JP4960731B2 - Seismic reinforcement structure for viaduct - Google Patents

Seismic reinforcement structure for viaduct Download PDF

Info

Publication number
JP4960731B2
JP4960731B2 JP2007062820A JP2007062820A JP4960731B2 JP 4960731 B2 JP4960731 B2 JP 4960731B2 JP 2007062820 A JP2007062820 A JP 2007062820A JP 2007062820 A JP2007062820 A JP 2007062820A JP 4960731 B2 JP4960731 B2 JP 4960731B2
Authority
JP
Japan
Prior art keywords
foundation beam
steel sheet
sheet pile
orthogonal
viaduct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007062820A
Other languages
Japanese (ja)
Other versions
JP2008223325A (en
Inventor
素之 岡野
隆 松田
浩一 田中
正道 曽我部
政幸 神田
幸裕 谷村
英俊 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Railway Technical Research Institute
Original Assignee
Obayashi Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Railway Technical Research Institute filed Critical Obayashi Corp
Priority to JP2007062820A priority Critical patent/JP4960731B2/en
Publication of JP2008223325A publication Critical patent/JP2008223325A/en
Application granted granted Critical
Publication of JP4960731B2 publication Critical patent/JP4960731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、主として鉄道用に係る高架橋の耐震補強構造に関する。   The present invention relates to a viaduct seismic reinforcing structure mainly for railways.

鉄道用高架橋の下部構造は、通常、鉄筋コンクリートのラーメン架構として構築されることが多いが、その設計施工の際には、地震時における高架橋の耐震性が十分検討されなければならない。特に、橋軸直交方向については、列車の脱線を未然に防止できるよう、同方向の剛性を十分に高めておく必要がある。   The substructure of a railway viaduct is usually constructed as a reinforced concrete ramen frame. However, when designing and constructing it, the seismic resistance of the viaduct during an earthquake must be fully considered. In particular, in the direction orthogonal to the bridge axis, it is necessary to sufficiently increase the rigidity in the same direction so that derailment of the train can be prevented.

かかる状況下、本出願人は鉄筋コンクリートのラーメン架構内にダンパーブレースを配設した高架橋の下部構造を研究開発し、耐震性の向上を図ってきた。   Under such circumstances, the applicant has been researching and developing a viaduct substructure in which a damper brace is arranged in a reinforced concrete ramen frame to improve seismic resistance.

ここで、既設の高架橋にダンパーブレースを配置する場合には、地上に構築される部分のみならず、地下部分についても耐震性を向上させる必要があるところ、基礎梁の再施工には多額の費用と時間を要する。   Here, when placing damper braces on existing viaducts, it is necessary to improve earthquake resistance not only on the part built on the ground but also on the underground part. And takes time.

そのため、本出願人は、ラーメン架構を支持する既設の杭から離間した位置にあらたな杭を増し杭として設けるとともに、該増し杭の杭頭と梁の両端近傍又は柱の頭部近傍とをブレースを介して相互に連結する耐震補強構造を開発した。   Therefore, the present applicant provides a new pile as an additional pile at a position separated from the existing pile supporting the frame structure, and braces the pile head of the increased pile and the vicinity of both ends of the beam or the vicinity of the head of the column. We have developed a seismic reinforcement structure that connects to each other via

特開2001−020228号公報JP 2001-020228 A 特開2004−270168号公報JP 2004-270168 A

上述した耐震補強構造によれば、鉛直荷重は従前通り、既設の杭で支持する一方、地震時水平力については、その一部をブレースを介して増し杭に伝達させることが可能となり、かくして高架橋の下部構造を地上部分のみならず地下部分についても耐震補強することが可能となる。   According to the seismic reinforcement structure described above, the vertical load is supported by the existing pile as before, while the horizontal force during the earthquake can be partially transmitted to the pile through the brace, thus the viaduct. It is possible to seismically reinforce the substructure of not only the ground part but also the underground part.

しかしながら、かかる耐震補強構造であっても、増設される杭を大断面杭としなければならないため、経済性の観点では未だ開発の余地があった。   However, even with such a seismic reinforcement structure, the pile to be added has to be a large section pile, so there is still room for development in terms of economy.

本発明は、上述した事情を考慮してなされたもので、下部構造の地上部分のみならず地下部分も合わせて耐震補強可能な高架橋の耐震補強構造を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a viaduct seismic reinforcement structure capable of seismic reinforcement not only in the ground part but also in the underground part of the lower structure.

上記目的を達成するため、本発明に係る高架橋の耐震補強構造は請求項1に記載したように、高架橋の橋軸方向に沿って対向配置された一対の基礎梁と該一対の基礎梁にほぼ直交するように配置された直交基礎梁とを矩形状又は梯子状に緊結するとともに、前記直交基礎梁の両端近傍に互いに対向するように立設された一対の柱と該柱の頭部に架け渡された梁とでラーメン架構を構成し、該ラーメン架構の構面にブレースを配置するとともに、前記各基礎梁の側方にて鋼矢板をそれぞれ地盤に埋設して該鋼矢板の頭部を前記各基礎梁にそれぞれ接合したものである。   In order to achieve the above object, a viaduct seismic reinforcement structure according to the present invention comprises a pair of foundation beams arranged opposite to each other along the bridge axis direction of the viaduct and a pair of foundation beams as described in claim 1. The orthogonal foundation beams arranged so as to be orthogonal to each other are fastened in a rectangular shape or a ladder shape, and a pair of pillars erected so as to face each other in the vicinity of both ends of the orthogonal foundation beams and the heads of the pillars. A ramen frame is constructed with the passed beams, braces are arranged on the surface of the ramen frame, and steel sheet piles are buried in the ground at the sides of each foundation beam, and the heads of the steel sheet piles are Each is joined to each foundation beam.

また、本発明に係る高架橋の耐震補強構造は、前記基礎梁の側方のうち、前記ブレースを配置したラーメン架構直下に位置する直交基礎梁との接合箇所近傍を鋼矢板設置領域とするとともに、前記ブレースが非設置のラーメン架構直下に位置する直交基礎梁との接合箇所近傍を鋼矢板非設置領域とし、前記鋼矢板設置領域にのみ前記鋼矢板を設置したものである。   Further, the seismic reinforcement structure of the viaduct according to the present invention has a steel sheet pile installation region in the vicinity of the joint portion of the side of the foundation beam and the orthogonal foundation beam located immediately below the frame structure where the brace is arranged, A steel sheet pile non-installation region is defined as a vicinity of a joint portion with the orthogonal foundation beam positioned immediately below the ramen frame where the brace is not installed, and the steel sheet pile is installed only in the steel sheet pile installation region.

また、本発明に係る高架橋の耐震補強構造は、前記直交基礎梁の側方にて前記鋼矢板を地盤に埋設するとともに該鋼矢板の頭部を前記直交基礎梁に接合したものである。   In addition, the viaduct seismic reinforcement structure according to the present invention is such that the steel sheet pile is embedded in the ground at the side of the orthogonal foundation beam and the head of the steel sheet pile is joined to the orthogonal foundation beam.

また、本発明に係る高架橋の耐震補強構造は、前記基礎梁及び前記直交基礎梁で囲まれた矩形状平面空間に鉄筋コンクリート床板を構築して該鉄筋コンクリート床板を前記基礎梁及び前記直交基礎梁に緊結したものである。   The seismic reinforcement structure for a viaduct according to the present invention includes a reinforced concrete floor slab constructed in a rectangular plane space surrounded by the foundation beam and the orthogonal foundation beam, and the reinforced concrete floor panel is tightly coupled to the foundation beam and the orthogonal foundation beam. It is a thing.

また、本発明に係る高架橋の耐震補強構造は、前記ブレースをダンパーブレースとしたものである。   Moreover, the viaduct seismic reinforcement structure according to the present invention is such that the brace is a damper brace.

本発明は、地上部分であるラーメン架構と該ラーメン架構を支持する地下部分の基礎構造とで形成してなる高架橋の下部構造を耐震補強の対象としたものであり、基礎構造は、高架橋の橋軸方向に沿って対向配置された一対の基礎梁と該一対の基礎梁にほぼ直交するように配置された直交基礎梁とを矩形状又は梯子状に緊結して構成してある。   The present invention is intended for seismic reinforcement of a viaduct substructure formed of a ramen frame that is an above-ground part and a base structure of an underground part that supports the ramen frame. A pair of foundation beams arranged opposite to each other along the axial direction and an orthogonal foundation beam arranged so as to be substantially orthogonal to the pair of foundation beams are fastened in a rectangular shape or a ladder shape.

そして、本発明においては、シートパイルとも呼ばれる鋼矢板を一対の基礎梁の側方にてそれぞれ地盤に埋設するとともに、埋設された鋼矢板の頭部を各基礎梁にそれぞれ接合してある。   In the present invention, steel sheet piles, also called sheet piles, are embedded in the ground at the sides of the pair of foundation beams, and the heads of the embedded steel sheet piles are joined to the foundation beams, respectively.

このようにすると、地震時に発生するラーメン架構全体のロッキング振動に起因した引抜き力や圧縮力がラーメン架構の柱を介して基礎構造に作用するが、これらの引抜き力又は圧縮力は、既存の杭で支持されるほか、頭部が基礎梁に接合された鋼矢板で支持されることとなる。換言すれば、ラーメン架構の柱から伝達されてきた引抜き力や圧縮力は、杭と周辺地盤との周面摩擦力で支持されるほか、鋼矢板と周辺地盤との摩擦力で支持されることとなる。   In this way, the pulling force and compressive force caused by the rocking vibration of the entire rigid frame structure that occurs during the earthquake acts on the foundation structure via the columns of the rigid frame structure, but these pulling force or compressive force is applied to existing piles. The head is supported by a steel sheet pile joined to the foundation beam. In other words, the pulling force and compressive force transmitted from the column of the rigid frame are supported by the peripheral frictional force between the pile and the surrounding ground, and also supported by the frictional force between the steel sheet pile and the surrounding ground. It becomes.

したがって、ラーメン架構に配置したブレースによる耐震補強作用と相俟って、高架橋の下部構造全体の耐震補強作用を大幅に高めることが可能となる。   Therefore, in combination with the seismic reinforcement effect of the braces arranged on the ramen frame, it is possible to greatly enhance the seismic reinforcement effect of the entire viaduct substructure.

ラーメン架構は、直交基礎梁の両端近傍に互いに対向するように立設された一対の柱と該柱の頭部に架け渡された梁とで構成されていて、その構面は高架橋の橋軸方向と直交しており、該構面にブレースを配置した場合、橋軸直交方向に沿った高架橋下部構造の水平剛性が向上する。   A rigid frame is composed of a pair of columns erected so as to face each other in the vicinity of both ends of an orthogonal foundation beam, and a beam spanned over the head of the column. When the brace is arranged on the plane of construction, the horizontal rigidity of the viaduct substructure along the direction orthogonal to the bridge axis is improved.

ブレースは、すべてのラーメン架構に配置する必要はなく、要求される耐震性の程度その他の理由により、選択的に配置することができる。例えば一つ飛ばしでブレースを配置することが考えられる。なお、本明細書では、狭義のブレースに加えて、ダンパー機構を組み込んだダンパーブレースも包摂する概念として、ブレースなる用語を広義に用いるものとする。   The braces need not be placed on every frame frame, but can be selectively placed for the required degree of seismic resistance or other reasons. For example, it is conceivable to place a brace by skipping one. In the present specification, the term “brace” is used in a broad sense as a concept that encompasses a damper brace incorporating a damper mechanism in addition to a narrowly defined brace.

鋼矢板は、高架橋の橋軸方向に沿って対向配置された一対の基礎梁の側方にそれぞれ埋設してあるとともに、それらの頭部を各基礎梁にそれぞれ接合してある。鋼矢板と基礎梁との接合構造は、ラーメン架構の柱から伝達される引抜き力や圧縮力が鋼矢板に伝達される限り、任意の構造を採用することが可能であり、剛接合でもよいし、ピン接合でもかまわない。   The steel sheet piles are respectively embedded in the sides of a pair of foundation beams arranged opposite to each other along the bridge axis direction of the viaduct, and their heads are respectively joined to the foundation beams. The steel sheet pile and the foundation beam can be joined with any structure as long as the pulling force or compression force transmitted from the column of the rigid frame is transmitted to the steel sheet pile. Also, it can be a pin joint.

鋼矢板は上述したように、地震時に発生するラーメン架構全体のロッキング振動に起因した引抜き力や圧縮力を支持するものであるが、一方の柱に引抜き力が生じているときには他方の柱に圧縮力が生じるので、鋼矢板は、一対の基礎梁のうち、一方の基礎梁と他方の基礎梁のそれぞれの側方に設置する。   As mentioned above, the steel sheet pile supports the pulling force and compressive force caused by the rocking vibration of the entire rigid frame structure that occurs during the earthquake, but when the pulling force is generated in one column, it is compressed in the other column. Since a force is generated, the steel sheet pile is installed on each side of one foundation beam and the other foundation beam of the pair of foundation beams.

但し、基礎梁の側方のうち、両側方に設置するのか、それとも高架橋中心に近い側又は遠い側の一方だけに設置するのかは任意であり、例えば高架橋中心から遠い側にそれぞれ配置する場合には、鋼矢板の離間距離が最も大きい2列配置となる。それに対し、各基礎梁の両側方にそれぞれ配置する場合には、鋼矢板は、橋軸方向に沿って各基礎梁の両側方で2列、計4列に配置されることとなる。   However, it is arbitrary whether the side of the foundation beam is installed on both sides or only on the side close to or far from the viaduct center, for example, when placed on the side far from the viaduct center, respectively. Is a two-row arrangement in which the distance between the steel sheet piles is the largest. On the other hand, when arrange | positioning at the both sides of each foundation beam, the steel sheet pile will be arrange | positioned in a total of 4 rows in two rows on the both sides of each foundation beam along a bridge-axis direction.

ここで、上述した引抜き力や圧縮力を支持できる限り、橋軸方向に沿った鋼矢板の設置長さや設置位置をどのようにするかは任意であって、例えば基礎梁の全長にわたって鋼矢板を設置することが考えられるが、前記基礎梁の側方のうち、前記ブレースを配置したラーメン架構直下に位置する直交基礎梁との接合箇所近傍を鋼矢板設置領域とするとともに、前記ブレースが非設置のラーメン架構直下に位置する直交基礎梁との接合箇所近傍を鋼矢板非設置領域とし、前記鋼矢板設置領域にのみ前記鋼矢板を設置したならば、高架橋下部構造の耐震性を向上させる箇所が地上部分と地下部分で一致することとなり、経済性に優れた効率的な耐震補強工事が可能となる。   Here, as long as the above-described pulling force and compressive force can be supported, how to set the installation length and installation position of the steel sheet pile along the bridge axis direction is arbitrary, for example, the steel sheet pile over the entire length of the foundation beam. Although it is conceivable to install, the steel sheet pile installation area is the vicinity of the side of the foundation beam where the brace is placed and the orthogonal foundation beam located directly below the frame structure, and the brace is not installed If the steel sheet pile non-installation area is the vicinity of the joint with the orthogonal foundation beam located directly below the frame frame, and the steel sheet pile is installed only in the steel sheet pile installation area, the location to improve the earthquake resistance of the viaduct substructure is Since the ground part and the underground part coincide, it is possible to perform an effective seismic reinforcement work with excellent economic efficiency.

また、鋼矢板の設置範囲は基礎梁の側方だけに限定されるものではない。すなわち、直交基礎梁の側方にて鋼矢板を地盤に埋設して該鋼矢板の頭部を直交基礎梁に接合したならば、上述した引抜き力や圧縮力に対する耐震性を向上させることができるのみならず、鉛直軸線廻りのねじり剛性を高くすることができる。   Moreover, the installation range of the steel sheet pile is not limited to the side of the foundation beam. That is, if the steel sheet pile is embedded in the ground at the side of the orthogonal foundation beam and the head of the steel sheet pile is joined to the orthogonal foundation beam, the earthquake resistance against the above-described pulling force and compressive force can be improved. In addition, the torsional rigidity around the vertical axis can be increased.

そのため、周辺環境や空頭高さその他様々な施工上の理由によって、ラーメン架構へのブレース設置や基礎梁側方への鋼矢板設置をバランスよく行うことが困難な場合であっても、剛心回りのねじり剛性を向上させ、偏心配置による構造物のねじれを抑えることが可能となる。   Therefore, even if it is difficult to balance the installation of braces on ramen frames and steel sheet piles on the side of the foundation beam due to the surrounding environment, sky head height, and various other construction reasons, The torsional rigidity of the structure can be improved, and the torsion of the structure due to the eccentric arrangement can be suppressed.

一方、基礎梁及び直交基礎梁で囲まれた矩形状平面空間に鉄筋コンクリート床板を構築して該鉄筋コンクリート床板を基礎梁及び直交基礎梁に緊結したならば、鉄筋コンクリート床板を介して基礎梁及び直交基礎梁が一体化される。   On the other hand, if a reinforced concrete floor slab is constructed in a rectangular planar space surrounded by the foundation beam and the orthogonal foundation beam and the reinforced concrete floor panel is tightly connected to the foundation beam and the orthogonal foundation beam, the foundation beam and the orthogonal foundation beam are passed through the reinforced concrete floor panel. Are integrated.

そのため、高架橋下部構造の耐震性を向上させる箇所を地上部分と地下部分で一致させる必要性が少なくなり、ブレースの配置箇所と鋼矢板の配置箇所とを、施工手順や使用重機あるいは干渉物といったそれぞれの事情に応じて個別に決定することが可能となる。   Therefore, it is less necessary to match the location where the seismic resistance of the viaduct substructure is improved between the ground part and the underground part, and the place where the braces are placed and the place where the steel sheet piles are placed It becomes possible to decide individually according to the circumstances.

以下、本発明に係る高架橋の耐震補強構造の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a viaduct seismic reinforcement structure according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1及び図2は、本実施形態に係る高架橋の耐震補強構造を示した図である。これらの図でわかるように本実施形態に係る高架橋の耐震補強構造1は、地上部分であるラーメン架構4と該ラーメン架構を支持する地下部分の基礎構造5とで形成してなる高架橋の下部構造3を耐震補強の対象としたものである。   FIG.1 and FIG.2 is the figure which showed the earthquake-proof reinforcement structure of the viaduct concerning this embodiment. As can be seen from these figures, the viaduct seismic reinforcement structure 1 according to the present embodiment is a viaduct substructure formed by a ramen frame 4 that is an above-ground portion and a base structure 5 that is an underground portion that supports the ramen frame. 3 is the target of seismic reinforcement.

基礎構造5は図2でよくわかるように、高架橋の橋軸方向に沿って対向配置された一対の基礎梁6,6と、該一対の基礎梁にほぼ直交するように配置された直交基礎梁7とを梯子状に緊結して構成してなる。かかる基礎構造5は、橋軸方向に沿って連続的に構築され、地上部分であるラーメン架構4を介して高架橋の上部構造2を支持する。   As can be clearly seen in FIG. 2, the foundation structure 5 has a pair of foundation beams 6 and 6 arranged opposite to each other along the bridge axis direction of the viaduct and an orthogonal foundation beam arranged so as to be substantially orthogonal to the pair of foundation beams. 7 is formed in a ladder shape. The foundation structure 5 is continuously constructed along the bridge axis direction, and supports the superstructure 2 of the viaduct via the ramen frame 4 that is the ground part.

ラーメン架構4は、直交基礎梁7の両端近傍に互いに対向するように立設された一対の柱8,8と、該柱の頭部に架け渡された梁9とで構成してあり、各直交基礎梁7ごとに設けてあるが、梯子状をなす基礎構造5の端部に位置する直交基礎梁7上の2つのラーメン架構4にはダンパーブレース12を配置してある。   The frame 4 is composed of a pair of pillars 8 and 8 erected so as to face each other in the vicinity of both ends of the orthogonal foundation beam 7, and a beam 9 spanned over the head of the pillar. Although provided for each orthogonal foundation beam 7, damper braces 12 are arranged on the two frame frames 4 on the orthogonal foundation beam 7 located at the end of the ladder-shaped foundation structure 5.

ダンパーブレース12は、履歴減衰ダンパー10とブレース本体11,11とからなり、2本のブレース本体11,11を逆V字状に構面内に配置してその下端を柱8,8の脚部にそれぞれ接合するとともに、梁9の中央下面に取り付けられた履歴減衰ダンパー10に上端を接合して構成してある。   The damper brace 12 is composed of a hysteresis damping damper 10 and brace bodies 11, 11. The two brace bodies 11, 11 are arranged in an inverted V shape in the plane of construction, and the lower ends thereof are leg portions of the columns 8, 8. The upper end is joined to the hysteresis damping damper 10 attached to the lower center surface of the beam 9.

ここで、本実施形態に係る高架橋の耐震補強構造1は、シートパイルとも呼ばれる鋼矢板13,13を各基礎梁6の両側方にてそれぞれ地盤14に埋設することで、橋軸方向に沿って各基礎梁6の両側方で2列、計4列に配置してあるとともに、埋設された鋼矢板13,13の頭部を各基礎梁6にそれぞれ剛接してある。   Here, the viaduct seismic reinforcement structure 1 according to the present embodiment embeds steel sheet piles 13 and 13, also called sheet piles, in the ground 14 on both sides of each foundation beam 6, thereby extending along the bridge axis direction. It is arranged in two rows on both sides of each foundation beam 6, for a total of four rows, and the heads of the embedded steel sheet piles 13, 13 are in rigid contact with each foundation beam 6.

本実施形態に係る高架橋の耐震補強構造1を構築するには、まず鋼矢板13を地盤14に埋設する。鋼矢板13は、バイブロハンマーによって地盤14に揺動圧入するようにしてもよいし、油圧ハンマーによって地盤14に打ち込むようにしてもよい。いずれにしろ、鋼矢板13の施工については、従来行われている公知の方法に従って行えばよい。   In order to construct the viaduct seismic reinforcement structure 1 according to this embodiment, a steel sheet pile 13 is first embedded in the ground 14. The steel sheet pile 13 may be rocked and pressed into the ground 14 with a vibro hammer, or may be driven into the ground 14 with a hydraulic hammer. In any case, the construction of the steel sheet pile 13 may be performed according to a conventionally known method.

ここで、鋼矢板13の施工位置は、基礎梁6との接合作業が可能となるように、必要であれば、基礎梁6から一定距離だけ離間させる。以下、本実施形態では、鋼矢板13を基礎梁6から一定距離だけ離間させて埋設し、その離間空間を鋼矢板13の頭部と基礎梁6との接合空間とする場合について説明する。   Here, if necessary, the construction position of the steel sheet pile 13 is separated from the foundation beam 6 by a certain distance so that the joining work with the foundation beam 6 is possible. Hereinafter, in the present embodiment, a case where the steel sheet pile 13 is embedded by being separated from the foundation beam 6 by a certain distance and the separated space is used as a joint space between the head of the steel sheet pile 13 and the foundation beam 6 will be described.

次に、鋼矢板13と基礎梁6との間に拡がる地盤を溝状に掘り下げて基礎梁6を露出させ、鋼矢板13と基礎梁6との接合作業空間を確保する。   Next, the ground spreading between the steel sheet pile 13 and the foundation beam 6 is dug into a groove shape to expose the foundation beam 6, and a joining work space between the steel sheet pile 13 and the foundation beam 6 is secured.

次に、接合作業空間に突出されるように基礎梁6にコンクリートアンカーを打ち込むとともに、同様に鋼矢板13の頭部にスタッドを溶接する。   Next, a concrete anchor is driven into the foundation beam 6 so as to protrude into the joining work space, and a stud is similarly welded to the head of the steel sheet pile 13.

次に、必要に応じて接合作業空間に補強筋を配筋し、しかる後、該接合作業空間にコンクリートを打設する。   Next, reinforcing bars are arranged in the joining work space as necessary, and then concrete is placed in the joining work space.

本実施形態に係る高架橋の耐震補強構造1においては図3に示すように、地震時に上部構造2から下部構造3に作用する地震時水平力、ひいては該地震時水平力で引き起こされるラーメン架構4全体のロッキング振動に起因して、引抜き力や圧縮力が柱8,8を介して基礎構造5に作用する。   In the seismic reinforcement structure 1 of the viaduct according to the present embodiment, as shown in FIG. 3, the horizontal frame force caused by the earthquake acting on the lower structure 3 from the upper structure 2 at the time of the earthquake, and hence the entire frame structure 4 caused by the horizontal force during the earthquake. Due to the rocking vibration, the pulling force and compressive force act on the foundation structure 5 via the columns 8 and 8.

ここで、鋼矢板13は、設置長さW×埋込み深さDの面積をもって地盤14と接している。そのため、引抜き力や圧縮力は、既存の杭15による周面摩擦力に加えて、鋼矢板13と周辺地盤との間に生じる大きな摩擦力で確実に支持される。   Here, the steel sheet pile 13 is in contact with the ground 14 with an area of installation length W × embedding depth D. Therefore, in addition to the peripheral surface friction force by the existing pile 15, the drawing force and the compression force are reliably supported by a large friction force generated between the steel sheet pile 13 and the surrounding ground.

以上説明したように、本実施形態に係る高架橋の耐震補強構造1によれば、地震時に発生するラーメン架構4全体のロッキング振動に起因した引抜き力や圧縮力がラーメン架構4の柱8,8を介して基礎構造5に作用するが、これらの引抜き力又は圧縮力は、既存の杭15で支持されるほか、頭部が基礎梁6に接合された鋼矢板13で支持されることとなる。換言すれば、ラーメン架構4の柱8から伝達されてきた引抜き力や圧縮力は、杭15と周辺地盤との周面摩擦力で支持されるほか、鋼矢板13と周辺地盤との摩擦力で支持されることとなる。   As described above, according to the viaduct earthquake-proof reinforcement structure 1 according to the present embodiment, the pulling force and the compressive force caused by the rocking vibration of the entire rigid frame 4 generated at the time of the earthquake are applied to the columns 8 and 8 of the rigid frame 4. The pulling force or compressive force is supported by the existing pile 15 and the head is supported by the steel sheet pile 13 joined to the foundation beam 6. In other words, the pulling force and compressive force transmitted from the column 8 of the rigid frame 4 are supported by the circumferential frictional force between the pile 15 and the surrounding ground, and also by the frictional force between the steel sheet pile 13 and the surrounding ground. Will be supported.

したがって、ラーメン架構4に配置したダンパーブレース12による耐震補強作用と相俟って、高架橋の下部構造3を全体的に耐震補強することが可能となる。   Therefore, in combination with the seismic reinforcement effect of the damper brace 12 arranged on the rigid frame 4, it becomes possible to seismically strengthen the lower structure 3 of the viaduct as a whole.

本実施形態では、ブレースとして履歴減衰ダンパー10が組み込まれたダンパーブレース12を採用したが、ダンパーを組み込むかどうかは任意であり、これを省略し、ブレース本体11のみでブレースを構成してもかまわない。かかる場合においては、ブレース本体11の頂部を梁9の下面に剛接して構成することとなる。   In the present embodiment, the damper brace 12 in which the hysteresis damping damper 10 is incorporated is adopted as the brace. However, it is optional whether or not the damper is incorporated, and the brace may be configured only by the brace body 11. Absent. In such a case, the top of the brace body 11 is configured to be in rigid contact with the lower surface of the beam 9.

また、本実施形態では、鋼矢板13を基礎梁6の両側方に設置するようにしたが、これに代えて高架橋中心に近い側、又は遠い側の一方だけに設置してもかまわない。   Moreover, in this embodiment, although the steel sheet pile 13 was installed in the both sides of the foundation beam 6, it may replace with this and may install in only one of the side near a viaduct center, or a distant side.

図4は、基礎梁6の側方のうち、高架橋中心から遠い側だけに鋼矢板13を設置した変形例を示したものである。   FIG. 4 shows a modification in which the steel sheet pile 13 is installed only on the side farther from the viaduct center among the sides of the foundation beam 6.

また、本実施形態では、基礎構造5の両端に位置する直交基礎梁7,7直上のラーメン架構4にのみ、ダンパーブレース12を設けるようにしたが、これに代えて、基礎構造5の両端以外に位置する直交基礎梁7のラーメン架構4にもダンパーブレース12を設けるようにしてもよい。   In the present embodiment, the damper brace 12 is provided only on the rigid frame 4 just above the orthogonal foundation beams 7 and 7 positioned at both ends of the foundation structure 5. A damper brace 12 may also be provided on the rigid frame 4 of the orthogonal foundation beam 7 located at the position.

また、本実施形態では、鋼矢板13と基礎梁6との接合を剛接合としたが、これに代えてピン接合あるいは半剛接合としてもかまわないし、これに関連して、鋼矢板13の頭部と基礎梁6と接合するための施工方法は任意であって、柱8からの引張力や圧縮力を地盤14と鋼矢板13との摩擦力で支持できる限り、最適な接合方法を適宜選択すればよい。   Further, in this embodiment, the steel sheet pile 13 and the foundation beam 6 are joined rigidly, but instead of this, a pin joint or a semi-rigid joint may be used. The construction method for joining the part and the foundation beam 6 is arbitrary, and the optimum joining method is appropriately selected as long as the tensile force or compressive force from the column 8 can be supported by the friction force between the ground 14 and the steel sheet pile 13 do it.

また、本実施形態では、基礎梁6の全長にわたって鋼矢板13を設置するようにしたが、これに代えて図5の変形例に示す構成としてもよい。   Moreover, in this embodiment, although the steel sheet pile 13 was installed over the full length of the foundation beam 6, it is good also as a structure shown instead of this in the modification of FIG.

同図に示す変形例においては、基礎梁6の側方のうち、ダンパーブレース12を配置したラーメン架構4直下に位置する直交基礎梁7との接合箇所近傍を鋼矢板設置領域Z1とするとともに、ダンパーブレース12が非設置のラーメン架構4直下に位置する直交基礎梁7との接合箇所近傍を鋼矢板非設置領域Z0とし、鋼矢板設置領域Z1にのみ鋼矢板13を設置してある。 In the modified example shown in the figure, a steel sheet pile installation region Z 1 is set in the vicinity of a joint portion of the side of the foundation beam 6 with the orthogonal foundation beam 7 located immediately below the rigid frame 4 where the damper brace 12 is disposed. The vicinity of the joint with the orthogonal foundation beam 7 positioned immediately below the rigid frame 4 where the damper brace 12 is not installed is a steel sheet pile non-installation area Z 0 , and the steel sheet pile 13 is installed only in the steel sheet pile installation area Z 1. .

このように構成すると、高架橋下部構造3の耐震性を向上させた箇所が地上部分と地下部分で一致することとなり、経済性に優れた効率的な耐震補強工事が可能となる。   If comprised in this way, the location which improved the earthquake resistance of the viaduct substructure 3 will correspond in an above-ground part and an underground part, and the efficient earthquake-proof reinforcement construction excellent in economy will be attained.

図6乃至図8は、別の変形例を示したものである。同図に係る変形例においては、基礎梁6及び直交基礎梁7で囲まれた矩形状平面空間61に鉄筋コンクリート床板62を構築し、該鉄筋コンクリート床板を基礎梁6及び直交基礎梁7に緊結してある。   6 to 8 show another modified example. In the modification according to the figure, a reinforced concrete floor board 62 is constructed in a rectangular plane space 61 surrounded by the foundation beam 6 and the orthogonal foundation beam 7, and the reinforced concrete floor board is tightly connected to the foundation beam 6 and the orthogonal foundation beam 7. is there.

このように構成すると、鉄筋コンクリート床板62を介して基礎梁6及び直交基礎梁7が一体化されるため、高架橋下部構造3の耐震性を向上させる箇所を地上部分と地下部分で一致させる必要性が少なくなる。   If comprised in this way, since the foundation beam 6 and the orthogonal foundation beam 7 will be integrated via the reinforced concrete floor board 62, it is necessary to make the location which improves the earthquake resistance of the viaduct substructure 3 correspond in an above-ground part and an underground part. Less.

すなわち、本変形例では、ダンパーブレース12を上述した実施形態と同様、基礎構造5の端部に位置する直交基礎梁7の直上にあるラーメン架構4だけに配置する一方、鋼矢板13は、ダンパーブレース12を配置したラーメン架構4の両側にのみ配置してあり、ダンパーブレース12と鋼矢板13の設置位置とを一致させる必要がない。   In other words, in the present modification, the damper brace 12 is disposed only on the rigid frame 4 just above the orthogonal foundation beam 7 located at the end of the foundation structure 5 as in the above-described embodiment, while the steel sheet pile 13 It arrange | positions only on the both sides of the rigid frame 4 which has arrange | positioned the brace 12, and it is not necessary to make the installation position of the damper brace 12 and the steel sheet pile 13 correspond.

したがって、ダンパーブレース12の配置箇所と鋼矢板13の配置箇所とを、施工手順や使用重機あるいは干渉物といったそれぞれの事情に応じて個別に決定することが可能となる。   Therefore, it is possible to individually determine the location of the damper brace 12 and the location of the steel sheet pile 13 according to the circumstances such as the construction procedure, heavy equipment used, or interference.

また、本実施形態では、鋼矢板13をもっぱら基礎梁6の側方だけに設けたが、本発明は、直交基礎梁の側方に鋼矢板を設けることを排除するものではない。図9はかかる変形例を示したものである。   Moreover, in this embodiment, although the steel sheet pile 13 was provided only in the side of the foundation beam 6, this invention does not exclude providing a steel sheet pile in the side of an orthogonal foundation beam. FIG. 9 shows such a modification.

同図でわかるように、本変形例においては、複数本の直交基礎梁7で区画された矩形状平面空間61のうち、基礎構造5の端部に位置する矩形状平面空間91を挟む直交基礎梁7,7の直上に位置するラーメン架構4にダンパーブレース12aを設けるのみならず、矩形状平面空間91を挟む基礎梁6,6の直上に位置するラーメン架構4にダンパーブレース12b,12bを設けてある。また、基礎梁6,6の両側方にて鋼矢板13a,13aを地盤14に埋設して該鋼矢板の頭部を基礎梁6,6に接合するのみならず、直交基礎梁7,7の両側方にて鋼矢板13b,13bを地盤14に埋設して該鋼矢板の頭部を直交基礎梁7,7に接合してある。   As can be seen from the figure, in this modification, the orthogonal foundation sandwiching the rectangular planar space 91 located at the end of the foundation structure 5 out of the rectangular planar space 61 defined by a plurality of orthogonal foundation beams 7. Not only is the damper brace 12a provided on the frame 4 positioned directly above the beams 7 and 7, but also the damper braces 12b and 12b are provided on the frame 4 positioned directly above the foundation beams 6 and 6 sandwiching the rectangular planar space 91. It is. In addition to embedding steel sheet piles 13a, 13a in the ground 14 on both sides of the foundation beams 6, 6, not only joining the heads of the steel sheet piles to the foundation beams 6, 6, Steel sheet piles 13b, 13b are embedded in the ground 14 on both sides, and the heads of the steel sheet piles are joined to the orthogonal foundation beams 7, 7.

かかる構成においては、上述した実施形態と同様、直交基礎梁7の直上に位置するラーメン架構4及びその構面に配置されたダンパーブレース12aと、基礎梁6の側方に設けられた鋼矢板13aとが、橋軸直交方向に沿った下部構造3の地上部分と地下部分の剛性向上にそれぞれ寄与するが、それに加えて、基礎梁6の直上に位置するラーメン架構4及びその構面に配置されたダンパーブレース12bと直交基礎梁7の側方に設けられた鋼矢板13bとが、水平地震力に対する鉛直軸線廻りのねじれ剛性向上に寄与する。   In this configuration, as in the above-described embodiment, the frame 4 positioned directly above the orthogonal foundation beam 7, the damper brace 12 a disposed on the surface of the frame, and the steel sheet pile 13 a provided on the side of the foundation beam 6. Contributes to the improvement of the rigidity of the ground part and underground part of the lower structure 3 along the direction orthogonal to the bridge axis, but in addition to that, it is arranged on the frame 4 and the construction surface located immediately above the foundation beam 6. Further, the damper brace 12b and the steel sheet pile 13b provided on the side of the orthogonal foundation beam 7 contribute to the improvement of torsional rigidity around the vertical axis against the horizontal seismic force.

図10は、かかる作用を説明した概念図であり、同図でわかるように、ダンパーブレース12や鋼矢板13といった剛性部材が偏心配置されている場合、地震時水平力に対して、基礎構造5は剛心G1回りにねじれるが、そのねじれに対しては、鋼矢板13aが周辺地盤から受ける摩擦力によって抵抗する(同図(a)、(b))。 FIG. 10 is a conceptual diagram illustrating such an action. As can be seen from FIG. 10, when the rigid members such as the damper brace 12 and the steel sheet pile 13 are arranged eccentrically, the foundation structure 5 with respect to the horizontal force at the time of earthquake is shown. Is twisted around the rigid center G 1 , but the torsion is resisted by the frictional force that the steel sheet pile 13 a receives from the surrounding ground (FIGS. (A) and (b)).

一方、鋼矢板13bを直交基礎梁7の側方に設けた場合、地震時水平力に対して、基礎構造5は剛心G2回りにやはりねじれるものの、鋼矢板13aのみならず鋼矢板13bが周辺地盤から受ける摩擦力によってかかるねじれに抵抗するため(同図(c)、(d))、鋼矢板13aのみの場合に比べ、ねじれ量は小さくなる。 On the other hand, the case of providing a steel sheet pile 13b on the side of the orthogonal footing beams 7 with respect to seismic horizontal force, although basic structure 5 is also twisted Tsuyoshikokoro G 2 around the steel sheet pile 13b is not only the steel sheet pile 13a In order to resist the torsion applied by the frictional force received from the surrounding ground (FIGS. (C) and (d)), the amount of twist is smaller than in the case of the steel sheet pile 13a alone.

そのため、ラーメン架構4へのダンパーブレース12の設置や基礎梁6側方への鋼矢板13の設置をバランスよく行うことができず、それに起因して平面上の重心と剛心がずれる場合であっても、剛心回りのねじり剛性を向上させ、偏心配置による構造物のねじれを抑えることが可能となる。   Therefore, the installation of the damper brace 12 on the ramen frame 4 and the installation of the steel sheet pile 13 on the side of the foundation beam 6 cannot be performed in a well-balanced manner, and as a result, the center of gravity on the plane and the stiffness are shifted. However, it becomes possible to improve the torsional rigidity around the rigid core and to suppress the torsion of the structure due to the eccentric arrangement.

本実施形態に係る高架橋の耐震補強構造の鉛直断面図。The vertical sectional view of the seismic reinforcement structure of a viaduct concerning this embodiment. 同じく水平断面図。Similarly horizontal sectional view. 本実施形態の作用を示した概念図。The conceptual diagram which showed the effect | action of this embodiment. 変形例に係る高架橋の耐震補強構造を示した鉛直断面図。The vertical sectional view which showed the seismic reinforcement structure of the viaduct concerning a modification. A−A線に沿う水平断面図。The horizontal sectional view which follows the AA line. 別の変形例に係る高架橋の耐震補強構造を示した水平断面図。The horizontal sectional view which showed the seismic reinforcement structure of the viaduct concerning another modification. B−B線に沿う鉛直断面図。The vertical sectional view which follows a BB line. C−C線に沿う鉛直断面図。The vertical sectional view which follows CC line. 別の変形例に係る高架橋の耐震補強構造を示した水平断面図。The horizontal sectional view which showed the seismic reinforcement structure of the viaduct concerning another modification. 変形例の作用を説明した概念図。The conceptual diagram explaining the effect | action of the modification.

符号の説明Explanation of symbols

1 高架橋の耐震補強構造
2 高架橋の上部構造
3 高架橋の下部構造
4 ラーメン架構
5 基礎構造
6 基礎梁
7 直交基礎梁
8 柱
9 梁
10 履歴減衰ダンパー
11 ブレース本体
12 ダンパーブレース(ブレース)
13,13a,13b 鋼矢板
14 地盤
62 鉄筋コンクリート床板
1 Seismic reinforcement structure of viaduct 2 Superstructure of viaduct 3 Lower structure of viaduct 4 Frame structure 5 Foundation structure 6 Foundation beam 7 Orthogonal foundation beam 8 Column 9 Beam 10 Hysteresis damper 11 Brace body 12 Damper brace (brace)
13, 13a, 13b Steel sheet pile 14 Ground 62 Reinforced concrete floor board

Claims (5)

高架橋の橋軸方向に沿って対向配置された一対の基礎梁と該一対の基礎梁にほぼ直交するように配置された直交基礎梁とを矩形状又は梯子状に緊結するとともに、前記直交基礎梁の両端近傍に互いに対向するように立設された一対の柱と該柱の頭部に架け渡された梁とでラーメン架構を構成し、該ラーメン架構の構面にブレースを配置するとともに、前記各基礎梁の側方にて鋼矢板をそれぞれ地盤に埋設して該鋼矢板の頭部を前記各基礎梁にそれぞれ接合したことを特徴とする高架橋の耐震補強構造。 A pair of foundation beams arranged opposite to each other along the bridge axis direction of the viaduct and an orthogonal foundation beam arranged so as to be substantially orthogonal to the pair of foundation beams are fastened in a rectangular shape or a ladder shape, and the orthogonal foundation beams A pair of columns erected so as to face each other in the vicinity of both ends of the frame and a beam spanned over the heads of the columns constitute a ramen frame, and a brace is disposed on the frame surface of the ramen frame; A steel bridge sheet pile embedded in the ground at the side of each foundation beam, and the head of the steel sheet pile was joined to each foundation beam. 前記基礎梁の側方のうち、前記ブレースを配置したラーメン架構直下に位置する直交基礎梁との接合箇所近傍を鋼矢板設置領域とするとともに、前記ブレースが非設置のラーメン架構直下に位置する直交基礎梁との接合箇所近傍を鋼矢板非設置領域とし、前記鋼矢板設置領域にのみ前記鋼矢板を設置した請求項1記載の高架橋の耐震補強構造。 Of the sides of the foundation beam, the vicinity of the junction with the orthogonal foundation beam located immediately below the frame structure where the brace is arranged is a steel sheet pile installation region, and the orthogonality where the brace is located directly below the non-installed frame structure The seismic reinforcement structure for a viaduct according to claim 1, wherein the vicinity of the joint with the foundation beam is a steel sheet pile non-installation region, and the steel sheet pile is installed only in the steel sheet pile installation region. 前記直交基礎梁の側方にて前記鋼矢板を地盤に埋設するとともに該鋼矢板の頭部を前記直交基礎梁に接合した請求項1記載の高架橋の耐震補強構造。 2. The viaduct earthquake-proof reinforcement structure according to claim 1, wherein the steel sheet pile is embedded in the ground at a side of the orthogonal foundation beam and a head portion of the steel sheet pile is joined to the orthogonal foundation beam. 前記基礎梁及び前記直交基礎梁で囲まれた矩形状平面空間に鉄筋コンクリート床板を構築して該鉄筋コンクリート床板を前記基礎梁及び前記直交基礎梁に緊結した請求項1記載の高架橋の耐震補強構造。 The viaduct earthquake-proof reinforcement structure according to claim 1, wherein a reinforced concrete floor board is constructed in a rectangular planar space surrounded by the foundation beam and the orthogonal foundation beam, and the reinforced concrete floor board is fastened to the foundation beam and the orthogonal foundation beam. 前記ブレースをダンパーブレースとした請求項1乃至請求項4のいずれか一記載の高架橋の耐震補強構造。 The seismic reinforcement structure of a viaduct according to any one of claims 1 to 4, wherein the brace is a damper brace.
JP2007062820A 2007-03-13 2007-03-13 Seismic reinforcement structure for viaduct Expired - Fee Related JP4960731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062820A JP4960731B2 (en) 2007-03-13 2007-03-13 Seismic reinforcement structure for viaduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062820A JP4960731B2 (en) 2007-03-13 2007-03-13 Seismic reinforcement structure for viaduct

Publications (2)

Publication Number Publication Date
JP2008223325A JP2008223325A (en) 2008-09-25
JP4960731B2 true JP4960731B2 (en) 2012-06-27

Family

ID=39842254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062820A Expired - Fee Related JP4960731B2 (en) 2007-03-13 2007-03-13 Seismic reinforcement structure for viaduct

Country Status (1)

Country Link
JP (1) JP4960731B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103352421B (en) * 2013-07-17 2016-06-01 大连海事大学 Subtracting every shake bridge structure system containing buckling-restrained support and shock insulation rubber bearing
CN103967052B (en) * 2014-05-26 2016-01-06 沈阳铁道勘察设计院有限公司 A kind of method of protecting the new and old frame core-tube system substrate discrepancy in elevation soil body
JP6275314B1 (en) * 2017-08-01 2018-02-07 新日鉄住金エンジニアリング株式会社 Seismic reinforcement structure for bridges
CN112227231B (en) * 2020-10-10 2021-07-27 招商局重庆交通科研设计院有限公司 Land bridge maintenance bearing structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259080A (en) * 1994-03-22 1995-10-09 Shimizu Corp Self-supported sheath wall structure
JP3687805B2 (en) * 1995-12-08 2005-08-24 株式会社間組 Foundation reinforcement structure of structures
JP3759301B2 (en) * 1997-12-24 2006-03-22 大成建設株式会社 Structural foundation reinforcement structure
JP2001323964A (en) * 2000-03-06 2001-11-22 Shimizu Corp Vibration control damper and vibration control bridge
JP4328114B2 (en) * 2003-03-17 2009-09-09 三井住友建設株式会社 Bridge construction method
JP2004300914A (en) * 2003-03-17 2004-10-28 Sumitomo Mitsui Construction Co Ltd Structure of bridge pier
JP4343606B2 (en) * 2003-07-18 2009-10-14 三井住友建設株式会社 Bridge construction method

Also Published As

Publication number Publication date
JP2008223325A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4721273B2 (en) Seismic reinforcement method for existing buildings with reinforced concrete frame structures
JP4957295B2 (en) Seismic control pier structure
JP4960731B2 (en) Seismic reinforcement structure for viaduct
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP4140028B2 (en) Seismic reinforcement structure
JP4780618B2 (en) Seismic reinforcement structure for viaduct
KR101742438B1 (en) Integral abutment bridge having rotation receptive device at abutment-pile jointing site
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP4151693B2 (en) Installation structure of studs in existing building
JP5191191B2 (en) Extension construction method of extension building
JP2010047933A (en) Damping reinforcement frame
KR101638564B1 (en) seismic reinforcement apparatus and seismic reinforcement method using the same
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP5142213B2 (en) Seismic reinforcement structure for viaduct
KR101148815B1 (en) Composite pile connected inner connecting member and composite construction method using the same
JP4010981B2 (en) Upper extension method for existing buildings
JP2012117327A (en) Vibration control structure
JP4943190B2 (en) Seismic reinforcement structure for viaduct
JP5059687B2 (en) Building seismic control structure
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP5142214B2 (en) Seismic reinforcement structure for viaduct
JP2008303705A (en) Aseismic control structure
JP2005188240A (en) Vibration control structure
JP2012117364A (en) Vibration control bridge pier structure
JP2005273181A (en) Structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees