JP4961436B2 - 制御装置および液圧式パイロット制御 - Google Patents

制御装置および液圧式パイロット制御 Download PDF

Info

Publication number
JP4961436B2
JP4961436B2 JP2008554690A JP2008554690A JP4961436B2 JP 4961436 B2 JP4961436 B2 JP 4961436B2 JP 2008554690 A JP2008554690 A JP 2008554690A JP 2008554690 A JP2008554690 A JP 2008554690A JP 4961436 B2 JP4961436 B2 JP 4961436B2
Authority
JP
Japan
Prior art keywords
control
valve
pressure
fluid
relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008554690A
Other languages
English (en)
Other versions
JP2009527695A (ja
Inventor
ヘルプリング フランク
フェルティッヒ ギュンター
ケスラー アルブレヒト
ヘスデルファー ヨーゼフ
クネール ブルクハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2009527695A publication Critical patent/JP2009527695A/ja
Application granted granted Critical
Publication of JP4961436B2 publication Critical patent/JP4961436B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0433Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being pressure control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/008Valve failure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7904Reciprocating valves
    • Y10T137/7922Spring biased
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86582Pilot-actuated
    • Y10T137/8659Variable orifice-type modulator
    • Y10T137/86598Opposed orifices; interposed modulator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86622Motor-operated
    • Y10T137/8663Fluid motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Fluid-Driven Valves (AREA)
  • Servomotors (AREA)

Description

本発明は、請求項1の前提構成に基づき流体によって駆動可能な方向弁を有する液圧消費装置を制御するための制御装置に関するものである。本発明は、さらに、請求項12の前提構成に基づく液圧式パイロット制御装置に関するものである。
流体によって駆動可能な方向弁を備える液圧式制御装置は、とりわけ車両の液圧システムにおいて使用されている。便宜上、いわゆる制御ブロックにおいて、複数の方向弁が弁体の形態で相互連結されている。このような液圧式制御装置により、リフトトラックまたは耕作用トラクタのリフト装置、荷役クレーン、ホイール・ローダのバケットや、車の走行機能およびステアリング機能も、液圧によって操縦される。制御がフロー条件によって調整される(ロードセンシングである)場合、個々の弁体は、弁を流れる液圧加圧媒体フローを制御するための圧力平衡を有している。
液圧加圧流体または加圧媒体として、産業および自動車の液圧技術では主に鉱油が使用される。しかしながら、特定の使用分野に対しては、水を基礎とする加圧媒体も使用される。以下では、液圧流体に対して、流体という用語を使用する。
液圧式制御装置は、例えば、特許文献1に記載されている。様々な弁体に、液圧消費装置を制御するための複数の方向弁が設けられている。これらの方向弁は、加圧媒体接続を制御するための弁ピストンと、それぞれ2つのバネ室とを備えている。弁ピストンをバネの付勢力に逆らうように駆動するために、バネ室に制御圧力が蓄積される。各制御圧力は、電気的に駆動される圧力制御弁によって生成される。1つの弁体に、圧力制御弁が2つずつ、パイロット制御弁として備えられている。したがって、弁ピストンを、相反する2つの方向へ動かすことができる。通常、圧力制御弁の電気的な制御は、操縦要素によって行われる。
電気的に制御される圧力制御弁は、圧力制御弁の制御ピストンが引っ掛かって動かなくなるせいで故障し、電気的に駆動されなくなることが稀にある。その原因の1つは、流体フローによって運ばれる不純物の粒子である可能性がある。圧力制御弁の出力が制御流体供給ポートおよびタンクポートに対して遮断される制御位置に、制御ピストンがずれることなく位置していれば、制御流体は、方向弁の対応するバネ室から移動できなくなる。したがって、方向弁は、制御された位置においてブロックされ、液圧消費装置によって行なわれる動きは停止されない。操縦要素での逆制御(反作用)によって、対向して設けられたバネ室に対して、対応する制御圧力弁を介して制御圧力をかけても、このようなブロックを解除できない。なぜなら、遮断されたバネ室からは、既述のように、流体が移動できないからである。
特許文献2に、パイロット制御弁の供給配管に一体化された安全弁が記載されている。記載されている電磁的に駆動される3ポート2位置切換弁は、パイロット制御弁の供給配管を、加圧媒体源または容器に接続することができる。3ポート2位置切換弁の弁体に、出力ポートからバネ室へのリリーフ通路が設けられている。磁石が駆動されたら、リリーフ通路は磁気プランジャによって遮断される。磁石が駆動されていなければ、弁体が磁気プランジャに追従しないことを条件に、リリーフ通路は、バネ室、つまり容器へ開いている。複雑および/または高価な構成がこの弁の欠点である。また、この構成を減圧弁として形成されたパイロット制御弁に簡単に適用することもできない。さらに、3ポート2位置切換弁の制御電子機器のエラーのために連続駆動が行われる場合、供給配管をリリーフすることができない。
独国特許出願公開第19715020A1号明細書 独国特許出願公開第10308910A1号明細書
本発明の目的は、液圧を消費する装置を制御するための改善された制御装置であって、パイロット制御された方向弁の弁ピストンを駆動位置から中立位置へ戻るように確実に導くことができ、特に簡単且つ低コストの設計を特徴とする制御装置を提供することである。
この目的は、本発明により、請求項1の特徴を有する制御装置、および、請求項12の特徴を有する液圧式パイロット制御装置によって達成される。
液圧消費装置を制御するための本発明の制御装置は、方向弁を備え、この方向弁は、制御圧力室と制御スライダとを有し、この制御スライダは、制御圧力室における制御圧力の蓄積によって、バネの力に逆らうように調節可能である。制御圧力室への制御流体の流入、および、制御圧力室からの制御流体の流出は、パイロット制御弁によって制御される。本発明の特色は、リリーフ装置が設けられており、このリリーフ装置によって、制御流体を、パイロット制御弁を迂回させて制御圧力室の外へ移動させることができる、ということである。
このように、本発明の制御装置によって、制御スライダを駆動された位置から確実に復帰させることができる。通常動作において、方向弁は、従来の方向弁のように制御可能である。制御圧力室からパイロット制御弁を介した制御流体の流出がブロックされているパイロット制御弁の機能不全時でも、制御スライダを駆動された位置から移動させることができる。したがって、このような制御装置は、動作安全性が高い。パイロット制御弁の制御ピストンが引っ掛かって動かなくなる場合のみならず、パイロット制御弁の電子制御回路のエラーによりパイロット制御弁が連続駆動される場合でも、方向弁の制御スライダを中立位置へ戻るように導くことができる、または、逆の方向へさえも駆動することができる。さらに、本発明の制御装置は、簡単且つ低コストで実現可能である。逆止弁またはリリーフ弁などの好ましい標準的な構成要素によって、パイロット制御弁を迂回することができる。
本発明の他の観点によれば、液圧式パイロット制御装置は、制御流体供給ポートと、少なくとも1つの圧力制御弁とを備え、圧力制御弁は、制御された制御圧力を制御圧力流出口に生成する。制御圧力流出口と制御流体供給ポートとの間に、制御流体供給ポートへ向かって開いている逆止弁が備えられている。
このようなパイロット制御装置により、制御流体を、圧力制御弁を迂回させて制御圧力室から確実に移動させることができる。この場合、液圧式制御装置の動作安全性が高まる。さらに、このようなパイロット制御装置は、構造が特に簡単であり、従来のパイロット制御装置に比べて、少しの追加の構成要素で済む。
更なる有利な観点は、従属請求項に記載されている。
本発明の特に好ましい形態によれば、リリーフ装置は、リリーフ配管と逆止弁とを備え、この逆止弁を介して、制御流体は、制御圧力室からリリーフ配管へ移動可能である。これにより、特に簡単な構造を有するリリーフ装置が説明される。リリーフ装置の動きを、リリーフ配管に遍在する圧力によって簡単に制御することができる。
リリーフ配管は、リリーフ弁を介してタンクに接続可能なことが好ましい。したがって、パイロット制御弁の迂回に必要な圧力は、リリーフ弁において簡単に設定される。さらに、この圧力は、制御流体供給配管の圧力とは無関係に設定可能である。リリーフ弁を手動で駆動できる場合、制御圧力室の抽気を簡単に行なえる。
さらに好ましい形態によれば、リリーフ配管は、パイロット制御弁の制御流体供給配管に連通している。このように設計された制御装置により、流体流出のブロックから制御圧力室を特に簡単且つ効率的に保護できる。さらに、パイロット制御弁の迂回に必要な圧力は、制御流体供給配管の供給圧力に常に対応しているので、上記迂回に必要な圧力を別に設定する必要はない。
リリーフ配管における圧力は、最高の制御圧力、すなわち、パイロット制御弁がその流出口において最大に設定することのできる圧力以上の値に制限可能であることが好ましい。これにより、方向弁の通常制御時に制御流体はリリーフ配管へ移動しない、ということが保証される。
さらに好ましい形態によれば、リリーフ配管における圧力は、最高の制御圧力とバネの付勢力に匹敵する圧力との合計未満の値に制限可能である。このようにして、駆動された位置から制御スライダを復元するために必要な力を、制御スライダに対する液圧作用、例えば、逆の側に配置された制御圧力室に加圧することによってかけることができる。双方の制御圧力室における圧力が同じであれば、制御スライダは、制御スライダの動きに反作用するバネによって中立位置へ戻る。
リリーフ配管が切換弁によってタンクに対してリリーフ可能であれば、制御スライダは、何らかの更なる処置が取られることなく非常に迅速にその中立位置へ戻る。逆の側に配置された制御圧力室に加圧することで、制御スライダを反対の方向へ動かすこともできる。
方向弁は、制御スライダに対して相反する方向への作用を及ぼすことのできる2つの制御圧力室を備えていることが好ましい。さらに、これら2つの制御圧力室から、制御流体は、それぞれ別々の逆止弁を介してリリーフ配管の2つの異なる分岐部へ移動可能であり、リリーフ配管の2つの異なる分岐部は、互いに流体的に分離されている。また、2つの切換弁が設けられており、これらの切換弁を介して、リリーフ配管の分岐部は、タンクに対して互いに別々にリリーフ可能である。それゆえ、パイロット制御弁の故障時に、リリーフ配管の異なる分岐部、および、接続されている制御圧力室を互いに独立してリリーフすることができる。これは、液圧モータをパイロット制御弁の故障時に停止するだけでなく、引戻動作も実施できる安全な駆動装置を実現するための重要な要件である。方向弁により制御される液圧モータが引戻動作を実施するように、特に、故障したパイロット制御弁を迂回してもよいし、一方の制御圧力室をリリーフし、逆の側に設けられた制御圧力室に別のパイロット制御弁によって加圧してもよい。
制御流体は、リリーフ配管の2つの異なる分岐部から、リリーフ弁へ向かって開いているそれぞれの逆止弁を介して、リリーフ弁へ供給可能であることが好ましい。これにより、制御装置の簡単で効率的な設計によって、方向弁の逆の側に設けられた制御圧力室を、パイロット制御弁のブロックから保護することができる。さらに、逆の側に設けられた制御圧力室に加圧することにより、パイロット制御弁の故障した制御圧力室から、制御流体を移動させることができる。したがって、パイロット制御弁が故障した場合は、操縦要素での逆制御によって、液圧消費装置を停止することができる。さらに、リリーフ配管の分岐部を、例えば、切換弁によって、互いに別々にリリーフできる。その結果、パイロット制御弁が故障しても、液圧モータの引戻動作は実施可能である。
複数の方向弁が備えられ、制御流体が、異なる方向弁の各制御圧力室から、それぞれ別々の逆止弁を介して、リリーフ配管またはリリーフ配管の分岐部へ移動可能であることが好ましい。そうすれば、方向弁が複数であっても、パイロット制御弁の故障から制御圧力室を効率的に保護することができる。
本発明およびその利点を、図に示す実施形態を参照して以下でより詳しく説明する。
本発明を、液圧式制御ブロックにおいて使用されるような方向弁体に関して図1を参照して説明する。しかしながら、本発明は、液圧式制御装置のこの具体的な構成に限らず、ほぼ全ての構成の液圧式制御装置において使用できる。
図1に示す弁体1は、弁孔25を有する基本部3を備え、弁孔25の内部に、制御スライダ26が移動可能なように導入されている。弁孔25と制御スライダ26とによって、異なる制御端部が形成され、異なる制御端部を介して、流体供給ポート10と液圧消費装置のためのポート22,23との間の流体的な接続を制御できる。同様に、消費装置ポート22,23とタンクポート12,13との間の接続も制御可能である。
図示した弁体は、ロードセンシング技術によって実施されている。したがって、消費装置ポート22および23にかけられる載荷圧力が検出され、載荷圧力レポート配管16へ供給される。ロードセンシング技術の詳細は、本発明には関係ないのでより詳しい説明はしない。しかしながら、ロードセンシング技術は、当業者には知られている。
弁25は、基本部3の右側および左側において、制御カバー30,31によって覆われている。制御カバー30,31内に、バネ室32および33が形成され、これらバネ室32および33内に、バイアスバネ34および35がそれぞれ設けられている。バネ34,35は、バネ板28,29を介して基本部3に支持されている。制御スライダ26は、バイアスバネ34,35とバネ板28,29との作用によって、中央位置にセンタリングされている。
さらに、バネ室32,33は、制御圧力の作用を受ける制御圧力室を形成している。一方のバネ室(例えば32)において作用する制御圧力によって、制御スライダ26は、他方のバネ室(例えば33)の方向への力を、他方のバネ室(例えば33)に設けられたバネ35の付勢力に逆らって受ける。制御圧力によって制御スライダ26にかけられる力が、バネ35の付勢力を上回れば、制御スライダ26は、その中央位置からずれる。
さらに、弁体1に左側から取り付けられた制御カバー30に、圧力制御弁38および40が挿入されている。圧力制御弁38,40は、流体通路42を介して、双方とも制御流体供給配管18に接続されている。圧力制御弁38,40を、更なる流体通路43が、制御流体リターン配管20に接続している。
圧力制御弁38は、電磁石(図示せず)により駆動され、磁力に比例した制御圧力をその流出口に生成する。圧力制御弁38により生成された制御圧力は、流体通路39を介して、バネ室33へ伝播される。この制御圧力は、制御スライダ26に対して左へ方向付けられた力を引き起こす。同じく、電磁石の備えられた圧力制御弁40は、流体通路41を介してバネ室32に接続している。したがって、圧力制御弁40によって生成される制御圧力は、バネ室32にかかり、制御スライダに対して右へ方向付けられた力を引き起こす。さらに、バネ室32は、流体配管48へ向かって開いている逆止弁46に接続されている。同様に、バネ室33には、流体配管48へ向かって開いている逆止弁47が接続されている。流体配管48は、リリーフ弁50を介して流体タンクへつながっている。このことは、図示した方向弁体においては、便宜上、制御流体リターン配管20との接続により行なわれている。しかしながら、リリーフ弁50の流出口は、同様に、漏油ポートまたは他の流体リターン配管に接続されていてもよい。リリーフ弁50は、少なくとも、圧力制御弁38,40によって生成可能な最高の制御圧力に匹敵する圧力に設定されている。
圧力制御弁38,40は、それぞれ制御ピストンを備えている。制御ピストンにより、制御流体供給配管18から各バネ室32および33へ、磁力により予め設定された圧力になるまで、制御流体を流すことができる。バネ室における圧力が、この予め設定された圧力よりも高ければ、制御ピストンにより、各圧力制御弁38,40を介して、制御流体を制御流体リターン配管20へ流すことができる。
制御ピストンは、圧力制御弁38または40の弁筐体について正の過剰補償範囲を有している。つまり、バネ室における圧力が予め設定されている圧力に一旦達したら、バネ室は、制御流体供給配管18と制御流体リターン配管20との双方に対して遮断される。制御ピストンがこのような制御位置においてブロックすると、制御流体は、対応するバネ室から圧力制御弁を介して流出できなくなる。
例として、制御スライダ26がバネ室32に遍在する圧力によって中央位置から右へ動かされている場合について考えてみる。制御流体がバネ室32から流出できなくなるように圧力制御弁40がブロックすれば、制御スライダ26は、まず、この動かされた位置に留まる。制御スライダ26を左へ向けて駆動することによりバネ室32における圧力が少なくともリリーフ弁50において設定された圧力に匹敵する圧力に増大されるとすぐに、制御流体は、圧力制御弁40を迂回しながら、逆止弁46を介して流体配管48へ流れ、そして、リリーフ弁50を介してタンクへ流れる。したがって、圧力制御弁40がブロックしていても、制御スライダ26を中央位置へ戻すことができる。リリーフ弁50において設定される圧力は、圧力制御弁38,40が生成することのできる最高の制御圧力を上回っているので、通常動作が妨げられることはない。
ブロックした圧力制御弁40を迂回するために制御スライダ26を左へ向けて駆動することは、特に、バネ室33の加圧によって行なえる。例えば操作手順を終了しても液圧消費装置が停止しないので圧力制御弁40がブロックしている、ということに気付いた機械オペレーターは、これに対して操縦要素による逆制御をすることができる。これにより、圧力制御弁38は、バネ室33に制御圧力を生成し、左へ方向付けられた力を制御スライダ26へ及ぼす。さらに、ブロック前に生成されたバネ室32における制御圧力に匹敵する力が、右へ動かされた制御スライダ26に対してバネ35側から掛けられる。しかしながら、バネ35が掛ける力は、少なくともバネの付勢力に匹敵している。
バネ室32における圧力が、バネ35の応力とバネ室33における制御圧力とによって、少なくともリリーフ弁50において設定された値に匹敵する値に達したら、バネ室32における制御流体は、逆止弁46とリリーフ弁50とを介して流出する。したがって、制御スライダ26は、中央位置へ戻る。
バネ室33に加圧することによってバネ室32から制御流体を移動させることができるように、リリーフ弁50において設定される圧力は、高くともバネの付勢力に相当する圧力と生成可能な最高の制御圧力との合計に匹敵しているのがよい。したがって、わずかに動かされた制御スライダ26をも、逆止弁46とリリーフ弁50とを介して制御流体を移動させながら、中央位置へ戻るように導くことができる。
一般的な圧力制御弁は、30バールの制御圧力を生成することができる。制御スライダ26を中央に合わせるバネ34および35の付勢力は、それぞれ、制御スライダ26の側面に作用する5バールの圧力に相当している。したがって、リリーフ弁50は、32バールと35バールとの間の圧力に設定されていることが好ましい。このように、たとえ制御圧力を生成する弁38,40の1つがブロックしても、制御スライダ26は確実に中央位置へ戻るように導かれる。弁体1への何らかの機械的な介入なしで、液圧による駆動のみによって、制御スライダ26の復帰が可能である。
左のバネ室32からの制御流体の移動について説明されたメカニズムは、特に逆止弁47とリリーフ弁50とを介した制御流体の移動に関しては、当然、右のバネ室33にも同じように当てはまる。
説明した例では、制御スライダ26の望ましくない動きは、機械オペレーターによる逆駆動によって修正された。しかしながら、パイロット制御弁を迂回しながら制御スライダを復帰させることは、自動的な電子制御によっても行なえる。このため、制御スライダ26の位置をまず検出する。圧力制御弁のいずれにも所望の圧力がかけられていないにもかかわらず、制御スライダ26が中央位置に戻らなければ、電子制御は、圧力制御弁を駆動することにより、制御スライダ26に対してその動きとは逆の方向へ作用する。この場合、ブロックされた圧力制御弁は、流体配管48を介して迂回される。
制御スライダ26の位置を検出する代わりに、液圧消費装置の動作状態、例えば、回転速度を検出することにより、制御スライダ26の位置を推定することができる。
パイロット制御された方向弁を、2つの圧力制御弁38,40を介する代わりに、方向弁として設計されたパイロット制御弁を介して液圧により駆動することもできる。本発明において、パイロット制御弁を迂回しながら制御流体を制御圧力室から移動させることのできる流体配管が設けられているならば、パイロット制御された弁の制御スライダは、パイロット制御弁が故障した場合でも、駆動された位置から戻るように導かれる。このために必要な圧力を、例えば、手動で蓄積することができる。あるいは、制御スライダは液圧により緊急駆動されてもよい。
図2は、液圧式制御装置52のブロック図を示す。液圧式制御装置52には、液圧消費装置の制御のために常に調整可能なパイロット制御された2つの方向弁54および55が設けられている。方向弁54および55は、図1に示す方向弁体と同様の構成を有していてもよい。方向弁54および55の各制御スライダは、バネによってセンタリングされている。方向弁54および55の制御圧力室(図示せず)には、電気的に駆動される圧力制御弁60,61,62および63が、予め設定された制御圧力を生成するためにそれぞれ接続されている。圧力制御弁60,61,62および63には、制御流体供給配管18を介して、制御流体が供給される。制御流体供給圧力は、ポンプ56により生じ、リリーフ弁57により決定される。さらに、制御流体をタンク58へ戻すために、各圧力制御弁60,61,62,63には、制御流体リターン配管20が接続されている。
各方向弁の制御圧力室は、各逆止弁64,65,66および67を介して、流体配管68に接続されている。逆止弁64,65,66および67は、流体配管68の方向へ開いている。流体配管68は、リリーフ弁70を介して、タンクにつながっている。リリーフ弁70を手動で開くことができる。リリーフ弁70に対して並列に、キャビテーション防止弁71が接続されている。キャビテーション防止弁71は、流体配管68へ向かって開いている。キャビテーション防止弁71は、リリーフ弁70に一体化されていてもよい。
図2に示す制御装置の機能的な原則は、2つの方向弁に拡張した図1に示す制御装置の機能的な原則に本質的に対応している。
圧力制御弁70の応答圧力に対応する圧力を受けて、制御流体は、圧力制御弁60,61,62,63を迂回しながら、2つの方向弁54および55の各制御圧力室から移動することができる。この場合、制御流体は、対応する逆止弁64,65,66,67、流体配管68、および、リリーフ弁70を介してタンク58へ流れる。リリーフ弁70の応答圧力は、圧力制御弁60,61,62,63によって生成可能な最高の制御圧力を上回っている。そのうえ、応答圧力は、バネの付勢力と圧力制御弁60,61,62,63によって生成可能な最高の制御圧力とを足した圧力を上回っていない。
したがって、たとえ圧力制御弁の1つが故障した場合でも、方向弁54および55それぞれの制御スライダを、バネによってセンタリングされた位置へ戻るように確実に導くことができる。特に、制御スライダの復帰は、液圧による駆動によって行なうことができる。
図2に示す制御装置において特に有利なのは、方向弁54,55の各制御圧力室から、制御流体は、単一の共通の流体配管68へ移動可能である、ということである。さらに、制御圧力室を保護するために必要なリリーフ弁70はたった1つである。図2に示す制御装置は、更なる方向弁に対して簡単に拡張することができる。その制御圧力室は、安全のために、流体配管68へ向けて開いている逆止弁を介して流体配管68に接続されている。
リリーフ弁70の応答圧力を、制御流体供給配管18の供給圧力とは無関係に設定することができる。更なる制御流体消費装置を管理するため、または調整時間をより短くするために、制御流体供給配管18は、リリーフ弁70よりも高い圧力に、または、圧力制御弁60,61,62,63によって生成可能な最高の制御圧力よりも高い圧力に設定されていてもよい。
図2に示す制御装置52により、さらに、方向弁54,55の制御圧力室または制御流体システムを簡単に抽気することができる。この目的のために、リリーフ弁70を手動で開けてもよい。制御圧力室へ流れる制御流体は、妨害されることなく、逆止弁64,65,66,67および開かれたリリーフ弁70を介して、タンク58へ流れることができる。閉じ込められた空気は、制御流体と共にタンク58へ放出される。
図3に他の液圧式制御装置72のブロック図を示す。制御装置72は、図2に示す制御装置52とは以下の点が異なっている。なお、同じ構成部材には同じ参照番号が付けられている。
方向弁54および55の制御圧力室は、逆止弁64,66および65,67を介して、流体配管の2つの別々な分岐部68aおよび68bに接続されている。流体配管68aおよび68bは、パイロット制御弁60,61,62および63の1つが故障した場合に、リリーフ配管として機能する。図3において左に配置されている方向弁54および55の制御圧力室は、逆止弁64および66を介して、配管分岐部68aに接続されている。配管分岐部68aは、一方では、更なる逆止弁78を介してリリーフ弁74につながっている。他方では、分岐部68aは、切換弁76を介して、直接タンクに接続可能である。図3において右に配置されている制御圧力室は、逆止弁65および67を介して配管分岐部68bに接続されている。この配管分岐部は、逆止弁77を介して、リリーフ弁74につながっている。さらに、配管分岐部68bをタンクに接続することのできる切換弁75が備えられている。切換弁75および76は、非駆動位置において、配管分岐部68aまたは68bをタンクに接続し、駆動された位置において、配管分岐部68aおよび68bとタンクとの間の接続を中断するようにそれぞれ構成されている。
図2に示す制御装置52の場合と同じように、制御装置72では、パイロット制御弁、以下では例えばパイロット制御弁60のブロック時に、制御流体を、方向弁54の制御された制御圧力室から、逆止弁64、配管分岐部68a、逆止弁78、および、リリーフ弁74を介して、タンク58へ移動させることができる。したがって、パイロット制御弁61を作動させることにより、および、方向弁54の制御スライダに復元バネを作用させることにより、制御流体を、制御スライダがその中立位置に戻るまで、逆止弁64を介して左の制御圧力室から移動させることができる。
さらに、配管分岐部68aおよび68bは互いに別々に、それぞれ切換弁75および76によって、タンクに対してリリーフされる。通常動作状態において、切換弁75および76は、駆動されている、すなわち、配管分岐部68aおよび68bと、タンクとの間の接続を中断している。例えばパイロット制御弁60のブロック時に、切換弁76を非駆動位置に切り替えることができる。その結果、配管分岐部68aがリリーフされる。したがって、制御流体は、方向弁54の左の制御圧力室から逆止弁64を介して、タンクへ流れることができる。その結果、方向弁54の制御スライダは、その中立位置へ戻る。パイロット制御弁を駆動して、方向弁54の右の制御圧力室において制御圧力を生成する場合、制御スライダは、中立位置さえ超えて左の制御圧力室の制限部へ動かされてもよい。このことにより、方向弁54によって制御されるモータ(液圧消費装置)を停止するだけではなく、モータ(液圧消費装置)に引戻動作すなわち復帰運動をさせることもできる。これにより、重要な、例えば液圧式走行駆動装置にとって決定的な安全性の要件が満たされる。
逆止弁77および78による配管分岐部68aおよび68bの流体的な分離によって、これらの配管分岐部をそれぞれ切換弁75および76によって互いに別々にリリーフすることができる。単にこうするだけで、配管分岐部68aまたは68bの一方をリリーフしながら、引戻動作を行なうための方向弁54または55の駆動を行なうことができる。さらに、たとえ切換弁75および76が駆動された位置のままでも、操縦要素において逆制御(反作用)することで、方向弁によって制御された液圧消費装置をどのような場合にも停止することができる。制御流体を配管分岐部68aおよび68bからリリーフ弁74へ供給するために、図示された逆止弁77および78の代わりに、シャトル弁も使用できる。
制御電子機器の故障時に、切換弁75および76は、配管分岐部68aおよび68bのリリーフされる非駆動位置へ戻る。それにより、方向弁54および55によって制御される液圧消費装置が停止される。
図4に、他の液圧式制御装置80のブロック図を示す。制御装置80には、パイロット制御された、常に調整可能な方向弁82が備えられている。方向弁82の制御スライダは、バネでセンタリングされている。方向弁82の液圧による制御は、2つの圧力制御弁38および40によって行なわれる。圧力制御弁38および40は、方向弁82のバネ室にそれぞれ接続されている。ポンプ56は、圧力制御弁38および40に、制御流体供給配管18を介して制御流体が供給されるのを保証する。制御流体供給配管18における圧力は、リリーフ弁84によって予め設定されている。圧力制御弁38および40は、制御流体リターン配管20を介してタンク58に接続されている。
圧力制御弁38の流出口と制御流体供給配管18との間に、制御流体供給配管18に向かって開いている逆止弁85が、圧力制御弁38に対して並列に接続されている。圧力制御弁40に対して並列に、その流出口と制御流体供給配管18との間に、更なる逆止弁86が接続されている。逆止弁86も、制御流体供給配管18の方へ開いている。
したがって、制御流体は、圧力制御弁38に接続された制御圧力室から逆止弁85を介して制御圧力供給配管18へ移動される。同じく、制御流体は、制御圧力弁40に接続された制御圧力室から逆止弁86を介して制御圧力供給配管18へ移動される。
制御圧力室から逆止弁85または86を介して制御流体供給配管18へ流体を移動させるのに必要な圧力は、制御流体供給配管18の供給圧力に相当している。供給圧力は、圧力制御弁38および40によって生成され得る最高の制御圧力に、または、それより少し高いように設定されている。制御スライダに対する流体の作用により、一方の制御圧力室から逆の側に配置された制御室の方へ流体が移動できるように、制御流体供給配管18における供給圧力は、センタリングバネのバネの付勢力に相当する圧力と、圧力制御弁38および40により生成され得る最高の制御圧力との合計よりも高くないのがよい。
例えば、圧力制御弁40が引っ掛かって動かなくなり、制御スライダが右へ動かされた状態である間に、方向弁82の左の制御室が遮断すれば、圧力制御弁38によって右の制御圧力室に制御圧力を生成することができる。制御流体の逆止弁86を介した制御流体供給配管18への移動を可能にする圧力は、右の制御圧力室において生成された制御圧力の作用と制御スライダに対する右のバネ室におけるバネの力とによって、左の制御圧力室に生じる。左の制御圧力室から移動された制御流体は、逆止弁84を介してタンク58へ流れるか、または、圧力制御弁38を介して右の制御圧力室へ流れる。
したがって、圧力制御弁が故障した場合でも、方向弁82の制御スライダを中央位置へ確実に戻すことができる。図4の制御装置は、追加の構成要素に対しては非常に少ない経費で、流出のブロックから制御圧力室を保護できる。逆止弁85および86だけが、圧力制御弁38,40に対して並列に接続される。
図5は、図4に示すブロック図の構造を有する制御ブロックの弁体90を示す。弁体90の構造は、本質的部分が図1に示す弁体1の構造に対応している。同じ構成部材には、同じ参照番号を付けて、以下では再び説明しない。
弁体90の基本部3は、特にその構成部材およびポートおよび右の制御カバー31が、図1に示す各構成部材に対応している。左の制御カバー93は、左の制御圧力室としてバネ室32を有している。バネ室32に、バイアスバネ34およびバネ板28が設けられている。左の制御カバー93には、圧力制御弁38および40がさらに挿入されている。圧力制御弁40は、制御圧力を制御圧力室32に生成する。圧力制御弁38は、制御圧力室33にかかる制御圧力を生成する。圧力制御弁38および40は、流体通路42を介して制御流体供給配管18に接続され、または流体通路43を介して制御流体リターン配管20に接続されている。
制御カバー93には、逆止弁85および86がさらに設けられている。逆止弁85は、圧力制御弁38の流出口に接続された流体通路39から、制御流体供給配管18に接続された流体通路42へつながっている。逆止弁85は、制御流体供給配管18の方向へ開いている。逆止弁86は、圧力制御弁40の流出口(流体通路41)から、同じく流体通路42へつながっている。逆止弁86も、制御流体供給配管18に向かって開いている。
したがって、図4に示す回路に対応する弁体を、特に簡単に提供することができる。従来の弁体に対して、左の制御カバーだけが、2つの逆止弁の分だけ拡張されている。弁体90は、圧力制御弁38および40のブロックに対して安全性を有しているが、従来の弁体よりも構造は少ししか複雑でない。
図1は、流体配管が付加されており、この流体配管を介して、制御圧力室から制御流体を移動させることのできる液圧式制御ブロックの方向弁体の側面図(一部は断面図)である。 図2は、2つの方向弁を有し、これら2つの弁が、図1に示すように制御圧力室からの流体流出のブロックから保護されており、手動で駆動可能な抽気機能をさらに有している液圧式制御装置のブロック図である。 図3は、2つの方向弁と、リリーフ配管の2つの分岐部とを有し、リリーフ配管の2つの分岐部は、切換弁によって互いに独立してリリーフされ、さらに、リリーフ弁を介してタンクへ制御流体を排出できる液圧式制御装置のブロック図である。 図4は、制御流体を制御圧力室から制御流体供給配管へ移動することのできる液圧式制御装置のブロック図である。 図5は、図4のブロック図に対応する実施形態における液圧式制御ブロックの方向弁体の側面図(一部は断面図)である。
符号の説明
1 弁体
3 基本部
10 流体供給ポート
12 タンクポート
13 タンクポート
16 載荷圧力レポート配管
18 制御流体供給配管
20 制御流体リターン配管
22 消費装置ポート
23 消費装置ポート
25 弁孔
26 制御スライダ
28 バネ板
29 バネ板
30 制御カバー
31 制御カバー
32 左のバネ室/制御圧力室
33 右のバネ室/制御圧力室
34 バネ
35 バネ
38 圧力制御弁
39 流体通路
40 圧力制御弁
41 流体通路
42 流体通路
43 流体通路
46 逆止弁
47 逆止弁
48 流体配管
50 リリーフ弁
52 液圧式制御装置
54 常に調整可能な方向弁
55 常に調整可能な方向弁
56 ポンプ
57 リリーフ弁
60 圧力制御弁
61 圧力制御弁
62 圧力制御弁
63 圧力制御弁
64 逆止弁
65 逆止弁
66 逆止弁
67 逆止弁
68 流体配管
68a 流体配管分岐部
68b 流体配管分岐部
70 手動によるリリーフ弁
71 キャビテーション防止弁
72 液圧式制御装置
74 リリーフ弁
75 切換弁
76 切換弁
77 逆止弁
78 逆止弁
80 液圧式制御装置
82 方向弁
84 リリーフ弁
85 逆止弁
86 逆止弁
90 弁体
93 制御カバー

Claims (7)

  1. 制御圧力室(32)と制御スライダ(26)とを有し、前記制御スライダ(26)は、前記制御圧力室(32)における制御圧力の蓄積によりバネ(35)の力に逆らうように調整可能である方向弁(1;54;90)と、
    制御流体の前記制御圧力室(32)への流入および前記制御圧力室(32)からの流出を制御するためのパイロット制御弁(40;60)とを備える液圧消費装置を制御するための制御装置であって、
    リリーフ装置(46,48,50;68a,76;86)を備え、
    前記リリーフ装置(46,48,50;68a,76;86)によって、前記制御流体は、前記パイロット制御弁(40;60)を迂回しながら前記制御圧力室(32)から移動可能であり、
    前記リリーフ装置は、リリーフ配管(48)と逆止弁(46)とを有し、
    前記逆止弁(46)を介して、制御流体は、前記制御圧力室(32)から前記リリーフ配管(48)へ移動可能であり、
    前記リリーフ配管(48)における圧力は、前記パイロット制御弁がその流出口において最大に設定することのできる最高の制御圧力以上で、前記最高の制御圧力と前記バネ(35)の付勢力に相当する圧力との合計未満の値に制限可能であ
    ことを特徴とする制御装置。
  2. 請求項に記載の制御装置において、
    前記リリーフ配管(48)は、リリーフ弁(50)を介してタンクに接続可能であることを特徴とする制御装置。
  3. 請求項に記載の制御装置において、
    前記リリーフ弁(70)は、抽気機能を実行するため、手動で駆動可能であることを特徴とする制御装置。
  4. 請求項2又は3に記載の制御装置において、
    前記リリーフ配管(68a)は、切換弁(76)によってタンクへリリーフ可能であることを特徴とする制御装置。
  5. 請求項に記載の制御装置において、
    前記方向弁(54)は、前記制御スライダに対して相反する方向への作用を及ぼすことのできる2つの制御圧力室を備え、
    前記2つの制御圧力室から、制御流体は、それぞれ別々の逆止弁(64,65)を介して、2つの異なる分岐部(68a,68b)へ移動可能であり、
    前記リリーフ配管の前記2つの異なる分岐部(68a,68b)は、互いに流体的に分離されており、
    2つの切換弁(75,76)が備えられ、前記2つの切換弁(75,76)を介して、前記リリーフ配管の前記分岐部(68a,68b)は、互いに別々にタンクへリリーフ可能であることを特徴とする制御装置。
  6. 請求項またはに記載の制御装置において、
    制御流体は、前記リリーフ弁(74)へ向かって開くそれぞれの逆止弁(77,78)を介して、前記リリーフ配管の前記2つの異なる分岐部(68a,68b)から前記リリーフ弁(74)へ供給可能であることを特徴とする制御装置。
  7. 請求項2からの少なくとも1項に記載の制御装置において、
    それぞれ少なくとも1つ制御圧力室を有する複数の方向弁(54,55)が備えられ、
    異なる前記方向弁(54,55)の前記制御圧力室の各々から、制御流体は、それぞれ別々の逆止弁(64,66)を介して、前記リリーフ配管(68)または前記リリーフ配管の分岐部(68a,68b)へ移動可能であることを特徴とする制御装置。
JP2008554690A 2006-02-21 2007-02-16 制御装置および液圧式パイロット制御 Expired - Fee Related JP4961436B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200610007935 DE102006007935A1 (de) 2006-02-21 2006-02-21 Steuervorrichtung und hydraulische Vorsteuerung
DE102006007935.3 2006-02-21
PCT/EP2007/001373 WO2007096099A1 (de) 2006-02-21 2007-02-16 Steuervorrichtung und hydraulische vorsteuerung

Publications (2)

Publication Number Publication Date
JP2009527695A JP2009527695A (ja) 2009-07-30
JP4961436B2 true JP4961436B2 (ja) 2012-06-27

Family

ID=37986060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008554690A Expired - Fee Related JP4961436B2 (ja) 2006-02-21 2007-02-16 制御装置および液圧式パイロット制御

Country Status (8)

Country Link
US (1) US8322375B2 (ja)
EP (1) EP1987256B1 (ja)
JP (1) JP4961436B2 (ja)
KR (1) KR101367076B1 (ja)
CN (1) CN101389869B (ja)
AT (1) ATE513135T1 (ja)
DE (1) DE102006007935A1 (ja)
WO (1) WO2007096099A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021103A1 (de) * 2009-05-13 2010-11-18 Hydac Filtertechnik Gmbh Hydraulische Ventilvorrichtung
CN101749255B (zh) * 2010-01-14 2012-01-25 北京天地玛珂电液控制系统有限公司 一种泵用卸载阀的先导阀
DE102011084932A1 (de) * 2011-10-21 2013-04-25 Zf Friedrichshafen Ag Ventilvorrichtung mit einem mehrere Schaltzungen aufweisenden Ventilgehäuse
US9488095B2 (en) * 2012-07-18 2016-11-08 Orbital Traction, Ltd. Power plant with pressure relief valve
US9759238B2 (en) * 2012-08-16 2017-09-12 Volvo Construction Equipment Ab Hydraulic control valve for construction machinery
DE102012020580A1 (de) * 2012-10-22 2014-04-24 Robert Bosch Gmbh Ventilanordnung
CN103398039B (zh) * 2013-08-22 2015-10-28 徐州重型机械有限公司 一种控制阀装置、多缸同步控制液压系统及起重机
CN103591075B (zh) * 2013-11-29 2017-02-15 徐州重型机械有限公司 起重机、平衡重液压缸同步的液压控制系统
EP3434913B1 (en) * 2016-03-24 2021-05-12 Tadano Ltd. Hydraulic system
DE102016212310A1 (de) * 2016-07-06 2018-01-11 Robert Bosch Gmbh Ventil mit über den Steuerschieber entlüftetem Steuerraum
DE102016212311A1 (de) * 2016-07-06 2018-01-11 Robert Bosch Gmbh Ventil mit über Dichtungsnut entlüftetem Steuerraum
JP6618445B2 (ja) * 2016-09-29 2019-12-11 日立建機株式会社 作業車両用油圧制御装置
CN110486341B (zh) * 2018-05-14 2023-03-21 博世力士乐(北京)液压有限公司 液压控制系统以及移动式工作设备
JP7149140B2 (ja) * 2018-09-18 2022-10-06 川崎重工業株式会社 マルチコントロールバルブユニット及び油圧ショベル用油圧駆動装置
CN110966276B (zh) * 2019-12-31 2022-02-25 江苏汇智高端工程机械创新中心有限公司 多路阀、液压系统以及工程机械
WO2023041444A1 (en) * 2021-09-17 2023-03-23 Parker Hannifin Emea S.À.R.L. A redundant hydraulic system

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3599675A (en) * 1970-02-06 1971-08-17 Ato Inc Proportional valve
JPS5545925Y2 (ja) * 1975-03-07 1980-10-28
JPS51112195A (en) 1975-03-26 1976-10-04 Tamotsu Sasaki Automatic flashing device designed to know the normal operation by hit ting sound, not only of direction indication lamp but of automatic gri nd rotary contact
US4126293A (en) * 1976-07-16 1978-11-21 Control Concepts, Inc. Feathering valve assembly
US4220074A (en) * 1977-05-25 1980-09-02 Vapor Corporation Switching valve
US4627468A (en) * 1985-08-30 1986-12-09 Husco International, Inc. Hydraulic control valve with manual override
KR950003065B1 (ko) 1986-09-09 1995-03-30 히다찌 겡끼 가부시기가이샤 밸브장치
DE3817218A1 (de) * 1987-06-11 1988-12-22 Mannesmann Ag Hydraulisches steuersystem fuer einen hydraulikbagger
US4799420A (en) * 1987-08-27 1989-01-24 Caterpillar Inc. Load responsive control system adapted to use of negative load pressure in operation of system controls
JPH0752402Y2 (ja) * 1987-10-14 1995-11-29 カヤバ工業株式会社 流体制御弁
US5056561A (en) * 1990-02-08 1991-10-15 Byers James O Remote controlled, individually pressure compensated valve
JPH0527308A (ja) 1991-07-24 1993-02-05 Olympus Optical Co Ltd 閃光発光装置
JPH0527308U (ja) * 1991-09-18 1993-04-09 住友建機株式会社 油圧シヨベルの油圧回路
DE4137963C2 (de) * 1991-10-30 1995-03-23 Rexroth Mannesmann Gmbh Ventilanordnung zur lastunabhängigen Steuerung mehrerer hydraulischer Verbraucher
IT1255904B (it) 1991-10-30 1995-11-17 Rexroth Mannesmann Gmbh Disposizione di valvole per il comando indipendente dal carico di piu'utilizzi idraulici
JPH06117417A (ja) 1992-10-07 1994-04-26 Hitachi Constr Mach Co Ltd パイロット回路
JPH06193606A (ja) * 1992-12-22 1994-07-15 Komatsu Ltd 圧力補償弁を備えた操作弁
JPH06193767A (ja) * 1992-12-22 1994-07-15 Komatsu Ltd 電磁比例減圧弁付操作弁
US5806565A (en) * 1994-02-04 1998-09-15 Microhydraulics Inc. Hydraulic valves
JP3549126B2 (ja) * 1994-08-05 2004-08-04 株式会社小松製作所 方向制御弁
DE4435339C2 (de) * 1994-10-01 2003-06-05 Bosch Rexroth Ag Anordnung zur Ansteuerung eines hydraulisch betätigbaren Hauptventils
US5546847A (en) * 1995-09-12 1996-08-20 Caterpillar Inc. Hydraulic cylinder snubbing arrangement
JP3609182B2 (ja) * 1996-01-08 2005-01-12 日立建機株式会社 建設機械の油圧駆動装置
DE19715020A1 (de) 1997-04-11 1998-10-15 Rexroth Mannesmann Gmbh Hydraulische Steueranordnung, insbesondere für ein Fahrzeug zum Transport von Absetzmulden
DE19855187A1 (de) * 1998-11-30 2000-05-31 Mannesmann Rexroth Ag Verfahren und Steueranordnung zur Ansteuerung eines hydraulischen Verbrauchers
FR2807118B1 (fr) * 2000-03-28 2002-07-05 Mannesmann Rexroth Sa Circuit hydraulique pour l'actionnement de recepteurs hydrauliques multiples
JP3776744B2 (ja) 2001-04-20 2006-05-17 新キャタピラー三菱株式会社 パイロット操作制御弁のエア抜き構造
WO2004020840A1 (de) * 2002-08-28 2004-03-11 Bucher Hydraulics Gmbh Hydraulischer antrieb für ein wegeventil
DE10308910B4 (de) 2003-02-28 2013-01-17 Linde Material Handling Gmbh Hydraulisches Steuerventil
US7451685B2 (en) * 2005-03-14 2008-11-18 Husco International, Inc. Hydraulic control system with cross function regeneration

Also Published As

Publication number Publication date
US20090044872A1 (en) 2009-02-19
JP2009527695A (ja) 2009-07-30
WO2007096099A1 (de) 2007-08-30
CN101389869B (zh) 2012-11-14
EP1987256A1 (de) 2008-11-05
KR20080094885A (ko) 2008-10-27
EP1987256B1 (de) 2011-06-15
ATE513135T1 (de) 2011-07-15
US8322375B2 (en) 2012-12-04
KR101367076B1 (ko) 2014-02-24
CN101389869A (zh) 2009-03-18
DE102006007935A1 (de) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4961436B2 (ja) 制御装置および液圧式パイロット制御
US9249812B2 (en) Hydraulic circuit for pipe layer
JP3785159B2 (ja) 産業用トラック用の電気油圧式昇降制御装置
US6250202B1 (en) Hydraulic control device
JP2008530457A (ja) 弁、特に比例圧力調節弁
US11318988B2 (en) Hydraulic steering control system
WO2008023516A1 (fr) Système d'entraînement de ventilateur
JP2010531419A (ja) 油圧制御配置構造
KR101874126B1 (ko) 유압 바이패스시스템
JP2017190119A (ja) 油圧操舵装置
US20150135698A1 (en) Hydraulic valve arrangement with control/regulating function
US7753455B2 (en) Working machine
EP0833062A1 (en) Driving device for a hydraulic motor
GB2509806B (en) Electrohydraulic antilock brake system with isolation valve
US8833391B2 (en) Valve arrangement
KR20160128320A (ko) 파워부스트 허브
CN109563860B (zh) 用于从液压致动器回收能量的系统
US20140345268A1 (en) Travel control system for construction machinery
KR20200065597A (ko) 특수 차량용 자동 조향 제어 시스템
KR20090068835A (ko) 건설 기계의 유압회로
US6973940B2 (en) Hydraulic control valve
CN111051618B (zh) 作业车辆
KR101500753B1 (ko) 건설기계의 유압회로
JP4838490B2 (ja) 制御弁装置
JP4386476B2 (ja) 静水圧駆動系

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees