JP4917168B1 - Seismic reinforcement structure and method using compression braces - Google Patents
Seismic reinforcement structure and method using compression braces Download PDFInfo
- Publication number
- JP4917168B1 JP4917168B1 JP2010279267A JP2010279267A JP4917168B1 JP 4917168 B1 JP4917168 B1 JP 4917168B1 JP 2010279267 A JP2010279267 A JP 2010279267A JP 2010279267 A JP2010279267 A JP 2010279267A JP 4917168 B1 JP4917168 B1 JP 4917168B1
- Authority
- JP
- Japan
- Prior art keywords
- brace
- compression
- braces
- frame
- existing building
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007906 compression Methods 0.000 title claims description 73
- 230000002787 reinforcement Effects 0.000 title claims description 45
- 239000011162 core material Substances 0.000 claims abstract description 74
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 68
- 239000010959 steel Substances 0.000 claims abstract description 68
- 239000000463 material Substances 0.000 claims abstract description 57
- 230000000452 restraining Effects 0.000 claims abstract description 15
- 230000003014 reinforcing Effects 0.000 claims description 17
- 238000005728 strengthening Methods 0.000 abstract 4
- 238000010276 construction Methods 0.000 description 18
- 230000002829 reduced Effects 0.000 description 9
- 239000004570 mortar (masonry) Substances 0.000 description 8
- 239000000428 dust Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 210000000614 Ribs Anatomy 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000036961 partial Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Abstract
Description
この発明は、圧縮ブレースを用いた建物の耐震補強構造および補強方法に関する。 The present invention relates to a seismic reinforcing structure and a reinforcing method for a building using a compression brace.
従来、RC造(鉄筋コンクリート造)建物やSRC造(鉄骨鉄筋コンクリート造)建物の耐震補強方法として、鉄骨枠付ブレースによる補強方法が多く用いられている。この耐震補強方法には、以下のような特徴がある。
・RC壁を増打ちして耐震補強する場合に比べて、閉塞感を低減できる。
・既存躯体に鉄骨枠付ブレースを接合する場合には、後施工アンカーと頭付きスタッドを用いモルタル充填を行う間接接合が多く採用される。
Conventionally, as a seismic reinforcement method for RC structures (steel reinforced concrete structures) and SRC structures (steel reinforced concrete structures), a reinforcement method using braces with a steel frame is often used. This seismic reinforcement method has the following characteristics.
・ The feeling of blockage can be reduced compared to the case where RC walls are reinforced and seismic reinforced.
-When joining braces with steel frames to existing frames, indirect joining is often used in which mortar filling is performed using post-installed anchors and studs with heads.
しかし、上記した従来の耐震補強方法のように、後施工アンカーを用いて既存躯体へ鉄骨枠付ブレースを間接接合するのでは、施工において、以下のような問題が生じる。
・後施工アンカーを打設するときに、騒音、振動、粉塵が発生する。すなわち、ブレースに引っ張り力を負担させる場合、既存建物躯体との応力伝達を確実に行うために、後施工アンカーを多数用いたり、深く埋め込む必要がある。そのため、後施工アンカーを打設するときの、騒音、振動、粉塵発生の問題が大きい。
・型枠組立、無収縮モルタルの充填・養生、型枠解体の各作業を要するので、施工期間が長期化し、コストアップを招く。
However, if the brace with a steel frame is indirectly joined to the existing frame using the post-construction anchor as in the conventional seismic reinforcement method described above, the following problems occur in the construction.
・ Noise, vibration and dust are generated when post-installed anchors are installed. That is, when a tensile force is applied to the brace, it is necessary to use a large number of post-installed anchors or to embed them deeply in order to reliably transmit stress to the existing building frame. Therefore, the problems of noise, vibration, and dust generation when placing post-installed anchors are large.
・ As each work of formwork assembly, filling / curing of non-shrink mortar, and formwork disassembly is required, the construction period becomes longer and costs increase.
この発明の目的は、引張力を負担させない圧縮ブレースを用いることで、既存建物との接合部を簡素化できて、簡易な施工で短い施工期間により耐震補強が行え、また施工に伴う騒音、振動、粉塵の問題がなく、かつ耐震補強構造および耐震補強方法を提供することである。
この発明の他の目的は、鋼材使用量を削減することである。
The object of the present invention is to use a compression brace that does not impose a tensile force, so that the joint with the existing building can be simplified, and seismic reinforcement can be performed with simple construction and a short construction period. It is to provide a seismic reinforcement structure and a seismic reinforcement method that are free from dust problems.
Another object of the present invention is to reduce the amount of steel used.
この発明の圧縮ブレースによる耐震補強構造は、既存建物をブレースで補強する構造であって、前記ブレースが、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有する圧縮ブレースであり、前記芯材を、長さ方向の拘束材により拘束されている部分で一対の分割芯材に分割したことを特徴とする。
ブレースは、通常は引っ張り力の負荷に使用するが、この構成によると、ブレースは、その芯材が長さ方向の拘束材により拘束されている部分で分割された一対の分割芯材からなる圧縮ブレースであるため、引張力の負担がなくせる。引張力の負担を無くすことで、既存建物の躯体との接合を簡素化できる。すなわち、引張力をブレースに負担させる場合、RC造やSRC造の既存躯体の場合、接合部における応力伝達を確実に行うために、多数のアンカーを用いたり、深くアンカーを設けることが必要となる。しかし、圧縮力のみを負担するブレースであると、支圧により応力伝達が行えるため、少ないアンカー本数でブレースの連結が行える。そのため、既存建物の躯体との接合を簡素化できる。したがって、簡易な施工で短い施工期間により耐震補強が行え、コストも低くて済み、施工に伴う騒音、振動、粉塵の問題も生じない。また、前記ブレースは、芯材とその両面に沿って配置された拘束材とでなるため、拘束材が座屈を生じさせることなく、強い圧縮力を負担することができる。
The seismic reinforcement structure using a compression brace according to the present invention is a structure in which an existing building is reinforced with braces, and the brace extends along both sides of the core material, both ends of which are connected to the frame of the existing building. A compression brace having a restraining material arranged and restraining buckling of the core material, wherein the core material is divided into a pair of split core materials at a portion restrained by a restraining material in a length direction. Features.
A brace is normally used for a load of tensile force, but according to this configuration, a brace is a compression composed of a pair of split cores divided at a portion where the core is constrained by a restraint in the length direction. Because it is a brace, it can eliminate the burden of tensile force. By eliminating the burden of tensile force, it is possible to simplify the joining with the frame of an existing building. That is, when the tensile force is applied to the brace, in the case of an existing structure of RC structure or SRC structure, it is necessary to use a large number of anchors or to provide deep anchors in order to reliably transmit stress at the joint. . However, in the brace that bears only the compressive force, the stress can be transmitted by the bearing pressure, so that the braces can be connected with a small number of anchors. Therefore, it is possible to simplify the joining with the existing building frame. Therefore, earthquake-proof reinforcement can be performed with a simple construction and a short construction period, the cost can be reduced, and the problems of noise, vibration and dust associated with the construction do not occur. Moreover, since the said brace consists of a core material and the restraint material arrange | positioned along the both surfaces, it can bear strong compressive force, without producing a buckling of a restraint material.
この発明において、既存建物の躯体における梁と、この梁の両側で梁下方に延びる一対の柱とでなる部分に配置する鉄骨枠として、前記梁に沿う上部鉄骨枠材を設け、前記圧縮ブレースを互いに逆V字状に2本配置し、これら2本の圧縮ブレースの上端を、前記上部鉄骨枠材に接合するのが良い。
このように、鉄骨枠を上部鉄骨枠材だけとすることより、鋼材使用量が削減され、コスト低下が図れる。鉄骨枠を上部鉄骨枠材だけとしても、上記のように、ブレースとして圧縮ブレース用い、その圧縮ブレースを上記のように互いに逆V字状に2本配置することで、必要な耐震補強が行える。
In the present invention, as a steel frame to be arranged in a portion consisting of a beam in a frame of an existing building and a pair of columns extending below the beam on both sides of the beam, an upper steel frame material along the beam is provided, and the compression brace is provided. Two of them may be arranged in an inverted V shape, and the upper ends of these two compression braces may be joined to the upper steel frame member.
Thus, by using only the upper steel frame material as the steel frame material, the amount of steel material used can be reduced and the cost can be reduced. Even if only the upper steel frame material is used as the steel frame, as described above, the compression brace is used as the brace, and two of the compression braces are arranged in an inverted V shape as described above, so that the necessary seismic reinforcement can be performed.
この発明において、前記圧縮ブレースにおける前記一対の分割芯材の間に、長さ方向と垂直な鋼材を、拘束材に渡って介在させても良い。このように鋼材を介在させて当接可能な面積を広げることで、芯材のズレによる悪影響を緩和することができる。 In the present invention, a steel material perpendicular to the length direction may be interposed between the pair of divided core members in the compression brace across the restraint material. In this way, by interposing a steel material and expanding the contactable area, it is possible to mitigate the adverse effects caused by the misalignment of the core material.
この発明において、前記圧縮ブレースにおける前記一対の分割芯材の分割側端部の表面に補強板を接合しても良い。この補強板の接合により、芯材のズレおよび面外変形を抑制することができる。 In this invention, you may join a reinforcement board to the surface of the division | segmentation side edge part of the said pair of division | segmentation core material in the said compression brace. By the joining of the reinforcing plates, it is possible to suppress the deviation of the core material and the out-of-plane deformation.
この発明の圧縮ブレースによる耐震補強方法は、既存建物の躯体にブレースの両端を接続して既存建物を補強する方法であって、前記ブレースとして、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有し圧縮力を支持する圧縮ブレースを用い、この圧縮ブレースを、前記芯材を長さ方向の拘束材により拘束されている部分で一対の分割芯材に分割したものとすることを特徴とする。
この耐震補強方法によると、この発明の耐震補強構造につき前述したと同様に、圧縮ブレースを用いるため、既存建物の躯体との接合を簡素化できて、簡易な施工で短い施工期間により耐震補強が行え、コストも低くて済み、施工に伴う騒音、振動、粉塵の問題も生じない。
The seismic reinforcement method using a compression brace according to the present invention is a method of reinforcing an existing building by connecting both ends of the brace to a frame of an existing building, and the core material having both ends connected to the frame of the existing building as the brace. And a compression brace that is disposed along both surfaces of the core material and restrains buckling of the core material and supports a compressive force, and the compression brace is disposed in the length direction of the core material. It is characterized in that it is divided into a pair of split cores at a portion restrained by the restraining material .
According to this seismic reinforcement method, the compression brace is used in the same way as described above for the seismic reinforcement structure of the present invention. It can be done at a low cost, and there are no problems with noise, vibration, or dust associated with construction.
この発明の圧縮ブレースによる耐震補強構造は、既存建物をブレースで補強する構造であって、前記ブレースが、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有する圧縮ブレースであり、前記芯材を、長さ方向の拘束材により拘束されている部分で一対の分割芯材に分割したため、既存建物との接合部を簡素化できて、簡易な施工で短い施工期間により耐震補強が行え、また施工に伴う騒音、振動、粉塵の問題を生じさせずに耐震補強することができる。 この発明の圧縮ブレースによる耐震補強方法は、既存建物の躯体にブレースの両端を接続して既存建物を補強する方法であって、前記ブレースとして、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有し圧縮力を支持する圧縮ブレースを用い、この圧縮ブレースを、前記芯材を長さ方向の拘束材により拘束されている部分で一対の分割芯材に分割したものとしたため、既存建物との接合部を簡素化できて、簡易な施工で短い施工期間により耐震補強が行え、また施工に伴う騒音、振動、粉塵の問題を生じさせずに耐震補強することができる。
The seismic reinforcement structure using a compression brace according to the present invention is a structure in which an existing building is reinforced with braces, and the brace extends along both sides of the core material, both ends of which are connected to the frame of the existing building. A compression brace having a constraining material disposed and constraining buckling of the core material, and the core material is divided into a pair of split core materials at a portion constrained by a restraining material in a length direction, The joint with the building can be simplified, and the seismic reinforcement can be performed with a simple construction and a short construction period, and the seismic reinforcement can be carried out without causing the problems of noise, vibration and dust associated with the construction. The seismic reinforcement method using a compression brace according to the present invention is a method of reinforcing an existing building by connecting both ends of the brace to a frame of an existing building, and the core material having both ends connected to the frame of the existing building as the brace. And a compression brace that is disposed along both surfaces of the core material and restrains buckling of the core material and supports a compressive force, and the compression brace is disposed in the length direction of the core material. Because it is divided into a pair of split cores at the part constrained by the restraint material , the joint with the existing building can be simplified, and earthquake-proof reinforcement can be performed in a short construction period with simple construction. Seismic reinforcement can be performed without causing the noise, vibration and dust problems involved.
この発明の一実施形態を図1ないし図13と共に説明する。図1は、この実施形態の耐震補強構造を適用した既存建物の躯体構造を示す部分正面図である。この実施形態の耐震補強構造は、既存建物を圧縮ブレース2A,2Bを用いて補強する構造である。同図に示すように、建物躯体は、隣り合う2本の柱20,20間に梁30が横架されていて、この梁30の下面に沿って、両側の柱20,20の間に上部鉄骨枠材1を設ける。この上部鉄骨枠材1の下方に、2本の圧縮ブレース2A,2Bを互いに逆V字状に配置する。すなわち、上部鉄骨枠材1の中間部と一方の柱20の下端との間に渡って第1の圧縮ブレース2Aを設け、上部鉄骨枠材1の中間部と他方の柱20の下端との間に渡って第2の圧縮ブレース2Bが設けている。建物躯体はRC造またはSRC造である。 An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a partial front view showing a frame structure of an existing building to which the seismic reinforcement structure of this embodiment is applied. The seismic reinforcement structure of this embodiment is a structure that reinforces an existing building using the compression braces 2A and 2B. As shown in the figure, the building frame has a beam 30 horizontally mounted between two adjacent columns 20, 20, and the upper part between the columns 20, 20 on both sides along the lower surface of the beam 30. A steel frame material 1 is provided. Below the upper steel frame member 1, two compression braces 2A and 2B are arranged in an inverted V shape. That is, the first compression brace 2 </ b> A is provided between the intermediate portion of the upper steel frame member 1 and the lower end of the one column 20, and between the intermediate portion of the upper steel frame member 1 and the lower end of the other column 20. A second compression brace 2B is provided. The building frame is RC or SRC.
上部鉄骨枠材1は、図1のA部を拡大して示す図7、および図1のB部の拡大断面図を示す図8のように例えばH形鋼からなり、そのウエブ1aが水平姿勢となるように配置され、両端にはエンドプレート1bが設けられている。柱20および梁30と、上部鉄骨枠材1との間にはモルタル12が充填され、図8のように上部鉄骨枠材1の両端のエンドプレート1bをボルト13およびナット(図示せず)で柱20に接合し、上部鉄骨枠材1のウエブ1aの複数箇所を同様にボルト13およびナットで梁30に接合することにより、上部鉄骨枠材1が建物躯体に接合される。各ボルト13は、例えば梁30や柱20に後施工で設けられたホールインアンカー等のアンカーである。 The upper steel frame member 1 is made of, for example, H-shaped steel as shown in FIG. 7 showing an enlarged view of the portion A in FIG. 1 and FIG. 8 showing an enlarged sectional view of the portion B in FIG. End plates 1b are provided at both ends. The mortar 12 is filled between the column 20 and the beam 30 and the upper steel frame member 1, and the end plates 1b at both ends of the upper steel frame member 1 are bolted and nuts (not shown) as shown in FIG. The upper steel frame member 1 is joined to the building frame by joining the pillar 20 and joining the plurality of portions of the web 1a of the upper steel frame member 1 to the beam 30 with bolts 13 and nuts in the same manner. Each bolt 13 is an anchor such as a hole-in anchor provided in the post-construction on the beam 30 or the pillar 20, for example.
第1および第2の圧縮ブレース2A,2Bの一端は、それぞれ連結部材3aを介して各柱20の下端に接合され、これら圧縮ブレース2A,2Bの他端はそれぞれ他の連結部材3bを介して上部鉄骨枠材1の中間部に接合される。 One end of each of the first and second compression braces 2A and 2B is joined to the lower end of each column 20 via a connecting member 3a, and the other end of each of the compression braces 2A and 2B is connected via another connecting member 3b. It is joined to the middle part of the upper steel frame material 1.
前記各圧縮ブレース2A,2Bは建物躯体に加わる水平力に抵抗する部材であって、図2に示すように、芯材3とこの芯材3の両面に沿って配置されて芯材3の座屈を拘束する一対の拘束材4,4とを有する。芯材3は、帯状の平鋼板であり、SN材(建築構造用圧延鋼材)や、LYP材(極低降伏点鋼材)等の降伏点の低い鉄鋼材料からなる。
拘束材4は、例えば芯材3に向けて開口する溝形鋼材5内にモルタルまたはコンクリート6を充填して構成される。芯材3と拘束材4との間には粘性弾性体からなるアンボンド材9が介在させてある。芯材3の両側面には、対向する一対の拘束材4,4の間の隙間を確保するスペーサ19が介在させてある。スペーサ19は、線状の鋼材またはゴム材等からなるが、省略しても良い。
芯材3の両端に、前記連結部材3aが設けられている。連結部材3aは板状の部材であり、芯材3に接合されたものであっても、芯材3に一体に形成されたものであっても良い。連結部材3aには、両面に長手方向に沿って補強リブ3aaが設けられ、補強リブ3aaは、拘束材4の溝形鋼材5の端部付近に設けられたスリット部から突出している。
Each of the compression braces 2A and 2B is a member that resists a horizontal force applied to the building frame. As shown in FIG. It has a pair of restraining materials 4 and 4 for restraining bending. The core material 3 is a strip-shaped flat steel plate, and is made of a steel material having a low yield point, such as an SN material (rolled steel material for building structures) or a LYP material (extremely low yield point steel material).
The restraint material 4 is configured by filling a mortar or concrete 6 in a channel steel material 5 that opens toward the core material 3, for example. An unbond material 9 made of a viscous elastic body is interposed between the core material 3 and the restraint material 4. Spacers 19 are provided on both side surfaces of the core material 3 to secure a gap between the pair of constraining materials 4 and 4 facing each other. The spacer 19 is made of a linear steel material or rubber material, but may be omitted.
The connecting member 3 a is provided at both ends of the core material 3. The connecting member 3 a is a plate-like member and may be joined to the core material 3 or integrally formed with the core material 3. The connecting member 3 a is provided with reinforcing ribs 3 aa on both sides along the longitudinal direction, and the reinforcing ribs 3 aa protrude from slit portions provided in the vicinity of the ends of the channel steel material 5 of the restraining material 4.
図3に示すように、芯材3は、長さ方向の途中部分、例えば中央で、一対の分割芯材3A,3Aに分割されている。これら一対の分割芯材3A,3Aの間には、長さ方向と垂直な鋼板7が、拘束材4に渡って介在させてある。図3の例では、前記鋼板7は、拘束材4の外側部材である溝形鋼材5に突き当たる位置まで、縦横とも延ばされている。拘束材4のモルタルまたはコンクリート6の部分は、鋼板7を介して左右に2分割される。
この他に図4のように、溝形鋼材5を突き切って拘束材4の外側に突出する位置まで鋼板7を延ばしても良い。この場合、拘束材4の全体が左右に2分割されることになる。
As shown in FIG. 3, the core material 3 is divided into a pair of divided core materials 3 </ b> A and 3 </ b> A at an intermediate portion in the length direction, for example, at the center. A steel plate 7 perpendicular to the length direction is interposed between the pair of split core materials 3A and 3A across the restraint material 4. In the example of FIG. 3, the steel plate 7 is extended both vertically and horizontally to a position where it abuts against the channel steel material 5 that is the outer member of the restraint material 4. A portion of the mortar or concrete 6 of the restraint 4 is divided into left and right via a steel plate 7.
In addition to this, as shown in FIG. 4, the steel plate 7 may be extended to a position where the channel steel material 5 is cut through and protruded to the outside of the restraint material 4. In this case, the whole restraining material 4 is divided into left and right parts.
両分割芯材3Aの分割側端部の両面には、図5のように補強板8が溶接により接合されている。補強板8を設けた場合、前記アンボンド材9により被覆される部分は、両分割芯材3Aの両面における、前記補強板8の接合部を除く部分とするのが良い。 Reinforcing plates 8 are joined to both surfaces of the split side end portions of both split cores 3A by welding as shown in FIG. When the reinforcing plate 8 is provided, the portion covered with the unbond material 9 is preferably a portion excluding the joint portion of the reinforcing plate 8 on both surfaces of both split core materials 3A.
図3は、図1における圧縮ブレース2AのIII −III 矢視断面図を、圧縮時と引張時に分けて示している。この圧縮ブレース2Aでは、芯材3が長さ方向の途中部分で分割された一対の分割芯材3A,3Aからなるため、図3(A)のように圧縮力の作用時には、両分割芯材3A,3Aの端部が鋼板7を介して突き当て状態となり、圧縮力の伝達が可能であるが、図3(B)のように引張時には両分割芯材3A,3Aの端部が鋼板7から引き離され、引張力を負担させることがない。
このように一対の分割芯材3A,3Aは、作用荷重によって互いに突き当て状態となったり離れたりするが、両分割芯材3A,3Aの間に鋼板7を介在させているので、分割芯材3A,3Aの端面は鋼板7に当接する。そのため、芯材3に板厚方向のずれが生じても、そのずれによる影響を緩和し、確実な圧縮力の伝達が行える。他方の圧縮ブレース2Bの場合も上記と同様である。また、鋼板7を拘束材4の外部まで突出させた図4の構成例の場合も同様である。
FIG. 3 shows a cross-sectional view taken along the line III-III of the compression brace 2A in FIG. 1 separately for compression and tension. In this compression brace 2A, since the core material 3 is composed of a pair of divided core materials 3A and 3A divided in the middle in the length direction, both divided core materials are applied when a compression force is applied as shown in FIG. The end portions of 3A and 3A are brought into contact with each other through the steel plate 7, and the compression force can be transmitted. However, as shown in FIG. 3B, the end portions of both split core materials 3A and 3A are in the steel plate 7 during tension. It is pulled away from and does not bear the tensile force.
As described above, the pair of divided core members 3A and 3A are brought into contact with or separated from each other by the applied load, but the steel plate 7 is interposed between the two divided core members 3A and 3A. The end faces of 3A and 3A are in contact with the steel plate 7. Therefore, even if a deviation in the thickness direction occurs in the core material 3, the influence of the deviation can be alleviated and a reliable compression force can be transmitted. The same applies to the other compressed brace 2B. The same applies to the configuration example of FIG. 4 in which the steel plate 7 protrudes to the outside of the restraint material 4.
また、これらの圧縮ブレース2A,2Bでは、図5のように分割芯材3Aの分割側端部の両面に補強板8を接合しているので、分割芯材3Aの長手方向への変位のガイドとなり、分割芯材3Aの垂直方向へのズレ、および端部での面外変形を抑制することができる。ちなみに、分割芯材3Aに前記補強板8が無い場合、図6(A)のように左右の分割芯材3A,3Aの間で芯が一致していたものが、図6(B)のようにアンボンド材9の厚み分だけ芯ズレする可能性がある。分割芯材3Aの分割側端部の両面に補強板8を接合すると、このような芯ズレを抑制できる。 Further, in these compression braces 2A and 2B, since the reinforcing plates 8 are joined to both surfaces of the split side end portion of the split core member 3A as shown in FIG. 5, a guide for displacement of the split core member 3A in the longitudinal direction is provided. Thus, it is possible to suppress the vertical displacement of the split core material 3A and the out-of-plane deformation at the end. Incidentally, when the divided core material 3A does not have the reinforcing plate 8, the cores between the left and right divided core materials 3A, 3A as shown in FIG. 6A are the same as in FIG. 6B. There is a possibility that the core is displaced by the thickness of the unbond material 9. When the reinforcing plates 8 are joined to both surfaces of the split side end portion of the split core material 3A, such a core shift can be suppressed.
両圧縮ブレース2A,2Bの両端の連結部材3a,3bは、芯材3の両端に一体形成された板状部分であり、図7および、図1のC部の拡大断面図を示す図9のように、各連結部材3a,3bにはその端部にエンドプレート10,11が設けられている。エンドプレート10,11は、例えば直角に折れ曲がったL字状とされている。このL字状の曲げ角を2分する線の方向が、圧縮ブレース2A,2Bの長さ方向となる。エンドプレート10,11は、連結部材3a,3bの両面側へ突出しているが、片面側のみに突出するものでであっても良い。これらエンドプレート10,11には複数のボルト挿通孔が設けられている。 The connecting members 3a and 3b at both ends of both compression braces 2A and 2B are plate-like portions integrally formed at both ends of the core material 3, and FIG. 7 and FIG. 9 showing an enlarged cross-sectional view of a portion C in FIG. As described above, the end plates 10 and 11 are provided at the ends of the connecting members 3a and 3b. The end plates 10 and 11 are, for example, L-shaped bent at a right angle. The direction of the line that bisects the L-shaped bending angle is the length direction of the compression braces 2A and 2B. The end plates 10 and 11 protrude toward both sides of the connecting members 3a and 3b, but may protrude only on one side. These end plates 10 and 11 are provided with a plurality of bolt insertion holes.
図9のように、柱20および梁30と、両圧縮ブレース2A,2Bの下端の連結部材3aとの間にはモルタル12が充填され、連結部材3aに設けられたエンドプレート10の縦片および横片を、ホールインアンカー等のボルト13とナット(図示せず)で柱20および梁30に接合することにより、両圧縮ブレース2A,2Bの下端が既存建物躯体に接続される。 As shown in FIG. 9, the mortar 12 is filled between the column 20 and the beam 30 and the connecting member 3a at the lower ends of both compression braces 2A and 2B, and the vertical pieces of the end plate 10 provided on the connecting member 3a and By joining the horizontal piece to the column 20 and the beam 30 with bolts 13 and nuts (not shown) such as hole-in anchors, the lower ends of both compression braces 2A and 2B are connected to the existing building frame.
図7のように、上部鉄骨枠材1の中間部には、ウエブ部1aから垂直下方に突出する取付用鋼板14が設けられている。両圧縮ブレース2A,2Bの上端の連結部材3bに設けられたエンドプレート11の縦片および横片を、ボルト13で前記取付用鋼板14および上部鉄骨枠材1のウエブ部1aに接合することにより、両圧縮ブレース2A,2Bの上端が上部鉄骨枠材1を介して既存建物躯体に接続される。両圧縮ブレース2A,2Bのエンドプレート11の縦片は、取付用鋼板14と共に重なり状態にボルト13で接合される。 As shown in FIG. 7, a mounting steel plate 14 that protrudes vertically downward from the web portion 1 a is provided in the middle portion of the upper steel frame member 1. By joining the vertical piece and the horizontal piece of the end plate 11 provided on the connecting member 3b at the upper ends of both the compression braces 2A and 2B to the mounting steel plate 14 and the web portion 1a of the upper steel frame member 1 with bolts 13. The upper ends of both compression braces 2A and 2B are connected to the existing building frame via the upper steel frame member 1. The vertical pieces of the end plates 11 of both the compression braces 2A, 2B are joined together with the mounting steel plate 14 with bolts 13 in an overlapping state.
上記構成の圧縮ブレース2A,2Bを用いた耐震補強構造によると、圧縮ブレース2A,2Bと既存建物躯体との応力伝達を上部鉄骨枠材1を介して支圧で行うことができる。圧縮ブレース2A,2Bを用いることで、支圧による応力伝達とし、圧縮ブレース2A,2Bで引っ張り力を負担しないようにしたため、引っ張り力による既存建物躯体との応力伝達を検討する必要がなく、既存建物の躯体との接合を簡素化できる。これにより、後施工に使用するボルト13等のアンカーの本数も削減きるので、騒音、振動を抑えることができ、工期も短縮できる。
また、圧縮ブレース2A,2Bと複合して用いる鉄骨枠として、上部鉄骨枠材1のみを設けるため、使用鋼材量を削減でき、コストダウンが可能となる。鉄骨枠を全周に設けずに、上部鉄骨枠材1のみとしても、圧縮ブレース2A,2Bと既存建物躯体との応力伝達を上部鉄骨枠材1を介して行うことができ、十分な耐震補強が行える。鉄骨枠が上部鉄骨枠材1のみに削減できることからも、アンカー本数も削減でき、騒音、振動の抑制、工期の短縮に繋がる。モルタル12の充填箇所も限られるので、モルタル削減によるコストダウンが可能となる。
According to the seismic reinforcement structure using the compression braces 2A and 2B having the above-described configuration, the stress transmission between the compression braces 2A and 2B and the existing building frame can be performed by supporting pressure through the upper steel frame member 1. By using the compression braces 2A and 2B, stress transmission by supporting pressure is made and no tension is applied to the compression braces 2A and 2B. Therefore, it is not necessary to consider stress transmission with the existing building frame due to the tensile force. It can simplify the connection with the building frame. Thereby, since the number of anchors, such as the volt | bolt 13 used for post-construction, can also be reduced, a noise and a vibration can be suppressed and a construction period can also be shortened.
Moreover, since only the upper steel frame material 1 is provided as a steel frame used in combination with the compression braces 2A and 2B, the amount of steel used can be reduced and the cost can be reduced. Even if only the upper steel frame material 1 is provided without providing the steel frame, the stress transmission between the compression braces 2A and 2B and the existing building frame can be performed via the upper steel frame material 1, and sufficient seismic reinforcement is provided. Can be done. Since the steel frame can be reduced to only the upper steel frame material 1, the number of anchors can also be reduced, leading to suppression of noise and vibration and shortening of the construction period. Since the number of mortar 12 filling places is also limited, it is possible to reduce costs by reducing mortar.
図10は、この実施形態の耐震補強構造を建物躯体へ適用した一例を示す正面図である。この建物躯体では、下階がピロティとされ、上階に耐力壁40を有しており、下階ピロティに実施形態の耐震補強構造を適用している。この場合、圧縮ブレース2A,2Bを受ける梁30の中央に作用するせん断力Pは、上階の耐力壁で負担できるため、圧縮ブレース2A,2Bによる耐震補強が効果的に行れる。 FIG. 10 is a front view showing an example in which the seismic reinforcement structure of this embodiment is applied to a building frame. In this building frame, the lower floor is a piloti, the upper floor has a bearing wall 40, and the seismic reinforcement structure of the embodiment is applied to the lower floor piloti. In this case, since the shear force P acting on the center of the beam 30 that receives the compression braces 2A and 2B can be borne by the load bearing wall on the upper floor, the seismic reinforcement by the compression braces 2A and 2B can be effectively performed.
図11は、この実施形態の耐震補強構造をさらに他の建物躯体へ適用した一例を示す正面図である。この建物躯体は、図10の建物躯体において耐力壁が無い場合のものであり、下階ピロティに実施形態の耐震補強構造を適用すると共に、図10におけるせん断力Pに対する補強対策として、2階と3階の梁30,30の間に座屈拘束柱15を設置している。この座屈拘束柱15により、梁30の負担を分割させることができる。この場合も、圧縮ブレース2A,2Bによる耐震補強が効果的に行れる。 FIG. 11 is a front view showing an example in which the seismic reinforcement structure of this embodiment is applied to still another building frame. This building case is a case where there is no bearing wall in the building case of FIG. 10, and the seismic reinforcement structure of the embodiment is applied to the lower floor piloti, and as a reinforcing measure against the shearing force P in FIG. A buckling restraint column 15 is installed between the beams 30 on the third floor. The buckling restraint column 15 can divide the load on the beam 30. Also in this case, the seismic reinforcement by the compression braces 2A and 2B can be effectively performed.
図12は、この実施形態の耐震補強構造をさらに他の建物躯体へ適用した一例を示す正面図である。この建物躯体も、図10の建物躯体において耐力壁が無い場合のものであり、下階ピロティに実施形態の耐震補強構造を適用すると共に、図10におけるせん断力Pに対する補強対策として、2階の梁30に連続繊維材16を設置している。このように連続繊維材16を設けることで、圧縮ブレース2A,2Bからなのせん断力に対する補強が行える。同図中に示すグラフは、この場合の梁30にかかる曲げモーメント図である。 FIG. 12 is a front view showing an example in which the seismic reinforcement structure of this embodiment is applied to still another building frame. This building frame is also a case where there is no bearing wall in the building frame of FIG. 10, and the seismic reinforcement structure of the embodiment is applied to the lower floor piloti, and as a reinforcement measure against the shearing force P in FIG. A continuous fiber material 16 is installed on the beam 30. By providing the continuous fiber material 16 in this way, it is possible to reinforce the shear force from the compression braces 2A and 2B. The graph shown in the figure is a diagram of the bending moment applied to the beam 30 in this case.
図13は、この実施形態の耐震補強構造をさらに他の建物躯体へ適用した一例を示す正面図である。この建物躯体も、図10の建物躯体において耐力壁が無い場合のものであり、下階ピロティに実施形態の耐震補強構造を適用すると共に、図10におけるせん断力Pに対する補強対策として、上階に同じ耐震補強構造を上下逆向きに設置している。これにより、せん断力Pを上階の柱20に流すことができる。 FIG. 13 is a front view showing an example in which the seismic reinforcement structure of this embodiment is applied to still another building frame. This building frame is also a case where there is no bearing wall in the building frame of FIG. 10, and the seismic reinforcement structure of the embodiment is applied to the lower floor piloti, and as a reinforcement measure against the shearing force P in FIG. The same seismic reinforcement structure is installed upside down. Thereby, the shearing force P can be sent to the pillar 20 of an upper floor.
1…上部鉄骨枠材
2A,2B…圧縮ブレース
3…芯材
3A…分割芯材
4…拘束材
7…鋼板
8…補強板
DESCRIPTION OF SYMBOLS 1 ... Upper steel frame material 2A, 2B ... Compression brace 3 ... Core material 3A ... Divided core material 4 ... Restraint material 7 ... Steel plate 8 ... Reinforcement plate
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010279267A JP4917168B1 (en) | 2010-12-15 | 2010-12-15 | Seismic reinforcement structure and method using compression braces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010279267A JP4917168B1 (en) | 2010-12-15 | 2010-12-15 | Seismic reinforcement structure and method using compression braces |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4917168B1 true JP4917168B1 (en) | 2012-04-18 |
JP2012127105A JP2012127105A (en) | 2012-07-05 |
Family
ID=46243747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010279267A Active JP4917168B1 (en) | 2010-12-15 | 2010-12-15 | Seismic reinforcement structure and method using compression braces |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4917168B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014001540A (en) * | 2012-06-18 | 2014-01-09 | Daiwa House Industry Co Ltd | Earthquake strengthening structure with compressive braces and strengthening method |
JP2014001541A (en) * | 2012-06-18 | 2014-01-09 | Daiwa House Industry Co Ltd | Earthquake strengthening structure with compressive braces and strengthening method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6246464B2 (en) * | 2012-10-29 | 2017-12-13 | 大和ハウス工業株式会社 | Buckling-restrained brace and seismic reinforcement structure using the same |
JP6184691B2 (en) * | 2012-12-27 | 2017-08-23 | 大和ハウス工業株式会社 | Buckling restraint brace |
JP6104684B2 (en) * | 2013-04-12 | 2017-03-29 | 大和ハウス工業株式会社 | Compression brace |
JP6199201B2 (en) * | 2014-02-26 | 2017-09-20 | 鹿島建設株式会社 | Frame reinforcement structure and frame reinforcement method |
JP6373613B2 (en) * | 2014-03-25 | 2018-08-15 | 大和ハウス工業株式会社 | Seismic reinforcement structure with compression braces |
JP6474575B2 (en) * | 2014-09-26 | 2019-02-27 | 大和ハウス工業株式会社 | Brace seismic reinforcement structure and seismic reinforcement method for existing buildings |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0544256A (en) * | 1991-08-15 | 1993-02-23 | Taisei Corp | Concrete brace |
JPH1150690A (en) * | 1997-08-06 | 1999-02-23 | Shimizu Corp | Vibration control reinforcing mechanism |
JP2006226043A (en) * | 2005-02-18 | 2006-08-31 | Mitsubishi Heavy Ind Ltd | Vibration control damper connector, vibration control damper and vibration control structure of building |
-
2010
- 2010-12-15 JP JP2010279267A patent/JP4917168B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0544256A (en) * | 1991-08-15 | 1993-02-23 | Taisei Corp | Concrete brace |
JPH1150690A (en) * | 1997-08-06 | 1999-02-23 | Shimizu Corp | Vibration control reinforcing mechanism |
JP2006226043A (en) * | 2005-02-18 | 2006-08-31 | Mitsubishi Heavy Ind Ltd | Vibration control damper connector, vibration control damper and vibration control structure of building |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014001540A (en) * | 2012-06-18 | 2014-01-09 | Daiwa House Industry Co Ltd | Earthquake strengthening structure with compressive braces and strengthening method |
JP2014001541A (en) * | 2012-06-18 | 2014-01-09 | Daiwa House Industry Co Ltd | Earthquake strengthening structure with compressive braces and strengthening method |
Also Published As
Publication number | Publication date |
---|---|
JP2012127105A (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4917168B1 (en) | Seismic reinforcement structure and method using compression braces | |
JP2006226054A (en) | Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure | |
JP5368762B2 (en) | Reinforcement joint structure | |
JP6246464B2 (en) | Buckling-restrained brace and seismic reinforcement structure using the same | |
JP5658966B2 (en) | Composite beam, composite beam joint structure, and composite beam joint method | |
JP5934033B2 (en) | Seismic reinforcement structure and method using compression braces | |
JP2016023476A (en) | Concrete mold for aseismic and vibration control reinforcement of concrete structure, and aseismic and vibration control reinforcement method for concrete structure using the same | |
JP5144182B2 (en) | Seismic reinforcement structure and seismic reinforcement method for existing buildings | |
JP5755558B2 (en) | Seismic reinforcement structure and method using compression braces | |
JP3991876B2 (en) | Seismic reinforcement structure | |
JP5755559B2 (en) | Seismic reinforcement structure and method using compression braces | |
JP4980782B2 (en) | Seismic isolation mechanism for intermediate floors of buildings | |
JP6388738B1 (en) | Seismic reinforcement structure for concrete structures | |
JP6390360B2 (en) | Structure and method for joining reinforced concrete beam and steel pipe column | |
JP7052953B2 (en) | Damping structure | |
JP6240420B2 (en) | Seismic reinforcement structure | |
JP2005188240A (en) | Vibration control structure | |
KR101209363B1 (en) | Concrete block for seismic reinforcement of H-shaped column and seismic reinforcing method using the same | |
JP6033574B2 (en) | Seismic reinforcement structure with compression braces | |
JP6718676B2 (en) | Seismic control stud structure | |
JP5033387B2 (en) | Vibration suppression reinforcement structure | |
JP6474575B2 (en) | Brace seismic reinforcement structure and seismic reinforcement method for existing buildings | |
JP5291390B2 (en) | Earthquake-resistant structure, construction method of earthquake-resistant structure, and building | |
JP6180168B2 (en) | Bearing wall joint structure and joint hardware | |
JP2005179981A (en) | Earthquake control construction of structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4917168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |