JP2008274622A - Intermediate-story base-isolating mechanism of building - Google Patents

Intermediate-story base-isolating mechanism of building Download PDF

Info

Publication number
JP2008274622A
JP2008274622A JP2007118508A JP2007118508A JP2008274622A JP 2008274622 A JP2008274622 A JP 2008274622A JP 2007118508 A JP2007118508 A JP 2007118508A JP 2007118508 A JP2007118508 A JP 2007118508A JP 2008274622 A JP2008274622 A JP 2008274622A
Authority
JP
Japan
Prior art keywords
reaction force
seismic isolation
building
column
force portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007118508A
Other languages
Japanese (ja)
Other versions
JP4980782B2 (en
Inventor
Yuji Funayama
勇司 舟山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2007118508A priority Critical patent/JP4980782B2/en
Publication of JP2008274622A publication Critical patent/JP2008274622A/en
Application granted granted Critical
Publication of JP4980782B2 publication Critical patent/JP4980782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intermediate-story base-isolating mechanism of a building, which enables a damper to be mounted without a great deterioration in the habitability of a base-isolating device-installed floor, regardless of a structure of the building. <P>SOLUTION: This intermediate-story base-isolating mechanism of the building comprises: a base-isolating support device 4 which is inserted into a column 3 so as to base-isolate and support an upper structure 1 of the building; a vertical reaction portion 6 which is provided toward the upper structure 1 from a lower structure 2 formed below the base-isolating support device 4; a horizontal reaction portion 7 for connecting the vertical reaction portion 6 to a section of the column 3 below the base-isolating support device 4; and a viscous damper 8 for horizontally connecting the vertical reaction portion 6 and the upper structure 1 together so as to attenuate vibrations of the upper structure 1 during earthquakes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、免震支承装置と粘性ダンパとからなる免震装置の設置階における居住性が維持できる建築物の中間階免震機構に関する。   The present invention relates to an intermediate floor seismic isolation mechanism for a building capable of maintaining the habitability on the installation floor of a seismic isolation device including a seismic isolation bearing device and a viscous damper.

建築物の中間階の柱に免震支承装置を挿入して建築物の上部を免震支持する中間階免震が、建築物の免震化に採用されている。既存建築物を免震化するレトロフィット免震では中間階免震が頻繁に採用される。中間階免震においては免震支承装置の他に、振動を減衰させるためのダンパが設けられる。ダンパは地震時に建築物の慣性力を受けて減衰力を生じる。この減衰力に対する反力を確保するために、建築物には柱や梁を利用した反力部が設けられている。特許文献1には、反力部の構造として、柱部材と梁部材とによって構築された矩形状の主架構の下辺から立設された間柱が示されている。
特開平09−324557号公報
An intermediate-floor seismic isolation system, in which a seismic isolation support device is inserted into a pillar on the middle floor of a building and the upper part of the building is isolated, has been adopted for seismic isolation of the building. In the retrofit seismic isolation system, which isolates existing buildings, the middle floor seismic isolation system is frequently used. In the middle floor seismic isolation, in addition to the seismic isolation support device, a damper for damping the vibration is provided. The damper receives the inertial force of the building during an earthquake and generates a damping force. In order to secure the reaction force against the damping force, the building is provided with a reaction force portion using columns and beams. In Patent Document 1, a structure of a reaction force portion is shown as a stud erected from the lower side of a rectangular main frame constructed by a pillar member and a beam member.
JP 09-324557 A

特許文献1の間柱には、下辺梁部材との接合部の剛性と部材自体の曲げ剛性の大きさが要求される。これらの剛性を確保するために、特許文献1では、間柱の頂部と下辺梁部材とを連結する斜材を設けることが示されている。しかし、下辺梁部材(床スラブ)から斜材を設けたのでは免震装置設置階の動線が分断され居住性が低下してしまう。一方、斜材を設けることなく間柱のみで反力を確保するためには、間柱自体で曲げ剛性と下辺梁部材との接合部の剛性を確保することが必要となり、間柱が大きな部材となってしまう。また、既存建築物の下辺梁部材に後施工で剛接合の間柱を増設することは難しく、レトロフィット免震においては間柱を設けることが困難となる。特に、鉄骨が用いられている既存の下辺梁材に対しては、梁内の鉄骨が障害となるため、梁の上面部分でのみ間柱との結合がおこなわれ、剛接合とすることが困難であった。このため、レトロフィット免震では、間柱を補強するために下辺梁部材からの斜材等を設けざるを得ず、免震装置設置階における居住性が低下する場合が多かった。   The studs of Patent Document 1 are required to have the rigidity of the joint with the lower beam member and the bending rigidity of the member itself. In order to ensure these rigidity, in patent document 1, providing the diagonal material which connects the top part of a stud, and a lower side beam member is shown. However, if diagonal members are provided from the lower beam members (floor slabs), the flow lines on the seismic isolation device installation floor are divided and the comfortability is lowered. On the other hand, in order to secure the reaction force with only the studs without providing diagonal members, it is necessary to secure the bending rigidity and the rigidity of the joint portion of the lower beam member with the studs themselves, and the studs become a large member. End up. In addition, it is difficult to add rigidly connected studs to the lower beam members of existing buildings by post-construction, and it is difficult to provide studs in retrofit seismic isolation. In particular, for existing lower beam materials that use steel frames, the steel frame in the beam becomes an obstacle, so it is difficult to make a rigid connection because only the upper surface of the beam is connected to the studs. there were. For this reason, in retrofit seismic isolation, in order to reinforce the studs, it was necessary to provide diagonal materials from the lower beam members, and the habitability on the seismic isolation device installation floor was often reduced.

さらに、建築物の構造的なバランスを考えると、免震装置設置階における減衰力の中心位置と建築物の重心位置とは接近させることが好ましい。このため、粘性ダンパの設置位置が制約がされないよう、間柱の設置位置に対する制約はない方がよい。しかし、間柱と既存建築物との結合部の剛性を確保するためには、間柱を設置する部材自体の剛性を確保する必要があり、床スラブに設置することはできなかった。   Furthermore, considering the structural balance of the building, it is preferable that the center position of the damping force and the center of gravity position of the building be close to each other on the floor where the seismic isolation device is installed. For this reason, it is better that there is no restriction on the installation position of the studs so that the installation position of the viscous damper is not restricted. However, in order to ensure the rigidity of the joint portion between the stud and the existing building, it is necessary to secure the rigidity of the member itself for installing the stud, and it cannot be installed on the floor slab.

本発明は上記従来の課題に鑑みて創案されたものであって、建築物の構造に関わらず、免震装置設置階の居住性を大きく損なうことなくダンパの取付が可能な建築物の中間階免震機構を提供することを目的とする。   The present invention was devised in view of the above-described conventional problems, and is an intermediate floor of a building in which a damper can be attached without greatly impairing the habitability of the seismic isolation device installation floor regardless of the structure of the building. The purpose is to provide a seismic isolation mechanism.

本発明にかかる中間階免震機構は、建築物の上部構造体を免震支持するために柱に挿入された免震支承装置と、該免震支承装置の下方に形成された下部構造体から上記上部構造体へ向けて設けた縦反力部と、該縦反力部と上記免震支承装置より下方の上記柱の部分とを連結する横反力部と、上記上部構造体の地震時の振動を減衰させるために上記縦反力部と該上部構造体とを横方向で連結する粘性ダンパとを有することを特徴とする。   An intermediate floor seismic isolation mechanism according to the present invention includes a seismic isolation device inserted in a column for isolating and supporting an upper structure of a building, and a lower structure formed below the seismic isolation device. A vertical reaction force portion provided toward the upper structure, a lateral reaction force portion connecting the vertical reaction force portion and the portion of the column below the seismic isolation bearing device, and an earthquake of the upper structure In order to dampen the vibration, the longitudinal reaction force portion and the upper structure body are provided with a viscous damper for connecting in the lateral direction.

前記縦反力部が、前記下部構造体にピン接合されていることを特徴とする。   The longitudinal reaction force portion is pin-bonded to the lower structure.

前記縦反力部が、鉄骨造または鉄骨鉄筋コンクリート造の梁から設けられていることを特徴とする。   The longitudinal reaction force portion is provided from a steel-framed or steel-framed reinforced concrete beam.

前記縦反力部が、下部構造体の床スラブから設けられていることを特徴とする。   The longitudinal reaction force portion is provided from a floor slab of a lower structure.

本発明にかかるに建築物の中間階免震機構あっては、建築物の構造形式に関わらず、免震装置設置階の居住性を大きく損なうことなくダンパの取付が可能となる。   According to the present invention, the intermediate floor seismic isolation mechanism of a building can be installed with a damper without greatly impairing the habitability of the seismic isolation device installation floor regardless of the structure type of the building.

以下に、本発明にかかる建築物の中間階免震機構の好適な一実施形態を、添付図面を参照して詳細に説明する。本実施形態にかかる建築物の中間階免震機構は基本的には、図1および図3に示すように、建築物の上部構造体1を下部構造体2で免震支持するために柱3に挿入された免震支承装置4と、免震支承装置4の下方に形成された下部構造体2から上部構造体1へ向けて設けた縦反力部6と、縦反力部6と免震支承装置4より下方の柱3の部分とを連結する横反力部7と、上部構造体1の地震時の振動を減衰させるために縦反力部6と上部構造体1とを横方向で連結する粘性ダンパ8を有している。   EMBODIMENT OF THE INVENTION Below, suitable embodiment of the intermediate floor seismic isolation mechanism of the building concerning this invention is described in detail with reference to an accompanying drawing. As shown in FIGS. 1 and 3, the intermediate floor seismic isolation mechanism of the building according to this embodiment is basically a pillar 3 for supporting the upper structure 1 of the building with the lower structure 2. The seismic isolation bearing device 4 inserted into the seismic isolation device, the longitudinal reaction force portion 6 provided from the lower structure 2 to the upper structure 1 formed below the seismic isolation support device 4, The lateral reaction force portion 7 that connects the portion of the column 3 below the seismic support device 4 and the longitudinal reaction force portion 6 and the upper structure 1 are laterally connected to attenuate the vibration of the upper structure 1 during an earthquake. It has the viscous damper 8 connected by.

本実施形態の建築物の中間階免震機構は、既存の鉄骨鉄筋コンクリート造(以下「SRC造」という)の建築物に対して適用されている。建築物の上部構造体1は下部構造体2から柱3で支持されている。柱3の中間部分には免震支承装置4が挿入されている。   The intermediate floor seismic isolation mechanism of the building of the present embodiment is applied to an existing steel-framed reinforced concrete structure (hereinafter referred to as “SRC structure”). The upper structure 1 of the building is supported by the pillar 3 from the lower structure 2. A seismic isolation bearing device 4 is inserted in the middle part of the column 3.

本実施形態における上部構造体1は、免震支承装置4の直上部に位置する柱3の部分(以下「柱上部分3a」という)と柱上部分3aに接続される直上階(免震支承装置4が取り付けられる階の直上階の意味)の梁9(以下「上部梁9」という)と直上階の床スラブ10(以下「上部床スラブ10という)で構成される。柱上部分3aは、既存柱の上部分30a(以下「上部既存柱30a」という)と免震支承装置4を取り付けるために増設された上部既存柱補強部31aで構成されている。上部既存柱補強部31aは、上部既存柱30aの周囲に鉄筋(図示せず)を組み、コンクリートを打設して上部既存柱30aの断面積を拡張して免震支承装置4の設置面積を確保すると共に、上部既存柱30aの切断面と免震支承装置4との間にコンクリートを打設して、免震支承装置4と柱上部分3aとの一体化を確保できるよう設けられている。また、上部梁9の柱上部分3aとの接続部付近には、免震支承装置4を取り付けるために上部梁9を補強する上部梁補強部90が設けられている。上部梁補強部90は、上部梁9の上部床スラブ10底から露出している部分の周囲に鉄筋とPC棒鋼(共に図示せず)を配置し、コンクリートを打設して設けられている。上部梁9の上部梁補強部90が施された部分は、梁幅および梁背が拡大される。   The upper structure 1 in this embodiment includes a part of a column 3 (hereinafter referred to as “post-column part 3 a”) located immediately above the seismic isolation bearing device 4 and a directly upper floor (seismic isolation support) connected to the column top part 3 a. The beam 9 (hereinafter referred to as “upper beam 9”) of the floor to which the apparatus 4 is attached and the floor slab 10 (hereinafter referred to as “upper floor slab 10”) of the directly upper floor. The upper part 30a of the existing pillar (hereinafter referred to as “upper existing pillar 30a”) and the upper existing pillar reinforcing part 31a which is added to attach the seismic isolation bearing device 4 are configured. The upper existing column reinforcing portion 31a is constructed by assembling reinforcing bars (not shown) around the upper existing column 30a, and placing concrete to expand the cross-sectional area of the upper existing column 30a to increase the installation area of the seismic isolation bearing device 4. In addition to securing, the concrete is placed between the cut surface of the upper existing pillar 30a and the seismic isolation bearing device 4 so as to ensure the integration of the seismic isolation bearing device 4 and the column top portion 3a. . Further, an upper beam reinforcing portion 90 that reinforces the upper beam 9 in order to attach the seismic isolation bearing device 4 is provided in the vicinity of a connection portion between the upper beam 9 and the columnar portion 3a. The upper beam reinforcing portion 90 is provided by placing a reinforcing bar and a PC steel bar (both not shown) around a portion exposed from the bottom of the upper floor slab 10 of the upper beam 9 and placing concrete. In the portion of the upper beam 9 where the upper beam reinforcing portion 90 is applied, the beam width and the beam back are enlarged.

下部構造体2は、免震支承装置4の下方に構築された建築物の構造体をいい、本実施形態においては、免震支承装置4の直下部に位置する柱3の部分3b(以下「柱下部分3b」という)と、免震支承部4を設置する階の梁5(以下「下部梁5」という)と、免震支承部4を設置する階の床スラブ11(以下「下部床スラブ11」という)で構成されている。下部梁5はSRC造であり、内部に鉄骨5aが埋設されている。柱下部分3bは、既存柱30の下部分30b(以下「下部既存柱30b」という)と免震支承装置4を取り付けるために増設された下部既存柱補強部31bで構成されている。下部既存柱補強部31bは、下部既存柱30bの周囲にコンクリートを打設して下部既存柱30bの断面積を拡張して免震支承装置4の設置面積を確保すると共に、下部既存柱30bと免震支承装置4の一体化を確保できるように設けられている。   The lower structure 2 refers to a structure of a building constructed below the seismic isolation support device 4, and in the present embodiment, a portion 3 b (hereinafter referred to as “the pillar 3”) located immediately below the seismic isolation support device 4. A lower column 3b ”, a beam 5 on the floor where the seismic isolation bearing 4 is installed (hereinafter referred to as“ lower beam 5 ”), and a floor slab 11 (hereinafter referred to as“ lower floor ”where the seismic isolation bearing 4 is installed). Slab 11 ”). The lower beam 5 is made of SRC and has a steel frame 5a embedded therein. The lower column portion 3b is composed of a lower portion 30b of the existing column 30 (hereinafter referred to as “lower existing column 30b”) and a lower existing column reinforcing portion 31b that is added to attach the seismic isolation support device 4. The lower existing column reinforcing portion 31b is provided with concrete around the lower existing column 30b to expand the cross-sectional area of the lower existing column 30b to secure the installation area of the seismic isolation bearing device 4 and the lower existing column 30b. It is provided so that the seismic isolation bearing device 4 can be integrated.

免震支承装置4は、柱上部分3aと柱下部分3bの間に挿入され、柱上部分3aおよび柱下部分3bと一体となって柱3を構成している。免震支承装置4は、既存柱30を上部梁9の下部付近で切り取って形成した部分に挿入されている。免震支承装置4は、下部構造体2から上部構造体1へ伝わる地震時の揺れを軽減しつつ上部構造体1を支持する機能すなわち免震支承機能を有し、上部構造体1を免震支持している。本実施形態の免震支承装置4は上部、下部取付板とそれらに挟まれた積層ゴムで構成されている。免震支承装置4の上部取付板は、上部既存柱補強部31aにアンカーを埋設して一体化され、その下部取付板は、下部各既存柱補強部31bにアンカーを埋設して一体化されている。積層ゴムで構成された本実施形態の免震支承装置4は、免震機構における復元機能も有している。なお、免震支承装置4の種類に限定はなく、転がり免震支承装置、滑り免震支承装置を用いてもよい。   The seismic isolation support device 4 is inserted between the column upper portion 3a and the column lower portion 3b, and constitutes the column 3 integrally with the column upper portion 3a and the column lower portion 3b. The seismic isolation bearing device 4 is inserted into a portion formed by cutting the existing column 30 near the lower portion of the upper beam 9. The seismic isolation support device 4 has a function of supporting the upper structure 1 while reducing the shaking at the time of an earthquake transmitted from the lower structure 2 to the upper structure 1, that is, a seismic isolation support function. I support it. The seismic isolation bearing device 4 of the present embodiment is composed of an upper and lower mounting plates and laminated rubber sandwiched between them. The upper mounting plate of the seismic isolation bearing device 4 is integrated by embedding an anchor in the upper existing column reinforcing portion 31a, and the lower mounting plate is integrated by embedding the anchor in each lower existing column reinforcing portion 31b. Yes. The seismic isolation bearing device 4 of the present embodiment configured with laminated rubber also has a restoration function in the seismic isolation mechanism. The type of seismic isolation bearing device 4 is not limited, and a rolling seismic isolation bearing device or a sliding seismic isolation bearing device may be used.

下部構造体2には、上部構造体1へ向けて縦反力部6が設けられている。縦反力部6は、粘性ダンパ8を下部構造体2に連結、支持する機能と、地震時の粘性ダンパ8からの減衰力に対する反力部としての機能を有する。縦反力部6は、粘性ダンパ8を介して上部構造体1と接続される他は、上部構造体1とは接続されていない。本実施形態の縦反力部6は、SRC造の下部梁5から設けられている。縦反力部6は、鉄筋コンクリート製の柱状部材であり、下部梁5すなわち下部構造体1の上面から上部梁9下まで立ち上げられている。縦反力部6の鉄筋は、複数の縦配筋6aと適宜間隔で設けたフープ筋(図示せず)で構成されている。その縦配筋6aの下端部は下部梁5上面に設けた下部連結アンカー12に連結されている。下部固定アンカー12は、下部梁5の表面から鉄骨5aのフランジ上面まで打ち込まれた、後施工の接着式アンカーまたは打ち込み式アンカーで構成されている。下部固定アンカー12は、下部梁5内の鉄骨5aにより十分な定着の確保が難しく、さらに、縦反力部6のコンクリートを下部梁5の上面に打設しているため縦反力部6と下部梁5とは一体的に構築されていない。このため、下部構造体2と縦反力部6の接合面では下部固定アンカー12により水平耐力が確保されるが、曲げに対しては十分な耐力を確保できない。このため、下部構造体2と縦反力部6の接合は剛接合とならず、実質的にピン接合となっている。本実施形態における「ピン接合」には、接合状態が実質的にピン接合と同等となる場合も含まれる。したがって、本実施形態の縦反力部6は、下部構造体2にピン接合されている。   The lower structure 2 is provided with a longitudinal reaction force portion 6 toward the upper structure 1. The longitudinal reaction force portion 6 has a function of connecting and supporting the viscous damper 8 to the lower structure 2 and a function of a reaction force portion against a damping force from the viscous damper 8 during an earthquake. The longitudinal reaction force portion 6 is not connected to the upper structure 1 except that it is connected to the upper structure 1 via the viscous damper 8. The longitudinal reaction force portion 6 of the present embodiment is provided from a lower beam 5 made of SRC. The longitudinal reaction force portion 6 is a columnar member made of reinforced concrete, and is raised from the upper surface of the lower beam 5, that is, the lower structure 1, to below the upper beam 9. The reinforcing bar of the vertical reaction force part 6 is composed of a plurality of vertical reinforcing bars 6a and hoop bars (not shown) provided at appropriate intervals. The lower end portion of the vertical bar 6a is connected to a lower connection anchor 12 provided on the upper surface of the lower beam 5. The lower fixed anchor 12 is constituted by a post-installed adhesive anchor or a driven anchor that is driven from the surface of the lower beam 5 to the upper surface of the flange of the steel frame 5a. The lower fixed anchor 12 is difficult to ensure sufficient fixing due to the steel frame 5a in the lower beam 5, and the concrete of the longitudinal reaction force portion 6 is placed on the upper surface of the lower beam 5, so that the longitudinal reaction force portion 6 and The lower beam 5 is not constructed integrally. For this reason, although the horizontal proof stress is ensured by the lower fixed anchor 12 at the joint surface between the lower structure 2 and the longitudinal reaction force portion 6, sufficient proof strength against bending cannot be ensured. For this reason, the joint between the lower structure 2 and the longitudinal reaction force portion 6 is not a rigid joint but is substantially a pin joint. The “pin joint” in the present embodiment includes a case where the joint state is substantially equivalent to the pin joint. Therefore, the longitudinal reaction force portion 6 of this embodiment is pin-bonded to the lower structure 2.

縦反力部6には、縦反力部6と柱下部分3bとを連結する横反力部7が設けられている。横反力部7は、縦反力部6に水平方向で作用する減衰力に対する反力部を構成している。横反力部7は、原則として、その軸方向の引っ張りと圧縮で減衰力に抵抗するため、横反力部7と、縦反力部6および柱下部分3bとの接続は剛接合でもピン接合でもよい。なお、図2においては、横反力部7の両端部をピン接合として、反力、モーメント図が記載されている。本実施形態における横反力部7は、図3に示すように縦反力部6および柱下部分3bと一体に構築された鉄筋コンクリート製の梁状部材であり、その端部は剛接合となっている。横反力部7は、免震支承装置4下の下部柱補強部31bと縦反力部6との間に略水平に設けられ、居住者の動線を妨げない高さに設定されている。横反力部7の鉄筋は上下2段の横配筋7aと適宜間隔で設けたスターラップ筋(図示せず)で構成されている。横配筋7aの各端部は定着長さを確保して、縦反力部6または柱下部分3bの下部既存柱補強部31bに埋設されている。横反力部7は、原則として曲げ耐力を要求されないため、本実施形態では梁幅寸法が梁せい寸法より大きい扁平梁の形状で構築されている。このため、下部床スラブ11からの横反力部7下面までの高を確保しやすい。   The longitudinal reaction force portion 6 is provided with a lateral reaction force portion 7 that connects the longitudinal reaction force portion 6 and the column bottom portion 3b. The lateral reaction force portion 7 constitutes a reaction force portion against a damping force that acts on the vertical reaction force portion 6 in the horizontal direction. In principle, the lateral reaction force portion 7 resists the damping force by pulling and compressing in the axial direction. Therefore, the connection between the lateral reaction force portion 7 and the longitudinal reaction force portion 6 and the column lower portion 3b is a rigid connection or a pin. Bonding may be used. In FIG. 2, reaction force and moment diagrams are shown with both ends of the lateral reaction force portion 7 being pin-joined. The lateral reaction force portion 7 in the present embodiment is a reinforced concrete beam-like member constructed integrally with the longitudinal reaction force portion 6 and the column bottom portion 3b as shown in FIG. 3, and its end portion is rigidly joined. ing. The lateral reaction force portion 7 is provided substantially horizontally between the lower column reinforcing portion 31b below the seismic isolation bearing device 4 and the longitudinal reaction force portion 6, and is set to a height that does not hinder the flow of occupants. . The reinforcing bars of the lateral reaction force portion 7 are composed of two upper and lower horizontal bars 7a and stirrup bars (not shown) provided at appropriate intervals. Each end portion of the horizontal reinforcing bar 7a has a fixed fixing length and is embedded in the vertical reaction force portion 6 or the lower existing column reinforcing portion 31b of the column lower portion 3b. Since the transverse reaction force portion 7 is not required to have bending strength in principle, in this embodiment, the transverse reaction force portion 7 is constructed in the shape of a flat beam having a beam width dimension larger than the beam dimension. For this reason, it is easy to ensure the height from the lower floor slab 11 to the lower surface of the lateral reaction force portion 7.

縦反力部6の上部には、地震時の振動を減衰させるために縦反力部6と上部構造体1とを横方向で連結する粘性ダンパ8が設けられている。粘性ダンパ8は、地震時のエネルギーを吸収して、上部構造体1の振動を減衰させる機能を有している。本実施形態の粘性ダンパ8はオイルダンパであり、そのオイルダンパは横方向ストロークで減衰力を発生させるピストンシリンダーで構成されている。粘性ダンパ8は水平方向の動きにより減衰力を発生させるものであればその種類は限定されない。粘性ダンパ8は、縦反力部6上部の側面と、上部構造体1の間で横方向すなわち略水平に設けられている。粘性ダンパ8の縦反力部6側の端部は、縦反力部6の側面に取り付けられた下部側ダンパ金物16にピン接続されている。下部側ダンパ金物16は、縦反力部6を横方向で貫通して埋設されたダンパ用縦反力部アンカー13により縦反力部6の側面に固定されている。粘性ダンパ8の上部構造体1側の端部は、柱上部分3aの側面と上部梁補強部90の下面と交差部に取り付けた上部側ダンパ金物17にピン接続されている。上部側ダンパ金物17は、上部既存柱補強部31aを幅方向で貫通して埋設されたダンパ用上部柱アンカー14および上部梁補強部90に埋設されたダンパ用上部梁アンカー15により、柱上部分3a側面と上部梁補強部90下面の2面に密着して固定されている。なお、上部側ダンパ金物17を取り付けるためのダンパ設置部を、上部構造体1に別途形成してもよい。   A viscous damper 8 for connecting the longitudinal reaction force part 6 and the upper structure 1 in the lateral direction is provided on the upper part of the longitudinal reaction force part 6 in order to attenuate vibrations during an earthquake. The viscous damper 8 has a function of absorbing energy at the time of an earthquake and damping the vibration of the upper structure 1. The viscous damper 8 of the present embodiment is an oil damper, and the oil damper is composed of a piston cylinder that generates a damping force with a lateral stroke. The type of the viscous damper 8 is not limited as long as it generates a damping force by horizontal movement. The viscous damper 8 is provided between the side surface of the upper part of the longitudinal reaction force portion 6 and the upper structure 1 in the lateral direction, that is, substantially horizontally. The end of the viscous damper 8 on the side of the longitudinal reaction force portion 6 is pin-connected to a lower damper hardware 16 attached to the side surface of the longitudinal reaction force portion 6. The lower-side damper hardware 16 is fixed to the side surface of the longitudinal reaction force portion 6 by a damper longitudinal reaction force portion anchor 13 embedded in the longitudinal reaction force portion 6 in the lateral direction. The end of the viscous damper 8 on the upper structure 1 side is pin-connected to the upper damper hardware 17 attached to the side surface of the columnar portion 3a, the lower surface of the upper beam reinforcing portion 90, and the intersection. The upper-side damper hardware 17 includes a damper upper column anchor 14 embedded through the upper existing column reinforcing portion 31a in the width direction and a damper upper beam anchor 15 embedded in the upper beam reinforcing portion 90, thereby 3a is fixed in close contact with the two surfaces of the side surface and the lower surface of the upper beam reinforcing portion 90. A damper installation part for attaching the upper damper hardware 17 may be separately formed in the upper structure 1.

本実施形態に係る建築物の中間免震機構の作用について説明する。まず、本実施形態に係る建築物の中間免震機構の構築方法を説明する。SRC造の既存建築物の上部梁9に上部梁補強部90を設け、上部梁補強部90の下部へ下部構造体から仮設支柱を設け、仮設支柱で上部構造体1からの鉛直荷重を支持して、柱3への鉛直荷重を解放する。なお、上部梁補強部90を設ける際にダンパ用上部梁アンカー15を所定位置に埋設しておく。その後、上部構造体1と下部構造体2の横方向変位を仮設部材や既存躯体で拘束しながら、既存柱30を上部梁9の下方付近で切り取って免震支承装置4挿入用の部分を形成する。既存柱30の切り取り部分に免震支承装置4を挿入して仮固定し、免震支承装置4の上部、下部取り付け板にアンカーを設ける。   The effect | action of the intermediate seismic isolation mechanism of the building which concerns on this embodiment is demonstrated. First, the construction method of the intermediate seismic isolation mechanism for buildings according to this embodiment will be described. An upper beam reinforcement portion 90 is provided on the upper beam 9 of an existing building of SRC structure, a temporary support column is provided from the lower structure to the lower part of the upper beam reinforcement portion 90, and the vertical load from the upper structure 1 is supported by the temporary support column. Then, the vertical load on the column 3 is released. When the upper beam reinforcing portion 90 is provided, the damper upper beam anchor 15 is embedded in a predetermined position. Then, while restraining the lateral displacement of the upper structure 1 and the lower structure 2 with a temporary member or an existing housing, the existing column 30 is cut off near the lower part of the upper beam 9 to form a part for inserting the seismic isolation bearing device 4 To do. The seismic isolation bearing device 4 is inserted into the cut-out portion of the existing pillar 30 and temporarily fixed, and anchors are provided on the upper and lower mounting plates of the seismic isolation bearing device 4.

アンカーの取付に並行して、上部柱補強部30aの配筋を行い、下部既存柱補強部31bに横配筋7a端部を挿入して横反力部7の配筋を行い、下部梁5上面から下部固定アンカー12を打設して、縦配筋6a等の縦反力部6の配筋を行う。これらの配筋完了後に、上部既存柱補強部31aの型枠を構築すると共に、縦反力部6、横反力部7および下部既存柱補強部31bの型枠を一体に構築する。組上がった型枠を利用して、ダンパ用縦反力部アンカー13、ダンパ用上部柱アンカー14を配置し、型枠内にコンクリートを打設すし、コンクリート硬化後に型枠を解体する。これにより、免震支承装置4が一体に取り付けられた柱3が構築されるとともに、縦反力部6、横反力部7、柱下部分3bおよび下部梁5が連結された下部構造体2の反力部が構築される。   In parallel with the attachment of the anchor, the upper column reinforcing portion 30a is arranged, the end of the horizontal reinforcing bar 7a is inserted into the lower existing column reinforcing portion 31b, and the lateral reaction force portion 7 is arranged, and the lower beam 5 The lower fixed anchor 12 is driven from the upper surface, and the longitudinal reaction force portion 6 such as the longitudinal reinforcement 6a is arranged. After completion of these bar arrangements, the formwork of the upper existing column reinforcement portion 31a is constructed, and the formwork of the longitudinal reaction force portion 6, the lateral reaction force portion 7 and the lower existing column reinforcement portion 31b is constructed integrally. Using the assembled formwork, a damper vertical reaction force anchor 13 and a damper upper column anchor 14 are arranged, concrete is placed in the formwork, and the formwork is disassembled after the concrete is hardened. As a result, the pillar 3 to which the seismic isolation bearing device 4 is integrally attached is constructed, and the lower structure 2 in which the longitudinal reaction force portion 6, the lateral reaction force portion 7, the pillar lower portion 3b, and the lower beam 5 are connected. The reaction force part is constructed.

その後、仮設支柱を撤去して柱3で上部構造体1の荷重を再支持した上で、免震支承装置4の変位を仮拘束する。次いで、下部側ダンパ金物16、上部側ダンパ金物17を取り付ける。下部側ダンパ金物16はダンパ用縦反力部アンカー13を利用して縦反力部6の側面に取り付ける。上部側ダンパ金物17はダンパ用上部柱アンカー14およびダンパ用上部梁アンカー15を利用して、柱上部分3aと上部梁補強部90の交差部に取り付ける。取り付けられた下部側、上部側ダンパ金物16、17に、ピン接続して粘性ダンパ8を取り付ける。最後に、免震支承装置4の仮拘束を解除して、建築物の中間免震機構が完成される。   Thereafter, the temporary support column is removed and the load of the upper structure 1 is re-supported by the column 3, and then the displacement of the seismic isolation bearing device 4 is temporarily restrained. Next, the lower damper hardware 16 and the upper damper hardware 17 are attached. The lower-side damper hardware 16 is attached to the side surface of the longitudinal reaction force portion 6 by using a damper longitudinal reaction force portion anchor 13. The upper-side damper hardware 17 is attached to the intersection of the column upper portion 3 a and the upper beam reinforcing portion 90 by using the damper upper column anchor 14 and the damper upper beam anchor 15. The viscous damper 8 is attached to the lower and upper damper hardware 16 and 17 attached by pin connection. Finally, the temporary restraint of the seismic isolation bearing device 4 is released, and the intermediate seismic isolation mechanism for the building is completed.

本実施形態に係る建築物の中間免震機構の作用について説明する。地震による上部構造体1からの慣性力により、粘性ダンパ8に減衰力が発生する。減衰力は、水平方向で粘性ダンパ8から縦反力部6に作用する。この減衰力に対して、縦反力部6、横反力部7、および柱下部分3bで形成された下部構造体2の反力部が抵抗する。主に、縦反力部材6に接続された横反力部7の圧縮、引っ張りで減衰力に抵抗し、縦反力部6の下部梁5との接続部でも水平力を負担する。縦反力部6の下部梁5との接続部はピン接合であるため、縦反力部6の取付位置を保持し、粘性ダンパ8の鉛直荷重とわずかな水平力を負担するだけである。横反力部7は軸力を負担する単純な構造であるため部材を簡略化できる。さらに、横反力部7と縦反力部6との接続点を、粘性ダンパ8と縦反力部6との接続点に接近させることで、効果的に横反力部7が減衰力へ抵抗し、縦反力部6下端部の水平力の負担が軽減されると共に、横反力部7の接続点が上方へ移動して、居住者の動線を阻害する可能性が少なくなる。縦反力部6は、それ自体の曲げ剛性と、粘性ダンパ8の荷重を負担できる構造であればよく、柱状の簡易な部材とすることができる。   The effect | action of the intermediate seismic isolation mechanism of the building which concerns on this embodiment is demonstrated. A damping force is generated in the viscous damper 8 due to the inertial force from the upper structure 1 due to the earthquake. The damping force acts on the longitudinal reaction force portion 6 from the viscous damper 8 in the horizontal direction. The reaction force portion of the lower structure 2 formed by the longitudinal reaction force portion 6, the lateral reaction force portion 7, and the lower column portion 3b resists the damping force. Mainly, the lateral reaction force portion 7 connected to the longitudinal reaction force member 6 resists the damping force by compression and pulling, and the longitudinal reaction force portion 6 also bears a horizontal force at the connection portion with the lower beam 5. Since the connection portion of the longitudinal reaction force portion 6 with the lower beam 5 is pin-joined, the attachment position of the longitudinal reaction force portion 6 is maintained and only the vertical load of the viscous damper 8 and a slight horizontal force are borne. Since the lateral reaction force portion 7 has a simple structure that bears an axial force, the member can be simplified. Furthermore, by making the connection point between the lateral reaction force portion 7 and the longitudinal reaction force portion 6 approach the connection point between the viscous damper 8 and the longitudinal reaction force portion 6, the lateral reaction force portion 7 effectively becomes a damping force. It resists and the load of the horizontal force at the lower end of the longitudinal reaction force portion 6 is reduced, and the connection point of the lateral reaction force portion 7 moves upward, and the possibility of obstructing the occupant's flow line is reduced. The longitudinal reaction force portion 6 only needs to have a structure capable of bearing its own bending rigidity and the load of the viscous damper 8, and can be a simple columnar member.

以上説明した本実施形態にかかる建築物の中間免震機構にあっては、上部構造体1を免震支承するために柱3に挿入された免震支承装置4と、免震支承装置4の下方に形成された下部構造体2の下部梁5から上部構造体1へ向けて設けた縦反力部6と、縦反力部6と免震支承装置4より下方の柱3の部分3bとを連結する横反力部7と、上部構造体1の地震時の振動を減衰させるために縦反力部6と上部構造体1とを横方向で連結する粘性ダンパ8と有しているため、粘性ダンパ8からの減衰力に対抗するための反力部を比較的に簡易な部材からなるフレーム架構で構築でき、下部構造体2の上面には、縦反力部材6が増設されるだけである。また、横反力部7も下部床スラブ10からの高さを確保して構築できる。このため、利用者の動線を分断することが少なく、居住性を維持した中間階免震機構が構築できる。   In the intermediate seismic isolation mechanism of the building according to the present embodiment described above, the seismic isolation bearing device 4 inserted into the column 3 to isolate the upper structure 1 from the seismic isolation, and the seismic isolation bearing device 4 A longitudinal reaction force portion 6 provided from the lower beam 5 of the lower structure 2 formed below to the upper structure 1, a portion 3 b of the column 3 below the longitudinal reaction force portion 6 and the seismic isolation support device 4, And a viscous damper 8 that connects the vertical reaction force portion 6 and the upper structure 1 in the lateral direction in order to damp vibration during the earthquake of the upper structure 1. The reaction force part for countering the damping force from the viscous damper 8 can be constructed with a frame structure made up of relatively simple members, and the vertical reaction force member 6 is simply added to the upper surface of the lower structure 2. It is. Further, the lateral reaction force portion 7 can also be constructed while ensuring the height from the lower floor slab 10. For this reason, it is possible to construct an intermediate floor seismic isolation mechanism that maintains the habitability with less disruption of the user's flow line.

縦反力部6が下部梁5にピン接合されているため、縦反力部6と下部構造体2との接合部の構造が簡略化され、減衰力に対する反力部を下部構造体2に容易に構築でき、既存建築物の下部構造体の状況に応じた中間階免震機構を構築できる。   Since the longitudinal reaction force portion 6 is pin-bonded to the lower beam 5, the structure of the joint portion between the longitudinal reaction force portion 6 and the lower structure 2 is simplified, and the reaction force portion against the damping force is changed to the lower structure 2. It can be easily constructed and an intermediate floor seismic isolation mechanism can be constructed according to the situation of the substructure of the existing building.

SRC造の下部梁5から縦反力部6を構築できるため、下部構造体2の鉄骨により制約されることなく、粘性ダンパ8の減衰力に対する反力部を構築でき、既存建築部への中間免震機構の適用範囲が拡大される。   Since the vertical reaction force part 6 can be constructed from the SRC-structured lower beam 5, the reaction force part against the damping force of the viscous damper 8 can be constructed without being restricted by the steel frame of the lower structure 2. The scope of application of seismic isolation mechanisms will be expanded.

本実施形態においては、縦反力部6を下部梁5から設けたが、縦反力部6の下端部と下部構造体2との接合部は、水平力と粘性ダンパ8の荷重の一部を負担するだけであるため、剛接合でなくピン接合で良いため、下部構造体2の下部床スラブ11上面から縦反力部6を設けてもよい。具体的には、下部連結アンカー12を下部床スラブ11の上面から打設してその内部に定着させ、その下部連結アンカー12により設置位置を確保して縦反力部6を構築する。なお、下部連結アンカー12は、下部床スラブ11を貫通させて下部床スラブ11を挟み込んで固定しても良い。これにより、下部梁5の位置に限定されることなく、下部構造体2の任意の上面位置に縦反力部6を設けることが可能となり、柱3間に壁が構築されている既存建築物でも、壁を撤去することなく粘性ダンパ8を設けることができ、既存建物への適用が容易になる。また、上部梁9に制約されることなく、床面から高い位置で粘性ダンパ8の取り付けができ、横反力部7の取り付け位置も下部床スラブ11の床面から高い位置で設置できる。このため居住性を維持しやすくなる。   In this embodiment, the longitudinal reaction force portion 6 is provided from the lower beam 5, but the joint between the lower end portion of the longitudinal reaction force portion 6 and the lower structure 2 is part of the load of the horizontal force and the viscous damper 8. Therefore, the longitudinal reaction force portion 6 may be provided from the upper surface of the lower floor slab 11 of the lower structure 2 because the pin connection may be used instead of the rigid connection. Specifically, the lower connecting anchor 12 is driven from the upper surface of the lower floor slab 11 and fixed therein, and the installation position is secured by the lower connecting anchor 12 to construct the longitudinal reaction force portion 6. The lower connecting anchor 12 may be fixed by inserting the lower floor slab 11 through the lower floor slab 11. Accordingly, the vertical reaction force portion 6 can be provided at any upper surface position of the lower structure 2 without being limited to the position of the lower beam 5, and the existing building in which the wall is constructed between the pillars 3. However, the viscous damper 8 can be provided without removing the wall, and application to an existing building becomes easy. Moreover, without being restricted by the upper beam 9, the viscous damper 8 can be attached at a high position from the floor surface, and the attachment position of the lateral reaction force portion 7 can also be installed at a high position from the floor surface of the lower floor slab 11. For this reason, it becomes easy to maintain habitability.

本実施形態においては、縦反力部6と一方側の柱3にのみ、粘性ダンパ8および横反力部7を設けたが、図4に示すように、さらに、他方側に位置する柱下部分3bとの間にも、それらを設けても良い。これにより、縦反力部6両側の横反力部7の圧縮と引っ張りで同時に減衰力に抵抗できるため、各横反力部材7を簡略化できる。また、縦反力部6を柱3間に1つ設置したが、柱3間に2つ設置して、各縦反力部6で隣接する柱下部分3bと連結しても、さらに各縦反力部6を連結して両柱下部分3bまたは一方の柱下部分3bと連結しても良い。   In the present embodiment, the viscous damper 8 and the lateral reaction force portion 7 are provided only in the longitudinal reaction force portion 6 and the column 3 on one side. However, as shown in FIG. You may provide them also between the parts 3b. Thereby, since the damping force can be simultaneously resisted by the compression and tension of the lateral reaction force portions 7 on both sides of the longitudinal reaction force portion 6, each lateral reaction force member 7 can be simplified. Further, although one vertical reaction force portion 6 is installed between the pillars 3, two vertical reaction force portions 6 may be installed between the pillars 3 and connected to the adjacent column lower portion 3 b by each vertical reaction force portion 6. You may connect the reaction force part 6 and connect with both the pillar lower part 3b or one pillar lower part 3b.

本実施形態では、縦反力部6、および横反力部7を鉄筋コンクリート構造としたが、これらをプレキャスト製コンクリート部材や、鉄骨材で構成してもよい。これにより、現場での型枠、配筋、コンクリート打設の作業を軽減することが出来、既存建築物を使いながらの中間階免震の施工が容易になる。   In the present embodiment, the longitudinal reaction force portion 6 and the lateral reaction force portion 7 are reinforced concrete structures, but they may be composed of precast concrete members or steel frames. As a result, the work of formwork, reinforcement, and concrete placement on site can be reduced, and the middle floor seismic isolation work can be facilitated while using existing buildings.

本実施形態における建築物を既存建築物としたが、新築の建築物に適用してもよい。
また、本実施形態の建築物の構造形式は、鉄骨鉄筋コンクリート造に限定されず、鉄骨造、鉄筋コンクリート造であっても良い。また下部梁9のみが鉄骨構造、鉄筋コンクリート造で構築されていてもよい。
Although the building in the present embodiment is an existing building, it may be applied to a newly built building.
Moreover, the structural form of the building of this embodiment is not limited to a steel frame reinforced concrete structure, and may be a steel frame structure or a reinforced concrete structure. Moreover, only the lower beam 9 may be constructed with a steel structure or a reinforced concrete structure.

本実施形態では、上、下部既存柱補強部31a、31b、縦反力部6および横反力部7を並行して構築しているが、この構築手順に限定されるものではなく、いずれを先行して構築しても良い。例えば、上、下部既存柱補強部31a、31bを先に構築し、その後縦反力部6と横反力部7を共に構築しても良い。   In the present embodiment, the upper and lower existing column reinforcing portions 31a and 31b, the longitudinal reaction force portion 6 and the lateral reaction force portion 7 are constructed in parallel. However, the construction procedure is not limited to this. You may build ahead. For example, the upper and lower existing column reinforcing portions 31a and 31b may be constructed first, and then the longitudinal reaction force portion 6 and the lateral reaction force portion 7 may be constructed together.

本実施形態では、柱3で上部構造体1を再支持した後に、免震支承装置4に仮拘束を施したが、柱3による再支持の前に仮拘束を施しても良い。また、仮設支柱の撤去は粘性ダンパ8の取付後でも良い。   In this embodiment, after the upper structure 1 is re-supported by the pillar 3, the seismic isolation support device 4 is temporarily restrained. However, the temporary restraint may be performed before the pillar 3 is re-supported. Further, the temporary support column may be removed after the viscous damper 8 is attached.

本発明にかかる建築物の中間階免震機構の好適な一実施形態における主な構成部を説明する図である。It is a figure explaining the main components in one suitable embodiment of the middle floor seismic isolation mechanism of the building concerning the present invention. 図1に示した中間階免震機構における減衰力と主な構成部に発生する反力の関係を説明する図である。It is a figure explaining the relationship between the damping force in the intermediate floor seismic isolation mechanism shown in FIG. 1, and the reaction force which generate | occur | produces in the main structure part. 本発明にかかる建築物の中間階免震機構の好適な一実施形態を説明する立面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevation view illustrating a preferred embodiment of an intermediate floor seismic isolation mechanism for a building according to the present invention. 本発明にかかる建築物の中間階免震機構の好適な変形例を示す立面図である。It is an elevation view which shows the suitable modification of the intermediate floor seismic isolation mechanism of the building concerning this invention.

符号の説明Explanation of symbols

1 上部構造体
2 下部構造体
3 柱
4 免震支承装置
5 梁(下部梁)
6 縦反力部
7 横反力部
8 粘性ダンパ
1 Upper structure 2 Lower structure 3 Pillar 4 Seismic isolation device 5 Beam (lower beam)
6 Longitudinal reaction force part 7 Lateral reaction force part 8 Viscous damper

Claims (4)

建築物の上部構造体を免震支持するために柱に挿入された免震支承装置と、
該免震支承装置の下方に形成された下部構造体から上記上部構造体へ向けて設けた縦反力部と、
該縦反力部と上記免震支承装置より下方の上記柱の部分とを連結する横反力部と、
上記上部構造体の地震時の振動を減衰させるために上記縦反力部と該上部構造体とを横方向で連結する粘性ダンパとを有することを特徴とする建築物の中間階免震機構。
A seismic isolation device inserted in the column to support the seismic isolation of the superstructure of the building;
A longitudinal reaction force portion provided from the lower structure formed below the seismic isolation bearing device toward the upper structure;
A lateral reaction force part connecting the longitudinal reaction force part and the part of the column below the seismic isolation bearing device;
An intermediate floor seismic isolation mechanism for a building, comprising: a viscous damper that connects the longitudinal reaction force portion and the upper structure in a lateral direction in order to attenuate vibrations of the upper structure during an earthquake.
前記縦反力部が、前記下部構造体にピン接合されていることを特徴とする請求項1に記載の建築物の中間階免震機構。   The said floor reaction force part is pin-joined to the said lower structure, The intermediate floor seismic isolation mechanism of the building of Claim 1 characterized by the above-mentioned. 前記縦反力部が、鉄骨造または鉄骨鉄筋コンクリート造の梁から設けられていることを特徴とする請求項2に記載の建築物の中間階免震機構。   The intermediate floor seismic isolation mechanism for a building according to claim 2, wherein the longitudinal reaction force portion is provided from a steel-framed or steel-framed reinforced concrete beam. 前記縦反力部が、下部構造体の床スラブから設けられていることを特徴とする請求項2に記載の建築物の中間階免震機構。   The said floor reaction force part is provided from the floor slab of the lower structure, The intermediate floor seismic isolation mechanism of the building of Claim 2 characterized by the above-mentioned.
JP2007118508A 2007-04-27 2007-04-27 Seismic isolation mechanism for intermediate floors of buildings Active JP4980782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007118508A JP4980782B2 (en) 2007-04-27 2007-04-27 Seismic isolation mechanism for intermediate floors of buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007118508A JP4980782B2 (en) 2007-04-27 2007-04-27 Seismic isolation mechanism for intermediate floors of buildings

Publications (2)

Publication Number Publication Date
JP2008274622A true JP2008274622A (en) 2008-11-13
JP4980782B2 JP4980782B2 (en) 2012-07-18

Family

ID=40052914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007118508A Active JP4980782B2 (en) 2007-04-27 2007-04-27 Seismic isolation mechanism for intermediate floors of buildings

Country Status (1)

Country Link
JP (1) JP4980782B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083762A (en) * 2013-10-25 2015-04-30 株式会社竹中工務店 Seismic isolation method for existing structure
US10309643B2 (en) 2015-03-27 2019-06-04 Mitsubishi Hitachi Power Systems, Ltd. Structure for seismic isolation, steel support structure, and method for seismic isolation of existing steel support structures
JP2020200871A (en) * 2019-06-07 2020-12-17 株式会社竹中工務店 Attachment structure of damper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127075A (en) * 1981-01-30 1982-08-07 Okumura Corp Earthquake-proof apparatus of building
JP2003227235A (en) * 2002-01-31 2003-08-15 Shimizu Corp Aseismatic reinforcement structure
JP2006037607A (en) * 2004-07-29 2006-02-09 Taisei Corp Base isolating structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127075A (en) * 1981-01-30 1982-08-07 Okumura Corp Earthquake-proof apparatus of building
JP2003227235A (en) * 2002-01-31 2003-08-15 Shimizu Corp Aseismatic reinforcement structure
JP2006037607A (en) * 2004-07-29 2006-02-09 Taisei Corp Base isolating structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083762A (en) * 2013-10-25 2015-04-30 株式会社竹中工務店 Seismic isolation method for existing structure
US10309643B2 (en) 2015-03-27 2019-06-04 Mitsubishi Hitachi Power Systems, Ltd. Structure for seismic isolation, steel support structure, and method for seismic isolation of existing steel support structures
JP2020200871A (en) * 2019-06-07 2020-12-17 株式会社竹中工務店 Attachment structure of damper
JP7257265B2 (en) 2019-06-07 2023-04-13 株式会社竹中工務店 Damper mounting structure

Also Published As

Publication number Publication date
JP4980782B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4917168B1 (en) Seismic reinforcement structure and method using compression braces
JP4658006B2 (en) Seismic isolation method for existing buildings and temporary seismic control panel
JP2014077248A (en) Seismic strengthening structure and seismic strengthening method
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP5132503B2 (en) Seismic structure and building
JP5338050B2 (en) Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method
JP4949116B2 (en) Wall unit and shear wall
KR102122028B1 (en) Column type vibration isolation apparatus
KR101652621B1 (en) Aseismic structure for existing building
JP2007126830A (en) Installation structure of stud to existing building
JP2012117327A (en) Vibration control structure
JP2006132150A (en) Seismic response control column and its construction method
JP2019049171A (en) Base-isolation structure
JP2008285952A (en) Base-isolated building structure
JP6247117B2 (en) Temporary structure during seismic isolation of existing building
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP2004353351A (en) Upper extension method for existing building
JP3004242B2 (en) Building material for vibration control, vibration control structure and construction method
JP2001317227A (en) Method for constructing seismic control wall and structure for mounting seismic control wall
JP6052460B2 (en) Seismic reinforcement structure and construction method
JP4432581B2 (en) Building structure that can change floor height
JP3608130B2 (en) Out-of-plane fall prevention structure for expanded seismic walls
JP2020090812A (en) Vibration control structure
JP2004238801A (en) Aseismic reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4980782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250