JP2012117327A - Vibration control structure - Google Patents

Vibration control structure Download PDF

Info

Publication number
JP2012117327A
JP2012117327A JP2010269706A JP2010269706A JP2012117327A JP 2012117327 A JP2012117327 A JP 2012117327A JP 2010269706 A JP2010269706 A JP 2010269706A JP 2010269706 A JP2010269706 A JP 2010269706A JP 2012117327 A JP2012117327 A JP 2012117327A
Authority
JP
Japan
Prior art keywords
vibration control
floor
columns
floors
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010269706A
Other languages
Japanese (ja)
Inventor
Nobuyuki Maeda
信之 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010269706A priority Critical patent/JP2012117327A/en
Publication of JP2012117327A publication Critical patent/JP2012117327A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an effective and appropriate vibration control structure which has little constraint on floor planning and is capable of being widely applied to general buildings.SOLUTION: Vibration control devices 10 are intensively installed on vibration control floors which are allocated to lower floors. A cross sectional area of columns on the vibration control floors is smaller than the cross sectional area of the columns on upper floors so as to reduce a story stiffness of the vibration control floors compared to the story stiffness of the upper floors. Column main reinforcement of the columns 1 on the vibration control floors and the same of the columns 2 on an immediate upper floor are connected by fixing the both reinforcement to a panel zone in a state that the column main reinforcement of the columns 1 on the vibration control floors is arranged inside the column main reinforcement of the columns 2 on the immediate upper floor. The column on the vibration control floor is made of a reinforced concrete column with high strength or ultra high strength concrete and high strength or ultra high strength reinforcement. Furthermore, the reinforced concrete column is clad with reinforcement steel. The vibration control devices 10 are installed inside a steel frame which is fixed inside a structure frame made up of the columns and beams on the vibration control floors.

Description

本発明は高層ないし超高層の鉄筋コンクリート造(RC造)の建物を対象とする制振構造に関する。   The present invention relates to a vibration control structure for a high-rise or super-high-rise reinforced concrete (RC) building.

この種の制振構造として特許文献1〜3に示されるものが提案されている。これは建物内に高剛性の連層耐震壁によるコアを設置してその頂部にガーダーやトップビームあるいは壁梁を設け、それらガーダーやトップビームあるいは壁梁の先端と外周架構との間にダンパーを介装することにより、地震時における建物全体の曲げ変形をダンパーにより制御して制振効果を得る構造のものである。   As this type of damping structure, those shown in Patent Documents 1 to 3 have been proposed. This is done by installing a highly rigid multi-story shear wall in the building and installing a girder, top beam or wall beam at the top, and placing a damper between the girder, top beam or wall beam tip and the outer frame. By interposing, it is a structure that obtains a damping effect by controlling the bending deformation of the whole building at the time of earthquake with a damper.

特許第3324586号公報Japanese Patent No. 3324586 特許第3395500号公報Japanese Patent No. 3395500 特許第4360034号公報Japanese Patent No. 4360034

上記の制振構造では建物内に大規模なコアを設けることから必然的に平面計画上の制約が多く、高層ないし超高層の集合住宅には適用できるものの様々な用途、形態の建物に広く適用できるものではない。   The above-mentioned vibration control structure has a large-scale core in the building, so there are inevitably many restrictions on the floor plan, and although it can be applied to high-rise or super-high-rise apartment buildings, it is widely applied to buildings of various uses and forms. It is not possible.

上記事情に鑑み、本発明は平面計画上の制約が少なく一般の建物に広く適用可能な有効適切な制振構造を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an effective and appropriate vibration damping structure that can be widely applied to general buildings with less restrictions on the plan.

請求項1記載の発明は、高層ないし超高層の鉄筋コンクリート造の建物を対象として該建物の要所に制振装置を設置してなる制振構造であって、下層部に制振階を設定して該制振階に前記制振装置を集約して設置するとともに、前記制振階における柱を上層部における柱よりも小断面として該制振階の層剛性を上層部よりも低下させ、前記制振階における柱の柱主筋をその直上階の柱の柱主筋の内側に配筋した状態でコンクリート中に定着することにより双方の柱を接合してなることを特徴とする。   The invention according to claim 1 is a damping structure in which a damping device is installed at a key point of a high-rise or super-high-rise reinforced concrete structure, and a damping floor is set in a lower layer portion. The vibration damping device is aggregated and installed on the vibration control floor, and the layer rigidity of the vibration control floor is made lower than that of the upper layer part by making the pillar in the vibration control floor smaller than the pillar in the upper layer part, It is characterized in that both pillars are joined by fixing them in concrete in a state where the pillar main bars of the columns on the vibration control floor are arranged inside the pillar main bars of the columns on the upper floor.

請求項2記載の発明は、請求項1記載の制振構造であって、制振階の柱は高強度ないし超高強度コンクリートおよび高強度ないし超高強度鉄筋による鉄筋コンクリート柱とし、かつ該柱を補強鋼材により被覆してなることを特徴とする。   The invention according to claim 2 is the vibration damping structure according to claim 1, wherein the columns of the damping floor are high-strength or ultra-high-strength concrete and high-strength or ultra-high-strength reinforced concrete columns, and the columns are It is characterized by being covered with a reinforcing steel material.

請求項3記載の発明は、請求項1または2記載の制振構造であって、制振階の柱および梁により構成される架構フレームの内側に鋼製フレームを固定し、該鋼製フレームの内側に前記制振装置を設置してなることを特徴とする。   The invention according to claim 3 is the vibration damping structure according to claim 1 or 2, wherein a steel frame is fixed inside a frame frame constituted by columns and beams of a vibration damping floor, and the steel frame The vibration damping device is installed on the inner side.

本発明の制振構造によれば、層剛性を低下させた制振階を設定してそこに制振装置を集約して設置するので、地震時における建物の水平変形が制振階に集中して制振装置が効率的に作動して建物全体に対する優れた制振効果が得られることはもとより、通常の制振構造の場合のように多数の制振装置を各階に分散配置する必要はなく、また建物全体にわたって高剛性のコアを設ける必要もなく、したがって平面計画上の制約が少なく、工費や工期の点でも有利であり、様々な用途、規模、形態の建物に広く適用可能である。
特に、制振階の層剛性を低下させるために制振階の柱を小断面としてその曲げ剛性を低下させたうえで、制振階の柱主筋を直上階の柱主筋の内側に配筋した状態でコンクリート中に定着することにより、双方の柱どうしを簡易な構造で確実に接合することが可能である。
According to the vibration control structure of the present invention, since the vibration suppression floor with reduced layer rigidity is set and the vibration control devices are concentrated and installed there, horizontal deformation of the building during an earthquake is concentrated on the vibration suppression floor. In addition to the fact that the vibration control device operates efficiently and provides excellent vibration control effects on the entire building, there is no need to distribute a large number of vibration control devices on each floor as in the case of a normal vibration control structure. In addition, it is not necessary to provide a high-rigidity core throughout the building, and therefore there are few restrictions on the plan, and it is advantageous in terms of construction cost and construction period, and can be widely applied to buildings of various uses, scales, and forms.
In particular, in order to reduce the layer rigidity of the damping floor, the column of the damping floor was reduced to a small cross section and its bending rigidity was lowered, and then the column reinforcement of the damping floor was placed inside the column reinforcement of the upper floor. By fixing in the concrete in a state, it is possible to reliably join both pillars with a simple structure.

また、制振階の柱を高強度ないし超高強度コンクリートおよび高強度ないし超高強度鉄筋によるRC柱としたうえで補強鋼材により被覆することにより、低曲げ剛性でありながら十分に高軸剛性かつ高靱性とすることが可能である。   In addition, the columns of the damping floor are made of high-strength or ultra-high-strength concrete and RC columns with high-strength or ultra-high-strength reinforcing bars, and then covered with a reinforcing steel material, so that it has low bending rigidity and sufficiently high axial rigidity and High toughness can be achieved.

さらに、制振階の柱および梁により構成される架構フレームの内側に鋼製フレームを固定してその鋼製フレームの内側に制振装置を設置することにより、制振装置を架構フレームに対して確実堅固に固定し得て地震時における架構フレームの変形により制振装置を確実かつ効率的に作動させることが可能である。   Furthermore, by fixing the steel frame inside the frame frame composed of the columns and beams of the vibration control floor and installing the vibration control device inside the steel frame, the vibration control device can be attached to the frame frame. The vibration control device can be reliably and efficiently operated by the deformation of the frame in the event of an earthquake.

本発明の制振構造の一実施形態を示すもので、建物全体の架構の概要を示す立面図および制振階の平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of a vibration damping structure of the present invention, and is an elevation view showing an outline of a frame of the entire building and a plan view of a vibration damping floor. 同、制振階とその直上階の柱の接合部の構造を示す図(図1、図10におけるII部拡大図)である。It is a figure (part II expansion figure in Drawing 1 and Drawing 10) showing the structure of the junction of a vibration suppression floor and the pillar of the floor immediately above the same. 同、制振装置の一例を示す図である。It is a figure which shows an example of a vibration damping device. 同、架構フレームへの鋼製フレームの固定構造を示す図(図3におけるIV部拡大図)である。It is a figure (IV part enlarged view in FIG. 3) which shows the fixation structure of the steel frame to a frame frame similarly. 同、詳細図(図4におけるV部拡大図)である。FIG. 5 is a detailed view (an enlarged view of a portion V in FIG. 4). 同、詳細図(図4におけるVI部拡大図)である。FIG. 5 is a detailed view (an enlarged view of a VI part in FIG. 4). 同、詳細図である。FIG. 同、詳細図(図4におけるVIII部拡大図)である。FIG. 5 is a detailed view (an enlarged view of a portion VIII in FIG. 4). 同、詳細図(図4におけるIX部拡大図)である。FIG. 5 is a detailed view (enlarged view of IX part in FIG. 4). 本発明の制振構造の他の実施形態を示すもので、建物全体の架構の概要を示す立面図および制振階の平面図である。The other embodiment of the damping structure of this invention is shown, and is the elevation which shows the outline | summary of the frame of the whole building, and the top view of a damping floor.

本発明の制振構造の一実施形態を図1〜図3に示す。
これは鉄筋コンクリート造の高層(図示例では地上27階建て)の建物への適用例であって、下層部の任意の階(図示例では地上1階および地上2階)を制振階として設定し、その制振階の層剛性を上層部の層剛性よりも低下させたうえでそこに制振装置10を集約配置したことを主眼とする。
One embodiment of the vibration damping structure of the present invention is shown in FIGS.
This is an example of application to a reinforced concrete high-rise building (27 floors above ground in the example), and any lower floors (1 floor above ground and 2 floors above) are set as damping floors. The main point is that the damping device 10 is concentrated and arranged after the layer stiffness of the damping floor is made lower than the layer stiffness of the upper layer portion.

制振階の層剛性を上層部の層剛性よりも低下させるためには、制振階の柱1の断面を上層部の柱断面よりも小さくして水平方向の曲げ剛性を相対的に低下させれば良い。
但し、柱断面を小さくしても少なくとも上層部と同等程度の軸剛性と靱性は当然に必要であるから、本実施形態では制振階の柱1を高強度ないし超高強度コンクリート(たとえばFc200相当)および高強度ないし超高強度鉄筋(たとえばSD980相当)を用いた高強度ないし超高強度の鉄筋コンクリート柱(RC柱)として形成するとともに、図2に示すようにその柱1の外周部を補強鋼材1cで被覆することによって低曲げ剛性ではあっても十分なる高軸剛性かつ高靱性を確保している。
なお、柱1を補強鋼材1cにより被覆するためには、柱1を通常のRC柱と同様の手法で形成した後にその外周に鋼板を装着して巻き立てるか、あるいは補強鋼材1cとして機能し得る角形ないし円形の鋼管の内側にコンクリートを打設することによって鋼管被覆型RC柱(あるいは充填鋼管型RC柱)として形成することが好適である。
In order to lower the layer rigidity of the vibration control floor than the layer rigidity of the upper layer part, the cross section of the pillar 1 of the vibration suppression floor is made smaller than the column cross section of the upper layer part to relatively reduce the horizontal bending rigidity. Just do it.
However, even if the column cross section is reduced, at least the shaft rigidity and toughness equivalent to at least the upper layer portion are naturally required. Therefore, in this embodiment, the column 1 of the vibration control floor is made of high-strength or ultrahigh-strength concrete (for example, Fc200 equivalent). ) And a high-strength or ultra-high-strength reinforced concrete column (RC column) using high-strength or ultra-high-strength reinforcing bars (for example, SD980 equivalent), and the outer periphery of the column 1 is reinforced steel as shown in FIG. By covering with 1c, sufficient high axial rigidity and high toughness are ensured even with low bending rigidity.
In order to cover the column 1 with the reinforcing steel material 1c, the column 1 is formed by a method similar to that of a normal RC column, and then a steel plate is mounted around the outer periphery thereof, or the column 1 can function as the reinforcing steel material 1c. It is preferable to form a steel pipe covered RC column (or a filled steel pipe type RC column) by placing concrete inside a square or circular steel tube.

上記のような制振階の小断面の柱1をそれよりも大断面の直上階の柱2に対して接合するために、本実施形態の制振構造では、図2(a)、(b)に示すようにそれら柱1,2および梁3の接合部であるパネルゾーンにおいて制振階の柱主筋1aを直上階の柱主筋2aの内側において上下方向にラップさせた状態で配筋することにより、双方の柱主筋1a、2aどうしをパネルゾーンのコンクリートを介して支圧伝達可能に接合している。
この場合、双方の柱主筋1a、2aどうしのラップ長さを適切に設定し、かつそれらの先端部にそれぞれ定着頭部1b、2bを形成しておくことが好ましく、これにより双方の柱主筋1a、2aどうしを直接的に接合せずともそれぞれをパネルゾーンに対して確実に定着し得てコンクリートを介しての支圧伝達性能を支障なくかつ十分に確保し得る。
In order to join the pillar 1 having a small cross section of the vibration damping floor as described above to the pillar 2 of the upper floor having a larger cross section than that, the vibration damping structure of the present embodiment uses FIGS. ) In the panel zone, which is a joint between the columns 1 and 2 and the beam 3, the column main reinforcement 1a of the vibration control floor is arranged in a vertically wrapped manner inside the column main reinforcement 2a of the immediately upper floor. Thus, both the column main bars 1a and 2a are joined to each other through the panel zone concrete so as to be able to transmit the bearing pressure.
In this case, it is preferable to appropriately set the wrap length between the column main bars 1a and 2a, and to form the fixing heads 1b and 2b at the tip portions thereof, respectively. Even if 2a is not joined directly, each can be reliably fixed with respect to a panel zone, and the bearing transmission performance through concrete can be ensured satisfactorily.

なお、それらの定着頭部1b、2bは、柱主筋1a、2a自体を膨出加工する等して断面を拡大するか、あるいは定着プレートの類の定着具を溶接あるいは適宜装着することで設ければ良い。
勿論、所望の支圧伝達性能を確保できるような十分なラップ長さを確保し得る場合には定着頭部1b、2bは省略可能であるし、定着頭部1b、2bに代えてフックを設けることでも良い。
また、図2(a)、(b)は制振階の柱1を角柱とした場合の例であるが、(c)は丸柱とした場合の例を示すもので、この場合も同様に制振階の柱1の柱主筋1aを直上階の柱2の柱主筋2aの内側に配筋し、必要に応じて双方の柱主筋1a、2aに定着頭部1b、2bあるいはフックを設けておけば良い。
いずれにしても、制振階の柱1とその直上階の柱2および梁3を接合するためのパネルゾーンはコンクリートを現場打ちとすることが現実的であるが、それらの柱1,2および梁3の軸部はプレキャスト化してPCa部材として予め製作しておくことが可能であり、そのようにすれば現場ではパネルゾーンに対してのみコンクリートを打設すれば済むので施工性を大きく改善することが可能である。
The fixing heads 1b and 2b are provided by expanding the cross section by bulging the column main bars 1a and 2a themselves, or by welding or appropriately mounting a fixing tool such as a fixing plate. It ’s fine.
Of course, the fixing heads 1b and 2b can be omitted if a sufficient wrap length capable of ensuring the desired bearing pressure transmission performance can be secured, and a hook is provided instead of the fixing heads 1b and 2b. That's fine.
2 (a) and 2 (b) are examples in which the pillar 1 of the vibration suppression floor is a prism, (c) shows an example in the case of a round pillar. The column main reinforcement 1a of the pillar 1 of the tremor is arranged inside the column main reinforcement 2a of the column 2 of the immediately upper floor, and fixing heads 1b, 2b or hooks may be provided on both the column main reinforcements 1a, 2a as necessary. It ’s fine.
In any case, it is realistic that the panel zone for joining the pillar 1 of the vibration suppression floor and the pillar 2 and the beam 3 on the floor directly above is made of concrete, but those pillars 1, 2 and The shaft portion of the beam 3 can be precast and pre-manufactured as a PCa member. In this way, it is only necessary to cast concrete on the panel zone at the site, so that the workability is greatly improved. It is possible.

制振階への制振装置10の設置台数や配置パターンは所望の制振効果が得られるように適宜設計すれば良いが、図示例の建物は平面形状がほぼ正方形であることから、本実施形態では図1(b)に示すように制振階における外周部の4個所の架構フレームおよび中央部の4個所の架構フレームの内側にそれぞれ制振装置10を設置している。   The number and arrangement pattern of the damping devices 10 on the damping floor may be appropriately designed so as to obtain a desired damping effect. However, since the building in the illustrated example has a substantially square plan shape, In the embodiment, as shown in FIG. 1 (b), the damping device 10 is installed inside each of the four frame frames on the outer peripheral portion and the four frame frames on the central portion on the vibration damping floor.

制振装置10としては周知の各種ダンパー、たとえばオイルダンパー、粘性ダンパー、粘弾性ダンパー、鋼材ダンパー、回転慣性質量ダンパーその他の形式のものを任意に採用可能であり、制振装置10の形態もブレース型、壁型、間柱型、梁端部設置型等、任意の形態が可能であり、異種の形式、形態の制振装置を任意に組み合わせて採用しても良い。
また、建物の振動を架構フレームから制振装置10に対して直接伝達して制振装置10を直接的に作動させることでも良いし、架構フレームと制振装置10との間に適宜の振動伝達機構や変形増幅機構を介装して建物の振動を間接的に伝達したり増幅して制振装置10に伝達するようにしても良い。勿論、地震力の過大な入力を制限するための機構や制振階の過大な変形を防止するためのフェイルセーフ機構等を適宜付設しても良い。
Various known dampers such as oil dampers, viscous dampers, viscoelastic dampers, steel dampers, rotary inertia mass dampers, and other types can be arbitrarily adopted as the vibration damping device 10, and the form of the vibration damping device 10 is also a brace. Arbitrary forms such as a mold, a wall type, a stud type, and a beam end installation type are possible, and different types and forms of vibration damping devices may be arbitrarily combined and employed.
Alternatively, the vibration of the building may be directly transmitted from the frame to the vibration control device 10 to directly operate the vibration control device 10, or appropriate vibration transmission may be performed between the frame and the vibration control device 10. The vibration of the building may be indirectly transmitted through a mechanism or a deformation amplification mechanism, or may be amplified and transmitted to the vibration damping device 10. Of course, a mechanism for limiting excessive input of seismic force, a fail-safe mechanism for preventing excessive deformation of the damping floor, and the like may be provided as appropriate.

図3は制振装置10の具体的な設置例を示す。
これは、制振装置10として回転慣性質量ダンパー11とオイルダンパー12を併用したもので、制振階における柱1および上下の梁3により構成される架構フレームの地震時の水平振動(層間変形)を鋼製フレーム13およびV形ブレース14を介して制振装置10に伝達してそれを作動させるようにしている。
すなわち、制振装置10を設置するべき架構フレームの内側に全周にわたって鋼製フレーム13を固定して、その下部中央位置に回転慣性質量ダンパー11を設置するとともに、鋼製フレーム13の上部両入隅部に対してV形ブレース14の上部両端部をそれぞれ接合板15を介してピン接合し、そのV形ブレース14の中央下端部を取付台16を介して回転慣性質量ダンパー11に連結し、かつ鋼製ブレース13の側部と取付台16との間にオイルダンパー12を介装することにより、建物の水平振動(架構フレームの層間変形)が鋼製フレーム13、V形ブレース14、取付台16を介して回転慣性質量ダンパー11およびオイルダンパー12に伝達されてそれらが作動し、優れた制振効果が得られるものとなっている。
FIG. 3 shows a specific installation example of the vibration damping device 10.
This is a combination of a rotary inertia mass damper 11 and an oil damper 12 as a vibration damping device 10, and a horizontal vibration (interlayer deformation) at the time of an earthquake of a frame composed of columns 1 and upper and lower beams 3 on a vibration damping floor. Is transmitted to the vibration damping device 10 through the steel frame 13 and the V-shaped brace 14 to operate it.
That is, the steel frame 13 is fixed to the inside of the frame where the vibration damping device 10 is to be installed, and the rotary inertia mass damper 11 is installed at the center of the lower portion thereof. The upper end portions of the V-shaped brace 14 are respectively pin-bonded to the corners via the joining plate 15, and the central lower end portion of the V-shaped brace 14 is connected to the rotary inertia mass damper 11 via the mounting base 16. And by installing the oil damper 12 between the side of the steel brace 13 and the mounting base 16, horizontal vibrations of the building (interlayer deformation of the frame) are made of the steel frame 13, the V-shaped brace 14, and the mounting base. It is transmitted to the rotary inertia mass damper 11 and the oil damper 12 through 16 to operate them, and an excellent vibration damping effect is obtained.

この場合、建物の振動を制振装置10に対して確実に伝達するためには、鋼製フレーム13が架構フレームに対して確実堅固に一体化していることが前提であり、そのためには鋼製フレーム13を架構フレームに対してたとえば図4〜図9に示す構造で固定することが好ましい。
すなわち、鋼製フレーム13の上下の水平部を上下の梁3に対して固定するためには、図4に示すように鋼製フレーム13をアンカーボルト17によって梁3に対して接合するか、それに代えて、あるいはそれに加えて、鋼製フレーム13に予め設けておいたスタッドボルト18を梁に対して定着することでそれらを一体化すれば良い。
また、鋼製フレーム13の両側の垂直部を柱1に対して固定するには、図5および図6に示すように柱1を被覆している上記の補強鋼材1cに対して鋼製フレーム13を溶接すれば良く、これにより鋼製フレーム13を柱1に対して一体化できるとともに鋼製フレーム13が補強鋼材1cの機能を兼用するものとなる。
In this case, in order to reliably transmit the vibration of the building to the vibration control device 10, it is a premise that the steel frame 13 is firmly and firmly integrated with the frame frame. It is preferable to fix the frame 13 to the frame frame, for example, with the structure shown in FIGS.
That is, in order to fix the upper and lower horizontal portions of the steel frame 13 to the upper and lower beams 3, the steel frame 13 is joined to the beams 3 with anchor bolts 17 as shown in FIG. Instead, or in addition, the stud bolts 18 provided in advance on the steel frame 13 may be fixed to the beam to integrate them.
Further, in order to fix the vertical portions on both sides of the steel frame 13 to the column 1, the steel frame 13 against the reinforcing steel material 1 c covering the column 1 as shown in FIGS. 5 and 6. As a result, the steel frame 13 can be integrated with the column 1 and the steel frame 13 also functions as the reinforcing steel material 1c.

なお、必要であれば、図7に示すように鋼製フレーム13を補強鋼材1cに溶接したうえで通しボルト19によって柱1に対して締結しても良い。
また、図5〜図7は柱1が角形断面の場合の例であるが、柱1が円形断面である場合にも図8〜図9に示すように同様の構造で鋼製フレーム13を柱1に対して固定すれば良い。
さらに、図5〜図9は柱1が補強鋼材1cとしての鋼板を装着している場合の例であるが、柱1を鋼管被覆型RC柱(充填鋼管型RC柱)とする場合にはその外殻となっている被覆鋼管に対して鋼製フレーム13を直接的に溶接すれば良い。
さらになお、図示例は鋼製フレーム13をH形鋼により形成した場合の例であるが、所望の剛性を有するものであれば鋼製フレーム13を適宜断面の鋼材により形成しても良い。
いずれにしても、図5に示すように鋼製フレーム13に対する接合板15の溶接位置では鋼製フレーム13の幅を大きくし、またそこにはリブプレート20を溶接することにより補剛効果を高めることが好ましい。
If necessary, the steel frame 13 may be welded to the reinforcing steel material 1c as shown in FIG.
FIGS. 5 to 7 show examples in which the pillar 1 has a square cross section. However, even when the pillar 1 has a circular cross section, the steel frame 13 has a similar structure as shown in FIGS. 8 to 9. What is necessary is just to fix to 1.
Further, FIGS. 5 to 9 are examples in which the column 1 is equipped with a steel plate as the reinforcing steel material 1c, but when the column 1 is a steel pipe covered RC column (filled steel tube type RC column), What is necessary is just to weld the steel frame 13 directly with respect to the covering steel pipe used as the outer shell.
Furthermore, although the example of illustration is an example at the time of forming the steel frame 13 with H-shaped steel, as long as it has desired rigidity, you may form the steel frame 13 with the steel material of a cross section suitably.
In any case, as shown in FIG. 5, the width of the steel frame 13 is increased at the welding position of the joining plate 15 with respect to the steel frame 13, and the rib plate 20 is welded to the width to increase the stiffening effect. It is preferable.

上記の制振構造によれば、層剛性を低下させた制振階を設定してそこに制振装置10を集約して設置するので、地震時における建物全体の水平変形が制振階に集中して制振装置10が効率的に作動し、以て建物全体に対する優れた制振効果が得られる。
そして、上記の制振構造によれば、通常の制振構造の場合のように多数の制振装置を各階に分散配置する必要はなく、また特許文献1〜3に示される構造のように建物全体にわたって高剛性のコアを設ける必要もないから、平面計画上の制約が少なく、工費や工期の点でも有利であり、様々な用途、規模、形態の建物に広く適用可能である。
According to the above-mentioned vibration control structure, since the vibration control floor with reduced layer rigidity is set and the vibration control device 10 is installed there, the horizontal deformation of the entire building during the earthquake is concentrated on the vibration control floor. Thus, the vibration damping device 10 operates efficiently, and an excellent vibration damping effect on the entire building can be obtained.
And according to said damping structure, it is not necessary to distribute many damping devices on each floor like the case of normal damping structure, and it is a building like the structure shown by patent documents 1-3. Since it is not necessary to provide a high-rigidity core as a whole, there are few restrictions in plan planning, it is advantageous in terms of construction cost and construction period, and it can be widely applied to buildings of various uses, scales, and forms.

以上で本発明の一実施形態について説明したが、上記実施形態はあくまで好適な一例であって本発明は上記実施形態に限定されるものでは勿論なく、たとえば以下のような適宜の設計的変更や応用が可能である。   Although one embodiment of the present invention has been described above, the above embodiment is merely a preferred example, and the present invention is not limited to the above embodiment. For example, the following appropriate design changes and Application is possible.

上記実施形態では地上1階および地上2階を制振階として設定したが、制振階の位置および階数は任意である。但し、制振階を上層部に設定した場合には制振階への変形集中が顕著には生じず、したがって制振装置10が必ずしも効率的に作動し得ないから、制振階は地上1階付近の下層部の範囲に設定すべきである。また、制振階を過度に多層に設定することは制振装置を多数階に分散配置することになって本発明の主旨にもとることになるから、上記実施形態のようにせいぜい2層程度とすることが現実的である。   In the above embodiment, the first floor and the second floor are set as the vibration suppression floors, but the position and the number of floors of the vibration suppression floor are arbitrary. However, when the damping floor is set to the upper layer, deformation concentration on the damping floor does not occur remarkably, and therefore the damping device 10 cannot always operate efficiently. It should be set in the lower area near the floor. In addition, setting the vibration suppression floor to an excessively large number of layers results in the purpose of the present invention because the vibration control devices are distributed and arranged on multiple floors, and therefore, at most about two layers as in the above embodiment. Is realistic.

また、上述したように制振階への制振装置10の設置台数や配置パターンは任意であるが、上記実施形態のように複数の制振階のそれぞれに個別に制振装置10を設置するばかりでなく、複数階の制振階に跨る形態で制振装置10を設置することでも良く、その一例を図10に示す。
これは、上記実施形態と同様に地上1階と地上2階を制振階とした場合において、それらの2層に跨る大規模な制振装置10として、2層分の層間変形をトグル機構により増幅する形態のブレースダンパーを採用し、それを平面的には建物中央部の4スパンに設置したものであり、この場合も建物全体に対する効率的な制振効果が得られる。
Further, as described above, the number of installed damping devices 10 on the damping floor and the arrangement pattern thereof are arbitrary, but the damping devices 10 are individually installed on each of the plurality of damping floors as in the above embodiment. In addition, the vibration damping device 10 may be installed in a form straddling a plurality of floors, and an example thereof is shown in FIG.
In the case where the first floor and the second floor are vibration suppression floors as in the above embodiment, the interlayer deformation for two layers is performed by a toggle mechanism as a large-scale vibration control device 10 straddling those two layers. Amplifying brace dampers are used and are installed in four spans in the center of the building in plan view. In this case as well, an effective damping effect on the entire building can be obtained.

1 柱(制振階)
1a 柱主筋
1b 定着頭部
1c 補強鋼材
2 柱 (直上階)
2a 柱主筋
2b 定着頭部
3 梁
10 制振装置
11 回転慣性質量ダンパー
12 オイルダンパー
13 鋼製フレーム
14 V形ブレース
15 接合板
16 取付台
17 アンカーボルト
18 スタッドボルト
19 通しボルト
20 リブプレート
1 pillar (damping floor)
1a Column main reinforcement 1b Fixing head 1c Reinforced steel 2 Column (Upper floor)
2a Column main reinforcement 2b Fixing head 3 Beam 10 Damping device 11 Rotating inertia mass damper 12 Oil damper 13 Steel frame 14 V-shaped brace 15 Joint plate 16 Mounting base 17 Anchor bolt 18 Stud bolt 19 Through bolt 20 Rib plate

Claims (3)

高層ないし超高層の鉄筋コンクリート造の建物を対象として該建物の要所に制振装置を設置してなる制振構造であって、
下層部に制振階を設定して該制振階に前記制振装置を集約して設置するとともに、前記制振階における柱を上層部における柱よりも小断面として該制振階の層剛性を上層部よりも低下させ、
前記制振階における柱の柱主筋をその直上階の柱の柱主筋の内側に配筋した状態でコンクリート中に定着することにより双方の柱を接合してなることを特徴とする制振構造。
It is a vibration control structure in which a vibration control device is installed at a key point of a high-rise or super-high-rise reinforced concrete building,
A damping floor is set in the lower part and the damping device is integrated and installed on the damping floor, and the pillars in the damping floor are made smaller than the pillars in the upper part, and the layer rigidity of the damping floor Lower than the upper layer,
A damping structure characterized in that both pillars are joined by fixing them in concrete in a state in which the pillar main bars of the columns in the vibration control floor are arranged inside the pillar main bars of the columns on the upper floor.
前記制振階の柱は高強度ないし超高強度コンクリートおよび高強度ないし超高強度鉄筋による鉄筋コンクリート柱とし、かつ該柱を補強鋼材により被覆してなることを特徴とする請求項1記載の制振構造。   2. The vibration control system according to claim 1, wherein the columns of the vibration control floor are high-strength or ultrahigh-strength concrete and reinforced concrete columns made of high-strength or ultrahigh-strength reinforcing bars, and the columns are covered with a reinforcing steel material. Construction. 制振階の柱および梁により構成される架構フレームの内側に鋼製フレームを固定し、該鋼製フレームの内側に前記制振装置を設置してなることを特徴とする請求項1または2記載の制振構造。   3. A steel frame is fixed inside a frame frame composed of columns and beams on a vibration control floor, and the vibration control device is installed inside the steel frame. Vibration control structure.
JP2010269706A 2010-12-02 2010-12-02 Vibration control structure Pending JP2012117327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269706A JP2012117327A (en) 2010-12-02 2010-12-02 Vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269706A JP2012117327A (en) 2010-12-02 2010-12-02 Vibration control structure

Publications (1)

Publication Number Publication Date
JP2012117327A true JP2012117327A (en) 2012-06-21

Family

ID=46500478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269706A Pending JP2012117327A (en) 2010-12-02 2010-12-02 Vibration control structure

Country Status (1)

Country Link
JP (1) JP2012117327A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156707A (en) * 2013-02-14 2014-08-28 Shimizu Corp Vibration control structure
JP2015227605A (en) * 2014-05-09 2015-12-17 清水建設株式会社 Vibration control device and building comprising the same
JP2020094388A (en) * 2018-12-12 2020-06-18 清水建設株式会社 Architectural structure
JP2020109235A (en) * 2019-01-07 2020-07-16 株式会社竹中工務店 building

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314642U (en) * 1986-07-11 1988-01-30
JPH02144435A (en) * 1988-11-24 1990-06-04 Ohbayashi Corp Vibration-resistant reinforcing construction for opening of reinforced concrete structure
JPH02274947A (en) * 1989-04-17 1990-11-09 Shimizu Corp Structural material for earthquake proofing structure
JPH11324392A (en) * 1998-05-15 1999-11-26 Dynamic Design:Kk Earthquake vibration control structure
JP2007277911A (en) * 2006-04-06 2007-10-25 Toda Constr Co Ltd Structure of seismic response control column

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314642U (en) * 1986-07-11 1988-01-30
JPH02144435A (en) * 1988-11-24 1990-06-04 Ohbayashi Corp Vibration-resistant reinforcing construction for opening of reinforced concrete structure
JPH02274947A (en) * 1989-04-17 1990-11-09 Shimizu Corp Structural material for earthquake proofing structure
JPH11324392A (en) * 1998-05-15 1999-11-26 Dynamic Design:Kk Earthquake vibration control structure
JP2007277911A (en) * 2006-04-06 2007-10-25 Toda Constr Co Ltd Structure of seismic response control column

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156707A (en) * 2013-02-14 2014-08-28 Shimizu Corp Vibration control structure
JP2015227605A (en) * 2014-05-09 2015-12-17 清水建設株式会社 Vibration control device and building comprising the same
JP2020094388A (en) * 2018-12-12 2020-06-18 清水建設株式会社 Architectural structure
JP2020109235A (en) * 2019-01-07 2020-07-16 株式会社竹中工務店 building
JP7364335B2 (en) 2019-01-07 2023-10-18 株式会社竹中工務店 building

Similar Documents

Publication Publication Date Title
JP2012117327A (en) Vibration control structure
JP2007063941A (en) Aseismic support structure of boiler
JP6053485B2 (en) Installation structure of studs in existing building
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP5338050B2 (en) Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method
JP4072687B2 (en) Seismic reinforcement structure for building structures
JP3559025B2 (en) Seismic retrofit method for existing building and brace mounting device used for it
JP4151693B2 (en) Installation structure of studs in existing building
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP2010071044A (en) Aseismatic structure and building
JP5144182B2 (en) Seismic reinforcement structure and seismic reinforcement method for existing buildings
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP5596338B2 (en) Reinforcing brackets for wooden buildings and methods for reinforcing wooden buildings
JP2018199958A (en) Damping structure
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP2021038651A (en) Earthquake-proof structure
KR102209624B1 (en) Seismic reinforcing structure
JP4187230B2 (en) Pillar type vibration control device
JP6293207B2 (en) Installation structure of studs in existing building
JP5344702B2 (en) Column and slab joint structure
JP2000310044A (en) Vibration controlling reinforcement method for outer shell of existing building
JP3671311B2 (en) Damping and reinforcing structure for existing buildings
JP4660810B2 (en) Boundary beam damper
JP4432581B2 (en) Building structure that can change floor height
JP2008095467A (en) Aseismic stud

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930