JP4943190B2 - Seismic reinforcement structure for viaduct - Google Patents

Seismic reinforcement structure for viaduct Download PDF

Info

Publication number
JP4943190B2
JP4943190B2 JP2007062875A JP2007062875A JP4943190B2 JP 4943190 B2 JP4943190 B2 JP 4943190B2 JP 2007062875 A JP2007062875 A JP 2007062875A JP 2007062875 A JP2007062875 A JP 2007062875A JP 4943190 B2 JP4943190 B2 JP 4943190B2
Authority
JP
Japan
Prior art keywords
foundation
viaduct
brace
steel sheet
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007062875A
Other languages
Japanese (ja)
Other versions
JP2008223327A (en
Inventor
素之 岡野
隆 松田
浩一 田中
正道 曽我部
政幸 神田
幸裕 谷村
英俊 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Railway Technical Research Institute
Original Assignee
Obayashi Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Railway Technical Research Institute filed Critical Obayashi Corp
Priority to JP2007062875A priority Critical patent/JP4943190B2/en
Publication of JP2008223327A publication Critical patent/JP2008223327A/en
Application granted granted Critical
Publication of JP4943190B2 publication Critical patent/JP4943190B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、主として鉄道用に係る高架橋の耐震補強構造に関する。   The present invention relates to a viaduct seismic reinforcing structure mainly for railways.

鉄道用高架橋の下部構造は、通常、鉄筋コンクリートのラーメン架構として構築されることが多いが、その設計施工の際には、地震時における高架橋の耐震性が十分検討されなければならない。特に、橋軸直交方向については、列車の脱線を未然に防止できるよう、同方向の剛性を十分に高めておく必要がある。   The substructure of a railway viaduct is usually constructed as a reinforced concrete ramen frame. However, when designing and constructing it, the seismic resistance of the viaduct during an earthquake must be fully considered. In particular, in the direction orthogonal to the bridge axis, it is necessary to sufficiently increase the rigidity in the same direction so that derailment of the train can be prevented.

かかる状況下、本出願人は鉄筋コンクリートのラーメン架構内にダンパーブレースを配設した高架橋の下部構造を研究開発し、耐震性の向上を図ってきた。   Under such circumstances, the applicant has been researching and developing a viaduct substructure in which a damper brace is arranged in a reinforced concrete ramen frame to improve seismic resistance.

ここで、既設の高架橋にダンパーブレースを配置する場合には、地上に構築される部分のみならず、地下部分についても耐震性を向上させる必要があるところ、基礎梁の再施工には多額の費用と時間を要する。   Here, when placing damper braces on existing viaducts, it is necessary to improve earthquake resistance not only on the part built on the ground but also on the underground part. And takes time.

そのため、本出願人は、ラーメン架構を支持する既設の杭から離間した位置にあらたな杭を増し杭として設けるとともに、該増し杭の杭頭と梁の両端近傍又は柱の頭部近傍とをブレースを介して相互に連結する耐震補強構造を開発した。   Therefore, the present applicant provides a new pile as an additional pile at a position separated from the existing pile supporting the frame structure, and braces the pile head of the increased pile and the vicinity of both ends of the beam or the vicinity of the head of the column. We have developed a seismic reinforcement structure that connects to each other via

特開2001−020228号公報JP 2001-020228 A 特開2004−270168号公報JP 2004-270168 A

上述した耐震補強構造によれば、鉛直荷重は従前通り、既設の杭で支持する一方、地震時水平力については、その一部をブレースを介して増し杭に伝達させることが可能となり、かくして高架橋の下部構造を地上部分のみならず地下部分についても耐震補強することが可能となる。   According to the seismic reinforcement structure described above, the vertical load is supported by the existing pile as before, while the horizontal force during the earthquake can be partially transmitted to the pile through the brace, thus the viaduct. It is possible to seismically reinforce the substructure of not only the ground part but also the underground part.

しかしながら、かかる耐震補強構造であっても、増設される杭を大断面杭としなければならないため、経済性の観点では未だ開発の余地があった。   However, even with such a seismic reinforcement structure, the pile to be added has to be a large section pile, so there is still room for development in terms of economy.

本発明は、上述した事情を考慮してなされたもので、下部構造の地上部分のみならず地下部分も合わせて耐震補強可能な高架橋の耐震補強構造を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a viaduct seismic reinforcement structure capable of seismic reinforcement not only in the ground part but also in the underground part of the lower structure.

上記目的を達成するため、本発明に係る高架橋の耐震補強構造は請求項1に記載したように、高架橋の橋軸方向に沿って対向配置された一対の基礎梁と該一対の基礎梁にほぼ直交するように配置された直交基礎梁とが矩形状又は梯子状に緊結されてなり前記高架橋の上部構造を支持するラーメン架構が立設された第1の基礎構造と、前記基礎梁及び前記直交基礎梁で取り囲まれた矩形状平面空間の周縁に沿って地盤に埋設された鋼矢板と該鋼矢板の頭部が接合されるようにかつ前記第1の基礎構造と非連結となるように前記矩形状平面空間に構築された鉄筋コンクリート床板とからなる第2の基礎構造と、前記矩形状平面空間の直上に複数のブレース本体を逆多角錐状に配置するとともにそれらの上端を前記ラーメン架構を構成する柱のうち、前記矩形状平面空間を取り囲む柱の頭部近傍に接合しそれらの下端を前記鉄筋コンクリート床板の中央近傍に接合してなる立体ブレースとを備えたものである。   In order to achieve the above object, a viaduct seismic reinforcement structure according to the present invention comprises a pair of foundation beams arranged opposite to each other along the bridge axis direction of the viaduct and a pair of foundation beams as described in claim 1. A first foundation structure in which a rigid frame supporting the superstructure of the viaduct is erected, and the foundation beam and the orthogonality are connected to each other in a rectangular shape or a ladder shape. The steel sheet pile embedded in the ground along the periphery of the rectangular planar space surrounded by the foundation beam and the head portion of the steel sheet pile are joined and disconnected from the first foundation structure. A second basic structure composed of a reinforced concrete floor plate constructed in a rectangular planar space, and a plurality of brace bodies are arranged in an inverted polygonal pyramid directly above the rectangular planar space, and the upper ends thereof constitute the frame structure Out of pillars The bonded to the head near the pillars surrounding the rectangular flat space is obtained a three-dimensional brace formed by joining their lower near the center of the reinforced concrete floor.

また、本発明に係る高架橋の耐震補強構造は、前記複数のブレース本体と前記鉄筋コンクリート床板との間にダンパーを介在させることで前記立体ブレースを立体ダンパーブレースとしたものである。   Moreover, the seismic reinforcement structure of the viaduct according to the present invention is such that the three-dimensional brace is a three-dimensional damper brace by interposing dampers between the plurality of brace bodies and the reinforced concrete floor board.

本発明は、地上部分であるラーメン架構と該ラーメン架構が立設された地下部分の基礎構造(第1の基礎構造)とからなる高架橋の下部構造を耐震補強の対象としたものであり、第1の基礎構造は、高架橋の橋軸方向に沿って対向配置された一対の基礎梁と該一対の基礎梁にほぼ直交するように配置された直交基礎梁とを矩形状又は梯子状に緊結して構成してある。   The present invention is intended for seismic reinforcement of a substructure of a viaduct composed of a ramen frame that is an above-ground part and a base structure (first basic structure) of an underground part in which the ramen frame is erected. The foundation structure of 1 includes a pair of foundation beams arranged opposite to each other along the bridge axis direction of the viaduct and an orthogonal foundation beam arranged so as to be substantially orthogonal to the pair of foundation beams in a rectangular shape or a ladder shape. Configured.

そして、本発明においては、上述した基礎梁及び直交基礎梁で取り囲まれた矩形状平面空間の周縁に沿って、シートパイルとも呼ばれる鋼矢板を地盤に埋設するとともに、該鋼矢板の頭部が接合されるようにかつ第1の基礎構造と非連結となるように、矩形状平面空間に鉄筋コンクリート床板をあらたに構築し、これを第2の基礎構造とした上、矩形状平面空間を取り囲む柱の頭部近傍に複数のブレース本体を接合し、それらの下端を鉄筋コンクリート床板の中央近傍に接合して立体ブレースを構築する。   And in this invention, while embedding the steel sheet pile also called a sheet pile along the periphery of the rectangular planar space surrounded by the foundation beam and the orthogonal foundation beam described above, the head of the steel sheet pile is joined. The reinforced concrete floor board is newly constructed in the rectangular planar space so as to be disconnected from the first foundation structure, and this is used as the second foundation structure, and the columns surrounding the rectangular planar space are A plurality of brace bodies are joined in the vicinity of the head, and the lower ends thereof are joined in the vicinity of the center of the reinforced concrete floor board to construct a three-dimensional brace.

このようにすると、ラーメン架構を介して既設の基礎構造である第1の基礎構造に流れていた地震時水平力は、耐震補強後、その一部が、増設された基礎構造である第2の基礎構造に立体ブレースを介して流れ、結果として、高架橋上部構造からの地震時水平力を、第1の基礎構造のみならず、第2の基礎構造にあらたに負担させることが可能となり、立体ブレースによる地上部分の耐震補強と相俟って、高架橋の下部構造を全体的に耐震補強することが可能となる。   In this way, the horizontal force during an earthquake flowing to the first foundation structure, which is the existing foundation structure via the ramen frame, is partially added to the second foundation structure after the seismic reinforcement. As a result, it is possible to cause the horizontal force during an earthquake from the viaduct superstructure to be newly borne not only on the first foundation structure but also on the second foundation structure. Combined with the seismic reinforcement of the ground part by the above, it becomes possible to seismically strengthen the substructure of the viaduct overall.

加えて、橋軸直交方向に沿ったラーメン架構全体のロッキング振動に起因して生じる地震時の引抜き力や圧縮力は、上述した水平力と同様、それらの一部が立体ブレースを介して第2の基礎構造に流れる。そして、これらの引抜き力又は圧縮力は、鋼矢板と周辺地盤との摩擦力、特に、基礎梁に沿って配置された鋼矢板と周辺地盤との摩擦力で支持される。   In addition, the pull-out force and compressive force at the time of an earthquake caused by rocking vibration of the entire frame structure along the direction orthogonal to the bridge axis are the same as the horizontal force described above, and some of them are second through the three-dimensional brace. Flows into the foundation structure. And these drawing-out force or compressive force is supported by the frictional force of the steel sheet pile and the surrounding ground, especially the frictional force of the steel sheet pile arranged along the foundation beam and the surrounding ground.

立体ブレースは、3以上のブレース本体が同一構面に配置されない、換言すれば3以上のブレース本体を互いに平行でない2つの異なる構面に配置してなるブレースという意味であって、ブレース本体が4本の場合、逆多角錐状は逆四角錐状となる。さらには、矩形状平面空間が正方形であってブレース本体の下端を鉄筋コンクリート床板の中央に接合した場合、立体ブレースの形状は、正四角錐の上下を逆にした形状となる。   The three-dimensional brace means that three or more brace bodies are not arranged on the same surface, in other words, a brace formed by arranging three or more brace bodies on two different surfaces that are not parallel to each other. In the case of a book, the inverted polygonal pyramid is an inverted quadrangular pyramid. Furthermore, when the rectangular planar space is square and the lower end of the brace body is joined to the center of the reinforced concrete floor board, the shape of the solid brace is a shape in which the regular quadrangular pyramid is turned upside down.

なお、本明細書では、狭義のブレースに加えて、ダンパー機構を組み込んだダンパーブレースを包摂する概念として、ブレースなる用語を広義に用いるものとする。   In the present specification, the term “brace” is used in a broad sense as a concept that encompasses a damper brace incorporating a damper mechanism in addition to a brace in a narrow sense.

鋼矢板を矩形状平面空間の周縁に沿って必ずしも全周配置する必要はないが、橋軸直交方向に沿ったラーメン架構のロッキング振動に起因した引抜き力や圧縮力を支持させるのであれば、対向する一対の基礎梁の内側にてそれぞれ地盤に埋設するのが有効である。一方、橋軸直交方向の水平地震力を支持させるのであれば、対向する一対の直交基礎梁の内側にてそれぞれ地盤に埋設するのが有効である。   The steel sheet piles do not necessarily have to be arranged all around along the periphery of the rectangular plane space, but they can be opposed if they support the pulling force and compressive force caused by the rocking vibration of the rigid frame along the direction perpendicular to the bridge axis. It is effective to embed them in the ground inside the pair of foundation beams. On the other hand, if the horizontal seismic force in the direction perpendicular to the bridge axis is to be supported, it is effective to embed each in the ground inside a pair of opposed orthogonal foundation beams.

鋼矢板は、第1の基礎構造を構成する基礎梁や直交基礎梁に接触してもかまわないが、構造的には互いに縁を切って非連結とする。かかる構成によって、施工の効率化を図ることができるとともに、第1の基礎構造や該第1の基礎構造に立設されたラーメン架構との相互作用が低減され、設計も容易となる。   The steel sheet piles may be in contact with the foundation beam or the orthogonal foundation beam constituting the first foundation structure, but are structurally disconnected from each other. With such a configuration, it is possible to improve the efficiency of construction, and the interaction with the first foundation structure and the frame structure erected on the first foundation structure is reduced, and the design is facilitated.

鋼矢板と鉄筋コンクリート床板との接合構造は、立体ブレースから伝達される引抜き力や圧縮力が鋼矢板に伝達される限り、任意の構造を採用することが可能であり、剛接合でもよいし、ピン接合でもかまわない。   As long as the pulling force and compressive force transmitted from the three-dimensional brace can be transmitted to the steel sheet pile, any structure can be adopted as the joining structure of the steel sheet pile and the reinforced concrete floor board. Bonding is also acceptable.

以下、本発明に係る高架橋の耐震補強構造の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a viaduct seismic reinforcement structure according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1乃至図3は、本実施形態に係る高架橋の耐震補強構造を示した図である。これらの図でわかるように本実施形態に係る高架橋の耐震補強構造1は、地上部分であって一対の柱8,8と該柱の頭部に架け渡された梁9とで構成してなるラーメン架構4と該ラーメン架構が立設された第1の基礎構造としての地下部分の基礎構造5とからなる高架橋の下部構造3を耐震補強の対象としたものであり、基礎構造5は、高架橋の橋軸方向に沿って対向配置された一対の基礎梁6,6と該一対の基礎梁にほぼ直交するように配置された複数の直交基礎梁7とを梯子状に緊結して構成してある。かかる基礎構造5は、橋軸方向に沿って連続的に構築され、地上部分であるラーメン架構4を介して高架橋の上部構造2を支持している。   1 to 3 are views showing a seismic reinforcing structure of a viaduct according to the present embodiment. As can be seen from these drawings, the viaduct seismic reinforcement structure 1 according to the present embodiment is a ground portion, and is composed of a pair of columns 8 and 8 and a beam 9 spanning the heads of the columns. The substructure 3 of the viaduct composed of the ramen frame 4 and the base structure 5 of the underground portion as the first foundation structure on which the ramen frame is erected is an object of seismic reinforcement. A pair of foundation beams 6 and 6 arranged opposite to each other along the bridge axis direction and a plurality of orthogonal foundation beams 7 arranged so as to be substantially orthogonal to the pair of foundation beams are connected in a ladder shape. is there. The foundation structure 5 is continuously constructed along the direction of the bridge axis, and supports the superstructure 2 of the viaduct via the ramen frame 4 that is the ground part.

本実施形態に係る耐震補強構造1は、基礎梁6,6及び直交基礎梁7,7で取り囲まれた矩形状平面空間の周縁、換言すれば基礎梁6,6及び直交基礎梁7,7の内側に沿って鋼矢板13をボックス状に地盤14に埋設するとともに、該鋼矢板の頭部が接合されるように鉄筋コンクリート床板62を矩形状平面空間に構築してなり、鋼矢板13及び鉄筋コンクリート床板62は、耐震補強工事の際にあらたに増設される第2の基礎構造としての基礎構造63を形成する。   The seismic retrofit structure 1 according to the present embodiment includes a peripheral edge of a rectangular planar space surrounded by the foundation beams 6 and 6 and the orthogonal foundation beams 7 and 7, in other words, the foundation beams 6 and 6 and the orthogonal foundation beams 7 and 7. The steel sheet pile 13 is embedded in the ground 14 in a box shape along the inner side, and the reinforced concrete floor board 62 is constructed in a rectangular planar space so that the head of the steel sheet pile is joined, and the steel sheet pile 13 and the reinforced concrete floor board are formed. 62 forms a foundation structure 63 as a second foundation structure newly added at the time of earthquake-proof reinforcement work.

ここで、耐震補強構造1は、基礎梁6,6及び直交基礎梁7,7で取り囲まれた矩形状平面空間の直上に立体ブレースとしての立体ダンパーブレース71を配置してなる。   Here, the seismic reinforcement structure 1 is configured by arranging a three-dimensional damper brace 71 as a three-dimensional brace directly above a rectangular planar space surrounded by the foundation beams 6 and 6 and the orthogonal foundation beams 7 and 7.

立体ダンパーブレース71は、矩形状平面空間の直上に4本のブレース本体72を逆四角錐状に配置するとともに、それらの上端をラーメン架構4を構成する柱8のうち、矩形状平面空間を取り囲む柱8の頭部近傍に接合し、それらの下端を履歴減衰ダンパー73を介して鉄筋コンクリート床板62の中央近傍に接合して構成してあり、ラーメン架構4からの地震時水平力及びロッキング振動に伴う圧縮力及び引張力を基礎構造63に伝達するようになっている。   The three-dimensional damper brace 71 has four brace bodies 72 arranged in an inverted quadrangular pyramid immediately above the rectangular planar space, and surrounds the rectangular planar space among the pillars 8 constituting the rigid frame 4 at the upper ends thereof. The column 8 is joined to the vicinity of the head, and the lower ends thereof are joined to the vicinity of the center of the reinforced concrete floor board 62 through the hysteresis damping damper 73, and are accompanied by the horizontal force and the rocking vibration during the earthquake from the rigid frame 4 A compressive force and a tensile force are transmitted to the foundation structure 63.

本実施形態に係る高架橋の耐震補強構造1を構築するには、まず、基礎梁6,6及び直交基礎梁7,7の内側に沿って鋼矢板13をボックス状に地盤14に埋設する。鋼矢板13は、バイブロハンマーによって地盤14に揺動圧入するようにしてもよいし、油圧ハンマーによって地盤14に打ち込むようにしてもよい。いずれにしろ、鋼矢板13の施工については、従来行われている公知の方法に従って行えばよい。   In order to construct the viaduct seismic reinforcement structure 1 according to the present embodiment, first, the steel sheet pile 13 is embedded in the ground 14 in a box shape along the inside of the foundation beams 6 and 6 and the orthogonal foundation beams 7 and 7. The steel sheet pile 13 may be rocked and pressed into the ground 14 with a vibro hammer, or may be driven into the ground 14 with a hydraulic hammer. In any case, the construction of the steel sheet pile 13 may be performed according to a conventionally known method.

次に、鋼矢板13で囲まれた地盤を掘り下げて矩形状平面空間を形成し、次いで、該矩形状平面空間に鉄筋コンクリート床板62を構築する。このとき、鋼矢板13の頭部が鉄筋コンクリート床板62に接合されるよう、例えば鋼矢板13の頭部にスタッドを溶接するとともに、コンクリートが打設される矩形状平面空間に補強筋を配筋し、かかる状態で矩形状平面空間にコンクリートを打設する。   Next, the ground surrounded by the steel sheet pile 13 is dug down to form a rectangular planar space, and then a reinforced concrete floor board 62 is constructed in the rectangular planar space. At this time, for example, a stud is welded to the head of the steel sheet pile 13 so that the head of the steel sheet pile 13 is joined to the reinforced concrete floor board 62, and a reinforcing bar is arranged in a rectangular plane space where the concrete is placed. In this state, concrete is placed in a rectangular planar space.

次に、鉄筋コンクリート床板62の直上に立体ダンパーブレース72を配置する。   Next, the three-dimensional damper brace 72 is disposed immediately above the reinforced concrete floor board 62.

本実施形態に係る高架橋の耐震補強構造1においては図4に示すように、地震時に上部構造2から下部構造3に作用する水平力は、既設の基礎構造5に流れるほか、立体ダンパーブレース71を介して、耐震補強工事であらたに増設した基礎構造63に流れ、該基礎構造で支持される。   In the viaduct seismic reinforcement structure 1 according to the present embodiment, as shown in FIG. 4, the horizontal force acting on the lower structure 3 from the upper structure 2 during the earthquake flows to the existing foundation structure 5, and the three-dimensional damper brace 71 is Then, it flows into the newly added foundation structure 63 in the seismic reinforcement work and is supported by the foundation structure.

具体的には、立体ダンパーブレース71を介して伝達されてきた水平力は、鉄筋コンクリート床板62に伝達された後、直交基礎梁7,7に沿って配置された鋼矢板13と周辺地盤との摩擦力で支持されるとともに、基礎梁6,6に沿って配置された鋼矢板13と周辺地盤との法線方向力(面圧)で支持される。   Specifically, the horizontal force transmitted through the three-dimensional damper brace 71 is transmitted to the reinforced concrete floor board 62, and then the friction between the steel sheet pile 13 disposed along the orthogonal foundation beams 7 and 7 and the surrounding ground. While being supported by force, it is supported by a normal direction force (surface pressure) between the steel sheet pile 13 arranged along the foundation beams 6 and 6 and the surrounding ground.

また、ラーメン架構4のロッキング振動に伴う引抜き力及び圧縮力は、立体ダンパーブレース71を介して基礎構造63に伝達され、基礎梁6,6に沿った側に配置された鋼矢板13と周辺地盤との摩擦力で支持される。   Further, the pulling force and the compressive force accompanying the rocking vibration of the rigid frame 4 are transmitted to the foundation structure 63 through the three-dimensional damper brace 71, and the steel sheet pile 13 disposed on the side along the foundation beams 6 and 6 and the surrounding ground. It is supported by the frictional force.

すなわち、基礎梁6,6に沿った側に配置された鋼矢板13は、設置幅W×埋込み深さDの面積をもって地盤14と接している。そのため、引抜き力や圧縮力は、既存の杭15による周面摩擦力に加えて、鋼矢板13と周辺地盤との間に生じる大きな摩擦力で確実に支持される。   That is, the steel sheet pile 13 arranged on the side along the foundation beams 6 and 6 is in contact with the ground 14 with an area of installation width W × embedding depth D. Therefore, in addition to the peripheral surface friction force by the existing pile 15, the drawing force and the compression force are reliably supported by a large friction force generated between the steel sheet pile 13 and the surrounding ground.

以上説明したように、本実施形態に係る高架橋の耐震補強構造1によれば、ラーメン架構4を介して既設の基礎構造5に流れていた地震時水平力は、耐震補強後、その一部が、増設された基礎構造63に立体ダンパーブレース71を介して流れ、結果として、高架橋上部構造2からの地震時水平力を、既設の基礎構造5のみならず、基礎構造63にあらたに負担させることが可能となり、かくして、高架橋の下部構造のうち、地下部分を耐震補強することができる。   As described above, according to the seismic reinforcement structure 1 of the viaduct according to the present embodiment, the horizontal force at the time of the earthquake flowing to the existing foundation structure 5 via the rigid frame 4 is partially after the seismic reinforcement. , It flows to the added foundation structure 63 through the three-dimensional damper brace 71, and as a result, the horizontal force during an earthquake from the viaduct superstructure 2 is newly borne not only on the existing foundation structure 5 but also on the foundation structure 63 Thus, the underground part of the viaduct substructure can be seismically reinforced.

また、本実施形態に係る高架橋の耐震補強構造1によれば、ラーメン架構4全体のロッキング振動に起因した引抜き力や圧縮力は、杭15と周辺地盤との周面摩擦力で支持されるほか、基礎梁6,6に沿って配置された鋼矢板13と周辺地盤との摩擦力で支持される。   Further, according to the viaduct seismic reinforcement structure 1 according to the present embodiment, the pulling force and compressive force resulting from the rocking vibration of the entire frame 4 are supported by the peripheral frictional force between the pile 15 and the surrounding ground. The steel sheet pile 13 arranged along the foundation beams 6 and 6 is supported by the frictional force between the surrounding ground.

したがって、立体ダンパーブレース71による耐震補強作用と相俟って、高架橋の下部構造3を全体的に耐震補強することが可能となる。   Therefore, in combination with the seismic reinforcement effect of the three-dimensional damper brace 71, the viaduct substructure 3 can be seismically reinforced as a whole.

本実施形態では、ブレースとして履歴減衰ダンパー10が組み込まれた立体ダンパーブレース71を採用したが、ダンパーを組み込むかどうかは任意であり、これを省略し、ブレース本体72のみでブレースを構成してもかまわない。かかる場合においては、ブレース本体72の下端を鉄筋コンクリート床板62に剛接して構成することとなる。   In the present embodiment, the three-dimensional damper brace 71 in which the hysteresis damping damper 10 is incorporated is adopted as the brace. However, whether or not the damper is incorporated is optional, and this may be omitted and the brace may be configured by the brace body 72 alone. It doesn't matter. In such a case, the lower end of the brace body 72 is configured to be in rigid contact with the reinforced concrete floor board 62.

本実施形態に係る高架橋の耐震補強構造の鉛直断面図。The vertical sectional view of the seismic reinforcement structure of a viaduct concerning this embodiment. A−A線に沿う水平断面図。The horizontal sectional view which follows the AA line. B−B線に沿う鉛直断面図。The vertical sectional view which follows a BB line. 本実施形態に係る高架橋の耐震補強構造における作用を示した図。The figure which showed the effect | action in the earthquake-proof reinforcement structure of the viaduct concerning this embodiment.

符号の説明Explanation of symbols

1 高架橋の耐震補強構造
2 高架橋の上部構造
3 高架橋の下部構造
4 ラーメン架構
5 基礎構造(第1の基礎構造)
6 基礎梁
7 直交基礎梁
8 柱
13 鋼矢板
14 地盤
62 鉄筋コンクリート床板
63 基礎構造(第2の基礎構造)
71 立体ダンパーブレース(立体ブレース)
72 ブレース本体
73 履歴減衰ダンパー
1 Seismic reinforcement structure of viaduct 2 Superstructure of viaduct 3 Substructure of viaduct 4 Ramen frame 5 Foundation structure (first foundation structure)
6 foundation beam 7 orthogonal foundation beam 8 pillar 13 steel sheet pile 14 ground 62 reinforced concrete floor board 63 foundation structure (second foundation structure)
71 Solid damper brace (solid brace)
72 Brace body 73 Hysteresis damper

Claims (2)

高架橋の橋軸方向に沿って対向配置された一対の基礎梁と該一対の基礎梁にほぼ直交するように配置された直交基礎梁とが矩形状又は梯子状に緊結されてなり前記高架橋の上部構造を支持するラーメン架構が立設された第1の基礎構造と、前記基礎梁及び前記直交基礎梁で取り囲まれた矩形状平面空間の周縁に沿って地盤に埋設された鋼矢板と該鋼矢板の頭部が接合されるようにかつ前記第1の基礎構造と非連結となるように前記矩形状平面空間に構築された鉄筋コンクリート床板とからなる第2の基礎構造と、前記矩形状平面空間の直上に複数のブレース本体を逆多角錐状に配置するとともにそれらの上端を前記ラーメン架構を構成する柱のうち、前記矩形状平面空間を取り囲む柱の頭部近傍に接合しそれらの下端を前記鉄筋コンクリート床板の中央近傍に接合してなる立体ブレースとを備えたことを特徴とする高架橋の耐震補強構造。 A pair of foundation beams arranged opposite to each other along the bridge axis direction of the viaduct and an orthogonal foundation beam arranged so as to be substantially orthogonal to the pair of foundation beams are connected in a rectangular shape or a ladder shape, and the upper portion of the viaduct A first foundation structure in which a rigid frame supporting the structure is erected, a steel sheet pile embedded in the ground along a peripheral edge of a rectangular planar space surrounded by the foundation beam and the orthogonal foundation beam, and the steel sheet pile A second foundation structure comprising a reinforced concrete floor plate constructed in the rectangular planar space so that the heads of the two are joined and disconnected from the first foundation structure; and A plurality of brace bodies are arranged in an inverted polygonal pyramid directly above and their upper ends are joined to the vicinity of the heads of the columns surrounding the rectangular planar space among the columns constituting the ramen frame, and their lower ends are connected to the reinforced concrete. Retrofit structure viaduct, characterized in that a three-dimensional brace formed by joining in the vicinity of the center of the plate. 前記複数のブレース本体と前記鉄筋コンクリート床板との間にダンパーを介在させることで前記立体ブレースを立体ダンパーブレースとした請求項1記載の高架橋の耐震補強構造。 The viaduct earthquake-proof reinforcement structure according to claim 1, wherein the three-dimensional brace is a three-dimensional damper brace by interposing a damper between the plurality of brace bodies and the reinforced concrete floor board.
JP2007062875A 2007-03-13 2007-03-13 Seismic reinforcement structure for viaduct Expired - Fee Related JP4943190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062875A JP4943190B2 (en) 2007-03-13 2007-03-13 Seismic reinforcement structure for viaduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062875A JP4943190B2 (en) 2007-03-13 2007-03-13 Seismic reinforcement structure for viaduct

Publications (2)

Publication Number Publication Date
JP2008223327A JP2008223327A (en) 2008-09-25
JP4943190B2 true JP4943190B2 (en) 2012-05-30

Family

ID=39842256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062875A Expired - Fee Related JP4943190B2 (en) 2007-03-13 2007-03-13 Seismic reinforcement structure for viaduct

Country Status (1)

Country Link
JP (1) JP4943190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275314B1 (en) * 2017-08-01 2018-02-07 新日鉄住金エンジニアリング株式会社 Seismic reinforcement structure for bridges

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259080A (en) * 1994-03-22 1995-10-09 Shimizu Corp Self-supported sheath wall structure
JP3687805B2 (en) * 1995-12-08 2005-08-24 株式会社間組 Foundation reinforcement structure of structures
JP4140028B2 (en) * 2003-03-05 2008-08-27 株式会社大林組 Seismic reinforcement structure
JP4121412B2 (en) * 2003-03-31 2008-07-23 財団法人鉄道総合技術研究所 Surface contact type reinforcement structure
JP2004300818A (en) * 2003-03-31 2004-10-28 Railway Technical Res Inst Upper joint type reinforcing structure

Also Published As

Publication number Publication date
JP2008223327A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4631280B2 (en) Seismic control pier
JP4957295B2 (en) Seismic control pier structure
JP4780618B2 (en) Seismic reinforcement structure for viaduct
JP4960731B2 (en) Seismic reinforcement structure for viaduct
JP5132503B2 (en) Seismic structure and building
JP4943190B2 (en) Seismic reinforcement structure for viaduct
JP5142213B2 (en) Seismic reinforcement structure for viaduct
JP4140028B2 (en) Seismic reinforcement structure
JP6855365B2 (en) Underground structure of new building
JP5142214B2 (en) Seismic reinforcement structure for viaduct
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP5059687B2 (en) Building seismic control structure
JP4282003B2 (en) Vibration control structure
JP6985037B2 (en) Pier foundation structure
JP2005083136A (en) Composite structure support
JP6749081B2 (en) Vibration control structure
JP4432581B2 (en) Building structure that can change floor height
JP4256356B2 (en) Joint member of pier and main girder and bridge structure using this joint member
JP2012117364A (en) Vibration control bridge pier structure
JP5069713B2 (en) Basic structure of buildings over railway tracks
JP2003074019A (en) Pedestal structure, and aseismatic reinforcement structure
JP6834206B2 (en) Building reinforcement structure
JP3733501B2 (en) Seismic structure of building structure
JP2006037530A (en) Building structure skeleton and building structure making use thereof
JP6340468B1 (en) Viaduct using PC piers with double shear reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees