JP2010047933A - Damping reinforcement frame - Google Patents

Damping reinforcement frame Download PDF

Info

Publication number
JP2010047933A
JP2010047933A JP2008211749A JP2008211749A JP2010047933A JP 2010047933 A JP2010047933 A JP 2010047933A JP 2008211749 A JP2008211749 A JP 2008211749A JP 2008211749 A JP2008211749 A JP 2008211749A JP 2010047933 A JP2010047933 A JP 2010047933A
Authority
JP
Japan
Prior art keywords
existing
foundation
reinforcement frame
existing structure
damper member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008211749A
Other languages
Japanese (ja)
Inventor
Tetsumi Okamoto
哲美 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoe Corp
Original Assignee
Tomoe Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoe Corp filed Critical Tomoe Corp
Priority to JP2008211749A priority Critical patent/JP2010047933A/en
Publication of JP2010047933A publication Critical patent/JP2010047933A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcement construction method which makes use of the existing substructure of a structure, which can perform control of preventing a horizontal load from exceeding the bearing capacity of the existing substructure even when the horizontal load acts on the structure, and which does not increase the load on the body of the structure. <P>SOLUTION: A reinforcement frame 2 is provided which is installed adjacent to the side 11 of the existing structure 1 and which is connected to the side 11. The post leg 2c of the reinforcement frame 2 is connected to the foundation surface G in either a position which is the furthermost from the existing structure 1 or a position which is the closest to the existing structure 1, and the lower joint section 2b of the reinforcement frame 2 in the other position is connected to the foundation surface G through the medium of a damping member 6. Because of this, the reinforcement frame 2, which is installed adjacent to the existing structure 1, can damp the turning moment generated by the horizontal load acting on the existing structure 1 by the damping member 6 which is connected to the lower joint section 2b on the foundation surface G, and the lower joint section 2b is positioned at predetermined distance from the post leg 2c of the reinforcement frame 2. Thus, a high degree of damping effect can be produced by implementing the optimization of the volume of the damping member 6 by leverage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、既設構造物の側面に隣接して設置され、該側面と既設構造物の基礎面から所定高さに介設された連結材により連結される補強フレームを備えた制振補強フレームに関する。   The present invention relates to a vibration damping reinforcement frame provided with a reinforcement frame that is installed adjacent to a side surface of an existing structure and is connected to the side surface by a connecting member interposed at a predetermined height from a base surface of the existing structure. .

従来、地震や強風等により生じる水平荷重に対する建築等の構造物の補強を行う場合、張間方向については図11に示すように、構造物101の柱111に、補強材122として鉄筋コンクリートを巻き付けたり、鉄骨を添設して柱111本体を直接補強する方法、あるいは図12あるいは図13に示すように、鉄骨等から構成されるトラス状の補強材133あるいは単材の補強材144を、構造物101の柱111の外側に張り出して連結設置する方法があった。このような従来の補強方法において、図11の場合では、柱111の寸法が定まっている以上、補強材122の幅にも限りがあった。それ故、柱耐力を大幅に向上させにくく、また柱を充分に補強できたとしても、それに見合う基礎112部分の耐力の補強なしには水平方向耐力の確保が困難であった。   Conventionally, when reinforcing a structure such as a building against a horizontal load caused by an earthquake or a strong wind, reinforced concrete is wound around the column 111 of the structure 101 as a reinforcing material 122 as shown in FIG. A method of directly reinforcing the column 111 main body by attaching a steel frame, or a truss-like reinforcing material 133 or a single reinforcing material 144 made of steel or the like as shown in FIG. 12 or FIG. There has been a method of connecting and installing by projecting to the outside of the column 111 of 101. In such a conventional reinforcing method, in the case of FIG. 11, the width of the reinforcing member 122 is limited as long as the dimensions of the pillar 111 are determined. Therefore, it is difficult to significantly improve the column strength, and even if the column can be sufficiently reinforced, it is difficult to secure the horizontal strength without reinforcing the strength of the foundation 112 portion corresponding thereto.

一方、前記図12や図13の場合では、トラス状の補強材133あるいは単材の補強材144の脚部の水平方向の張出寸法が大きくなるので、構造物101の既設基礎構造112の外側に新たに新設基礎構造112aを独立して別途に設置する必要があり、しかも該新設基礎構造112aが引抜き力を受ける場合には、浮上しないように新設フーチング113aの嵩および重量を大きくする等の対策が必要となり、さらにコストアップを招いた。   On the other hand, in the case of FIG. 12 and FIG. 13, since the horizontal projecting dimension of the leg portion of the truss-like reinforcing member 133 or the single reinforcing member 144 is increased, the outer side of the existing foundation structure 112 of the structure 101 is increased. In addition, it is necessary to newly install the newly installed foundation structure 112a separately, and when the newly installed foundation structure 112a receives a pulling force, the bulk and weight of the newly installed footing 113a are increased so as not to float. Countermeasures were required, resulting in further cost increases.

以上述べたように、構造物の耐力のみを向上させる従来の補強方法では基礎構造を含めて考慮すると、コストが膨大となる場合もあり、近年採用されるようになった補強工法として制振補強工法がある。この方法は、構造物の柱本体の一部にダンパー部材を組み込んだもの(下記非特許文献1参照)や、前記図12や図13の例における補強材133や144にダンパー部材を組み込んで構成したもの(例えば下記特許文献2等参照)が提案された。
社団法人日本鋼構造協会 鋼構造論文集第10巻第40号(2003年12月発行)第65〜75頁「山形トラス構造物の弾塑性応答性状の分析と柱脚部分への補剛部材導入による耐震性の向上について」加藤史郎他著 特開平9−235890号公報(公報要約書参照)
As described above, in the conventional reinforcement method that improves only the proof stress of the structure, considering the foundation structure and other factors, the cost may be enormous, and as a reinforcement method that has recently been adopted, vibration suppression and reinforcement There is a construction method. In this method, a damper member is incorporated in a part of a column main body of a structure (see Non-Patent Document 1 below), or a damper member is incorporated in the reinforcing members 133 and 144 in the examples of FIGS. (See, for example, Patent Document 2 below).
Japan Steel Structure Association, Steel Structure Collection, Vol.10, No.40 (issued in December 2003), pages 65-75 “Analysis of elasto-plastic response of Yamagata truss structure and introduction of stiffening members to column bases” Improvement of earthquake resistance by Shiro "Kato et al. JP 9-235890 A (refer to the gazette abstract)

第1従来例である前記非特許文献1に開示された補剛部材の導入では、図11のものに適用した場合に、構造物101の柱111を構成する部材の一部をダンパー部材に取り替える必要があるので、新築時でなければ工事が困難であり、既設構造物への適用は実際的でなかった。また、第2従来例である前記特許文献2に開示された制振補強構造では、図12や図13のものに適用した場合に、補強材133あるいは144の傾斜角度あるいは基礎面上の水平距離がある程度必要なので脚部の張出し量が大きくなり、構造物101の既設基礎構造112から外れた位置に新設基礎構造112aを設置する必要があるのみならず、補強材133あるいは144にダンパー部材が組み込まれていることにより、発生軸力が一定以下に抑制される効果はあるものの、補強材133あるいは144の発生軸力は構造物101の柱111に伝達され、柱111への負担が増えることは在来工法と変わりがなかった。   In the introduction of the stiffening member disclosed in Non-Patent Document 1, which is the first conventional example, a part of the member constituting the pillar 111 of the structure 101 is replaced with a damper member when applied to the one shown in FIG. Because it is necessary, construction was difficult unless it was a new construction, and application to existing structures was impractical. Further, in the vibration damping reinforcement structure disclosed in Patent Document 2 as the second conventional example, when applied to the structure shown in FIGS. 12 and 13, the inclination angle of the reinforcing member 133 or 144 or the horizontal distance on the foundation surface is used. Therefore, it is necessary not only to install the new foundation structure 112a at a position away from the existing foundation structure 112 of the structure 101, but also to install a damper member in the reinforcing member 133 or 144. As a result, although the generated axial force is suppressed to a certain level or less, the generated axial force of the reinforcing member 133 or 144 is transmitted to the column 111 of the structure 101, and the burden on the column 111 is increased. It was no different from the conventional method.

そこで本発明は、前記従来の制振補強構造の諸課題を解決して、構造物の既設基礎構造を利用しつつ、水平荷重が作用しても既設基礎構造の耐力を超えないように制御でき、しかも構造物本体への負担を増大させない補強工法を実現できる制振補強フレームを提供することを目的とする。   Therefore, the present invention solves the problems of the conventional vibration damping and reinforcement structure, and can control the existing foundation structure so that it does not exceed the proof strength of the existing foundation structure even when a horizontal load is applied, while utilizing the existing foundation structure of the structure. And it aims at providing the vibration suppression reinforcement frame which can implement | achieve the reinforcement construction method which does not increase the burden to a structure main body.

このため本発明は、既設構造物の側面に隣接して設置され、該側面と既設構造物の基礎面から所定高さに介設された連結材により連結される補強フレームを備えた制振補強フレームにおいて、前記補強フレームの柱脚部が前記基礎面上において少なくとも前記既設構造物から最も遠い位置と最も近い位置のどちらか一方の位置で連結され、どちらか他方の補強フレームの下部節点部はダンパー部材を介して前記基礎面と連結されたことを特徴とする。また本発明は、既設構造物の側面に隣接して設置され、該側面と既設構造物の基礎面から所定高さに介設された連結材により連結される補強フレームを備えた制振補強フレームにおいて、前記補強フレームの柱脚部が前記基礎面上において前記既設構造物から最も近い位置で連結され、他方の補強フレームの下部節点部に梃子部材の一端を連結するとともに、該梃子部材の他端と前記基礎面との間にダンパー部材を介設し、前記梃子部材の中間部において前記基礎面との間に支点部材を介設したことを特徴とする。また本発明は、前記補強フレームにおける柱脚部、ダンパー部材および支点部材の全てが既設構造物の既設基礎構造の平面投影面内に配設したことを特徴とする。また本発明は、前記補強フレームにおける柱脚部、ダンパー部材および支点部材のいずれかが、既設構造物の既設基礎構造と一体化した増設基礎構造上に配設したことを特徴とするもので、これらを課題解決のための手段とするものである。   For this reason, the present invention provides a vibration damping reinforcement provided with a reinforcing frame that is installed adjacent to a side surface of an existing structure and is connected to the side surface by a connecting material interposed at a predetermined height from the base surface of the existing structure. In the frame, the column base portion of the reinforcing frame is connected to at least one of the farthest position and the closest position from the existing structure on the foundation surface, and the lower nodal portion of the other reinforcing frame is It is connected to the base surface via a damper member. The present invention also provides a vibration damping reinforcement frame provided with a reinforcement frame that is installed adjacent to a side surface of an existing structure and is connected to the side surface by a connecting member interposed at a predetermined height from the base surface of the existing structure. The column base portion of the reinforcing frame is connected at a position closest to the existing structure on the foundation surface, and one end of the lever member is connected to the lower node portion of the other reinforcing frame, and A damper member is interposed between an end and the base surface, and a fulcrum member is interposed between the end surface and the base surface at an intermediate portion of the lever member. The present invention is characterized in that all of the column base, the damper member, and the fulcrum member in the reinforcing frame are arranged in a plane projection plane of the existing foundation structure of the existing structure. Further, the present invention is characterized in that any of the column base part, the damper member and the fulcrum member in the reinforcing frame is disposed on the additional foundation structure integrated with the existing foundation structure of the existing structure, These are used as means for solving the problems.

本発明によれば、既設構造物の側面に隣接して設置され、該側面と既設構造物の基礎面から所定高さに介設された連結材により連結される補強フレームを備えた制振補強フレームにおいて、前記補強フレームの柱脚部が前記基礎面上において少なくとも前記既設構造物から最も遠い位置と最も近い位置のどちらか一方の位置で連結され、どちらか他方の補強フレームの下部節点部はダンパー部材を介して前記基礎面と連結されたことにより、既設構造物に隣接設置された補強フレームが、既設構造物に作用する水平荷重により発生した回転モーメントを、補強フレームの柱脚部から基礎面上の所定の距離を置いた下部節点部に連結されたダンパー部材にて減衰できるので、梃子の原理にてダンパー部材の容量の最適化を図ることにより大きな減衰効果を発揮させることができる。   According to the present invention, vibration suppression reinforcement is provided with a reinforcing frame that is installed adjacent to a side surface of an existing structure and is connected to the side surface by a connecting material interposed at a predetermined height from the base surface of the existing structure. In the frame, the column base portion of the reinforcing frame is connected to at least one of the farthest position and the closest position from the existing structure on the foundation surface, and the lower nodal portion of the other reinforcing frame is By connecting to the foundation surface via the damper member, the reinforcing frame installed adjacent to the existing structure can receive the rotational moment generated by the horizontal load acting on the existing structure from the base of the column base of the reinforcing frame. Since it can be damped by a damper member connected to the lower node at a predetermined distance on the surface, it is greatly improved by optimizing the capacity of the damper member based on the principle of insulator It is possible to exhibit the Decay effect.

また、既設構造物の側面に隣接して設置され、該側面と既設構造物の基礎面から所定高さに介設された連結材により連結される補強フレームを備えた制振補強フレームにおいて、前記補強フレームの柱脚部が前記基礎面上において前記既設構造物から最も近い位置で連結され、他方の補強フレームの下部節点部に梃子部材の一端を連結するとともに、該梃子部材の他端と前記基礎面との間にダンパー部材を介設し、前記梃子部材の中間部において前記基礎面との間に支点部材を介設したことにより、既設構造物に隣接設置された補強フレームが、既設構造物に作用する水平荷重により発生した回転モーメントを補強フレームの柱脚部から基礎面上の所定の距離を置いた下部節点部から梃子部材を介してその自由端部に設置したダンパー部材にて受けることができるので、梃子の原理にてダンパー部材の容量の最適化を図ることにより大きな減衰効果を発揮させることができるのはもとより、ダンパー部材を可及的に補強フレームの柱脚部に近づけることができて、既設基礎構造の出寸法が充分でない場合でも確実に既設基礎構造を利用して補強フレームを付設することができる。   Further, in the vibration-damping reinforcement frame provided with the reinforcement frame that is installed adjacent to the side surface of the existing structure and is connected to the side surface by a connecting material interposed at a predetermined height from the base surface of the existing structure, The column base of the reinforcing frame is connected to the base surface at a position closest to the existing structure, and one end of the lever member is connected to the lower node of the other reinforcing frame, and the other end of the lever member and the By installing a damper member between the base surface and a fulcrum member between the base member and the base surface at the intermediate portion of the insulator member, the reinforcing frame installed adjacent to the existing structure has the existing structure. The rotational moment generated by the horizontal load acting on the object is transferred to the damper member installed at the free end of the reinforcement frame from the lower node at a predetermined distance on the foundation surface through the lever member. As a result of optimizing the capacity of the damper member based on the principle of the lever, it is possible to exert a great damping effect, and the damper member is brought as close as possible to the column base part of the reinforcing frame. Therefore, even when the existing foundation structure is not sufficiently extended, the reinforcing frame can be reliably attached using the existing foundation structure.

さらに、前記補強フレームにおける柱脚部、ダンパー部材および支点部材の全てが既設構造物の既設基礎構造の平面投影面内に配設した場合は、既設基礎構造を利用して補強フレームの各部材をコンパクトに収容して設置することができるので、地形的に制約があるような場合でも後付けにて補強フレームを容易に付設することが可能となり、かつ、新設基礎による補強が不要なので、特に、杭が必要な地盤の場合では、杭の新設も不要のため、補強コストを大幅に低減できて経済的である。さらにまた、前記補強フレームにおける柱脚部、ダンパー部材および支点部材のいずれかが、既設構造物の既設基礎構造と一体化した増設基礎構造上に配設した場合は、既設基礎構造の水平方向の幅が小さい場合でも、増設基礎構造を設置することで、補強フレームの柱脚部から下部節点部までの基礎面上での所定の距離を確保してダンパー部材の減衰効果を向上させることができる。   Furthermore, when all of the column base, the damper member, and the fulcrum member in the reinforcing frame are arranged in the plane projection plane of the existing foundation structure of the existing structure, each member of the reinforcement frame is used using the existing foundation structure. Since it can be housed compactly and installed, it is possible to easily attach a reinforcement frame by retrofitting even when there are restrictions on topography, and there is no need for reinforcement with a new foundation. In the case of ground that needs to be removed, it is economical because the cost of reinforcement can be greatly reduced because no new piles are required. Furthermore, when any of the column base part, the damper member and the fulcrum member in the reinforcing frame is disposed on the additional foundation structure integrated with the existing foundation structure of the existing structure, the horizontal direction of the existing foundation structure Even when the width is small, by installing the additional foundation structure, it is possible to secure a predetermined distance on the foundation surface from the column base portion of the reinforcing frame to the lower nodal portion and improve the damping effect of the damper member .

以下本発明を実施するための最良の形態を図面に基づいて説明する。図1は本発明の制振補強フレームの第1実施例を示す要部断面図、図2は本発明の第2実施例を示す要部断面図、図3は本発明の第3実施例を示す要部断面図、図4は本発明の第4実施例を示す要部断面図、図5は本発明の第5実施例を示す要部断面図、図6は本発明の制振補強フレームとの相違を説明するための要部断面図、図7は本発明の第6実施例を示す要部断面図、図8は本発明の制振補強フレームと構造物に水平荷重が作用したときの各部の寸法図、図9および図10は構造物に水平荷重が作用したときの各部のモーメント釣合い説明図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of an essential part showing a first embodiment of the vibration-damping reinforcement frame of the present invention, FIG. 2 is a cross-sectional view of an essential part showing a second embodiment of the present invention, and FIG. FIG. 4 is a cross-sectional view of a main part of a fourth embodiment of the present invention, FIG. 5 is a cross-sectional view of a main part of a fifth embodiment of the present invention, and FIG. FIG. 7 is a cross-sectional view of an essential part for explaining the difference from FIG. 7, FIG. 7 is a cross-sectional view of the essential part showing a sixth embodiment of the present invention, and FIG. FIG. 9 and FIG. 10 are explanatory views of moment balance of each part when a horizontal load is applied to the structure.

本発明の制振補強フレームの基本的な構成は、図1の第1実施例に示すように、既設構造物1の側面11に隣接して設置され、該側面11と既設構造物1の基礎面Gから所定高さに介設された連結材3により連結される補強フレーム2を備えた制振補強フレームにおいて、前記補強フレーム2の柱脚部2cが前記基礎面G上において少なくとも前記既設構造物1から最も遠い位置と最も近い位置のどちらか一方の位置で連結され、どちらか他方の補強フレーム2の下部節点部2bはダンパー部材6を介して前記基礎面Gと連結されたことを特徴とする。   As shown in the first embodiment of FIG. 1, the basic structure of the vibration-damping / reinforcing frame of the present invention is installed adjacent to the side surface 11 of the existing structure 1, and the side surface 11 and the foundation of the existing structure 1. In the vibration-damping / reinforcing frame including the reinforcing frame 2 connected by the connecting member 3 interposed at a predetermined height from the surface G, the column base portion 2c of the reinforcing frame 2 is at least on the foundation surface G at the existing structure. It is connected at either one of the position farthest from the object 1 or the closest position, and the lower node 2b of the other reinforcing frame 2 is connected to the base surface G via a damper member 6. And

図1は本発明の第1実施例を示す要部断面図である。既設基礎構造12を構成する既設フーチング13は断面がほぼ台形を呈して基礎面Gの地中に打設されている。既設フーチング13は地中に打ち込まれた既設杭14、14に固定されて地中に埋設される。既設フーチング13および既設杭14、14は紙面に直交する方向に延設されているが、後述するモーメントの釣合いの分析等においては便宜的に図示の断面にて考察する。既設フーチング13には既設構造物1の側面を構成する柱11が取り付けられて固定される。既設フーチング13は断面をほぼ台形としてもよいが、基礎面Gとほぼ面一に構成することもできる。   FIG. 1 is a cross-sectional view of a main part showing a first embodiment of the present invention. The existing footing 13 constituting the existing foundation structure 12 has a substantially trapezoidal cross section and is placed in the ground of the foundation surface G. The existing footing 13 is fixed to the existing piles 14 and 14 driven into the ground and buried in the ground. The existing footing 13 and the existing piles 14 and 14 are extended in a direction perpendicular to the plane of the drawing, but in the analysis of moment balance described later, for example, it is considered in the illustrated cross section. The pillar 11 which comprises the side surface of the existing structure 1 is attached to the existing footing 13, and is fixed. The existing footing 13 may have a substantially trapezoidal cross section, but may be substantially flush with the base surface G.

既設フーチング13の断面をほぼ台形とした場合には、既設基礎構造12の平面投影面内にて斜線のような増設基礎部15が打設され、既設基礎構造12の上面を基礎面Gとほぼ面一に構成する。このようにして構成した既設基礎構造12の上に、前記既設構造物1の側面を構成する柱11に隣接して補強フレーム2が設置される。補強フレーム2は縦断面が略三角形のトラス状構造物から構成される。縦断面は四角形等を妨げるものではない。既設構造物1の柱11の上部柱頭1aと補強フレーム2の上端部の連結位置2aとが連結材3により連結される。本実施例1では、補強フレーム2の柱脚部2cが前記基礎面G上に少なくとも前記既設構造物1から最も近い位置で連結され、最も遠い位置の下部節点部2bがダンパー部材6を介して基礎面Gと連結される。ダンパー部材6の上端6aが補強フレーム2の下部節点部2bに軸支され、ダンパー部材6の下端6bが基礎面Gに軸支される。   When the cross-section of the existing footing 13 is substantially trapezoidal, an additional foundation 15 such as an oblique line is driven in the plane projection plane of the existing foundation structure 12, and the upper surface of the existing foundation structure 12 is substantially the same as the foundation plane G. Construct in the same plane. On the existing foundation structure 12 configured in this manner, the reinforcing frame 2 is installed adjacent to the pillar 11 constituting the side surface of the existing structure 1. The reinforcing frame 2 is composed of a truss-like structure having a substantially triangular longitudinal section. The longitudinal section does not obstruct a square or the like. The upper stigma 1 a of the pillar 11 of the existing structure 1 and the connection position 2 a at the upper end of the reinforcing frame 2 are connected by the connecting material 3. In the first embodiment, the column base 2c of the reinforcing frame 2 is connected to the base surface G at least at a position closest to the existing structure 1, and the lower node 2b at the farthest position is interposed via the damper member 6. Connected to the base plane G. The upper end 6 a of the damper member 6 is pivotally supported by the lower node portion 2 b of the reinforcing frame 2, and the lower end 6 b of the damper member 6 is pivotally supported by the base surface G.

図8は本発明の制振補強フレームと構造物に水平荷重が作用したときの各部の寸法図、図9および図10は構造物に水平荷重が作用したときの各部のモーメント釣合い説明図で、これに基づいて本実施例1の補強フレーム2の構造の場合の挙動を説明する。図8に示すように、既設構造物1に水平外力が作用している状態において、既設構造物1が負担する水平荷重がPであり、補強フレーム2が負担する水平荷重をPfとすると、ダンパー部材6に引張りの軸力N(図9)が発生しているとき、N=Pf・H/(L−C)の関係がある。柱脚部2cには圧縮力としてダンパー部材6の引張力と同じ大きさの力Nが基礎面Gに作用している。このとき、ダンパー部材6の直下の既設杭14の位置に発生している反力をRvとする。水平荷重P(紙面の右から左に作用)によってフーチング13に作用している転倒モーメントは、既設構造物1と補強フレーム2との連結部3の高さをHとするとP・Hで表される。また、柱軸力をW、基礎自重をWf、寸法LおよびCは図8および図9の通りとすれば、図9の支点Zの周りのモーメントの釣合いから、基礎構造が浮き上がらない条件は、
N≦{2L・Rv+L・(W+Wf)−P・H}/(L−C)
であり、反力Rvが零以上である必要があるので、Rv=0と置いて、次式となる。
N≦{L・(W+Wf)−P・H}/(L−C)・・・式(1)
FIG. 8 is a dimensional diagram of each part when a horizontal load is applied to the vibration-damping reinforcement frame of the present invention and the structure, and FIGS. 9 and 10 are explanatory views of moment balance of each part when the horizontal load is applied to the structure. Based on this, the behavior in the case of the structure of the reinforcing frame 2 of the first embodiment will be described. As shown in FIG. 8, when a horizontal external force is applied to the existing structure 1, the horizontal load borne by the existing structure 1 is P, and the horizontal load borne by the reinforcing frame 2 is Pf. When a tensile axial force N (FIG. 9) is generated in the member 6, there is a relationship of N = Pf · H / (LC). A force N of the same magnitude as the tensile force of the damper member 6 acts on the base surface G as a compressive force on the column base 2c. At this time, the reaction force generated at the position of the existing pile 14 immediately below the damper member 6 is defined as Rv. The overturning moment acting on the footing 13 due to the horizontal load P (acting from right to left on the page) is expressed as P · H where the height of the connecting portion 3 between the existing structure 1 and the reinforcing frame 2 is H. The Further, if the column axial force is W, the foundation weight is Wf, and the dimensions L and C are as shown in FIGS. 8 and 9, the condition that the foundation structure does not rise from the balance of moments around the fulcrum Z in FIG.
N ≦ {2L · Rv + L · (W + Wf) −P · H} / (LC)
Since the reaction force Rv needs to be equal to or greater than zero, Rv = 0 is set as follows.
N ≦ {L · (W + Wf) −P · H} / (LC) (1)

次に、基礎(杭の場合)の圧縮許容耐力Raを超えない条件を示す。図10を参照して、水平荷重P(紙面の左から右に作用)によって既設フーチング13に作用している転倒モーメントはP・Hであり、ダンパー部材6に圧縮軸力Nが発生しているとき、ダンパー部材6の直下の既設杭14の位置に発生している反力をRvとすると、上記と同様にして、図10の支点Zの周りのモーメントの釣合いから、既設基礎(杭)が圧縮許容耐力Raを超えない条件は、
N≦{2L・Rv−L・(W+Wf)−P・H}/(L−C)
であり、反力RvがRa以下である必要があるので、Rv=Raと置いて、次式となる。 N≦{2L・Ra−L・(W+Wf)−P・H}/(L−C)・・・式(2)
Next, conditions that do not exceed the allowable compressive strength Ra of the foundation (in the case of piles) are shown. Referring to FIG. 10, the overturning moment acting on the existing footing 13 due to the horizontal load P (acting from the left to the right of the paper surface) is P · H, and the compression member N is generated in the damper member 6. When the reaction force generated at the position of the existing pile 14 immediately below the damper member 6 is Rv, the existing foundation (pile) is obtained from the balance of moments around the fulcrum Z in FIG. Conditions that do not exceed the allowable compressive strength Ra are:
N ≦ {2L · Rv−L · (W + Wf) −P · H} / (LC)
Since the reaction force Rv needs to be equal to or less than Ra, Rv = Ra and the following equation is obtained. N ≦ {2L · Ra−L · (W + Wf) −P · H} / (L−C) (2)

以上のことから、本発明の制振補強フレームの設計に当たり、ダンパー部材の最大耐力が上記の式(1)かつ式(2)を満たすように設計すれば、構造物の基礎構造の耐力を超えないので、既設基礎構造12の補強(基礎面G上の既設基礎構造12の平面投影面を超えて補強)をすることなく構造物の補強が可能になる。例えば、L=3m、H=15m、C=1.5m、W=50tf、Wf=200tf、P=30tf、既設杭の許容圧縮耐力Ra=240tfのとき、式(1)よりN≦200tf、式(2)よりN≦160tfであるので、全ダンパー部材の最大耐力が160tf以下になるように設計すればよい。   From the above, in designing the vibration-damping reinforcement frame of the present invention, if the maximum proof stress of the damper member is designed so as to satisfy the above formulas (1) and (2), it exceeds the proof strength of the foundation structure of the structure. Therefore, the structure can be reinforced without reinforcing the existing foundation structure 12 (reinforcement beyond the plane projection plane of the existing foundation structure 12 on the foundation surface G). For example, when L = 3m, H = 15m, C = 1.5m, W = 50tf, Wf = 200tf, P = 30tf, allowable compressive strength Ra of existing pile Ra = 240tf, N ≦ 200tf from equation (1), Since N ≦ 160 tf from (2), the maximum proof stress of all the damper members may be designed to be 160 tf or less.

以上のように構成したことによる本発明の効果を列挙すると、
(1)従来工法では、補強フレーム2の反力を受け止める新設基礎構造の設置が必要となるところ、本発明の実施例1および後述する実施例2〜実施例3までは、既設基礎構造12を利用して補強フレーム2を設置することができるので、補強コストを大幅に低減できてきわめて経済的である。とくに、新たな杭が必要な地盤の場合においても、杭の新設が不要となり、その効果は絶大である。 (2)既設構造物の補強工事が建物外部からできるので、施工がし易く、施工費用が低廉である。
(3)ダンパー部材を組み込んであるので、想定以上の強い地震等が発生しても、ダンパー部材のエネルギー吸収能力が発揮されることにより、既設構造物本体の損傷を最小限に止めることができる。余震に対してもエネルギー吸収効果ににより、損傷の進行を阻止できる。
(4)大地震に対しても建物の損傷を最小限に抑制できるので、建物の直接被害の低減はもとより、地震後の建物再使用までの期間を大幅に短縮でき、特に、企業の場合には、機会喪失による営業損失も最小限に抑えることができる。
(5)地震等の振動エネルギーはダンパー部材が殆んどを吸収しているので、地震等が去った後に、エネルギー吸収能力に余裕がなくなったダンパー部材のみを交換すれば、既設構造物の保有水平耐力の復活が可能となる。
(6)ダンパー部材は地面(基礎面)に近い位置に設置しているので、その保守・点検および交換がきわめて容易である。
(7)既設構造物の基礎構造の寸法がある程度小さくても、梃子の原理を用いてダンパー部材の容量の最適化を図ることにより大きな減衰効果を発揮させることができるので、適用可能範囲を拡大することができる。
Enumerating the effects of the present invention configured as described above,
(1) In the conventional construction method, it is necessary to install a new foundation structure that receives the reaction force of the reinforcing frame 2, but in the first embodiment of the present invention and Examples 2 to 3 described later, the existing foundation structure 12 is used. Since the reinforcing frame 2 can be installed by using it, the reinforcing cost can be greatly reduced, which is extremely economical. In particular, even in the case of ground where a new pile is required, it is not necessary to newly install a pile, and the effect is enormous. (2) Since the reinforcement work for the existing structure can be performed from the outside of the building, the construction is easy and the construction cost is low.
(3) Since the damper member is incorporated, even if an earthquake that is stronger than expected occurs, the energy absorption capacity of the damper member is exhibited, so that damage to the existing structure body can be minimized. . Even aftershocks, the progress of damage can be prevented by the energy absorption effect.
(4) Since damage to buildings can be minimized even in the event of a major earthquake, not only can direct damage to buildings be reduced, but the period until the building can be reused after an earthquake can be greatly reduced. Can minimize operating losses due to lost opportunities.
(5) Since most of the vibration energy such as earthquakes is absorbed by the damper member, if only the damper member that has no more energy absorption capacity is replaced after the earthquake, etc., the existing structure will be retained. The horizontal strength can be restored.
(6) Since the damper member is installed at a position close to the ground (base surface), its maintenance, inspection and replacement are very easy.
(7) Even if the dimensions of the foundation structure of the existing structure are small to some extent, it is possible to exert a great damping effect by optimizing the capacity of the damper member using the lever principle, so the applicable range is expanded. can do.

図2は本発明の第2実施例を示す要部断面図である。本実施例2のものは、補強フレーム2の柱脚部2cが基礎面G上に既設構造物1から最も遠い位置で連結され、最も近い位置の下部節点部2bがダンパー部材6を介して基礎面Gと連結される。ダンパー部材6の上端6aが補強フレーム2の下部節点部2bに軸支され、ダンパー部材6の下端6bが基礎面Gに軸支される。本実施例のものは前記図1の実施例1のものと異なり、既設構造物1からの水平荷重を連結材3を介して転嫁され、既設構造物1から最も遠い位置の柱脚部2cを揺動中心として揺動し、既設構造物1から最も近い位置にて増設基礎部15の基礎面Gとの間に介設されたダンパー部材6によって振動が減衰される。補強フレーム2における下部節点部2b、柱脚部2cはともに既設基礎構造12の平面投影面内にて軸支支持される。   FIG. 2 is a sectional view of an essential part showing a second embodiment of the present invention. In the second embodiment, the column base 2c of the reinforcing frame 2 is connected to the foundation plane G at a position farthest from the existing structure 1, and the lower node 2b at the nearest position is connected to the foundation via the damper member 6. Connected with surface G. The upper end 6 a of the damper member 6 is pivotally supported by the lower node portion 2 b of the reinforcing frame 2, and the lower end 6 b of the damper member 6 is pivotally supported by the base surface G. 1 differs from that of the first embodiment of FIG. 1 in that the horizontal load from the existing structure 1 is transferred via the connecting member 3, and the column base 2c farthest from the existing structure 1 is moved. The vibration is damped by the damper member 6 interposed between the foundation surface G of the additional foundation portion 15 at the position closest to the existing structure 1 and swinging as the swing center. Both the lower node portion 2b and the column base portion 2c in the reinforcing frame 2 are pivotally supported in the plane projection plane of the existing foundation structure 12.

図3は本発明の第3実施例を示す要部断面図である。本実施例3のものは、前記図1の実施例1のものにおけるダンパー部材6の取付形態を異にしたものである。すなわち本実施例では、補強フレーム2の自由端部である下部節点部2bと増設基礎部15の上面との間にダンパー部材6を介設するに際して、補強フレーム2の下部節点部2b側の外側斜材を直線状に延長した部分に配設したものである。この場合は、ダンパー部材6が傾斜して配設されるので、ダンパー部材6に生じる軸力が、鉛直に配設された場合よりも大きくなるため、より大きな容量のダンパー部材が必要となり効率がやや劣ることになる。   FIG. 3 is a sectional view showing an essential part of a third embodiment of the present invention. The third embodiment differs from the first embodiment in FIG. 1 in that the damper member 6 is mounted differently. That is, in this embodiment, when the damper member 6 is interposed between the lower node portion 2b which is a free end portion of the reinforcing frame 2 and the upper surface of the additional foundation portion 15, the outer side of the reinforcing frame 2 on the lower node portion 2b side. The diagonal member is disposed in a linearly extended portion. In this case, since the damper member 6 is disposed at an inclination, the axial force generated in the damper member 6 is larger than that in the case where the damper member 6 is disposed vertically. Slightly inferior.

図4は本発明の第4実施例を示す要部断面図である。本実施例4のものは、前記図1の実施例1のものにおいて、既設構造物1から最も遠い位置にあるダンパー部材6の下端6bを、既設フーチング13の幅方向の先端よりも外側に配置せざるを得ない場合に、増設基礎部15を既設フーチング13の先端と一体化するように外側に幾分延長して増設することで、補強フレーム2の柱脚部2cまたはダンパー部材6の下端6bからの力が確実に既設フーチング13に伝達するように構成したものである。   FIG. 4 is a sectional view showing the principal part of a fourth embodiment of the present invention. In the fourth embodiment, the lower end 6b of the damper member 6 located farthest from the existing structure 1 is arranged outside the front end in the width direction of the existing footing 13 in the first embodiment shown in FIG. In the case where it is unavoidable, the extension base portion 15 is extended to the outside so as to be integrated with the tip of the existing footing 13, so that the lower end of the column base portion 2 c of the reinforcing frame 2 or the damper member 6 is added. The force from 6b is reliably transmitted to the existing footing 13.

図5は本発明の第5実施例を示す要部断面図である。本実施例5のものは、前記図4の既設構造物1から最も遠い位置にあるダンパー部材6の下端6bを、既設フーチング13の幅方向の先端よりも外側に配置せざるを得ない場合で、増設基礎部15を既設フーチング13の先端と一体化するように外側に幾分延長して増設したものにおいて、増設基礎部15に新たな杭14aを設けたものである。その分のコストアップは避けられないが、増設基礎部15が既設フーチング13と一体化しているため、補強フレーム2からの引抜き力に対抗することができるので、図6に示すように、別個独立の新設フーチング13aあるいは新設杭14aを設けた場合よりも引抜き処理およびコスト面で有利である   FIG. 5 is a sectional view showing an essential part of a fifth embodiment of the present invention. The fifth embodiment is a case where the lower end 6b of the damper member 6 located farthest from the existing structure 1 in FIG. 4 has to be disposed outside the front end of the existing footing 13 in the width direction. The extension foundation part 15 is provided with a new pile 14a in the extension foundation part 15 in the extension foundation part 15 extended to the outside so as to be integrated with the tip of the existing footing 13. Although the cost increase is unavoidable, the additional foundation 15 is integrated with the existing footing 13 so that it can resist the pulling force from the reinforcing frame 2, so as shown in FIG. It is more advantageous in terms of drawing process and cost than the case where the new footing 13a or the new pile 14a is provided.

図6は本発明の制振補強フレームとの相違を説明するための要部断面図である。本例のものは、地形の制約等により、図1〜図5の実施例で説明した場合のような既設基礎構造12すなわち既設フーチング13の水平方向の幅が充分に採れずに、補強フレーム2における柱脚部2cとダンパー部材6を下端に配設した下部節点部2bとの間の水平距離が充分に確保できない場合は、例えば、ダンパー部材6の下端6bを軸支して設置するための新たな新設フーチング13aおよび新設杭14aを設け、さらに両者を剛強な新設補強梁16で一体化したものである。本実施例では新設フーチング13aおよび新設補強梁16あるいは新設杭14aを設けて、コストアップは避けられないことであるが、既設基礎構造12の幅が小さくても補強フレーム2の充分なる減衰効果が期待できることになる。   FIG. 6 is a cross-sectional view of an essential part for explaining the difference from the vibration damping reinforcement frame of the present invention. In this example, the reinforcing frame 2 is not able to take a sufficient width in the horizontal direction of the existing foundation structure 12, that is, the existing footing 13 as described in the embodiment of FIGS. If the horizontal distance between the column base 2c and the lower node 2b having the damper member 6 disposed at the lower end cannot be secured sufficiently, for example, the lower end 6b of the damper member 6 is pivotally supported for installation. A new new footing 13a and a new pile 14a are provided, and both of them are integrated by a strong new reinforcing beam 16. In the present embodiment, the new footing 13a and the new reinforcing beam 16 or the new pile 14a are provided, and the cost increase is inevitable. However, even if the width of the existing foundation structure 12 is small, the reinforcing frame 2 has a sufficient damping effect. It can be expected.

図7は本発明の第6実施例を示す要部縦断面図である。本実施例6のものは、前述した各実施例のものとは基本的に異なり、梃子部材4を配設したものである。該梃子部材4を配設することによって、例えば前記図6のもののような既設基礎構造12の幅が小さい場合でも、新設フーチング13aや新設杭14aを設けずとも、補強フレーム2の充分なる減衰効果が期待できる。すなわち、前記補強フレーム2の柱脚部部2cが基礎面G上において前記既設構造物1から最も近い位置で連結され、他方の下部節点部2bに梃子部材4の一端を連結するとともに、該梃子部材4の他端と前記基礎面Gとの間にダンパー部材6を介設し、前記梃子部材4の中間部4cにおいて前記基礎面Gとの間に支点部材5を介設した。   FIG. 7 is a longitudinal sectional view of an essential part showing a sixth embodiment of the present invention. The thing of this Example 6 differs from the thing of each Example mentioned above fundamentally, and the insulator member 4 is arrange | positioned. By disposing the lever member 4, even when the width of the existing foundation structure 12 such as that shown in FIG. 6 is small, for example, the sufficient damping effect of the reinforcing frame 2 can be obtained without providing the new footing 13a and the new pile 14a. Can be expected. That is, the column base portion 2c of the reinforcing frame 2 is connected on the base plane G at a position closest to the existing structure 1, and one end of the lever member 4 is connected to the other lower node portion 2b. A damper member 6 is interposed between the other end of the member 4 and the base surface G, and a fulcrum member 5 is interposed between the base surface G in the intermediate portion 4 c of the lever member 4.

図示の例で作用を説明する。補強フレーム2の柱脚部2cが既設構造物1から最も近い位置に配設されている。したがって、補強フレーム2の下部節点部2bが既設構造物1から最も遠い位置に配設される。下部節点部2bから柱脚部2cに向けて梃子部材4が延設され、柱脚部2cの近傍にてダンパー部材6が梃子部材4の自由端部と既設フーチング13の増設基礎部15の上面との間に介設される。したがって、既設構造物1からの水平荷重は連結材3を介して補強フレーム2に転嫁され、補強フレーム2が柱脚部2cを中心として揺動するに伴い、梃子部材4も、中間の支点部材5を支点とする下部節点2b側を力点とした揺動運動を行う。それによって、梃子部材4の自由端側を作用点として揺動させることになる。この作用点部分に配設されたダンパー部材6が、梃子部材4の自由端側の動きを抑制することにより振動を減衰させることができる。   The operation will be described with reference to the illustrated example. The column base 2c of the reinforcing frame 2 is disposed at a position closest to the existing structure 1. Therefore, the lower nodal portion 2 b of the reinforcing frame 2 is disposed at a position farthest from the existing structure 1. An insulator member 4 extends from the lower node portion 2b toward the column base 2c, and a damper member 6 near the column base 2c is connected to the free end of the insulator member 4 and the upper surface of the additional foundation 15 of the existing footing 13. Between. Therefore, the horizontal load from the existing structure 1 is transferred to the reinforcing frame 2 via the connecting member 3, and the lever member 4 is also an intermediate fulcrum member as the reinforcing frame 2 swings around the column base 2c. Oscillating motion is performed with the lower node 2b side of 5 as the fulcrum. As a result, the lever member 4 is swung with the free end side as an action point. The damper member 6 disposed at the action point portion can attenuate the vibration by suppressing the movement of the lever member 4 on the free end side.

本実施例6では、後付けによって既設構造物1に隣接設置された補強フレーム2が、既設構造物1に作用する水平荷重により発生した回転モーメントを補強フレーム2の柱脚部2cから基礎面G上の所定の距離を置いた下部節点部2bから梃子部材4を介してその自由端部に設置したダンパー部材6にて減衰できるので、梃子の原理にてダンパー部材6の容量の最適化を図ることにより大きな減衰効果を発揮させることができるのはもとより、ダンパー部材6を可及的に補強フレーム2の柱脚部2cに近づけられ、既設基礎構造12の幅が充分でない場合でも確実に既設基礎構造12を利用して補強フレーム2を付設できる。   In the sixth embodiment, the reinforcement frame 2 installed adjacent to the existing structure 1 by retrofitting causes the rotational moment generated by the horizontal load acting on the existing structure 1 to be applied to the foundation surface G from the column base 2c of the reinforcement frame 2. Can be attenuated by the damper member 6 installed at the free end of the lower node 2b at a predetermined distance from the lower node 2b through the lever member 4, so that the capacity of the damper member 6 can be optimized based on the principle of the lever. In addition to being able to exhibit a greater damping effect, the damper member 6 can be brought as close as possible to the column base 2c of the reinforcing frame 2, and even if the width of the existing foundation structure 12 is not sufficient, the existing foundation structure can be surely 12 can be used to attach the reinforcing frame 2.

以上、本発明の実施例について説明してきたが、本発明の趣旨の範囲内で、既設基礎構造への接続形態(基礎フーチングに埋め込まれたボルトへの締結等)を含む既設構造物の側面の形状、形式、補強フレームの形状(実施例の縦断面三角形の他、四角形等適宜の断面形状が採用され得る)、形式、連結材の形状、形式、既設構造物の側面と補強フレームとの連結材の基礎面からの高さおよび連結形態(好適には軸支形態が採用される)、補強フレームにおける既設フーチングあるいは増設基礎部への柱脚部およびダンパー部材ならびに支点部材を介した連結支持形態(既設フーチングあるいは増設基礎部に新たに設置した軸受部に軸支する等)、ダンパー部材の形状、形式(鋼材系、油圧系、摩擦系、粘弾性系等それぞれの特性を考慮して適切なものが採用され得る)および数(好適には基礎面上の既設構造物から最も遠い位置と最も近い位置のどちらか一方に配設されるが、柱脚部に接続する部材にもダンパー部材を配設することを妨げない)ならびに最大耐力(フレームからの反力によって基礎が浮上りを生じない、または基礎の許容圧縮耐力を超えないように設定される)、梃子部材の形状、形式および補強フレームの下部節点部あるいは支点部材もしくはダンパー部材との連結形態(好適には軸支形態)、支点部材の形状、形式およびその梃子部材あるいは増設基礎部を含む既設基礎構造への連結形態(好適には軸支形態)ならびに配設位置(ダンパー部材の容量等により適切に決められる)、既設基礎構造と一体化した増設基礎構造の設置形態および補強フレームとの連結形態(柱脚部あるいはダンパー部材を介した連結形態は、前述の既設基礎構造あるいは増設基礎部へのそれらの連結形態と同様にされる)等については適宜選定できる。また、実施例に記載の諸元はあらゆる点で単なる例示に過ぎず限定的に解釈してはならない。   As mentioned above, although the Example of this invention was described, within the meaning of this invention, the side surface of the existing structure including the connection form (fastening to the volt | bolt embedded in the foundation footing, etc.) to the existing foundation structure is demonstrated. Shape, type, shape of reinforcing frame (in addition to the vertical cross-sectional triangle of the embodiment, a suitable cross-sectional shape such as a quadrangle may be adopted), type, shape of connecting material, type, connection between side surface of existing structure and reinforcing frame Height from the base surface of the material and connection form (preferably a shaft support form is adopted), existing footing in the reinforcing frame or connection support form via the column base part and the damper member and the fulcrum member to the additional base part (Considering the existing footing or the bearing part newly installed on the extension base), the shape and type of the damper member (steel material, hydraulic system, friction system, viscoelastic system, etc.) (Preferably can be used) and the number (preferably disposed at either the furthest position or the nearest position from the existing structure on the foundation surface, but the member connected to the column base is also a damper member. As well as the maximum strength (set so that the foundation does not lift or exceed the allowable compression strength of the foundation due to the reaction force from the frame), the shape, type and shape of the insulator member Connection form (preferably a shaft support form) with the lower nodal part or fulcrum member or damper member of the reinforcing frame, the shape and type of the fulcrum member, and the connection form to the existing foundation structure including the lever member or the extension base part (suitable) Shaft configuration) and installation position (determined appropriately by the capacity of the damper member, etc.), installation configuration of the extension foundation structure integrated with the existing foundation structure, and the reinforcement frame Binding form (linked form via column base or damper elements of which are the same as those of the connection form of the existing infrastructure or additional base portion described above) for the like can be appropriately selected. In addition, the specifications described in the examples are merely examples in all respects and should not be interpreted in a limited manner.

本発明の制振補強フレームの第1実施例を示す要部断面図である。It is principal part sectional drawing which shows 1st Example of the damping reinforcement frame of this invention. 本発明の制振補強フレームの第2実施例を示す要部断面図である。It is principal part sectional drawing which shows 2nd Example of the vibration suppression reinforcement frame of this invention. 本発明の制振補強フレームの第3実施例を示す要部断面図である。It is principal part sectional drawing which shows 3rd Example of the damping reinforcement frame of this invention. 本発明の制振補強フレームの第4実施例を示す要部断面図である。It is principal part sectional drawing which shows 4th Example of the damping reinforcement frame of this invention. 本発明の制振補強フレームの第5実施例を示す要部断面図である。It is principal part sectional drawing which shows 5th Example of the damping reinforcement frame of this invention. 本発明の制振補強フレームとの相違を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the difference with the vibration suppression reinforcement frame of this invention. 本発明の制振補強フレームの第6実施例を示す要部断面図である。It is principal part sectional drawing which shows 6th Example of the damping reinforcement frame of this invention. 本発明の制振補強フレームと構造物に水平荷重が作用したときの各部の寸法図である。It is a dimension figure of each part when a horizontal load acts on the vibration suppression reinforcement frame and structure of the present invention. 同、基礎が浮き上がらない条件の分析説明図である。It is analysis explanatory drawing of the conditions from which a foundation does not surface. 同、基礎杭の圧縮許容耐力の分析説明図である。It is an analysis explanatory drawing of the compression allowable yield strength of a foundation pile same as the above. 第1従来例である補剛部材の導入例の説明図である。It is explanatory drawing of the example of introduction of the stiffening member which is a 1st prior art example. 第2従来例である制振補強構造についての説明図である。It is explanatory drawing about the vibration suppression reinforcement structure which is a 2nd prior art example. 同、第2従来例の変形例の説明図である。It is explanatory drawing of the modification of a 2nd prior art example equally.

符号の説明Explanation of symbols

1 既設構造物
1a 柱頭
2 補強フレーム
2a 補強フレーム連結位置
2b 補強フレームの下部節点部
2c 柱脚部
3 連結材
5 支点部材
6 ダンパー部材
6a ダンパー部材上端
6b ダンパー部材下端
11 既設構造物の柱(側面)
12 既設基礎構造
13 既設フーチング
14 既設杭
15 増設基礎部
16 新設補強梁
G 基礎面
DESCRIPTION OF SYMBOLS 1 Existing structure 1a Column head 2 Reinforcement frame 2a Reinforcement frame connection position 2b Lower joint part of reinforcement frame 2c Column base 3 Connection material 5 Support member 6 Damper member 6a Damper member upper end 6b Damper member lower end 11 Column (side surface) of existing structure )
12 Existing foundation 13 Existing footing 14 Existing pile 15 Additional foundation 16 New reinforcement beam G Foundation surface

Claims (4)

既設構造物の側面に隣接して設置され、該側面と既設構造物の基礎面から所定高さに介設された連結材により連結される補強フレームを備えた制振補強フレームにおいて、前記補強フレームの柱脚部が前記基礎面上において少なくとも前記既設構造物から最も遠い位置と最も近い位置のどちらか一方の位置で連結され、どちらか他方の補強フレームの下部節点部はダンパー部材を介して前記基礎面と連結されたことを特徴とする制振補強フレーム。 A vibration damping reinforcement frame provided with a reinforcement frame that is installed adjacent to a side surface of an existing structure and is connected to the side surface by a connecting member interposed at a predetermined height from a base surface of the existing structure. Are connected at least one of a position farthest from the existing structure and a position closest to the existing structure on the foundation surface, and the lower node of the other reinforcing frame is connected to the bottom via the damper member. A vibration-damping reinforcement frame characterized by being connected to the base surface. 既設構造物の側面に隣接して設置され、該側面と既設構造物の基礎面から所定高さに介設された連結材により連結される補強フレームを備えた制振補強フレームにおいて、前記補強フレームの柱脚部が前記基礎面上において前記既設構造物から最も近い位置で連結され、他方の補強フレームの下部節点部に梃子部材の一端を連結するとともに、該梃子部材の他端と前記基礎面との間にダンパー部材を介設し、前記梃子部材の中間部において前記基礎面との間に支点部材を介設したことを特徴とする制振補強フレーム。 A vibration damping reinforcement frame provided with a reinforcement frame that is installed adjacent to a side surface of an existing structure and is connected to the side surface by a connecting member interposed at a predetermined height from a base surface of the existing structure. The column base is connected to the base surface at a position closest to the existing structure, and one end of the lever member is connected to the lower node of the other reinforcing frame, and the other end of the lever member and the base surface And a damper member interposed between them and a fulcrum member interposed between the lever member and the base surface at an intermediate portion of the lever member. 前記補強フレームにおける柱脚部、ダンパー部材および支点部材の全てが既設構造物の既設基礎構造の平面投影面内に配設したことを特徴とする請求項1または2に記載の制振補強フレーム。 3. The vibration-damping reinforcement frame according to claim 1, wherein all of the column base portion, the damper member, and the fulcrum member in the reinforcement frame are disposed in a plane projection plane of the existing foundation structure of the existing structure. 前記補強フレームにおける柱脚部、ダンパー部材および支点部材のいずれかが、既設構造物の既設基礎構造と一体化した増設基礎構造上に配設したことを特徴とする請求項1または2に記載の制振補強フレーム。 The column base, the damper member, or the fulcrum member in the reinforcing frame is disposed on an additional foundation structure integrated with an existing foundation structure of an existing structure. Damping reinforcement frame.
JP2008211749A 2008-08-20 2008-08-20 Damping reinforcement frame Pending JP2010047933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211749A JP2010047933A (en) 2008-08-20 2008-08-20 Damping reinforcement frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211749A JP2010047933A (en) 2008-08-20 2008-08-20 Damping reinforcement frame

Publications (1)

Publication Number Publication Date
JP2010047933A true JP2010047933A (en) 2010-03-04

Family

ID=42065221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211749A Pending JP2010047933A (en) 2008-08-20 2008-08-20 Damping reinforcement frame

Country Status (1)

Country Link
JP (1) JP2010047933A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041799A (en) * 2010-08-23 2012-03-01 Shimizu Corp Vibration control reinforcement structure of existing building
JP2012233374A (en) * 2011-05-09 2012-11-29 Meiko Consultants Co Ltd Seismic reinforcement structure
JP2013096176A (en) * 2011-11-02 2013-05-20 Sumitomo Mitsui Construction Co Ltd Reinforcement structure of existing foundation
JP2017101534A (en) * 2015-11-25 2017-06-08 有限会社久美川鉄工所 Building reinforcing structure
JP2018193672A (en) * 2017-05-12 2018-12-06 大成建設株式会社 Additional foundation structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041799A (en) * 2010-08-23 2012-03-01 Shimizu Corp Vibration control reinforcement structure of existing building
JP2012233374A (en) * 2011-05-09 2012-11-29 Meiko Consultants Co Ltd Seismic reinforcement structure
JP2013096176A (en) * 2011-11-02 2013-05-20 Sumitomo Mitsui Construction Co Ltd Reinforcement structure of existing foundation
JP2017101534A (en) * 2015-11-25 2017-06-08 有限会社久美川鉄工所 Building reinforcing structure
JP2018193672A (en) * 2017-05-12 2018-12-06 大成建設株式会社 Additional foundation structure

Similar Documents

Publication Publication Date Title
JP5007380B2 (en) Seismic isolation / damping mechanism
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
JP4957295B2 (en) Seismic control pier structure
JP2010047933A (en) Damping reinforcement frame
JP4038472B2 (en) Seismic retrofitting frame for existing buildings and seismic control structures using the same
JP6671612B2 (en) Viaduct collapse prevention structure
JP2007197930A (en) Base isolation/seismic response control device used for arch bridge, high pier, cable stayed bridge and suspension bridge main tower
JP5210337B2 (en) Buildings using vertical seismic control PC structural members with seismic prestress
JP2001311314A (en) Method for realizing base isolation structure of existing building
JP3882633B2 (en) Steel pipe damper and rocking foundation structure using the same
KR102174713B1 (en) Seismic reinforcement device for underground structure
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP2012207389A (en) Seismic strengthening construction method for existing building
JP4010981B2 (en) Upper extension method for existing buildings
JP3755886B1 (en) Bearing structure of fixed bearings in bridges and seismic reinforcement method for existing bridges
JP5379285B1 (en) Buildings using seismic control PC columns
JP5159487B2 (en) Seismic control column construction method, seismic control column, and building structure
JP6833292B2 (en) Roof seismic structure
JP2016084701A (en) Vibration control building
JP6359370B2 (en) Seismic reinforcement device for bridges
JP2012117364A (en) Vibration control bridge pier structure
JP5142214B2 (en) Seismic reinforcement structure for viaduct
JP2012233374A (en) Seismic reinforcement structure
JP5415093B2 (en) Vibration control structure
JP6006352B2 (en) Seismic control pier structure