JP4967181B2 - 押込試験方法および押込試験装置 - Google Patents
押込試験方法および押込試験装置 Download PDFInfo
- Publication number
- JP4967181B2 JP4967181B2 JP2010547478A JP2010547478A JP4967181B2 JP 4967181 B2 JP4967181 B2 JP 4967181B2 JP 2010547478 A JP2010547478 A JP 2010547478A JP 2010547478 A JP2010547478 A JP 2010547478A JP 4967181 B2 JP4967181 B2 JP 4967181B2
- Authority
- JP
- Japan
- Prior art keywords
- indentation
- sample
- indenter
- young
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007373 indentation Methods 0.000 title claims description 221
- 238000012360 testing method Methods 0.000 title claims description 62
- 238000010998 test method Methods 0.000 title claims description 24
- 230000006835 compression Effects 0.000 claims description 27
- 238000007906 compression Methods 0.000 claims description 27
- 239000000523 sample Substances 0.000 description 181
- 238000000034 method Methods 0.000 description 35
- 235000019589 hardness Nutrition 0.000 description 23
- 238000010586 diagram Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 21
- 238000011156 evaluation Methods 0.000 description 13
- 238000009864 tensile test Methods 0.000 description 13
- 239000007779 soft material Substances 0.000 description 11
- 238000000691 measurement method Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 210000004872 soft tissue Anatomy 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 239000004945 silicone rubber Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 230000005483 Hooke's law Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0075—Strain-stress relations or elastic constants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0076—Hardness, compressibility or resistance to crushing
- G01N2203/0078—Hardness, compressibility or resistance to crushing using indentation
- G01N2203/0082—Indentation characteristics measured during load
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0089—Biorheological properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0682—Spatial dimension, e.g. length, area, angle
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
【0001】
本発明は、新規な押込試験方法に関する。また、本発明は、前記の押込試験方法を用いる、新規な押込試験装置に関する。
【背景技術】
【0002】
金属材料の変形などの特性を調べるため用いられる引張試験は、客観性を有する評価方法として一般的であるが、試料などから試験片を切り出す必要性があり、この侵襲性の高さから製品中の素材や生きたままの生体組織への適用が困難である。
【0003】
一方、同様に材料の硬さ計測で一般に使用されている押込試験は、試験片を切り出す必要がないことなどから低侵襲計測が可能となる。この押込試験は、金属材料に対してはHertzの弾性接触理論が高い信頼性を持っている事が知られている(例えば、非特許文献1参照)。
【0004】
また、押込試験は生体軟組織のような大変形を伴う軟材料の構成関係の計測に使用される例がいくつかある(例えば、非特許文献2〜5参照)。
【0005】
なお、発明者は、本発明に関連する技術内容を開示している(例えば、非特許文献6〜9参照。)。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】
T. Sawa, Practical Material Mechanics, (2007), pp.258-279, Nikkei Business Publications, Inc.(in Japanese)
【非特許文献2】
O. Takatani, T. Akatsuka, The Clinical Measurement Method of Hardness of Organism, Journal of the Society of Instrument and Control Engineers, Vol.14, No.3, (1975), pp.281-291. (in Japanese)
【非特許文献3】
Y. Arima, T. Yano, Basic Study on Objectification of Palpation, Japanese Journal of Medical Electronics and Biological Engineering, Vol.36, No.4, (1998), pp.321-336. (in Japanese)
【非特許文献4】
N. E. Waters, The Indentation of Thin Rubber Sheets by Spherical indentors, British Journal of Applied Physics, Vol.16, Issue 4, (1965), pp.557-563.
【非特許文献5】
T. Ishibashi, S. Shimoda, T Furukawa, I. Nitta and H. Yoshida, The Measuring Method about Young’s Modulus of Plastics Using the Indenting Hardness Test by a Spherical Indenter, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.53, No.495, (1987), pp.2193-2202. (in Japanese)
【非特許文献6】
M. Tani, A. Sakuma, M. Ogasawara, M. Shinomiya, Minimally Invasive Evaluation of Mechanical Behavior of Biological Soft Tissue using Indentation Testing, No.08-53, (2009), pp.183-184.
【非特許文献7】
M. Tani, A. Sakuma, Measurement of Thickness and Young’s Modulus of Soft Materials by using Spherical Indentation Testing,No.58, (2009), pp.365-366.
【非特許文献8】
A. Sakuma, M. Tani, Spherical Indentation Technique for Low-invasive Measurement for Young’s Modulus of Human Soft Tissue,No.09-3, (2009), pp.784-785.
【非特許文献9】
M. Tani and A. Sakuma, M. Shinomiya, Evaluation of Thickness and Young's Modulus of Soft Materials by using Spherical Indentation Testing, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.75, No.755, (2009),pp.901-908.(in Japanese)
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、上述した押込試験による生体軟組織のような大変形を伴う軟材料の構成関係の計測では、Hertzの弾性接触理論の高信頼性が沢俊行によって示されているが微小変形の範囲内であり、また高谷治らによる生体軟組織への適用はHertzの弾性接触理論と本質的に等価なN値による手法である。また、N値と併せて負荷・除荷過程のエネルギー損失から同定する有馬義貴らの手法も、Hertzの弾性接触理論と同様に半無限体を仮定するもので厚さの影響は考慮されていない。この厚さに関しては、N.E.WATERSの研究報告があるがその影響を示したものであって、応力ひずみ関係と対応付けた評価には至っていない。さらに非可逆挙動に着目した石橋達弥らによる高分子材料への適用報告があるものの、可逆性の高い軟材料への適用は困難であるという問題がある。
[0008]
そのため、このような課題を解決する、新規な押込試験方法および押込試験装置の開発が望まれている。
[0009]
本発明は、このような課題に鑑みてなされたものであり、新規な押込試験方法を提供することを目的とする。
また、本発明は、前記の押込試験方法を用いる、新規な押込試験装置を提供することを目的とする。
課題を解決するための手段
[0010]
上記課題を解決し、本発明の目的を達成するため、本発明の押込試験方法は、試料に圧子を押込む押込試験方法において、試料厚さを用いて試料の相当押込ひずみを算出し、前記相当押込ひずみを用いて試料のヤング率を算出し、前記相当押込ひずみは、圧縮変形によるひずみと接触変形によるひずみの和からなり、前記圧縮変形によるひずみは、前記試料の圧縮領域の変化率であり、前記圧縮領域は、前記試料中で前記圧子からの荷重により圧縮変形する領域であり、前記接触変形によるひずみは、前記試料を半無限体と仮定したときの、前記半無限体と前記圧子の接触によるひずみであることを特徴とする。
[0011]
ここで、限定されるわけではないが、試料厚さを同定することが好ましい。また、限定されるわけではないが、圧子は球圧子であることが好ましい。また、限定されるわけではないが、球圧子の直径は1×10−8〜1mの範囲内にあることが好ましい。また、限定されるわけではないが、試料厚さの同定は、球圧子の直径、接触時のヤング率とヤング率2次導関数を用いて算出することが好ましい。
[0012]
本発明の押込試験装置は、試料に圧子を押込む押込試験装置において、試料厚さを用いて試料の相当押込ひずみを算出する相当押込ひずみ算出部と、前記相当押込ひずみを用いて試料のヤング率を算出するヤング率算出部を有し、前記相当押込ひずみは、圧縮変形によるひずみと接触変形によるひずみの和からなり、前記圧縮変形によるひずみは、前記試料の圧縮領域の変化率であり、前記圧縮領域は、前記試料中で前記圧子からの荷重により圧縮変形する領域であり、前記接触変形によるひずみは、前記試料を半無限体と仮定したときの、前記半無限体と前記圧子の接触によるひずみであることを特徴とする。
[0013]
ここで、限定されるわけではないが、試料厚さを同定する試料厚さ同定部を有することが好ましい。また、限定されるわけではないが、圧子は球圧子であることが好ましい。また、限定されるわけではないが、球圧子の直径は1×10−8〜1mの範囲内にあることが好ましい。また、限定されるわけではないが、試料厚さの同定は、球圧子の直径、接触時のヤング率と接触時のヤング率2次導関数を用いて算出することが好ましい。
発明の効果
[0014]
本発明、以下に記載されるような効果を奏する。
[0015]
本発明の押込試験方法は、試料厚さを用いて試料の相当押込ひずみを算出し、前記相当押込ひずみを用いて試料のヤング率を算出するので、新規な押込試験方法を提供することができる。
[0016]
本発明の押込試験装置は、試料厚さを用いて試料の相当押込ひずみを算出する相当押込ひずみ算出部と、前記相当押込ひずみを用いて試料のヤング率を算出するヤング率算出部を有するので、新規な押込試験装置を提供することができる。
【図面の簡単な説明】
[0017]
[図1]球圧子と平面試料の接触状態を示す図である。
[図2]荷重と押込量の関係を示す図である。
[図3](a)球圧子押込係数と押込量の関係を示す図であり、(b)試料厚さと球圧子押込係数の2次導関数との関係を示す図である。
[図4]楕円体形状の圧縮領域を示す図である。
[図5]押込試験機の概略を示す図である。
[図6]押込試験装置の構成を示す図である。
[図7]引張試験の結果を示す図である。
[図8]押込試験から得られた押込量δと荷重Fの関係について、これらをHertzの弾性接触理論に基づく式で最小二乗法により近似した曲線と併せて示している図である。
[図9]押込試験から得られた押込量δと荷重Fの関係について、これらを荷重の増加の影響を表す係数を用いた式で最小二乗法により近似した曲線と併せて示している図である。
【図10】球圧子押込係数の2 次導関数と試料厚さの関係を示す図である。
【図11】球圧子押込係数の2 次導関数を対数表記し、試料厚さとの関係を示す図である。
【図12】球圧子押込係数とHertzひずみの関係を示す図である。
【図13】Young 率と相当押込ひずみの関係を示す図である。
【図14】押込荷重と押込量の関係に与えるYoung率と球圧子直径の影響を示す図である。
【図15】押込荷重またはYoung 率と、押込量の関係に与える試料厚さの影響を示す図である。
【図16】試料厚さと接触時のYoung 率の2次導関数の関係を示す図である。
【図17】押込試験機の概略を示す図である。
【図18】押込試験装置の構成を示す図である。
【図19】押込荷重と押込量の関係を示す図である。
【図20】押込荷重と押込量の関係に与える、試料硬度または圧子径の影響を示す図である。
【図21】試料厚さと接触時のYoung 率の2次導関数の関係を示す図である。
【図22】試料厚さと接触時のYoung 率の2次導関数の関係式の変数H,Gに表れる試料硬度または圧子径の影響を示す図である。
【図23】引張試験の結果を示す図である。
【図24】Young 率と相当押込ひずみの関係を示す図である。
【発明を実施するための形態】
【0018】
以下、押込試験方法および押込試験装置にかかる第1の発明を実施するための形態について説明する。
【0019】
押込試験方法は、試料に球圧子を押込む押込試験方法において、試料厚さを同定し、前記試料厚さを用いて試料の相当押込ひずみを算出し、前記相当押込ひずみを用いて試料のヤング率を算出する方法である。
【0020】
押込試験装置は、試料に球圧子を押込む押込試験装置において、試料厚さを同定する試料厚さ同定部と、前記試料厚さを用いて試料の相当押込ひずみを算出する相当押込ひずみ算出部と、前記相当押込ひずみを用いて試料のヤング率を算出するヤング率算出部を有する装置である。
【0021】
なお、本明細書の文章において、英文字記号にハット記号を付すものを「(英文字記号)ハット」と記載し、英文字記号にオーバーラインを付すものを「(英文字記号)オーバーライン」と記載し、英文字記号に2次微分係数を付すものを「(英文字記号)2次微分係数」と記載する。
【0022】
押込試験の評価法について説明する。まず、有限体試料の接触変形について説明する。
半無限体試料に対して十分に硬い球圧子を押込むとき、Hertz の弾性接触理論を用いると、図1に示す押込荷重Fと押込量δの関係が以下のように表現される。
【0023】
【数1】
【0024】
ただし、係数Aは次の関係である。
【0025】
【数2】
【0026】
ここで、φ,Eおよびνはそれぞれ球圧子の直径、試料のヤング率(以下、「Young率」ともいう)およびポアソン比(以下、「Poisson比」ともいう)である。さらに、図1の半径aの接触面に対して試料の荷重面上で半径r方向にp(r)で示される荷重分布が仮定されることにより、接触面中央の応力σは以下の式で表現される。
【0027】
【数3】
【0028】
また、押込荷重Fとひずみεの関数として、Young率E が式(3)とHooke則σ=Eεから次式のように導出される。
【0029】
【数4】
【0030】
ここで、これら式(1)と(4)の関係から、半無限体試料と剛体球の接触によるひずみが圧子直径φおよび押込量δによって次式;
【0031】
【数5】
【0032】
で一意に求めることができる。このεHオーバーラインをHertzひずみ(Hertz strain) と称する。
【0033】
剛体上に置かれた様々な厚さhi(i=1,2,--,∞)の試料上へ球圧子の押込試験を考えるとき、圧子の荷重面と反対にある剛体の影響で、図2に示すような荷重F-押込量δ曲線が得られる。無限厚さh∞を有する半無限体試料に対する押込試験では、Hertzの弾性接触理論で説明できるような破線で示される荷重Fの曲線を得られるが、有限体試料では一般に荷重Fハットが半無限体試料の結果より大きい次の関係の結果となる。
【0034】
【数6】
【0035】
この試料厚さhiの違いによる荷重Fハットへの影響について、Hertzの弾性接触理論が適用できると仮定して考えると、式(1) から
【0036】
【数7】
【0037】
となる関係が得られるので、押込量δに関する係数A,Aハットについて次の関係を得られる。
【0038】
【数8】
【0039】
さらに、圧子直径φおよび試料のPoisson比νに変化がないものとすれば、式(2)より次式の関係が得られることから、有限体試料の押込試験結果へのHertzの弾性接触理論の適用によって求めたYoung率Eハットは本来の値Eより高くなる。
【0040】
【数9】
【0041】
このようにして得たYoung率Eハットを、球圧子押込係数(spherical indentation modulus)と呼ぶこととする。
【0042】
式(9)に示したように、半無限体試料を前提とするHertzの弾性接触理論による式(1)を有限体試料に適用すると、球圧子押込係数Eハットに厚さhiの影響が表れるため、この現象を利用した試料厚さhiの同定を考える。
【0043】
この球圧子押込係数Eハットの同定に関して、変形量が微小である接触した瞬間については試料厚さhiの差異による影響が小さいと考えられる。つまり接触した瞬間では、任意の厚さhiに対して式(1)の適用条件から次式の関係を考えることができる。
【0044】
【数10】
【0045】
一方、試料厚さhiが小さいほど試料の下にある剛体の影響が早期に表れるため、図3(a) の実線に示すように、押込みに伴う球圧子押込係数Eハットの同定結果の上昇が顕著になる。この上昇は試料の厚さがhi<hi+1の関係を持つ場合に次の関係で表される。
【0046】
【数11】
【0047】
このことから、試料厚さhiと球圧子押込係数の2次導関数Eハット・2次微分係数には次式の関係
【0048】
【数12】
【0049】
を考えることが可能となり、図3(b)に示すような関数f(Eハット・2次微分係数)を得ることができれば、接触開始時の情報から試料厚さhiの演繹が可能となる。
【0050】
押込変形の評価法について説明する。軟材料の押込過程においては、荷重面における表面形状の大きな変化のように、圧子の押込みによって試料中の変形領域が著しく変化する現象が観られる。このことから、押込変形を球圧子による接触変形に圧縮変形の効果を重ね合わせることを考える。
【0051】
このとき、まず接触の効果はHertzひずみεHオーバーラインで表現し、さらに圧縮は軟らかさによる圧縮変形の領域体積の変化率εVオーバーラインで表すものとして、次の関係を定義する。
【0052】
【数13】
【0053】
このεIオーバーラインは、押込過程で試料中に生じる3次元的なひずみ分布を等価的な単軸ひずみで表そうとしたもので、これを相当押込ひずみ(equivalent indentation strain) と呼ぶこととする。
【0054】
軟材料の球圧子による押込過程において、試料中でも特に著しい荷重による変形を伴う圧縮領域Vを考える。この領域Vについて、図4の網掛け部で示すように、試料の初期表面と圧子表面の相貫線上で圧子球表面に直交し、かつ試料の下部境界面にも直交する楕円体を考える。このとき、荷重軸zから下部境界面における交線までの距離βと楕円体の高さαを用いて表される楕円の関数
【0055】
【数14】
【0056】
を用いると、圧縮領域の体積Vは次の式で表現できる。
【0057】
【数15】
【0058】
圧縮領域に生じるひずみはその領域変化dVから求めることができるが、この領域変化dVを圧縮領域の上面の移動量dδで簡易的に表す方法を検討する。このとき、領域変化dVは移動量dδを用いて次式で表すことができる。
【0059】
【数16】
【0060】
さらに、圧縮領域Vの変化率εVオーバーラインの増分dεVオーバーラインが次式で定義できる。
【0061】
【数17】
【0062】
したがって、圧縮領域に生じたひずみεVオーバーラインは次式で表現できる。
【0063】
【数18】
【0064】
これより、式(13)の相当押込ひずみεIオーバーラインは次式となる。
【0065】
【数19】
【0066】
この相当押込ひずみεIオーバーラインは、圧子直径φを無限大とすれば
【0067】
【数20】
【0068】
となり、単軸の公称ひずみとなる。一方で、これは厚さhを無限大とすれば
【0069】
【数21】
【0070】
となってHertzひずみεHオーバーラインと一致する。
これらのことから、式(19)で表される相当押込ひずみεIオーバーラインは接触変形と圧縮変形の両方を表現できる特性があることがわかる。
【0071】
式(19)の相当押込ひずみεIオーバーラインが単軸変形を等価的に表現できるとすれば、試料中に生じた応力σとの関係で次式を想定できる。
【0072】
【数22】
【0073】
さらに、この接触部における応力σと荷重Fハットの関係で式(3)が成立するならば、試料のYoung率Eは相当押込ひずみεIオーバーラインを用いて次式で導出可能となる。
【0074】
【数23】
【0075】
この式(23)と相当押込ひずみεIオーバーラインを表す式(19)、さらに上述した試料厚さhiを求める方法を併用することによっては、球圧子の直径φと荷重Fハット、押込量δの関係から試料のYoung率Eの評価が原理的に可能となる。
【0076】
つぎに、既知のYoung率を有する複数の厚さの試料に対して押込試験を行い、これらの仮定の有効性を確認する。
【0077】
実験による評価法の検証について説明する。まず、押込試験装置とその条件について説明する。
【0078】
厚さの異なる試料への押込試験から同様にヤング率を同定できる事を確認するため、図5 に示す押込試験機を用いる。この押込試験機は、最大速度1.2m/sのアクチュエータ1(NSK社製、XY-HRS400-RH202)に取り付けられた荷重軸5をPCで制御する形式となっている。荷重は軸に取り付けたロードセル2(共和電業社製、LURA100NSA1)から取得し、押込量は圧子を取り付けたアクチュエータ1のステージ4の移動量として、これをポテンショメータ3(アルプス電気社製、スライドボリュームRSA0N11S9002)によって計測する。
【0079】
図6に示すように、押込試験システム16は、押込試験機15のロードセル2から送られてきた荷重値Fおよびポテンシオメータ3から送られてきた押込量δからヤング率を算出するもので、同時に押込試験機15の動きも押込速度制御部13で制御している。このとき、送られてきた押込量δと算出されたヤング率からは、試料厚さが同定されることとなり、この同定され算出された試料厚さを基に試料厚さの影響を考慮したひずみが算出され、試料厚さの影響を考慮したヤング率が算出されることとなる。これらCPU部9で扱われたデータに関しては、全て記憶装置部14で記録される仕組みとなっている。
【0080】
次に試料に関しては、成形が容易で特性が安定しているため擬似生体試料としても用いられるポリウレタン樹脂を軟材料として選定し、その中でも低い弾性率かつ高い粘性を併せ持つ市販のピースロジー社製耐震マットのシート材を採用する。このシート材の形状は、縦および横の寸法は共に80×10-3mであるが、厚さに関しては約4×10-3mのものであって、検証のため併せて実施する引張試験の試料は1枚から切り出した四角柱状の試料、押込試験の際は試料の持つ粘性を利用してはり合わせることで複数の厚さの試料を作成する。この作成した試料厚さの実測値を表1に示す。押込試験で用いる球圧子については、将来的に人体への適用も可能なアクリル製の直径φ=2.0×10-2mの形状のものを利用し、これと試料の接触面での粘着は試料接触面にタルク粉を塗布することで低減を図っている。押込速度に関しては、ポリウレタン樹脂の粘性の影響を可能な限り低減するため、装置仕様中最も低速な条件で実施する。
【0081】
【表1】
【0082】
引張試験によるYoung率について説明する。ここで押込試験による結果の検証に用いる目的で、引張試験の実施結果について示す。ここで、引張試験条件を表2に示すが、特に引張速度は最も低速な装置仕様である1.0×10-4m/sとしたため、ひずみ速度としては0.005/sの条件であった。
【0083】
【表2】
【0084】
この条件で実施した引張試験の結果を図7に示す。ここでは、試料数N=5の結果について示しているが、応力値についてはポリウレタンの一般的なPoisson比ν=0.4を用いて負荷過程の断面積変化を仮定することで算出した真応力を用いている。この結果における破線で示す曲線に関しては、やや下に凸となっている。この曲線から求めたYoung率Eを実線で示すが、ここでは引張りによるひずみεTの増加と共に硬化が観られる結果となっている。
【0085】
押込荷重への試料厚さの影響について説明する。ここでは、試料厚さが押込試験によって得られる荷重値に与える影響について評価する。
図8には、表1に示す厚さの試料に対する押込試験から得られた押込量δと荷重Fの関係について、これらをHertzの弾性接触理論に基づく式(1)で最小二乗法により近似した曲線と併せて示している。
【0086】
この結果を観ると、図2で示したように試料厚さhiが小さいほど押込みに伴う荷重の増加が顕著となると同時に、大きい厚さhiの場合には比較的よく近似できていたHertzの弾性接触理論による式(1)が、小さい厚さhiでは差異が大きくなっていることが分かる。
【0087】
この結果に対して、押込みに伴って顕著となる荷重の増加を表現する目的で、その影響を表す係数Bを用いた次式;
【0088】
【数24】
【0089】
による近似曲線を併せて示した結果を図9に示す。係数Bの値は、表3に示すとおりである。
【0090】
【表3】
【0091】
この結果から、図8で観られたより差異が小さい近似結果を式(24)で得られることが分かる。なお、この式(24)の関係を用いる場合、Young率Eと球圧子押込係数Eハットの間に次の関係が成立することとなる。
【0092】
【数25】
【0093】
これは、図3(a)に示す関係に相当する。
【0094】
試料厚さの演繹法の検討について説明する。試料厚さhiが影響した上述の押込試験の結果から、それらの厚さhiを求める方法について考察する。
まず、式(24)および(25)を用いて球圧子押込係数Eハットの2次導関数Eハット・2次微分係数を求めた結果を図10,11 に示す。試験から得られた押込荷重Fハットと押込量δの関係は式(24)を一例とする関数で近似する。この関数式(24)と式(1)、(2)の関係を用いると式(25)によって球圧子押込係数Eハットが定義できる。この式(25)によって求めたのがYoung率Eである。まず図10は、2 次導関数Eハット・2次微分係数と試料厚さhiの関係であるが、試料厚さhiが小さくなるに従って2 次導関数Eハット・2次微分係数は指数関数的な増加を示した。図10中の破線は、この結果を指数関数;
【0095】
【数26】
【0096】
で近似した結果で、この2 次導関数Eハット・2次微分係数の軸を対数表記したものを図11に示す。ここで、係数H,Gは表4 に示す値となっている。
【0097】
【表4】
【0098】
この結果から、球圧子の押込試験における試料厚さhiと2次導関数Eハット・2次微分係数の間には、高い指数関数的関係のあることが分かり、これより厚さhiを求めることが可能となる。したがって、この式(26)を用いて試料厚さhiを同定することとする。
【0099】
試料の厚さが異なってもYoung率が同定できる方法について説明する。この方法は、上述および/あるいは他の方法によって試料厚さを明らかにした上で、その情報も加味して試料の厚さが異なってもYoung率が同定できる方法に関するものである。
【0100】
まず、Hertzの弾性接触理論に基づく式(4)を用いて求めた球圧子押込係数Eハットについて、押込量δに対して単調増加関数となる式(5)のHertzひずみεHオーバーラインとの関係で図12 に示す。これは、押込量δから式(5)で求められるHertzひずみεHオーバーラインおよび計測される荷重Fから式(4)によって求められるものである。
【0101】
なお未計測のPoisson比について、ここでは便宜上ν=0.4と仮定し、押込量δが圧子半径を超えない0.01m以下の範囲で検討を行った。この結果では、式(25)の関係より求まるひずみ0での値が接触時におけるYoung率E0であるが、厚さhiが一番小さい試料で著しく高くなっている。このことから試料厚さhiが極めて小さい場合では、押込みによる球圧子押込係数Eハットの同定が難しいことを示している。また、各線で示される押込みの進行によって導出された球圧子押込係数Eハットは図3(a)のように高くなる結果が得られているが、厚さhi が0.0178m以上の場合はほぼ一定となる結果が得られている。これは、圧子下で集中的に生じるひずみの影響が試料厚さhiの小さいものほど顕著になるためである。
【0102】
この図12の結果に対して、圧子下で生じる集中的なひずみの影響を表現する式(19)の相当押込ひずみεIオーバーラインと式(23)の関係を用いてYoung率Eを求めた結果を図13 に示す。これは、押込量δから式(5)で求められるHertzひずみεHオーバーラインと変形領域の変化率εVオーバーラインの和として式(13)から求められる相当押込ひずみεIオーバーラインと計測される荷重Fから式(4)によって求められるものである。
【0103】
この結果を観ると、試料厚さhiが0.0178m以上の結果についてはHertzの弾性接触理論に基づいた図12の結果と差異は大きくないが、厚さhiが0.0107m以下の結果では試料厚さの影響で高く同定されていたYoung率Eで押込みの進行に伴う増加が起こらず、むしろ厚さの大きい試料と同じ値へ収束する傾向となっている。これは、相当押込ひずみεIオーバーラインによって圧子下で集中的に生じるひずみの影響を表現できているためと考えられる。
【0104】
また、図13 には上述した引張りによるYoung率Eを太い実線で示しているが、試験法の違いによる差異が観られるが大きさとしてはほぼ同レベルであり、引っ張られるとYoung率Eが増加し、圧縮されるとYoung率Eが減少する統一した傾向を確認することができる。
【0105】
以上のことから、軟材料への球圧子の押込試験において、Hertzの弾性接触理論に基づく接触変形に有限な厚さを有する試料中の圧子下において集中的に生じる圧縮変形の影響を加味することで、その厚さに依らないYoung率Eの同定が可能であることが実験的に分かる。
【0106】
つぎに、押込試験方法および押込試験装置にかかる第2の発明を実施するための形態について説明する。
【0107】
押込試験方法は、試料に球圧子を押込む押込試験方法において、試料厚さを同定し、前記試料厚さを用いて試料の相当押込ひずみを算出し、前記相当押込ひずみを用いて試料のヤング率を算出する方法である。
【0108】
押込試験装置は、試料に球圧子を押込む押込試験装置において、試料厚さを同定する試料厚さ同定部と、前記試料厚さを用いて試料の相当押込ひずみを算出する相当押込ひずみ算出部と、前記相当押込ひずみを用いて試料のヤング率を算出するヤング率算出部を有する装置である。
【0109】
なお、本明細書の文章において、英文字記号にハット記号を付すものを「(英文字記号)ハット」と記載し、英文字記号にオーバーラインを付すものを「(英文字記号)オーバーライン」と記載し、英文字記号に2次微分係数を付すものを「(英文字記号)2次微分係数」と記載する。
【0110】
球圧子押込試験によるYoung率計測法について説明する。まず、Hertzの弾性接触理論を用いた方法について説明する。
Hertzの弾性接触理論においては、半無限体試料に対して十分に硬い球圧子を押込むとき、球圧子の直径φと試料のYoung率E、Poisson比νを用いて、押込荷重Fと押込量δの関係を次式で表現できる。
【0111】
【数27】
【0112】
これは、試料のYoung率Eが低い場合には押込荷重Fが小さくなり、また球圧子の直径φを大きくした場合には押込荷重Fも大きくなる模式図14のような関係を表している。このような荷重−押込量の関係を調べることで、式(27)から試料のYoung率Eが計測できる。
【0113】
相当押込ひずみを用いた方法について説明する。剛体上に置かれた有限体試料への押込荷重Fハットは、図15(a)の破線で示すように、実線で示す半無限体試料に対する押込荷重Fより大きくなり、また剛体の影響が試料厚さhi(i=1,2,--,∞)に応じて現れる。ここで、この試料厚さの影響を考慮する目的で、球圧子押込試験による試料の変形を接触変形と圧縮変形の重ね合わせと考える。このとき、接触部中央での等価的な単軸ひずみを表す相当押込ひずみεIオーバーラインを次式で定義する。
【0114】
【数28】
【0115】
この第1項は球圧子による接触変形を表現し、Hertzの弾性接触理論から次式とする。
【0116】
【数29】
【0117】
また第2項は、球圧子と剛体の間で生じる圧縮変形を表すものとして、次式で表現する。
【0118】
【数30】
【0119】
試料厚さhiが小さくなるにつれて荷重曲線の傾きが大きくなる図15(a)の破線で示す現象について、これを押込量δの関数形あるいは見かけのYoung率Eハットで考慮することで、Hertzの理論式(27)を拡張した次式を考える。
【0120】
【数31】
【0121】
ここで、本来のYoung率Eと見かけのYoung率Eハットとの間には次の関係が成立する。
【0122】
【数32】
【0123】
これは、図15(b)で示すように、接触開始時では本来のYoung率Eと見かけのYoung率Eハットが同値E0であるのに対して、押込みが進行するにつれて見かけのYoung率Eハットが本来のYoung率Eより高く計測される現象を表している。
【0124】
この現象の試料厚さhと接触時のYoung率の2次導関数Eハット・2次微分係数の関係は、図16に示すような指数的関係で近似できることが分かっており、これを次式で表す。
【0125】
【数33】
【0126】
ここで、GはYoung率の2次導関数を無次元化する係数であり、Hは試料厚さの係数となる。
【0127】
したがって、接触時のYoung率2次導関数Eハット・2次微分係数から式(33)により試料厚さhが求められ、これにより式(28)の相当押込ひずみεIオーバーラインも求められる。さらにこれと押込荷重Fハットから、様々な厚さの試料のYoung率Eを次式で求めることができる。
【0128】
【数34】
【0129】
この式(34)で求められるYoung率は、様々な厚さの試料に対する実験的検証から、厚さに依らないことが確認されている[1]。さらに多様な硬さや形状への適用性も確認できれば、この計測法によって生体軟組織などの複雑な変形特性や形状を有する試料の評価も可能となる。
【0130】
したがって、つぎに適用可能な試料の硬さや圧子径を調べる目的で、この計測法へ与える試料のYoung率Eや試験に用いる球圧子の直径φの影響について実験的に評価する。特に、これらの影響は図14に示すような荷重−押込量曲線の変化として表れることから、この変化が試料厚さの関係式(33)へ与える影響を評価し、これを拡張する。さらに、この拡張の妥当性を引張試験による計測結果との比較によって確認する。
【0131】
実験による計測法の適用性評価について説明する。まず、球圧子押込試験について説明する。
球圧子押込試験によるYoung率計測法の適用性を確認するため、試料の硬さと圧子径を変えた実験を行う。
【0132】
まず評価で用いる試料には、市販で特性が安定しており、かつ硬度の種類が豊富で成形が容易なシリコーンゴム(共和工業社製シリコーンゴムシート)を採用する。このシートは、表5に示す3種類の硬度のものを用意し、厚さ1mmと5mmで1辺100mmの正方形状のものを、自身の粘性によりはり合わせることで複数の厚さの試料にする。なおこの試料に関しては、試験中および試験後で、はり合わせた界面にはく離等による不連続面が生じないことを確認している。
【0133】
次に押込試験機の概略を図17に示す。この押込試験機は、最大速度1.2m/sのアクチュエータ1(NSK社製、メカトロアクチュエーターXY-HRS400-RH202)に取り付けられた荷重軸5をPCで制御し、剛体とみなせる2000系アルミニウム製のテーブル上に設置した試料を荷重軸に取り付けた球圧子によって押込む。荷重は軸に取り付けたロードセル2(共和電業社製、LUR-A100NSA1)から取得し、押込量は圧子を取り付けたアクチュエータ1のステージ4の移動量として、これをポテンショメータ3(アルプス電気社製、スライドボリュームRSA0N11S9002)によって計測する。それぞれの分解能は荷重6.15×10-3 N、変位1.53×10-6 mである。
【0134】
図18に示すように、押込試験システム16は、押込試験機15のロードセル2から送られてきた荷重値Fおよびポテンシオメータ3から送られてきた押込量δからヤング率を算出するもので、同時に押込試験機15の動きも押込速度制御部13で制御している。このとき、送られてきた押込量δと算出されたヤング率からは、試料厚さが同定されることとなり、この同定され算出された試料厚さを基に試料厚さの影響を考慮したひずみが算出され、試料厚さの影響を考慮したヤング率が算出されることとなる。これらCPU部9で扱われたデータに関しては、全て記憶装置部14で記録される仕組みとなっている。
【0135】
また実験は、圧子径を表6に示す5条件とし、試料と球圧子の接触面には摩擦軽減のためのタルク粉を塗布した条件で実施する。球圧子としては、自作のアクリル球および(株)エスコ社製のフェノール樹脂ボールノブを用いた。さらに、試料の粘性の影響を低減するため、押込速度の条件を装置仕様で最も低速な1.0×10-4 m/sとする。
【0136】
【表5】
【0137】
【表6】
【0138】
実験結果の一例として硬度A50、球圧子の直径φ=20mmでの荷重−押込量曲線を図19に示す。ここでは、この実験結果について、便宜上Poisson比νを0.4と仮定した式(31)で最小二乗近似した曲線も併せて示している。この荷重曲線は、図15(a)に示したように、試料厚さhが30mm以上の試料ではほぼ同一の曲線となるものの、この厚さhが小さいほど押込みに伴う荷重増加が顕著となる結果となった。
【0139】
また実験結果と近似曲線の相関係数を調べると、厚いものでは0.98を超える値となったが、厚さ1mmでは0.92程度まで下がる結果であった。そこで本発明では、相関係数0.95を上回る厚さ4mm以上の試料を対象として、その試料の硬さと球圧子の直径を変えた実験により計測法の適用性を評価する。
【0140】
Young率と圧子径の影響評価法について説明する。試料硬度と圧子径が荷重曲線へ与える影響を観察する目的で、押込試験で得られる荷重変化の結果の一部を図20に示す。図20(a)は、試料厚さh=5mm、球圧子の直径φ=20mmの結果で、試料の硬度が低い場合に押込荷重が小さくなる関係が観察できた。図20(b)は、試料厚さh=5mmで硬度A50の結果で、球圧子の直径φが大きくなると押込荷重も大きくなる関係となっている。これらの結果から、模式図14に示すように、押込荷重に試料硬度と圧子径が影響することが確認できる。
【0141】
次に、図20のような荷重曲線に表れる試料硬度と圧子径の違いによる変化が、接触時のYoung率2次導関数Eハット・2次微分係数および式(33)で求められる試料厚さhへ与える影響を調べる。
【0142】
まず図21には、実際の試料厚さhと図20のような荷重曲線から得られた接触時のYoung率2次導関数Eハット・2次微分係数の関係を示すが、特に図(a)は直径φが20mmの球圧子を用いて得られた結果で、図(b)は硬度A50の試料に対して得られた結果をまとめたものである。併せて、実験結果を式(33)で最小二乗近似した直線も示している。この結果を観ると、圧子の直径φが同じ場合には試料硬度が大きくなるにつれて2次導関数Eハット・2次微分係数が大きくなり、同一硬度の試料に対しては球圧子の直径φが大きくなるにつれて2次導関数Eハット・2次微分係数が大きくなる傾向を確認できた。
【0143】
次に図22には、図21に示した近似直線の式(33)の変数H,Gに表れる影響を示す。図22(a)は、横軸が式(31)で得られる接触時のYoung率E0である。この図22(a)の結果では、変数Hは球圧子の直径φによって線形的変化が観られ、また変数GはYoung率E0が大きくなると指数的に大きくなる結果となった。球圧子の直径φの変化によって得られる違いを硬度毎にまとめた図22(b)を観ると、変数Hはここでも硬度によって線形的変化が観られ、変数Gは球圧子の直径φが大きくなるにつれて指数的に大きくなった。これらの結果から、変数H,Gともに接触時のYoung率E0と球圧子の直径φに影響を受けるが、影響が比較的小さい変数Hは一定な係数とし、変数Gは試料の接触時のYoung率E0と球圧子の直径φの関数で定義することを考える。
【0144】
そこで本発明では、係数Hを試料厚定数(thickness constant)、関数GをYoung率曲率関数(curvature function)と呼ぶことし、それぞれ式(35)および(36)として定める。
【0145】
【数35】
【0146】
ここで、Gオーバーライン,m,nはそれぞれGオーバーライン=7.32×107 、m=1.29、n=1.66となる。
【0147】
この結果、球圧子押込試験による相当押込ひずみを用いたYoung率計測法について、試料のYoung率Eと球圧子の直径φの影響を式(36)によって考慮した方法へ拡張できる。
【0148】
Young率の計測結果について説明する。前述したYoung率と圧子径の影響を考慮した評価法について、得られるYoung率を引張試験の結果と比較することで、その妥当性を検討する。
【0149】
まず評価試料の引張試験に用いるシステムは、図17に示した押込試験機とほぼ同じであるが、生体軟組織など軟材料に用いる仕様[2]のものを利用する。このシステムは、ひずみ算出に用いるチャック間変位をレーザー変位計(KEYENCE社製、LB-62)で計測し、荷重をロードセル(共和電業社製、微小荷重ロードセルLST-1KA)により計測する。この分解能は変位6.25×10-6 m、荷重3.28×10-3 Nとなっている。試料は1mm角の短冊状に切り出し、チャック間距離20mm、引張速度1.0×10-4 m/sの条件とした。
【0150】
この条件で実施した引張試験の結果を公称応力−公称ひずみ曲線で図23に示す。この結果はやや上に凸となり、これから得られる太線で示すYoung率EはひずみεTの増加と共に低下する傾向となっている。
【0151】
試料のYoung率と圧子径の影響を考慮した式(33)を用いて計測したYoung率を、引張試験によって求めたYoung率と併せて図24に示す。
【0152】
各図は全て試料厚さh=5mmでの計測結果であるが、試料の硬度毎に示した(a),(b),(c)のいずれの結果においても、引張試験による結果と概ね同じ値を示している。また、球圧子の直径φの違いによる影響を観ると、前報[1]と同様に接触時の精度によって初期値にばらつきが出るものの、このYoung率と球圧子径を変えた比較でも引張試験による結果と近い値が得られ、式(36)による拡張の有効性を確認できる。
【0153】
図24に示した結果を観ると、本計測法で得られたYoung率のひずみ依存性は引張りによる結果と増減傾向が一致しており、ひずみによる軟化現象が観察できている。さらに図24(c)に示す硬度A50の場合では、引張りでひずみ-0.15付近から硬化し始める変曲点が、ひずみ-0.11付近からではあるが本計測法で同様に計測できている結果となっている。
【0154】
なお、本発明の押込試験方法および押込試験装置の対象となる試料としては、ポリウレタン、シリコーンゴム、ポリオレフィンゴム、天然ゴム、軟質ビニールを含む高分子材料、皮膚や筋肉を含む生体組織、ゼリーやゼラチンを含む食品などを採用することができる。
【0155】
試料のヤング率Eは100Pa〜100MPaの範囲内にあることが好ましい。試料のヤング率Eが100Pa以上であると、試料が押込みに伴って崩れたり破壊しないという利点がある。試料のヤング率Eが100MPa以下であると、軟らかめの圧子も利用できるという利点がある。
【0156】
球圧子の材質としては、金属および/あるいは樹脂材料などを採用することができる。
【0157】
球圧子の直径は1×10-8 〜1 mの範囲内にあることが好ましい。試料の厚さが球圧子の直径より大きいと、Hertzの理論解と同等の結果を得られるという利点がある。試料の厚さが球圧子の直径以下であると、Hertzの理論では求めることが困難であったYoung率を同定できるという利点がある。
【0158】
球圧子の押込み速度は0.00001〜10 m/sの範囲内にあることが好ましい。球圧子の押込み速度が0.00001 m/s以上であると、計測に時間がかからないという利点がある。球圧子の押込み速度が10 m/s以下であると、装置を安全に稼働できるという利点がある。
【0159】
球圧子直径に対する球圧子押込量の比率は1以下であることが好ましい。比率が1以下であると、圧子の埋没を考慮しなくてよいという利点がある。
【0160】
球圧子と試料の接触面での粘着を低減する方法としては、試料接触面にタルク粉を塗布する方法、油を塗布する方法などを採用することができる。なお、球圧子と試料の接触面での粘着性が小さい場合は、これらの処理を省略することができる。
なお、圧子の形状としては球圧子について説明したが、これに限定されるものではない。このほか圧子の形状としては、円柱、円筒、および立方体などの形状を採用することができる。
【0161】
本発明の押込試験方法および押込試験装置では、試料厚さの同定を行っている。試料厚さを同定する利点としては、Hertzの理論では求めることが困難であったYoung率を同定できることに加えて、ヒトの診療に際して求められる非侵襲性を満足しつつ皮膚や筋肉などの状態を計測できることなどを挙げることができる。
【0162】
試料厚さの同定方法は、上述の方法に限定されるものではない。このほか試料厚さの同定方法としては、超音波、エックス線、またはMRIを利用する方法などを採用することができる。 また、試料の断面を光学的に計測する方法など、試料の厚さの計測に通常使用される全ての方法を採用することができる。
【0163】
なお、本発明は上述の発明を実施するための形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。
【0164】
[参考文献]
[1] M. Tani and A. Sakuma, M. Shinomiya, Evaluation of Thickness and Young's Modulus of Soft Materials by using Spherical Indentation Testing, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.75, No.755, (2009),pp.901-908.(in Japanese)
[2] M. Ogasawara, A. Sakuma, T. Tadomi, E. Yanagisawa and M. Tani, Valuation Technique of Nonlinear Parameters in Three-Element Solid Model and Its Application to Biological Soft Tissue, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.75, No.750, (2009), pp.251-258. (in Japanese)
【符号の説明】
【0165】
1‥‥アクチュエータ、2‥‥ロードセル、3‥‥ポテンショメータ、4‥‥ステージ、5‥‥荷重軸、6‥‥球圧子、7‥‥試料、8‥‥テーブル、9‥‥CPU部、10‥‥試料厚さ同定部、11‥‥相当押込ひずみ算出部、12‥‥ヤング率算出部、13‥‥押込速度制御部、14‥‥記憶装置部、15‥‥押込試験機、16‥‥押込試験システム
Claims (10)
- 試料に圧子を押込む、押込試験方法において、
試料厚さを用いて、試料の相当押込ひずみを算出し、
前記相当押込ひずみを用いて、試料のヤング率を算出し、
前記相当押込ひずみは、圧縮変形によるひずみと接触変形によるひずみの和からなり、
前記圧縮変形によるひずみは、前記試料の圧縮領域の変化率であり、前記圧縮領域は、前記試料中で前記圧子からの荷重により圧縮変形する領域であり、
前記接触変形によるひずみは、前記試料を半無限体と仮定したときの、前記半無限体と前記圧子の接触によるひずみである
ことを特徴とする押込試験方法。 - 試料厚さを同定する
ことを特徴とする請求項1記載の押込試験方法。 - 圧子は、球圧子である
ことを特徴とする請求項1記載の押込試験方法。 - 球圧子の直径は1×10−8〜1mの範囲内にある
ことを特徴とする請求項3記載の押込試験方法。 - 圧子は、球圧子であり、
試料厚さの同定は、前記球圧子の直径、接触時のヤング率とヤング率2次導関数を用いて算出することを特徴とする請求項2記載の押込試験方法。 - 試料に圧子を押込む、押込試験装置において、
試料厚さを用いて、試料の相当押込ひずみを算出する相当押込ひずみ算出部と、
前記相当押込ひずみを用いて、試料のヤング率を算出するヤング率算出部を有し、
前記相当押込ひずみは、圧縮変形によるひずみと接触変形によるひずみの和からなり、
前記圧縮変形によるひずみは、前記試料の圧縮領域の変化率であり、前記圧縮領域は、前記試料中で前記圧子からの荷重により圧縮変形する領域であり、
前記接触変形によるひずみは、前記試料を半無限体と仮定したときの、前記半無限体と前記圧子の接触によるひずみである
ことを特徴とする押込試験装置。 - 試料厚さを同定する試料厚さ同定部を有する
ことを特徴とする請求項6記載の押込試験装置。 - 圧子は、球圧子である
ことを特徴とする請求項6記載の押込試験装置。 - 球圧子の直径は1×10−8〜1mの範囲内にある
ことを特徴とする請求項8記載の押込試験装置。 - 圧子は、球圧子であり、
試料厚さの同定は、前記球圧子の直径、接触時のヤング率と接触時のヤング率2次導関数を用いて算出する
ことを特徴とする請求項7記載の押込試験装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010547478A JP4967181B2 (ja) | 2009-01-20 | 2010-01-18 | 押込試験方法および押込試験装置 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009010426 | 2009-01-20 | ||
JP2009010426 | 2009-01-20 | ||
JP2009185525 | 2009-08-10 | ||
JP2009185525 | 2009-08-10 | ||
JP2010547478A JP4967181B2 (ja) | 2009-01-20 | 2010-01-18 | 押込試験方法および押込試験装置 |
PCT/JP2010/050499 WO2010084840A1 (ja) | 2009-01-20 | 2010-01-18 | 押込試験方法および押込試験装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4967181B2 true JP4967181B2 (ja) | 2012-07-04 |
JPWO2010084840A1 JPWO2010084840A1 (ja) | 2012-07-19 |
Family
ID=42355894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010547478A Active JP4967181B2 (ja) | 2009-01-20 | 2010-01-18 | 押込試験方法および押込試験装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9297730B2 (ja) |
EP (1) | EP2390649B1 (ja) |
JP (1) | JP4967181B2 (ja) |
CN (1) | CN102362166B (ja) |
WO (1) | WO2010084840A1 (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5836745B2 (ja) * | 2011-10-16 | 2015-12-24 | 株式会社堀内電機製作所 | 押込試験装置 |
JP5935180B2 (ja) * | 2012-02-07 | 2016-06-15 | 国立大学法人東京農工大学 | 押込試験方法および押込試験装置 |
FR2988472B1 (fr) * | 2012-03-22 | 2016-01-15 | Gerflor | Dispositif de mesure de l'indice de confort des sols sportifs interieurs apres impact d'une force sur le sol |
JP6164641B2 (ja) | 2012-07-20 | 2017-07-19 | 株式会社タニタ | 粘弾性測定装置 |
JP6019467B2 (ja) * | 2012-07-31 | 2016-11-02 | 国立大学法人京都工芸繊維大学 | 押込試験方法および押込試験装置 |
CN103149088A (zh) * | 2013-02-26 | 2013-06-12 | 肖飞 | 布氏硬度压痕直径测量装置 |
CN104729833B (zh) * | 2013-12-18 | 2018-02-13 | 昆山工研院新型平板显示技术中心有限公司 | 柔性屏体弯曲测试方法和系统 |
US10288540B1 (en) * | 2014-11-28 | 2019-05-14 | Kla-Tencor Corporation | Instrumented indentation apparatus having indenter punch with flat end surface and instrumented indentation method using the same |
US9766170B2 (en) * | 2015-01-28 | 2017-09-19 | International Business Machines Corporation | Determination of young'S modulus of porous thin films using ultra-low load nano-indentation |
NO340896B1 (no) * | 2015-01-29 | 2017-07-10 | Tomax As | Reguleringsanordning og fremgangsmåte ved bruk av samme i et borehull |
CN104777051B (zh) * | 2015-03-23 | 2017-07-21 | 西南科技大学 | 一种碳纤维微区相对硬度的测试方法 |
CN105716946B (zh) * | 2016-01-14 | 2018-07-31 | 西南交通大学 | 圆柱形平头压入预测材料单轴本构关系的测定方法 |
JP7001246B2 (ja) * | 2016-01-19 | 2022-02-04 | 国立大学法人京都工芸繊維大学 | 押込試験装置および試料のヤング率を算出する方法 |
KR102535752B1 (ko) * | 2016-11-08 | 2023-05-22 | 삼성전자주식회사 | 변형 측정 장치 및 이를 이용한 변형 평가 방법 |
CN107290220B (zh) * | 2017-08-01 | 2024-03-15 | 山东建研检测检验科技有限公司 | 一种便携式钢材强度检测印痕仪及其测试方法 |
EP3987271A1 (en) * | 2019-06-24 | 2022-04-27 | Nanyang Technological University | Machine learning techniques for estimating mechanical properties of materials |
US11275007B1 (en) | 2021-01-28 | 2022-03-15 | The Florida International University Board Of Trustees | Systems and methods for testing mechanical properties of ultra-soft materials |
CN114279835B (zh) * | 2021-03-12 | 2024-04-30 | 江南大学 | 一种基于等效厚度体积模量对人舌进行变形表征的方法 |
CN113176026B (zh) * | 2021-03-16 | 2023-06-16 | 蒋文春 | 用于压痕法测量残余应力的装置及其使用方法 |
US12025589B2 (en) * | 2021-12-06 | 2024-07-02 | Saudi Arabian Oil Company | Indentation method to measure multiple rock properties |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003044827A (ja) * | 2001-07-30 | 2003-02-14 | Haruo Ishikawa | 特性推定方法 |
JP2004361251A (ja) * | 2003-06-05 | 2004-12-24 | Axiom Co Ltd | 超音波振動を利用した硬さ測定装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4852397A (en) * | 1988-01-15 | 1989-08-01 | Haggag Fahmy M | Field indentation microprobe for structural integrity evaluation |
US6134954A (en) * | 1996-04-15 | 2000-10-24 | Massachusetts Institute Of Technology | Depth sensing indentation and methodology for mechanical property measurements |
US6155104A (en) * | 1998-05-26 | 2000-12-05 | Subra Suresh | Method and apparatus for determining preexisting stresses based on indentation or other mechanical probing of a material |
US6664067B1 (en) * | 2000-05-26 | 2003-12-16 | Symyx Technologies, Inc. | Instrument for high throughput measurement of material physical properties and method of using same |
AU2002255669A1 (en) * | 2001-03-07 | 2002-09-24 | Massachusetts Institute Of Technology | Systems and methods for estimation and analysis of mechanical property data |
KR100418700B1 (ko) * | 2001-07-23 | 2004-02-11 | 이형일 | 유한요소해에 기초한 물성평가 구형 압입시험기 |
US7165463B2 (en) * | 2003-10-14 | 2007-01-23 | Northwestern University | Determination of young's modulus and poisson's ratio of coatings from indentation data |
CN101063646A (zh) * | 2006-04-24 | 2007-10-31 | 香港理工大学 | 通过压痕测试确定材料或组织的杨氏模量和泊松比的方法 |
-
2010
- 2010-01-18 US US13/138,235 patent/US9297730B2/en not_active Expired - Fee Related
- 2010-01-18 CN CN2010800129402A patent/CN102362166B/zh not_active Expired - Fee Related
- 2010-01-18 EP EP10733447.6A patent/EP2390649B1/en not_active Not-in-force
- 2010-01-18 WO PCT/JP2010/050499 patent/WO2010084840A1/ja active Application Filing
- 2010-01-18 JP JP2010547478A patent/JP4967181B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003044827A (ja) * | 2001-07-30 | 2003-02-14 | Haruo Ishikawa | 特性推定方法 |
JP2004361251A (ja) * | 2003-06-05 | 2004-12-24 | Axiom Co Ltd | 超音波振動を利用した硬さ測定装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2390649B1 (en) | 2015-07-29 |
US9297730B2 (en) | 2016-03-29 |
WO2010084840A1 (ja) | 2010-07-29 |
JPWO2010084840A1 (ja) | 2012-07-19 |
CN102362166B (zh) | 2013-11-06 |
EP2390649A4 (en) | 2012-09-19 |
EP2390649A1 (en) | 2011-11-30 |
CN102362166A (zh) | 2012-02-22 |
US20120022802A1 (en) | 2012-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4967181B2 (ja) | 押込試験方法および押込試験装置 | |
Klapperich et al. | Nanomechanical properties of polymers determined from nanoindentation experiments | |
Shergold et al. | Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin | |
Delaine-Smith et al. | Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics | |
Hoffler et al. | An application of nanoindentation technique to measure bone tissue lamellae properties | |
JP6319851B2 (ja) | 粘性係数算出装置、押込試験装置、引張試験装置、粘性係数算出方法およびプログラム | |
Kang et al. | Extended expanding cavity model for measurement of flow properties using instrumented spherical indentation | |
Liu et al. | A nonlinear finite element model of soft tissue indentation | |
Roan et al. | The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments | |
JP5076253B2 (ja) | 押込試験方法および押込試験装置 | |
Huang et al. | Measurement of Young’s relaxation modulus using nanoindentation | |
JP6779497B2 (ja) | 押込試験方法および押込試験装置 | |
Esmail et al. | Using the uniaxial tension test to satisfy the hyperelastic material simulation in ABAQUS | |
JP5836745B2 (ja) | 押込試験装置 | |
JP7001246B2 (ja) | 押込試験装置および試料のヤング率を算出する方法 | |
JP5935180B2 (ja) | 押込試験方法および押込試験装置 | |
Fąs et al. | Indentation of a circular membrane on an incompressible liquid | |
Lu et al. | Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power‐Form Load: Application to Fluid‐Jet‐Induced Indentation of Biological Soft Tissues | |
Li et al. | Error reduction and performance improvement of palpation for human soft tissues based on 3D indentation system | |
Sparrey et al. | The effect of flash freezing on variability in spinal cord compression behavior | |
Zaeimdar et al. | Mechanical Characterization of Soft Tissue Constituents for Cancer Detection | |
Bittner et al. | Mathematical model for determining the viscoelastic properties of soft tissues using indentation tests | |
WO2019098293A1 (ja) | 力学特性試験方法 | |
Li et al. | Investigation of the mechanical characterization of porcine brain tissue in complex environments | |
LI et al. | Investigation of the mechanical characteristics of porcine brain tissue in complex environments. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120318 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4967181 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |