む検査工程から成る。なお、図1においては、各工程を、そこで使用される装置(例えば、成膜装置、膜厚測定装置、露光装置、CD−SEM、エッチング装置等)により示している。
図2は、ゲート電極形成工程における半導体装置の断面図を示す。ゲート電極形成工程では、活性化領域402上に素子分離領域403及びゲート酸化膜407が形成された基板に対して、まず、成膜装置により、ゲート電極401となるポリシリコン400を成膜する(S11)。次に、膜厚測定装置により、そのポリシリコン400の膜厚m1を計測する(S12)。次に、露光装置により、反射防止膜411を塗布する。続いて、レジスト材料を塗布し、回路パターンを露光することにより、レジストパターン412を形成する(S13)。
次に、CD−SEMにより、そのレジストパターン412の寸法n1を計測する(S14)。次に、エッチング装置により、レジストパターン412をマスクとしてエッチングし、その後残存したレジストパターン412および反射防止膜411を除去する(S15)。
ここで、CD−SEMにより、ゲート電極401の寸法n2を計測する(S16)。次に、成膜装置により、酸化膜413を成膜し(S17)、膜厚測定装置により酸化膜413の膜厚m2を計測する(S18)。次に、エッチング装置により、酸化膜413をエッチバックすることによりオフセットスペーサ414を形成する(S19)。次に、CD−SEMによりオフセットスペーサ414の寸法n3を計測する(S20)。次に、成膜装置により、シリコン窒化膜415を成膜する(S21)。次に、膜厚測定装置により、シリコン窒化膜415の膜厚m3を測定する(S22)。次に、エッチング装置により、シリコン窒化膜415をエッチバックすることにより、LDD(Lightly Doped Drain)スペーサ416を形成する(S23)。最後に、CD−SEMにより、LDDスペーサ416の寸法n4を計測する(S24)。
次に、CD−SEMにより、活性化領域402上のゲート電極401の寸法n2を計測する方法について説明する。
図3は、寸法計測に用いる寸法測定システム(上述の「CD−SEM」)の概略構成を示す図である。寸法測定システムは、半導体装置の外観の2次元画像を取得する電子顕微鏡201と、半導体装置の設計データを記憶する設計データ記憶装置202と、半導体装置の所望の部分の寸法を得る解析装置203とで構成される。電子顕微鏡201は、電子光学系と、電子光学系制御部と、制御用パーソナルコンピュータからなる。制御用パーソナルコンピュータは、取得した画像データを、解析装置203に送る。
解析装置203は、電子顕微鏡201から取得した画像を解析し、設計データを用いて、半導体装置の所望の部分の寸法を求め、その結果を出力する。そのため、解析装置201は、演算部204と、入力部205と、出力部206とを備えている。演算部204は、操作者からの要求に応じて、半導体装置の特定の部分の幅を測定するなど、様々な計算処理を行う。入力部205は、キーボード、マウス等を含んで構成され、操作者からの要求を受け付け、受け付けた要求を演算部204に送る。出力部206は、ディスプレイ、プリンタなどの出力装置を含んで構成され、演算部204での演算結果を操作者に対して出力する処理を行う。
解析装置203は、CPU(中央演算装置)、メモリ、外部装置とのインターフェースなどからなる汎用のコンピュータで構成することができる。設計データ記憶装置202は、ハードディスクなどの記憶装置であり、解析装置203の補助記憶装置として機能する。
なお、解析装置203は、電子顕微鏡201からの画像データをネットワークを介して取得することができる。また、可搬性の記録媒体を介して、画像データを取得することもできる。
下記で説明する演算部204の処理は、CPUがメモリの所定の領域にロードしたプログラムを実行することにより達成される。そのため、メモリには、所定の処理を実行するためのプログラムが記憶されている。
以下、図4の半導体装置の上面図に示すように、素子分離領域403に活性化領域402が周期的に配置されている場合を例にして説明する。図示するように、活性化領域402は、帯状の複数の領域が所定の間隔で平行に並んで構成されている。すなわち、活性化領域402は、帯状の領域を1単位とする繰り返しパターンで構成されている。活性化領域402の上層には、活性化領域402の周期構造(繰り返しパターン)に跨って、ライン状(帯状)のゲート電極401が配置されている。上層のゲート電極401は、下層の活性化領域402に直行している。
活性化領域402は、素子分離領域403に対して窪んでいる。ゲート電極401の配線幅401は、その窪みのために、活性化領域402に重なる部分において、素子分離領域403に重なる部分に比べて、太くなっている。
以下では、このような構造を備える半導体装置における、ゲート電極401の活性化領域402上の配線寸法406を算出する例について説明する。
なお、活性化領域402の短手方向の幅404と、活性化領域402のピッチ405とを、それぞれWとTで示す。ここで、ピッチTは、隣り合う帯状の活性化領域402の間の距離に、幅Wを足した長さである。
図5(a)は、このゲート電極401の長手方向の断面(図4のA−A'断面)を示し、図5(b)は、活性化領域402の長手方向の断面(図4のB−B'断面)を示す。
A−A'断面では、活性化領域402と素子分離領域403とがピッチTで繰り返されるため、周期的な段差が存在し、その段差と同期してゲート電極401となるポリシリコンの表面も粗くなっている。
B−B'断面では、活性化領域402上のゲート電極401の下にはゲート酸化膜407がある。
以下の配線寸法算出処理では、この活性化領域402上のゲート電極401の各部分の幅から、その代表値を求めて、配線寸法406を決定する。
図6は、このゲート電極401の活性化領域402上の配線寸法406を算出する処理の流れを示す図である。図7は、電子顕微鏡201から得られる画像の例を示す。
まず、演算部204は、電子顕微鏡201から、図7に示すように、このゲート電極401周辺の画像を取得する(S101)。この時、演算部204は、ゲート電極401が、その長手方向の長さにして2μm以上含まれるように、画像を取得するとよい。そうすれば、サンプル数(後述するエッジポイントEPの数)が十分となり、配線寸法406をより精度よく求めることができる。
次に、演算部204は、このゲート電極401の幅方向のエッジポイントEPを検出する(S102)。具体的には、画像403上で、ゲート電極401の幅方向の直線Lを設定し、直線Lとゲート電極401の縁との交点をエッジポイントEPとして求める。ゲート電極401には所定の幅があるので、同一直線L上に、2つのエッジポイントEPが求められる。そして、演算部204は、同一直線L上の2つのエッジポイントEPの間の距離を求めて、その距離をその地点におけるゲート電極401の配線幅406'とする。演算部204は、この処理を、直線Lを画像403の一方の端(初期位置)から他方の端まで、所定間隔ごとに少しずつずらしながら行う。そして、ゲート電極401の長手方向の各部分における配線幅406'(各エッジポイントEP間の距離)を得る。そして、ゲート電極401の初期位置からの位置と、得られた配線幅406'とを対応付けたデータ列(「エッジプロファイル」という)を作成する。
なお、演算部204は、ゲート電極401の長手方向に10nm以下の間隔でエッジポイントEPを求めるのが望ましい。そのためには、上述のエッジポイントEPを求めるための直線Lを、10nm以下の間隔で画像上でずらしていけばよい。
図8は、実際に実験で得たエッジプロファイル900を示す。下層の活性化領域402の幅WとピッチTに同期して、ゲート電極401の配線幅406'(エッジポイントEP間の距離)がピッチ変動していることが明確に示されている。
次に、演算部204は、設計データ記憶装置202から活性化領域402の幅WとピッチTを含む設計データを取得する(S103)。なお、演算部204は、かかる設計データを、操作者から入力装置205を介して受け付けてもよい。例えば、ディスプレイの画面上で、幅WとピッチTを数値入力により受け付けてもよい。または、図7で示したようなゲート電極401周辺の画像をディスプレイに表示し、画像上で、カーソル操作により矩形の描画を受け付け、描画された矩形の幅に相当する長さを、活性領域402の幅Wとして受け付けてもよい。また、2つの矩形の描画を受け付け、その矩形のピッチに相当する長さを、活性領域402のピッチTとして受け付けてもよい。
次に、演算部204は、図9に示すように、所定の初期位置(x=x)を始点901として、S103で取得した活性化領域402の幅W及びピッチTに対応する解析領域902を、エッジプロファイル900上に配置する(S104)。
そして、演算部204は、エッジプロファイル900の中から、解析領域902に含まれている配線幅406'を抽出し、その代表値AEI_A(x=x)を計算する(S105)。ここでは、平均値を代表値AEI_A(x=x)とする。すなわち、演算部204は、抽出した配線幅406'の値を合計し、抽出した配線幅206'の個数で割って、代表値AEI_A(x=x)を求める。
ここで、解析領域902の位置が実際の活性化領域402の位置と合致していれば、上記で求めた代表値を、活性化領域402上のゲート電極401の配線寸法406とすることができる。しかし、解析領域902の位置が実際の活性化領域402の位置とずれていると、上記で求めた代表値を活性化領域402上のゲート電極401の配線寸法406とするのは適切ではない。
そこで、演算部204は、解析領域902の位置を所定間隔ずつずらしながら代表値AEI_Aを求めることを行う。そして、求めた代表値AEI_Aを用いて、予め定めた方法により、ゲート電極401の活性化領域402上の配線寸法406を決定する。
ここでは、演算部204は、代表値AEI_Aの中の最大値を配線寸法406と決定することにする。
具体的には、演算部204は、まず、ピッチTの範囲内で、初期位置xからの解析領域902のずらし量Δxを決定する。そして、解析領域902の始点901をΔxだけずらして、解析領域902を配置し直し、上記と同様に、解析領域902に含まれている配線幅406'を抽出し、代表値AEI_A(x=x+Δx)を計算する。この処理を、設定したΔxの個数だけ行い、ずらし量Δxごとの、代表値AEI_A(x=x+Δx)を求めていく(S106)。
なお、演算部204は、Δxを、エッジポイントEPの間隔(ここでは、ゲート電極401の長手方向における間隔)の50%以下で設定するのが望ましい。
図10は、こうして得られた、ずらし量Δxと代表値AEI_Aの関係(以下、「特性曲線」ともいう)を示す。解析領域902の位置と実際の活性化領域402とがずれていた場合には、活性化領域402上の配線幅406'に比べ細い、素子分離領域403上の配線幅406'も、代表値AEI_Aの計算に含まれてしまう。そして、平均値である代表値AEI_Aは、正確な寸法より小さい値となる。このような代表値AEI_Aは、活性化領域402上のゲート電極401の配線寸法406として採用すべきでない。
一方、解析領域902の位置と実際の活性化領域402の位置とが一致した場合には、平均値である代表値AEI_Aは、図10のグラフ上の最大値になるはずである。言い換えれば、平均値である代表値AEI_Aの最大値を、ゲート電極401の活性領域402上の配線寸法406と決定するのが適当と言える。
なお、数値解析上では、0からTの間でΔxを設定し、平均値である代表値AEI_Aの最大値を求める処理になる。もちろん値を逆転して、最小値を求める問題に変換しても、解析領域と実際の活性化領域が一致するΔxを求める上では等価である。
こうして、演算部204は、代表値AEI_Aの最大値を、ゲート電極401の活性化領域402上の配線寸法406と決定する(S107)。
なお、この代表値AEI_Aの最大値を求める場合、演算部204は、ΔxをピッチTの領域全てにわたって設定して解析することが望ましい。しかし、計算負荷を軽減するためには、ニュートン法などの数値解析手法を適用するのがより好ましい。最終的にこの最大値を活性化領域402上の配線寸法406とする。
以上、ゲート電極401の活性化領域402上の部分の配線寸法406を求める処理について説明した。
その後、演算部204は、求めた配線寸法406を、出力部206を介して、表示装置に表示する。
また、演算部204は、求めた配線寸法406の適否をユーザが判定できるように、所定の情報を表示する。例えば、演算装置204は、図11に示すように、配線寸法406として採用した代表値AEI_Aを求めるに至った解析領域902を、顕微境の画像(図4で示した画像)に重ねて表示する。言い換えれば、演算部204は、代表値AEI_Aが最大値となる解析領域902に相当する、幅W、ピッチT、及びずらし量Δxで規定される領域を、顕微境画像に重ねて表示する。
以上、第1の実施形態について説明した。
本実施形態によれば、簡易な方法で精度よく、かつ迅速に、活性化領域402上のゲート電極401の配線寸法406を求めることができる。
なお、解析領域902の幅Wが狭い場合には、特性曲線(ずらし量Δxと代表値AEI_Aとの関係)は、図10に示したようにはならず、図12に示すように、ピークが広くなる。この場合、いずれの地点を最大値とするかが問題となる。そこで、演算部204は、解析領域902の幅Wが所定の幅より狭い場合、図13に示すように、特性曲線の半値幅をパラメータとして、解析領域902の幅WとピッチTの設定を確認するのが望ましい。具体的には、演算部204は、半値幅が所定の値以上の場合、あるいはピッチTに対して所定の割合以上の場合、解析領域902の幅WとピッチTが不適切である旨のメッセージを表示する。これにより、ユーザは、入力値の妥当性や算出された配線寸法406の妥当性を検討することができる。
また、演算部204は、ユーザから活性化領域402の幅W及びピッチTを受け付けた場合、それを用いて求めた配線寸法406と、それを用いずに設計データに格納されていた幅WとピッチTを用いて求めた配線寸法406とを比較できるように表示してもよい。
具体的には、演算部204は、それぞれの場合の特性曲線(ずらし量Δxと代表値AEI_Aとの関係)を求め、図14(A)に示すように、表示装置に表示する。さらに、演算部204は、二つの特性曲線の相似性を用いて、ユーザの入力値の妥当性を検証してもよい。例えば、図14(B)に示すように、それぞれの場合の特性曲線の相関係数を指標として用いて、相関係数が予め定めた範囲(例えば、0.9〜1.0)にない場合、演算部204は、入力値が妥当でないとして、その旨のメッセージを表示する。
また、演算部204は、相関係数が予め定めた値(例えば、0.9)以下の場合に、再解析を行うようにしてもよい。例えば、ユーザから活性化領域204の幅WとピッチTの入力を再度受け付けて再計算する。もしくは、二つの特性曲線のそれぞれの最大値の平均をとり、配線寸法406としてもよい。
また、上記説明では、配線幅406'の平均値を代表値AEI_Aとしたが、代表値AEI_Aの求め方はこれに限定されない。
例えば、解析領域902内の配線幅406'の最大値又は最小値を代表値AEI_Aとしてもよい。また、最大値と最小値の平均値を代表値AEI_Aとしてもよい。
または、解析領域902内の配線幅406'の標準偏差(一般的にLine Width Roughnessとよばれる)や解析領域902内のエッジポイントEPの座標の標準偏差(一般的にLine Edge Roughnessとよばれる)を代表値AEI_Aとすることも可能である。
演算部204は、いずれの方法で代表値を求めるかを、ユーザから入力部205を介して受け付けて設定してもよい。
また、ここでは、図2のゲート電極401の寸法n2の測定(図1のS16)を例に説明したが、同様の手法を、オフセットスペーサ414の寸法n3の測定(図1のS20)、またはLDDスペーサ416の寸法n4の測定(図1のS24)に適用することもできる。
また、本実施形態では、図5(b)に示したように、段差409により、素子分離領域403が活性化領域402より高い場合について説明したが、逆の場合であっても、本実施形態は有効である。素子分離領域403が活性化領域402より低い場合、活性化領域402上の寸法は、素子分離領域403上の寸法より細くなる。かかる場合、演算部404は、上記のようにして求めた平均値AEI_Aの最小値を、ゲート電極401の活性化領域402上の配線寸法と決定することになる。
また、本実施形態ではプレーナ型トランジスタのゲート電極の寸法計測を例に説明したが、Fin−FETに代表されるような三次元型トランジスタにおける配線幅の計測にも適用可能である。特にMulti−Finと呼ばれる複数の活性化領域を跨るゲート長の寸法計測に有効である。
<第2の実施形態> 第2の実施形態は、上記第1の実施形態と似た構成を備えているので、共通する部分については説明を省略する。
実際の半導体装置の製造工程では、加工工程の変動や、露光工程の変動により、活性化領域の幅WやピッチTが設計データと異なる場合がある。かかる場合に上記第1の実施形態をそのまま適用すると、配線幅の細い素子分離領域上の寸法も平均化処理に加えられてしまうため、正確な寸法から細い方にずれが生じる。この理由から、活性化領域の幅WとピッチTについても最適化するのが望ましい。ここでは、設計データと異なる場合においても、高精度に活性化領域上のゲート電極の寸法を高精度に計測する方法について説明する。
図15は、かかる場合の配線寸法算出処理の流れを示すフロー図である。S201〜S204までの処理は、第1の実施形態のS101〜S104までの処理と同様である。
本実施形態では、演算部204は、解析領域902の位置をずらしながら代表値(ここでは、平均値)AEI_Aを求めるだけでなく、解析領域902の幅WとピッチTとを、それぞれ所定の範囲(ここでは、±10%の範囲)でずらしながら、代表値AEI_Aを求める。
具体的には、まず、演算部204は、解析領域902の幅wとして、設計データの幅Wの−10%の値を設定する。また、解析領域902の幅tとして、設計データのピッチTの−10%の値を設定する。
そして、演算部204は、上記第1の実施形態と同様に、設定された幅wとピッチtの解析領域902の始点901を、初期位置(x=x)からピッチt分の位置(x=x+t)までずらしながら(S206でYes)、ずらし量Δxに対応する代表値AEI_Aを求めていく(S205)。
演算部204は、解析領域902の始点901をピッチtまでずらし終えると(S206でYes)、解析領域902の幅wを、所定量だけ増加させる。そして、S205及びS206の処理を行い、設定した幅wにおける、ずらし量Δxに対応する代表値AEI_Aを求めていく。そして、幅wが設計データの幅Wの+10%を超えるまで(S207でNo)、かかる処理を繰り返す。
幅wが設計データの幅Wの+10%を超えると(S207でYes)、演算部204は、解析領域902のピッチtを、所定量だけ増加させる。そして、上述のS205〜S207の処理を行う。これにより、設定したピッチtにおける、幅w及びずらし量Δxに対応する代表値AEI_Aが求められる。そして、ピッチtが設計データのピッチTの+10%を超えるまで(S208でNo)、かかる処理S205〜S207を繰り返す。
ピッチtが設計データのピッチTの+10%を超えると(S208でYes)、演算部204は、これまで求めた代表値AEI_Aの最大値を求める。
図16は、こうして求めた、ずらし量Δx、幅w、及びピッチtを変化させた場合の、代表値AEI_Aの変化(特性曲線)示す。
演算部204は、平均値AEI_Aの最大値を、ゲート電極401の活性化領域402上の配線寸法406と決定する(S209)。
以上、第2の実施形態について説明した。本実施形態によれば、実際の活性化領域402が設計データと多少ずれていても、精度よくゲート電極401の活性化領域402上の配線寸法406を求めることができる。
また、設計データとのずれが所定範囲内(上記では、±10%)であると想定して演算することで、配線寸法406として非現実的な値が算出されるのを防止できる。
<第3の実施形態> 第3の実施形態は、上記第1の実施形態及び第2の実施形態と似た構成を備えているので、共通する部分については説明を省略する。
本実施形態では、さらに高精度に、配線寸法406を算出する方法について説明する。
上記実施形態では、活性化領域402に対応する解析領域のみを設けた。これに対して、本実施形態では、活性化領域402に対応する解析領域と、活性化領域でない領域(素子分離領域403)に対応する解析領域との、2つの解析領域を設ける。そして、それぞれの解析領域に含まれる配線幅406'から、それぞれの解析領域における代表値(ここでは、平均値)を求め、その差分から、解析領域の適切な位置を求める。そして、その位置の解析領域における、代表値を用いて、配線寸法406を決定する。
なお、ここでは、素子分離領域403の段差409(図5(b)参照)が活性化領域402より高い場合には、素子分離領域403上のゲート電極402の配線幅406は、活性化領域402上に比べて細くなることも利用している。
図17は、かかる場合の配線寸法算出処理の流れを示す。S301〜S304までの処理は、第1の実施形態のS101〜S104までの処理と同様である。
S305において、演算部204は、図18に示すように、エッジプロファイル900上に、設計データの活性化領域402の幅W及びピッチTに対応させて、活性化領域402の解析領域1601と、素子分離領域403の解析領域1602とを交互に設ける。そして、活性化領域402の解析領域1601に含まれる配線幅406'の代表値AEI_A(x)と、素子分離領域403の解析領域1602に含まれる配線幅406'の代表値AEI_S(x)とを求める。なお、ここでは、配線幅406'の平均値を代表値AEI_A(x)とする。
そして、演算部204は、両者の差DIF(x)=AEI_A(x)−AEI_S(x)を計算する(S306)。
上記第1の実施形態と同様に、演算部204は、ずらし量Δx(0〜ピッチTの範囲)を設定しながら、解析領域1601、1602の位置xの始点1603を、ずらし量Δx(0〜ピッチTの範囲)でずらしながら、DIF(x)を求めていく。
これにより、図19に示すように、ずらし量Δxと代表値の差DIF(x)との関係(特性曲線)が求められる。
演算部204は、平均値の差DIF(x)の最大値を求め、最大値となる解析領域の位置xaを求める(S308)。
そして、演算部204は、この位置xaにおける、活性化領域の解析領域1601の平均値AEI_A(x=xa)を求め、ゲート電極401の活性化領域402上の配線寸法406と決定する(S309)。
以上、第3の実施形態について説明した。本実施形態によれば、活性化領域の解析領域だけを用いて解析する方法に比べ、活性化領域の実際の位置を高精度に検出し、ゲート電極の配線寸法を精度良く求めることが可能になる。
本実施形態は、上記に限らず、様々な変形が可能である。例えば、図20に示すように、非解析領域1801を、活性化領域の解析領域1601の両端に設定することも有効である。
図5に示したように、素子分離領域403の端は、斜面になっていることがある。この場合、CD−SEMで画像を取得した場合は、この斜面の部分の輝度が高くなる。そのため、この斜面の上にある配線の幅を計測する場合、輝度プロファイルからの寸法計測では精度が低下することが懸念される。そのため、この斜面部分に相当する配線幅406'を計算に含ませないために、非解析領域1801を設定する。これにより、配線幅の測定精度を向上することが可能となる。
具体的には、演算部204は、エッジプロファイル900上に、設計データの活性化領域402の幅W及びピッチTに対応させて、活性化領域402の解析領域1601を設け、その両脇に、所定幅の非解析領域1801を設ける。そして、残った領域を、素子分離領域403の解析領域1602とする。こうすれば、上記図17で示した処理において、非解析領域1801に属する配線幅406'を代表値の計算に含ませないことができる。
なお、本実施形態では、DIF(X)が極値をとる座標xaにおける平均値を代表値としたが、これに限定されない。x=xaにおける解析領域内の平均値だけでなく、解析領域内の最大値や最小値、または解析領域内の配線幅の標準偏差(一般的にLine Width Roughnessとよばれる)や解析領域内のエッジポイントEPの座標の標準偏差(一般的にLine Edge Roughnessとよばれる)を代表値とすることも可能である。
<第4の実施形態> 第4の実施形態は、上記第1の実施形態と似た構成を備えているので、共通する部分については説明を省略する。
上記実施形態では、ゲート電極401の配線幅406の寸法測定について説明したが、本実施形態では、レジストパターン412の寸法測定について説明する。
図21は、活性領域402上に形成された反射防止膜411にレジストパターン412が形成された半導体装置の上面図である。図22(A)は、レジストパターン412の長手方向の断面(図21のA−A'断面)を示し、図22(B)は、活性化領域402の長手方向の断面(図21のB−B'断面)を示す。図23は、レジストパターン412の配線幅417'のエッジプロファイル910を示す図である。
下層レイヤに活性化領域402の周期構造がある場合には、この周期に同期して、レジストパターン412の配線幅417も図23に示すように変動する。
なぜなら、図22に示すように、その断面を見た場合、反射防止膜411の膜厚が、この活性化領域402の周期構造に同期して変動するからである。リソグラフィ工程において、この反射防止膜411の膜厚が変動することは、下層レイヤからの光の反射量が変動するため、レジストパターン412の寸法も変動する。したがって、レジストパターン412の寸法も、下層レイヤの活性化領域402のピッチ405に同期して変動する。
そのため、第1の実施形態と同様の手法を用いれば、図23に示すように、レジストパターン412の各部分における配線幅417'のエッジプロファイル910が求められ、さらに、活性化領域402の設計データを使用すれば、第1の実施形態と同様の方法により、活性化領域402上のレジストパターン412の寸法417も算出することができる。
本実施形態により、ゲート電極401の活性化領域402上の配線寸法406だけでなく、レジストパターン412の活性化領域402上の寸法417も高精度かつ高速に計測することが可能になる。そのため、リソグラフィ工程後のレジストパターン412の寸法417の管理を高精度化することが可能になる。例えばこのレジストパターン412の寸法417が異常値で合った場合には、リソグラフィ工程の再処理、あるいは以降のウエハまたはロットに対し、フィードバック制御することが考えられる。
<第5の実施形態> 第5の実施形態は、上記第1〜4の実施形態と似た構成を備えているので、共通する部分については説明を省略する。
本実施形態では、下層のパターンが複数の周期をもつ場合の上層のパターンの寸法計測方法を説明する。図24に示すように、幅が等しい二つ帯状領域402a、402bが、ピッチT1、T2で、それぞれ配置されてなる、活性化領域402が形成されているとする。
かかる場合、演算部204は、設計データから活性化領域204の幅WおよびピッチT1、T2を取得する。その後、上記図6のフローと同様にして、ゲート電極の配線寸法406を求める。具体的には、図25に示すように、幅W及びピッチT1、T2に対応するように、解析領域912を設定し、ずらし量Δxを0からT1+T2の間で設定する。そして、上記第1の実施形態と同様にして、ずらし量Δxと代表値(ここでは、平均値)AEI_A(x)との関係を求める。図26は、この時に得られる特性曲線(ずらし量Δxと代表値AEI_A(x)との関係)を示す。そして、演算部204は、この特性曲線の最大値を計測値とする。
なお、ここで活性化領域204を構成する2つの帯状領域204a、204bの位置関係を、ピッチで設定した。しかし、これに限らず、2つの帯状領域204a、204bの間隔(T1−W)と(T2−W)で設定してもよい。
<第6の実施形態> 第6の実施形態は、上記第1〜4の実施形態と似た構成を備えているので、共通する部分については説明を省略する。
本実施形態では、複数種類の形状の活性化領域が周期的にあり、そのうち特定の活性化領域上の寸法を計測する方法について説明する。
図27に示すように、幅がそれぞれW1,W2の2種類の帯状の活性化領域402m、402nがピッチT1,T2で配置されているとする。そして。演算部204は、幅W2の活性化領域402n上のゲート電極401の寸法406nを計測するとする。
演算部204は、まず、設計データから活性化領域204nの幅W2、およびピッチT1,T2を取得する。次に図28に示すように、エッジプロファイル920上に、幅W2およびピッチT1,T2に対応させて、解析領域922を設定する。そして、ずらし量Δxを0からT1+T2の間で設定し、上記第1の実施形態と同様にして、ずらし量Δxで解析領域922をずらしながら、代表値AEI_A(x)を求めていく。
図29は、この時に得られる特性曲線(ずらし量Δxと代表値AEI_A(x)との関係)を示す。図示するように、ピークが2つ存在する。解析領域922の幅と活性化領域402の幅がずれる場合には、その最大値および半値幅がそれぞれ異なることになる。演算装置204は、W2>W1の場合には、2つのピークのうち、最大値を配線寸法406nと決定する。逆に、W2<W1の場合には、半値幅が狭い方のピークの極値を配線寸法406nとする。この方法により、複数種類の活性化領域が存在した場合にも、目的の活性化領域上の寸法を計測することが可能となる。
以上、いくつかの実施形態について説明したが、上記実施形態は、適宜組み合わせることも可能である。
本発明を適用することにより、半導体装置の性能および歩留まりに直接影響する活性化領域上の寸法を高精度に計測できるため、半導体装置の管理精度が向上し、ひいては半導体装置の性能向上、および歩留まりを向上することができる。
上記の実施形態では、半導体装置の製造工程におけるラインパターンの寸法を計測する方法について述べたが、MEMS(Micro Electro Mechanical Systems)やCCD(Charge Coupled Devices)等の半導体装置の製造方法と同様の技術を用いて製造するデバイスの製造工程に適用することも可能である。
ゲート電極の形成工程を示す図。 ゲート電極の形成工程における半導体装置の断面図。 CD−SEMのシステム構成図。 複数の活性化領域を含むゲート電極の配線画像を示す図。 図5(A)は、ゲート電極のA−A'断面図。図5(B)は、ゲート電極のB−B'断面図。 活性化領域の配線寸法算出処理のフロー図(第1の実施形態)。 ゲート電極のエッジプロファイルを求める方法を説明する図。 ゲート電極の配線幅のエッジプロファイルを示す図。 配線幅のエッジプロファイルと活性化領域に対応する解析領域の位置関係を示す図。 特性曲線(解析領域のずらし量Δxと代表値AEI_A(x)との関係)を示す図。 解析領域902の配置を示す図。 ピークがなだらかな特性曲線を示す図。 特性曲線の半値幅を示す図。 図14(A)は、ユーザ入力値を用いた場合の特性曲線と、設計データを用いた場合の特性曲線とを示す図。図14(B)は、両者の相関度を示す図。 活性化領域の配線寸法算出処理のフロー図(第2の実施形態)。 第2の実施形態における、特性曲線の例を示す図。 活性化領域の配線寸法算出処理のフロー図(第3の実施形態)。 第3の実施形態にかかる、解析領域の配置を示す図。 第3の実施形態にかかる、特性曲線(解析領域のずらし量Δxと差DIF(x)との関係)を示す図。 第3の実施形態の変形例にかかる、解析領域の配置を示す図。 第4の実施形態にかかる、レジストパターンの配線画像を示す図。 図22(A)は、第5の実施形態にかかる、レジストパターンのA−A'断面図。図22(B)は、B−B'断面図。 第4の実施形態にかかる、レジストパターンのエッジプロファイルを示す図。 第5の実施形態にかかる、ゲート電極の配線画像を示す図 第5の実施形態にかかる、ゲート電極のエッジプロファイルを示す図。 第5の実施形態にかかる、特性曲線を示す図。 第6の実施形態にかかる、ゲート電極の配線画像を示す図 第6の実施形態にかかる、ゲート電極のエッジプロファイルを示す図。 第6の実施形態にかかる、特性曲線を示す図。
符号の説明
201 電子顕微鏡
202 設計データ記憶装置
203 解析装置
204 演算部
205 入力部
206 出力部
401 ゲート電極
402 活性化領域
403 素子分離領域
404 活性化領域の幅
405 活性化領域のピッチ
406 ゲート電極の配線寸法
406' 配線幅(エッジ間距離)
407 ゲート絶縁膜
408 ポリシリコン膜厚
409 素子分離領域の段差
EP エッジポイント
Δx 解析領域のずらし量
902 解析領域

Claims (12)

  1. 下層レイヤに周期構造を有し、その周期構造を跨いで形成されたラインパターンを有する半導体装置の寸法測定に用いられる寸法測定装置であって、
    前記ラインパターンを含む領域の顕微境画像を取得する画像取得手段と、
    前記画像取得手段で取得した画像を用いて、前記ラインパターンの幅方向のエッジ点からライン幅を求め、エッジ点の位置とライン幅とを対応つけたデータ系列を生成するエッジプロファイル生成手段と、
    前記ラインパターンの長手方向に沿った前記周期構造を構成する領域の幅とピッチの情報を取得する手段と、
    前記エッジプロファイル生成手段で生成したデータ系列上で、前記周期構造を構成する領域の幅とピッチに対応させた解析領域を配置し、当該解析領域に含まれるエッジ点の位置に対応付けられたライン幅を抽出し、当該解析領域内における前記ラインパターンのライン幅の代表値を計算する一連の処理を、前記解析領域の位置を前記ラインパターンの長手方向に沿って前記データ系列上で所定の長さだけ移動させながら行い、当該解析領域の配置位置ごとのライン幅の代表値を計算する代表値算出手段と、
    得られた代表値を用いて、予め定めた規則に従って、前記ラインパターンの寸法を決定する寸法決定手段と
    を備えることを特徴とする寸法測定装置。
  2. 請求項に記載の寸法測定装置であって、
    前記代表値算出手段は、
    前記一連の処理を、前記解析領域の幅をずらしながら行い、当該解析領域の配置位置及び幅ごとのライン幅の代表値を計算する
    を備えることを特徴とする寸法測定装置。
  3. 請求項に記載の寸法測定装置であって、
    前記代表値算出手段は、
    前記一連の処理を、前記解析領域のピッチをずらしながら行い、当該解析領域の配置位置及びピッチごとのライン幅の代表値を計算する
    を備えることを特徴とする寸法測定装置。
  4. 請求項に記載の寸法測定装置であって、
    前記代表値算出手段は、
    前記一連の処理において、
    前記エッジプロファイル生成手段で生成したデータ系列上で、前記周期構造を構成する領域の幅とピッチに対応させた第1の解析領域と、前記周期構造を構成する領域以外の領域に対応させた第2の解析領域とを配置し、
    当該第1の解析領域に含まれるエッジ点の位置に対応付けられたライン幅を抽出し、抽出したライン幅を用いて、ライン幅の第1の代表値を計算するとともに、
    当該第2の解析領域に含まれるエッジ点の位置に対応付けられたライン幅を抽出し、抽出したライン幅を用いて、ライン幅の第2の代表値を計算し、
    前記寸法決定手段は、
    前記第1の代表値と前記第2の代表値とを用いて、予め定めた規則に従って、前記ラインパターンの寸法を決定する
    ことを特徴とする寸法測定装置。
  5. 請求項に記載の寸法測定装置であって、
    前記代表値算出手段は、
    前記第1の解析領域と前記第2の解析領域との間に所定の幅の非解析領域を設ける
    ことを特徴とする寸法測定装置。
  6. 請求項に記載の寸法測定装置であって、
    前記寸法決定手段は、
    前記代表値の最大値を用いて、前記ラインパターンの寸法を決定する
    ことを特徴とする寸法測定装置。
  7. 請求項に記載の寸法測定装置であって、
    前記寸法決定手段は、
    前記第1の代表値と前記第2の代表値との差を用いて、予め定めた規則に従って、前記ラインパターンの寸法を決定する
    ことを特徴とする寸法測定装置。
  8. 請求項に記載の寸法測定装置であって、
    前記下層レイヤの周期構造は、
    活性化領域と素子分離領域からなる
    ことを特徴とする寸法測定装置。
  9. 請求項に記載の寸法測定装置であって、
    前記ラインパターンは、ゲート電極のパターンである
    ことを特徴とする寸法測定装置。
  10. 請求項に記載の寸法測定装置であって、
    前記ラインパターンは、ゲート電極加工前のレジストパターンである
    ことを特徴とする寸法測定装置。
  11. 請求項に記載の寸法測定装置であって、
    前記ラインパターンは、オフセットスペーサのパターンである
    ことを特徴とする寸法測定装置。
  12. 請求項に記載の寸法測定装置であって、
    前記ラインパターンは、LDD(Lightly Doped Drain)スペーサのパターンである
    ことを特徴とする寸法測定装置。
JP2007163743A 2007-06-21 2007-06-21 半導体装置の寸法測定装置 Active JP4971050B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007163743A JP4971050B2 (ja) 2007-06-21 2007-06-21 半導体装置の寸法測定装置
US12/128,364 US7720632B2 (en) 2007-06-21 2008-05-28 Dimension measuring apparatus and dimension measuring method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163743A JP4971050B2 (ja) 2007-06-21 2007-06-21 半導体装置の寸法測定装置

Publications (2)

Publication Number Publication Date
JP2009002785A JP2009002785A (ja) 2009-01-08
JP4971050B2 true JP4971050B2 (ja) 2012-07-11

Family

ID=40137400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163743A Active JP4971050B2 (ja) 2007-06-21 2007-06-21 半導体装置の寸法測定装置

Country Status (2)

Country Link
US (1) US7720632B2 (ja)
JP (1) JP4971050B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288894B2 (ja) * 2008-06-09 2013-09-11 株式会社東芝 半導体装置の製造管理方法
JP5533475B2 (ja) * 2010-09-13 2014-06-25 大日本印刷株式会社 パターン幅測定プログラム、パターン幅測定装置
US9960038B2 (en) 2010-12-27 2018-05-01 Brewer Science, Inc. Processes to pattern small features for advanced patterning needs
JP5686627B2 (ja) * 2011-02-24 2015-03-18 株式会社日立ハイテクノロジーズ パターン寸法測定方法、及び荷電粒子線装置
US8884223B2 (en) * 2012-11-30 2014-11-11 Kla-Tencor Corporation Methods and apparatus for measurement of relative critical dimensions
US9263348B2 (en) * 2013-01-10 2016-02-16 International Business Machines Corporation Film thickness metrology
JP2014206446A (ja) * 2013-04-12 2014-10-30 株式会社ニューフレアテクノロジー パターン検査方法
TWI523129B (zh) * 2013-09-03 2016-02-21 國立清華大學 半導體批次生產派工方法
JP5695716B2 (ja) * 2013-09-25 2015-04-08 株式会社日立ハイテクノロジーズ パターン寸法算出方法、及び画像解析装置
WO2021260765A1 (ja) * 2020-06-22 2021-12-30 株式会社日立ハイテク 寸法計測装置、半導体製造装置及び半導体装置製造システム
CN115062575B (zh) * 2022-06-10 2023-08-29 扬州虹扬科技发展有限公司 一种三相整流桥塑封模注胶口位置优化方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616475B2 (ja) * 1987-04-03 1994-03-02 三菱電機株式会社 物品の製造システム及び物品の製造方法
JP2001093950A (ja) * 1999-09-20 2001-04-06 Hitachi Ltd 半導体パターン検査装置および半導体パターン検査方法
US6622059B1 (en) * 2000-04-13 2003-09-16 Advanced Micro Devices, Inc. Automated process monitoring and analysis system for semiconductor processing
JP4437611B2 (ja) * 2000-11-16 2010-03-24 株式会社ルネサステクノロジ 半導体装置の製造方法
JP4213871B2 (ja) * 2001-02-01 2009-01-21 株式会社日立製作所 半導体装置の製造方法
US6708075B2 (en) * 2001-11-16 2004-03-16 Advanced Micro Devices Method and apparatus for utilizing integrated metrology data as feed-forward data
JP4262592B2 (ja) * 2003-12-26 2009-05-13 株式会社日立ハイテクノロジーズ パターン計測方法
US7723235B2 (en) 2004-09-17 2010-05-25 Renesas Technology Corp. Method for smoothing a resist pattern prior to etching a layer using the resist pattern
JP2006318955A (ja) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd パターン寸法測定方法および装置
JP4585926B2 (ja) * 2005-06-17 2010-11-24 株式会社日立ハイテクノロジーズ パターンレイヤーデータ生成装置、それを用いたパターンレイヤーデータ生成システム、半導体パターン表示装置、パターンレイヤーデータ生成方法、及びコンピュータプログラム
JP4990548B2 (ja) * 2006-04-07 2012-08-01 株式会社日立製作所 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2009002785A (ja) 2009-01-08
US20080319709A1 (en) 2008-12-25
US7720632B2 (en) 2010-05-18

Similar Documents

Publication Publication Date Title
JP4971050B2 (ja) 半導体装置の寸法測定装置
JP4990548B2 (ja) 半導体装置の製造方法
Vaid et al. A holistic metrology approach: hybrid metrology utilizing scatterometry, CD-AFM, and CD-SEM
US10274839B2 (en) Two-dimensional marks
CN109581832B (zh) 叠对误差测量结构以及叠对误差测量方法
US8072601B2 (en) Pattern monitor mark and monitoring method suitable for micropattern
JP2006228843A (ja) 半導体デバイスのプロセス制御方法および製造方法
JP2004158478A (ja) 半導体デバイスの製造方法及びその製造システム
TW201618209A (zh) 驗證度量目標及其設計
JP4511582B2 (ja) マスクパターンの補正方法、フォトマスク、および半導体装置の製造方法
US7279259B2 (en) Method for correcting pattern data and method for manufacturing semiconductor device using same
Vaid et al. Holistic metrology approach: hybrid metrology utilizing scatterometry, critical dimension-atomic force microscope and critical dimension-scanning electron microscope
CN101145535A (zh) 非破坏性检测线宽粗糙现象的方法
JP2006318955A (ja) パターン寸法測定方法および装置
JP5495481B2 (ja) 寸法変換差予測方法、フォトマスクの製造方法、電子部品の製造方法、および寸法変換差予測プログラム
Vaid et al. Hybrid metrology solution for 1X-node technology
JP2008147674A (ja) マークを備える基板
CN1196186C (zh) 剥除时间反馈控制以减少剥除后晶体管栅极临界尺寸变化
JP2009076863A (ja) 半導体装置の製造方法
US6822260B1 (en) Linewidth measurement structure with embedded scatterometry structure
US20090305148A1 (en) Pattern data creating method, photomask fabricating method, and method of manufacturing semiconductor device
JP2004319790A (ja) 相補分割条件決定方法、相補分割方法およびプログラム
JP2005109016A (ja) 焦点計測方法及び装置、並びに半導体装置の製造方法
Gorelikov et al. Model‐based CD–SEM metrology at low and ultralow landing energies: implementation and results for advanced IC manufacturing
TWI743792B (zh) 半導體製程用游標尺及使用其進行的微影製程檢測方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4971050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3