JP4010981B2 - Upper extension method for existing buildings - Google Patents

Upper extension method for existing buildings Download PDF

Info

Publication number
JP4010981B2
JP4010981B2 JP2003153688A JP2003153688A JP4010981B2 JP 4010981 B2 JP4010981 B2 JP 4010981B2 JP 2003153688 A JP2003153688 A JP 2003153688A JP 2003153688 A JP2003153688 A JP 2003153688A JP 4010981 B2 JP4010981 B2 JP 4010981B2
Authority
JP
Japan
Prior art keywords
extension
existing building
core
existing
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003153688A
Other languages
Japanese (ja)
Other versions
JP2004353351A (en
Inventor
康明 豊田
裕司 忍
賢一 宮崎
元 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2003153688A priority Critical patent/JP4010981B2/en
Publication of JP2004353351A publication Critical patent/JP2004353351A/en
Application granted granted Critical
Publication of JP4010981B2 publication Critical patent/JP4010981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、既存建物の屋上部に階数を増やすなどの増築を行う際に好適な、既存建物の上部増築工法の技術分野に属する。
【0002】
【従来の技術】
既存建物の規模拡大や用途変更をするに際し、既存建物の屋上部より上方に階数を増やすなどの増築を行いたい場合がある。
【0003】
既存建物の屋上部に増築工事を行う場合には通常、当該既存建物に、増築部分の重量増加に伴う長期鉛直荷重に対する補強工事だけでなく、地震時応力の増大に対する耐震補強工事も併せて行う必要がある。
【0004】
そのため補強工事が大掛かりになり、工費の増大や工期の長期化を招く虞があった。また、補強工事に伴う既存建物の壁厚の増大、補強フレームの追加などにより既存建物の居住空間を減損する虞もあった。
【0005】
そこで従来、前記問題点を踏まえて開発された既存建物の上部増築工法が、種々開示されて公知である(例えば、特許文献1、2参照)。
【0006】
特許文献1に開示された技術は、既存建物の躯体と基礎とを補強し、当該躯体と基礎との間に免震装置を設置した後、既存建物の屋上部に増築工事を施す既存建物の上部増築工法である。
【0007】
この技術によると、免震装置の免震作用により、地震時応力の増大に対する耐震補強工事の必要性がほとんどなく、既存建物の補強を増築分の重量増加に伴う長期鉛直荷重に対する補強工事程度にとどめることが可能になる。その分だけ工費削減、工期の短縮化を図ることができ、居住空間を減損する虞が少なくなった。
【0008】
前記特許文献2に開示された技術は、既存部分又は増築部分の任意の層、特には増築部分の最下層に、他の層よりも相対的に低剛性となり地震時の変形が集中し地震エネルギーの大半を吸収する中間免震層を設ける、既存建物の上部増築工法である。
【0009】
この技術によると、前記地震エネルギーの大半を吸収する中間免震層の作用により、増築部分には地震エネルギーが殆ど伝播されず、増築部分の振動により既存部分の地震エネルギーが低減されるので、前記特許文献1と同様に、地震時応力の増大に対する耐震補強工事の必要性がほとんどない。既存建物の補強を増築分の重量増加に伴う長期鉛直荷重に対する補強工事程度にとどめることが可能になり、その分だけ工費削減、工期の短縮化を図ることができ、居住空間を減損する虞が少なくなった。
【0010】
【特許文献1】
特開平7−62896号公報
【特許文献2】
特開2001−32534号公報
【0011】
【本発明が解決しようとする課題】
しかしながら、上記特許文献1及び2に開示された技術はともに、地震時応力の増大に対する耐震補強工事はほとんど省力化できるものの、増築部分の長期鉛直荷重に対する補強工事は依然として必要である。
【0012】
そのため補強部材点数は減るものの、既存建物外周部における各層の柱や建物基礎の補強工事を既存建物全体に行うことに変わりがなく、補強工事に伴う工費削減、工期の短縮化については改善の余地が多く残されている。
【0013】
本発明の目的は、地震時応力の増大に対する耐震補強工事をほとんど省力化できることは勿論、増築部分の長期鉛直荷重に対する補強工事を既存建物のコア部分のみに集中的に行うことにより、補強工事の範囲と分量を最小限に抑え、さらなる工費削減、工期の短縮化を図ることができる、既存建物の上部増築工法を提供することである。
【0014】
【課題を解決するための手段】
上記従来技術の課題を解決するための手段として、請求項1記載の発明に係る既存建物の上部増築工法は、
既存建物の屋上部に階数を増やすなどの増築を行う工法において、
既存建物のコア部を、増築部分の長期鉛直荷重を負担できるように補強し、増築部分のコア部柱を連結すること、
増築部分の梁及びスラブは当該増築部分のコア部に片持ちされた跳ね出し架構として構築すること、
増築部分の外周部柱と既存架構との間にダンパー等の減衰装置を設けることを特徴とする。
【0015】
請求項2に記載した発明は、請求項1に記載した既存建物の上部増築工法において、増築部分のコア部は、その上端にほぼ水平な繋ぎ材を設けて補強することを特徴とする。
【0016】
請求項3に記載した発明は、請求項1又は2に記載した既存建物の上部増築工法において、増築部分の骨組構造は、増築部分のコア部の上端部と外周部柱の下端部とを吊り材で連結して補強した跳ね出し架構とすることを特徴とする。
【0017】
請求項4に記載した発明は、請求項1〜3のいずれか一に記載した既存建物の上部増築工法において、増築部分の骨組構造は、各階の梁及びスラブとコア部との間にブレース及び間柱を設けて補強した跳ね出し架構とすることを特徴とする。
【0018】
請求項5に記載した発明は、請求項1〜4のいずれか一に記載した既存建物の上部増築工法において、増築部分のコア部は、建物に内包されるセンターコア形式又はコアが四周のうち対面する二面を含むセンターコア形式とすることを特徴とする。
【0019】
【発明の実施の形態及び実施例】
図1と図2は、請求項1に記載した発明に係る既存建物の上部増築工法の実施形態を示している。
【0020】
この既存建物の上部増築工法は、既存建物の屋上部に階数を増やすなどの増築(既存建物の10〜20%程度の重量の増築)を行う際に、当該増築部分の長期鉛直荷重に対する補強工事を既存建物のコア部のみに集中的に行うことにより、補強工事の範囲と分量を最小限に抑え、構造力学上安定して増築できる技術思想に立脚している。
【0021】
前記既存建物の上部増築工法は、既存建物1のコア部2を、増築部分11の長期鉛直荷重を負担できるように補強し、増築部分11のコア部柱12と連結する。前記増築部分11の梁及びスラブ13は当該増築部分11のコア部12に片持ちされた跳ね出し架構として構築する。前記増築部分11の外周部柱11aと既存架構1との間にダンパー等の減衰装置3を設ける(請求項1記載の発明)。
【0022】
図1は、鉄筋コンクリート造の地下1階、地上9階建ての既存建物1を対象としてその上に4階分の増築部分11を設け、全体として地下1階、地上13階建てとする増築工法を示している。
【0023】
前記既存建物1のコア部2は、建物に内包されるセンターコア形式で実施しているがこれに限定されず、例えば、図6に示したように、コアが四周のうち対面する二面を含むセンターコア形式で実施することもできる(請求項5記載の発明)。
【0024】
前記既存建物1のコア部2の補強手段は、図2に示したように、各階のコア部2における隣接するコア部柱2aの間に、補強耐力壁5をバランス良く設置することにより実施する。もちろん当該補強耐力壁5の設置箇所は、図示例に限定されない。また、前記コア部2の補強手段は補強耐力壁5を使用することに限定されず、コア部柱2aをふとらせて実施してもよい。さらに、必ずしもコア部分2の各階に補強手段を施す必要はなく、増築部分11の長期鉛直荷重(増築する階数)に応じて構造設計上必要な部位を補強すれば足りる。
【0025】
本実施形態に係る増築部分11は、平面方向に見て、既存建物1の構成部材とほぼ一致する位置、すなわち、既存建物1のコア部柱2a、コア壁2bを含むコア部分2、および外周部柱1aを含む外周部4とほぼ一致する配置に、コア部柱、コア壁を含むコア部分12、および外周部柱11aを含む外周部14を設けて増築している。
【0026】
増築部分11のコア部12と既存建物1のコア部2とは、図1のX部の位置で、当該増築部分11の長期鉛直荷重を既存建物1のコア部2に直接伝達できる構成で実施している。
【0027】
また、本実施形態に係る増築部分11のコア部12は、その上端にほぼ水平な繋ぎ材15を設けて補強している(請求項2記載の発明)。
【0028】
前記コア部12から片持ちされた跳ね出し架構として構築する増築部分11は、その骨組構造を、ゆがみや不均等荷重、振動荷重による破壊を起こさないように補強することに留意する。例えば、本実施形態では、増築部分11の骨組構造を、増築部分11のコア部12の上端部の繋ぎ材15と外周部柱11aの下端部とを、バランスよく配置された複数の吊り材16で連結して補強した跳ね出し架構としている(請求項3記載の発明)。なお、増築部分11の骨組構造の補強手段は勿論これに限定されず、前記吊り材16を、増築部分11の各階の外周部柱11aと連結して補強してもよいし、図5に示したように、各階の梁及びスラブ13とコア部12との間にブレース17及び間柱19を設けて補強することもできる(請求項4記載の発明)。
【0029】
本実施形態においては、増築部分11に作用する水平力の一部が跳ね出し架構の上下運動となり、本実施形態に係る減衰装置3は、図3に示したように、増築部分11の外周部柱11aと、既存建物1の外周部柱1aとの間にピン18で接合して設置してあり、当該上下運動のエネルギーを吸収する役割と当該既存建物1の外周部柱1aに過大な力が作用しないような役割を併せ持っている。
【0030】
なお、本実施形態のダンパー3は、図2のY部分に配設した外周部柱1aの部位にそれぞれ計8体、バランスよく設けて実施しているが設置箇所はこれに限定されず、増築部分11に生じる振動エネルギーを十分に吸収できる配置で実施すればよい。また、前記減衰装置3は、ダンパー3に限定されないことは勿論で、増築部分11に生じる振動エネルギーを吸収可能な装置であれば、粘性体ダンパーやオイルダンパーなどでも好適に実施できる。
【0031】
したがって、既存建物1の外周部4と増築部分11の外周部14とは、相対変位可能に切り離された形態で実施しているので、既存建物1の外周部(外周フレームや外周壁)4へ過大な振動エネルギーの入力を回避できると共に、その間に設置した減衰装置(ダンパー)3の作用により、前記振動エネルギーを制御することができる。
【0032】
上記構成の既存建物1の上部増築工法は、地震などの短期荷重に対しては、増築部分11の外周部14に取り付けられた減衰装置(ダンパー)3で制御することにより、伝達される振動エネルギーを制御できる。よって、既存建物1の外周部柱1aなどの補強を一切必要とせず、当該増築部分11の長期鉛直荷重に対する補強工事を既存建物1のコア部2のみに集中的に行えば良いので、補強工事の範囲及び分量を必要最小限に抑えることができ、補強工事の工費削減、工期の短縮化に貢献する。
【0033】
既存建物1のコア部2の補強による剛性の高い既存建物1と柔軟性が大きい跳ね出し架構の増築部分11が組み合わされることにより、地震時において、図4に示したように、地震時の短期荷重に伴い増築部分11が鞭振り現象を起こすので、増築しない既存建物1のみの場合と比して、振動エネルギーの入力を大幅に低減することができる(TMD効果)。
【0034】
地震時の短期荷重に伴う増築部分11の鞭振り現象の水平力の一部を、増築部分11の外周部14において鉛直変位に変え、減衰装置(ダンパー)3で振動エネルギーを制御・吸収する架構としているため、前記TMD効果の作用効率をより高めることができる。
【0035】
【本発明が奏する効果】
請求項1〜5に記載した発明に係る既存建物の上部増築工法によれば、
1)既存建物の外周部と増築部分の外周部とは、相対変位可能に切り離された形態で実施しているので、既存建物の外周部(外周フレームや外周壁)へ過大な振動エネルギーの入力を回避できると共に、その間に設置した減衰装置(ダンパー)の作用により、振動エネルギーを制御することができる。
2)地震などの短期荷重に対しては、増築部分の外周部に取り付けられた減衰装置(ダンパー)で制御することにより、伝達される振動エネルギーを制御できる。よって、既存建物の外周部柱などの補強を一切必要とせず、当該増築部分の長期鉛直荷重に対する補強工事を既存建物のコア部のみに集中的に行えば良いので、補強工事の範囲及び分量を必要最小限に抑えることができ、補強工事の工費削減、工期の短縮化に貢献する。
3)既存建物のコア部の補強による剛性の高い既存建物と柔軟性が大きい跳ね出し架構の増築部分が組み合わされるので、地震時において、図4に示したように、地震時の短期荷重に伴い増築部分が鞭振り現象を起こすので、増築しない既存建物のみの場合と比して、振動エネルギーの入力を大幅に低減することができる(TMD効果)。
4)地震時の短期荷重に伴う増築部分の鞭振り現象の水平力の一部を、増築部分の外周部において鉛直変位に変え、減衰装置(ダンパー)で振動エネルギーを制御・吸収する架構としているため、前記TMD効果の作用効率をより高めることができる。
5)その他、増築部の外周部柱の変位及び作用する振動エネルギーは、減衰装置により制御されているので、コア部からの跳ね出し形式は比較的制約を受けることなく施工状況に応じて実施でき、外周部柱とコア部柱との取り合いを、剛接合もしくはピン接合又はそれらの組み合わせなどでフレキシブルに実施できる。
【図面の簡単な説明】
【図1】請求項1に記載した既存建物の上部増築工法の実施形態を示した立面図である。
【図2】図1のA−A線矢視断面図である。
【図3】減衰装置を示した立面図である。
【図4】増築部分の鞭振り現象を概略的に示した立面図である。
【図5】異なる実施形態を示した立面図である。
【図6】異なる実施形態を示した平面図である。
【符号の説明】
1 既存建物
1a 外周部柱
2 コア部
2a コア部柱
2b コア壁
3 減衰装置
4 外周部
5 補強耐力壁
11 増築部分
11a 外周部柱
12 コア部
13 スラブ及び梁
14 外周部
15 繋ぎ材
16 吊り材
17 ブレース
18 ピン
19 間柱
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of an upper extension construction method for an existing building, which is suitable for an extension such as increasing the number of floors on the roof of an existing building.
[0002]
[Prior art]
When expanding the scale or changing the use of an existing building, there is a case where it is desired to increase the number of floors above the roof of the existing building.
[0003]
When an extension work is performed on the roof of an existing building, the existing building is usually not only reinforced for a long-term vertical load accompanying an increase in the weight of the extension, but also a seismic reinforcement work for an increase in stress during an earthquake. There is a need.
[0004]
Therefore, the reinforcement work becomes large, and there is a possibility that the construction cost increases and the construction period becomes longer. In addition, there is a risk that the living space of the existing building may be impaired due to an increase in the wall thickness of the existing building accompanying the reinforcement work or the addition of a reinforcing frame.
[0005]
Therefore, conventionally, various methods for expanding an upper part of an existing building developed based on the above problems are disclosed and known (for example, see Patent Documents 1 and 2).
[0006]
The technique disclosed in Patent Document 1 is to reinforce an existing building's frame and foundation, install a seismic isolation device between the frame and the foundation, and then add an extension work to the roof of the existing building. It is an upper extension method.
[0007]
According to this technology, due to the seismic isolation of the seismic isolation device, there is almost no need for seismic reinforcement work against the increase in stress during earthquakes, and the reinforcement of existing buildings is to the extent of reinforcement work for long-term vertical loads accompanying the weight increase of the extension. It becomes possible to stay. As a result, it was possible to reduce the construction cost and shorten the construction period, and the possibility of deteriorating the living space was reduced.
[0008]
The technique disclosed in Patent Document 2 is that the existing part or the extension part, particularly the lowermost layer of the extension part, has relatively lower rigidity than the other layers and the deformation at the time of earthquake concentrates on the earthquake energy. This is an extension method for the upper part of an existing building with an intermediate seismic isolation layer that absorbs most of it.
[0009]
According to this technology, due to the action of the intermediate isolation layer that absorbs most of the seismic energy, the seismic energy is hardly propagated to the extension part, and the seismic energy of the existing part is reduced by the vibration of the extension part. Similar to Patent Document 1, there is almost no need for seismic reinforcement work for an increase in earthquake stress. It is possible to limit the reinforcement of existing buildings to the level of the long-term vertical load that accompanies the increase in the weight of the extension, which can reduce the construction cost and shorten the construction period, and may reduce the living space. Less.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-62896 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-32534
[Problems to be solved by the present invention]
However, although both the techniques disclosed in Patent Documents 1 and 2 can save labor for the earthquake-proof reinforcement work against the increase in stress during earthquakes, the reinforcement work against the long-term vertical load at the extension part is still necessary.
[0012]
Therefore, although the number of reinforcing members is reduced, there is no change in the reinforcement work for each layer of pillars and building foundations on the entire outer periphery of the existing building, and there is room for improvement in terms of reducing the construction cost and shortening the construction period. Many are left behind.
[0013]
The object of the present invention is that the seismic reinforcement work against the increase of stress during earthquake can be saved almost, and the reinforcement work for the long-term vertical load of the extension part is concentrated only on the core part of the existing building. The aim is to provide a method for extending the upper part of an existing building that can minimize the scope and volume, further reduce the construction cost, and shorten the construction period.
[0014]
[Means for Solving the Problems]
As a means for solving the problems of the prior art, the upper extension method for an existing building according to the invention of claim 1 is:
In construction methods such as increasing the number of floors on the roof of an existing building,
Reinforce the core part of the existing building so that it can bear the long-term vertical load of the extension part, and connect the core part pillar of the extension part,
The beam and slab of the extension part shall be constructed as a jumping frame cantilevered at the core part of the extension part,
A damping device such as a damper is provided between the outer peripheral column of the extension portion and the existing frame.
[0015]
The invention described in claim 2 is characterized in that, in the upper extension method of the existing building described in claim 1, the core portion of the extension portion is reinforced by providing a substantially horizontal connecting material at the upper end thereof.
[0016]
According to a third aspect of the present invention, in the upper extension method for an existing building according to the first or second aspect, the framework structure of the extension portion is hung between the upper end portion of the core portion of the extension portion and the lower end portion of the outer peripheral column. It is characterized by a spring frame that is reinforced by connecting with materials.
[0017]
The invention described in claim 4 is the upper extension method of the existing building described in any one of claims 1 to 3, wherein the frame structure of the extension portion includes braces and slabs between the floor and braces It is characterized by a spring frame that is reinforced with a stud.
[0018]
The invention described in claim 5 is the upper extension method of the existing building described in any one of claims 1 to 4, wherein the core part of the extension part is a center core type included in the building or the core is out of four turns. It is a center core type including two faces facing each other.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 show an embodiment of an upper extension method for an existing building according to the invention described in claim 1.
[0020]
This extension method for the upper part of the existing building is a reinforcement work for long-term vertical load of the extension part when an extension such as increasing the number of floors (extension of about 10-20% of the existing building) is performed. By focusing on the core of the existing building, the scope and amount of the reinforcement work is minimized, and it is based on the technical idea that can be expanded stably in structural mechanics.
[0021]
In the upper extension method of the existing building, the core part 2 of the existing building 1 is reinforced so as to bear the long-term vertical load of the extension part 11 and is connected to the core part column 12 of the extension part 11. The beam and the slab 13 of the extension portion 11 are constructed as a spring frame that is cantilevered by the core portion 12 of the extension portion 11. A damper 3 such as a damper is provided between the outer peripheral column 11a of the extension portion 11 and the existing frame 1 (the invention according to claim 1).
[0022]
Fig. 1 shows an extension construction method in which an extension part 11 for 4 floors is provided on an existing building 1 of 1 floor underground and 9 floors above ground, and 1 floor underground and 13 floors above. Show.
[0023]
The core part 2 of the existing building 1 is implemented in the form of a center core included in the building, but is not limited to this. For example, as shown in FIG. It can also be implemented in the form of a center core including (the invention according to claim 5).
[0024]
As shown in FIG. 2, the reinforcing means of the core part 2 of the existing building 1 is implemented by installing the reinforcing bearing walls 5 in a well-balanced manner between the adjacent core part pillars 2a in the core part 2 of each floor. . Of course, the installation location of the reinforcing bearing wall 5 is not limited to the illustrated example. Further, the reinforcing means of the core part 2 is not limited to using the reinforcing bearing wall 5, and the core part 2 may be carried out with the core part column 2 a. Further, it is not always necessary to provide reinforcing means to each floor of the core portion 2, and it is sufficient to reinforce a portion necessary for structural design according to the long-term vertical load (the number of floors to be extended) of the extension portion 11.
[0025]
The extension part 11 according to the present embodiment has a position substantially coincident with the constituent members of the existing building 1 when viewed in the plane direction, that is, the core part 2 including the core part column 2a and the core wall 2b of the existing building 1, and the outer periphery. The core part column, the core part 12 including the core wall, and the outer peripheral part 14 including the outer peripheral part column 11a are provided and extended in an arrangement substantially coinciding with the outer peripheral part 4 including the part pillar 1a.
[0026]
The core part 12 of the extension part 11 and the core part 2 of the existing building 1 are implemented in a configuration capable of directly transmitting the long-term vertical load of the extension part 11 to the core part 2 of the existing building 1 at the position X in FIG. is doing.
[0027]
Further, the core portion 12 of the extension portion 11 according to the present embodiment is reinforced by providing a substantially horizontal connecting material 15 at the upper end (the invention according to claim 2).
[0028]
It should be noted that the extension portion 11 that is constructed as a cantilever frame that is cantilevered from the core portion 12 reinforces the framework structure so as not to be distorted, broken, or broken by vibration loads. For example, in this embodiment, the frame structure of the extension portion 11 is made up of a plurality of suspension members 16 in which the connecting member 15 at the upper end portion of the core portion 12 of the extension portion 11 and the lower end portion of the outer peripheral column 11a are arranged in a balanced manner. It is set as the spring frame connected and reinforced with (Invention of Claim 3). Of course, the reinforcing means for the frame structure of the extension portion 11 is not limited to this, and the suspension material 16 may be reinforced by being connected to the outer peripheral column 11a of each floor of the extension portion 11, as shown in FIG. As described above, the braces 17 and the studs 19 can be provided between the beams and slabs 13 and the core portion 12 of each floor to reinforce them (the invention according to claim 4).
[0029]
In the present embodiment, a part of the horizontal force acting on the extension portion 11 jumps up and down, and the damping device 3 according to this embodiment has an outer peripheral portion of the extension portion 11 as shown in FIG. The pillar 11a and the outer peripheral column 1a of the existing building 1 are installed by being joined with a pin 18, and the role of absorbing the energy of the vertical motion and the excessive force on the outer peripheral column 1a of the existing building 1 It also has a role that does not work.
[0030]
In addition, the damper 3 of the present embodiment is provided with a total of eight bodies in a well-balanced manner in the portion of the outer peripheral column 1a disposed in the Y portion of FIG. 2, but the installation location is not limited to this, and the extension What is necessary is just to implement by the arrangement | positioning which can fully absorb the vibration energy which arises in the part 11. FIG. In addition, the damping device 3 is not limited to the damper 3 and can be suitably implemented with a viscous damper, an oil damper, or the like as long as it can absorb vibration energy generated in the extension portion 11.
[0031]
Therefore, since the outer peripheral part 4 of the existing building 1 and the outer peripheral part 14 of the extension part 11 are separated in such a manner that they can be relatively displaced, the outer peripheral part (outer peripheral frame or outer peripheral wall) 4 of the existing building 1 is used. The input of excessive vibration energy can be avoided, and the vibration energy can be controlled by the action of a damping device (damper) 3 installed therebetween.
[0032]
The upper extension method of the existing building 1 having the above-described structure is to transmit the vibration energy transmitted by controlling the damping device (damper) 3 attached to the outer peripheral portion 14 of the extension portion 11 for a short-term load such as an earthquake. Can be controlled. Therefore, it is not necessary to reinforce the outer peripheral pillar 1a of the existing building 1 at all, and the reinforcement work for the long-term vertical load of the extension part 11 may be performed only on the core part 2 of the existing building 1, so that the reinforcement work The range and amount of the material can be kept to the minimum necessary, contributing to the reduction of the construction cost and the shortening of the construction period.
[0033]
By combining the existing building 1 with high rigidity by reinforcement of the core 2 of the existing building 1 and the extension part 11 of the jumping frame with high flexibility, as shown in FIG. Since the extension portion 11 causes a whip phenomenon with the load, the input of vibration energy can be greatly reduced as compared to the case of the existing building 1 that is not added only (TMD effect).
[0034]
A structure in which a part of the horizontal force of the whip phenomenon of the extension portion 11 due to a short-term load at the time of an earthquake is changed to a vertical displacement at the outer peripheral portion 14 of the extension portion 11 and vibration energy is controlled and absorbed by the damper 3 (damper) 3 Therefore, the working efficiency of the TMD effect can be further increased.
[0035]
[Effects of the present invention]
According to the upper extension method of the existing building according to the invention described in claims 1 to 5,
1) Since the outer peripheral part of the existing building and the outer peripheral part of the extension part are separated in such a manner that they can be displaced relative to each other, excessive vibration energy is input to the outer peripheral part (the outer peripheral frame or outer peripheral wall) of the existing building. The vibration energy can be controlled by the action of a damping device (damper) installed therebetween.
2) For short-term loads such as earthquakes, the vibration energy transmitted can be controlled by controlling with a damping device (damper) attached to the outer periphery of the extension. Therefore, there is no need to reinforce the outer peripheral pillars of the existing building, and it is only necessary to concentrate the reinforcement work against the long-term vertical load of the extension part only on the core part of the existing building. It can be reduced to the minimum necessary, and it contributes to reducing the cost of construction and shortening the construction period.
3) Since the existing building with high rigidity by reinforcing the core part of the existing building is combined with the extension part of the flexible structure with high flexibility, as shown in Fig. 4, there is a short-term load at the time of the earthquake. Since the extension part causes a whip phenomenon, the input of vibration energy can be greatly reduced (TMD effect) as compared with the case of only existing buildings that are not added.
4) A part of the horizontal force of the whipping phenomenon of the extension part due to short-term load at the time of earthquake is changed to a vertical displacement at the outer peripheral part of the extension part, and the frame is designed to control and absorb the vibration energy with a damping device (damper). Therefore, the working efficiency of the TMD effect can be further increased.
5) In addition, the displacement of the outer peripheral column of the extension part and the acting vibration energy are controlled by the damping device, so the form of jumping out from the core part can be implemented according to the construction situation without being relatively restricted. In addition, the connection between the outer peripheral column and the core column can be implemented flexibly by rigid bonding, pin bonding, or a combination thereof.
[Brief description of the drawings]
FIG. 1 is an elevational view showing an embodiment of an upper extension method for an existing building according to claim 1;
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is an elevational view showing the damping device.
FIG. 4 is an elevational view schematically showing the whipping phenomenon of the extension part.
FIG. 5 is an elevational view showing a different embodiment.
FIG. 6 is a plan view showing a different embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Existing building 1a Peripheral part pillar 2 Core part 2a Core part pillar 2b Core wall 3 Damping device 4 Outer part 5 Reinforcement bearing wall 11 Extension part 11a Peripheral part pillar 12 Core part 13 Slab and beam 14 Outer part 15 Connecting material 16 Suspension material 17 brace 18 pin 19 stud

Claims (5)

既存建物の屋上部に階数を増やすなどの増築を行う工法において、
既存建物のコア部を、増築部分の長期鉛直荷重を負担できるように補強し、増築部分のコア部柱を連結すること、
増築部分の梁及びスラブは当該増築部分のコア部に片持ちされた跳ね出し架構として構築すること、
増築部分の外周部柱と既存架構との間にダンパー等の減衰装置を設けることを特徴とする、既存建物の上部増築工法。
In construction methods such as increasing the number of floors on the roof of an existing building,
Reinforce the core part of the existing building so that it can bear the long-term vertical load of the extension part, and connect the core part pillar of the extension part,
The beam and slab of the extension part shall be constructed as a jumping frame cantilevered at the core part of the extension part,
An extension method for the upper part of an existing building, characterized in that a damping device such as a damper is provided between the outer peripheral column of the extension part and the existing frame.
増築部分のコア部は、その上端にほぼ水平な繋ぎ材を設けて補強することを特徴とする、請求項1に記載した既存建物の上部増築工法。The upper extension method for an existing building according to claim 1, wherein the core portion of the extension portion is reinforced by providing a substantially horizontal connecting material at the upper end thereof. 増築部分の骨組構造は、増築部分のコア部の上端部と外周部柱の下端部とを吊り材で連結して補強した跳ね出し架構とすることを特徴とする、請求項1又は2に記載した既存建物の上部増築工法。The framework structure of the extension portion is a spring frame that is reinforced by connecting the upper end portion of the core portion of the extension portion and the lower end portion of the outer peripheral column with a suspension material. The upper extension method of the existing building. 増築部分の骨組構造は、各階の梁及びスラブとコア部との間にブレース及び間柱を設けて補強した跳ね出し架構とすることを特徴とする、請求項1〜3のいずれか一に記載した既存建物の上部増築工法。The frame structure of the extension part is a jumping frame reinforced by providing braces and studs between the beams and slabs and the core part of each floor, and described in any one of claims 1 to 3. Upper extension method for existing buildings. 増築部分のコア部は、建物に内包されるセンターコア形式又はコアが四周のうち対面する二面を含むセンターコア形式とすることを特徴とする、請求項1〜4のいずれか一に記載した既存建物の上部増築工法。The core part of the extension part is a center core type included in a building or a center core type including two faces facing each other out of the four circumferences, according to any one of claims 1-4. Upper extension method for existing buildings.
JP2003153688A 2003-05-30 2003-05-30 Upper extension method for existing buildings Expired - Fee Related JP4010981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153688A JP4010981B2 (en) 2003-05-30 2003-05-30 Upper extension method for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153688A JP4010981B2 (en) 2003-05-30 2003-05-30 Upper extension method for existing buildings

Publications (2)

Publication Number Publication Date
JP2004353351A JP2004353351A (en) 2004-12-16
JP4010981B2 true JP4010981B2 (en) 2007-11-21

Family

ID=34048541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153688A Expired - Fee Related JP4010981B2 (en) 2003-05-30 2003-05-30 Upper extension method for existing buildings

Country Status (1)

Country Link
JP (1) JP4010981B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575057B1 (en) 2004-05-12 2006-04-28 주식회사 도화구조 Method for a New Extension on an Old Building by Displacement-Controlled Cantilever Structure
JP4791781B2 (en) * 2005-08-25 2011-10-12 株式会社竹中工務店 Construction method
JP4844930B2 (en) * 2007-03-05 2011-12-28 清水建設株式会社 Extension method of seismic isolation building
KR101284235B1 (en) 2011-12-20 2013-07-09 주식회사 대주이엔씨 Remodeling method of existing building using cantilever truss roof
JP6093665B2 (en) * 2013-07-07 2017-03-08 大成建設株式会社 Structure reconstruction method
JP6489057B2 (en) * 2015-04-28 2019-03-27 Uao株式会社 Extension method of existing building and earthquake-resistant repair method
KR101755127B1 (en) * 2015-11-27 2017-07-07 단국대학교 산학협력단 Isolation structural system for vertical and horizontal extension remodeling

Also Published As

Publication number Publication date
JP2004353351A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US5271197A (en) Earthquake resistant multi-story building
JP4247496B2 (en) Seismic reinforcement structure
JP4957295B2 (en) Seismic control pier structure
JP4038472B2 (en) Seismic retrofitting frame for existing buildings and seismic control structures using the same
JP4010981B2 (en) Upper extension method for existing buildings
JP4128517B2 (en) Seismic strengthening frame using tendons
JP3828695B2 (en) Seismic control wall of a three-story house
JP2010047933A (en) Damping reinforcement frame
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP5143301B1 (en) Seismic retrofitting structure
JP5059687B2 (en) Building seismic control structure
JPH10280725A (en) Damping skeleton construction
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP4837145B1 (en) Seismic retrofitting structure
JP2008274622A (en) Intermediate-story base-isolating mechanism of building
JP5290786B2 (en) Damping structure
JP2012233374A (en) Seismic reinforcement structure
JP5620883B2 (en) Damping structure
JP2012117364A (en) Vibration control bridge pier structure
JP5592288B2 (en) Seismic isolation building
Yamashita et al. Structural design and construction for tall damped building with irregularly-shaped plan and elevation
JP2001065189A (en) Stud-type vibration control device
JPH1037481A (en) Damping reinforced construction of existing building
JP3925868B2 (en) Seismic retrofit structure and seismic control structure using the same
JP2012233374A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees