JP4958509B2 - Ceramic multilayer substrate with cavity and method for manufacturing the same - Google Patents
Ceramic multilayer substrate with cavity and method for manufacturing the same Download PDFInfo
- Publication number
- JP4958509B2 JP4958509B2 JP2006265668A JP2006265668A JP4958509B2 JP 4958509 B2 JP4958509 B2 JP 4958509B2 JP 2006265668 A JP2006265668 A JP 2006265668A JP 2006265668 A JP2006265668 A JP 2006265668A JP 4958509 B2 JP4958509 B2 JP 4958509B2
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- wall surface
- multilayer substrate
- green sheet
- ceramic multilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Description
本発明は、電子部品が配置されるキャビティを有するセラミック多層基板と、かかるキャビティ付きセラミック多層基板の製造方法とに関する。 The present invention relates to a ceramic multilayer substrate having a cavity in which an electronic component is disposed, and a method for manufacturing such a ceramic multilayer substrate with a cavity.
セラミックグリーンシートの積層体を加圧・焼成して製造されるセラミック多層基板は、表層だけでなく層間にも配線パターン等を設けることができるため回路の高密度化に好適である。かかるセラミック多層基板は表層に電子部品を搭載してモジュール化されることが多いが、その電子部品が薄型でない場合、モジュール全体の高さ寸法が不所望に増大してしまう虞があるため、電子部品が配置されるキャビティを予めセラミック多層基板に設けておくという技術が従来より知られている。 A ceramic multilayer substrate produced by pressing and firing a ceramic green sheet laminate is suitable for increasing the density of a circuit because a wiring pattern or the like can be provided not only on the surface layer but also between layers. Such ceramic multilayer substrates are often modularized by mounting electronic components on the surface, but if the electronic components are not thin, the overall height of the module may increase undesirably. 2. Description of the Related Art Conventionally, a technique for providing a cavity in which a component is placed in a ceramic multilayer substrate in advance is known.
このようなキャビティは、従来、次のような手順で作製されていた。まず、セラミック多層基板の各層に対応するセラミックグリーンシートのうち、上層側に配置される複数層のグリーンシートにキャビティ用の透孔を形成しておく。その際、各層ごとに該透孔の口径が互いに異なるようにしておき、口径の小さいグリーンシートから順次、キャビティ用透孔を有さないグリーンシート上に積層していく。つまり、次に積層するグリーンシートのキャビティ用透孔は、その下層に位置するグリーンシートのキャビティ用透孔よりも大きく、最上層に積層されるグリーンシートのキャビティ用透孔の口径が最も大きくなるように設定される。こうして必要枚数のグリーンシートを積層すると、口径の異なる各透孔の周縁部分によって階段状の壁面が形成され、この階段状の壁面が電子部品の搭載面を包囲するキャビティの内壁面となる。したがって、かかるグリーンシートの積層体を加圧して焼成することにより、電子部品が配置されるキャビティを有するセラミック多層基板が得られる(例えば、特許文献1参照)。
ところで、キャビティ付きでないセラミック多層基板の場合、表層に搭載される電子部品の導通路となる配線の引回しは、ビアホールを縦列させて表層と層間の配線パターンどうしを導通させるという配線構造よりも、表層に導通路を集約させるという配線構造にしたほうが製造が容易であり、生産性や導通信頼性の向上が図れる。しかしながら、キャビティ付きの従来のセラミック多層基板の場合は、キャビティ内に配置される電子部品の導通路を表層に集約させようとすると、その配線パターンを複数のグリーンシートによって構成されるキャビティの階段状の内壁面に沿って設けなければならないため、製造工程が煩雑化してしまい、導通の信頼性も低下してしまう。つまり、キャビティの内壁面が複数のグリーンシートによって階段状に形成されていると、該内壁面に所望の配線パターンを設けることが容易でなくなるという問題が生じる。 By the way, in the case of a ceramic multilayer substrate without a cavity, the routing of the wiring that becomes the conduction path of the electronic component mounted on the surface layer is more than the wiring structure in which the wiring patterns between the surface layer and the interlayer are made conductive by connecting via holes in series. The wiring structure in which the conductive paths are concentrated on the surface layer is easier to manufacture, and productivity and reliability of conduction can be improved. However, in the case of a conventional ceramic multilayer substrate with a cavity, when the conduction paths of electronic components arranged in the cavity are concentrated on the surface layer, the wiring pattern is a stepped shape of a cavity constituted by a plurality of green sheets. Since it must be provided along the inner wall surface, the manufacturing process becomes complicated and the reliability of conduction is also lowered. That is, when the inner wall surface of the cavity is formed in a stepped shape by a plurality of green sheets, there is a problem that it is not easy to provide a desired wiring pattern on the inner wall surface.
また、セラミック多層基板のキャビティに搭載される電子部品がチップLED等の発光素子である場合には、キャビティの内壁面に銀等の反射素材からなる反射膜を設けることによって明るさを増大させることが可能となるが、該キャビティの内壁面の形状が階段状であると、該内壁面に反射膜を設けたとしても不所望方向へ反射される光が多くなってしまうため、反射光が有効利用できないという問題が生じる。 When the electronic component mounted in the cavity of the ceramic multilayer substrate is a light emitting element such as a chip LED, the brightness is increased by providing a reflective film made of a reflective material such as silver on the inner wall surface of the cavity. However, if the shape of the inner wall surface of the cavity is stepped, even if a reflective film is provided on the inner wall surface, more light is reflected in an undesired direction. The problem that it cannot be used arises.
本発明は、このような従来技術の実情に鑑みてなされたもので、その第1の目的は、電子部品が配置されるキャビティの内壁面に所望の配線パターンや反射膜を設けることが容易なキャビティ付きセラミック多層基板を提供することにある。また、本発明の第2の目的は、そのようなキャビティ付きセラミック多層基板の製造方法を提供することにある。 The present invention has been made in view of the actual situation of the prior art, and a first object of the present invention is to easily provide a desired wiring pattern or reflecting film on the inner wall surface of the cavity in which the electronic component is disposed. It is to provide a ceramic multilayer substrate with a cavity. The second object of the present invention is to provide a method for producing such a ceramic multilayer substrate with a cavity.
上記の第1の目的を達成するため、本発明では、セラミックグリーンシートの積層体を加圧・焼成して製造され、電子部品が配置されるキャビティを有するセラミック多層基板において、前記電子部品の搭載面を包囲する前記キャビティの内壁面が下窄まりに湾曲させてあると共に、該内壁面が最上層の前記セラミックグリーンシートによって形成されているという構成にした。 In order to achieve the first object described above, in the present invention, the electronic component is mounted on a ceramic multilayer substrate that is manufactured by pressing and firing a laminate of ceramic green sheets and has a cavity in which the electronic component is disposed. The inner wall surface of the cavity surrounding the surface is curved to be constricted, and the inner wall surface is formed by the uppermost ceramic green sheet.
このように最上層のセラミックグリーンシートの一部を下窄まりに湾曲させてキャビティの内壁面となせば、該内壁面に設けられる配線パターンを予め最上層のグリーンシートに形成しておくことができるため、キャビティの内壁面に導通信頼性の高い配線パターンを容易に設けることができる。また、キャビティの内壁面が階段状ではなく下窄まりな湾曲面であることから、該内壁面に所望の反射膜を設けることも容易である。 If a portion of the uppermost ceramic green sheet is curved in a constricted manner to form the inner wall surface of the cavity, a wiring pattern provided on the inner wall surface can be formed on the uppermost green sheet in advance. Therefore, a wiring pattern with high conduction reliability can be easily provided on the inner wall surface of the cavity. Further, since the inner wall surface of the cavity is not a stepped shape but a curved curved surface, it is easy to provide a desired reflective film on the inner wall surface.
すなわち、キャビティ内に配置される電子部品の導通路を表層に集約させるために、キャビティの内壁面に該電子部品の導通路となる配線パターンを設ける場合には、その配線パターンを予め最上層のグリーンシートに形成しておけばよいので、導通信頼性の高い配線パターンをキャビティの内壁面に設けることが容易となる。また、キャビティ内に配置される電子部品が発光素子である場合には、キャビティの内壁面に銀等の反射素材からなる反射膜を設けてもよく、こうすることで下窄まりな湾曲面に沿う該反射膜によって発光素子の出射光を所望方向へ反射させやすくなるため、反射光が有効利用できる。 That is, in order to consolidate the conduction paths of the electronic components arranged in the cavity on the surface layer, when providing a wiring pattern to be a conduction path of the electronic components on the inner wall surface of the cavity, the wiring pattern is previously set in the uppermost layer. Since it suffices to form it on the green sheet, it becomes easy to provide a wiring pattern with high conduction reliability on the inner wall surface of the cavity. Further, when the electronic component disposed in the cavity is a light emitting element, a reflective film made of a reflective material such as silver may be provided on the inner wall surface of the cavity. Since the light emitted from the light emitting element is easily reflected in a desired direction by the reflective film, the reflected light can be effectively used.
また、上記の第2の目的を達成するため、本発明では、
電子部品が配置されるキャビティを有するセラミック多層基板の製造方法において、前記キャビティ用の透孔が形成されていないセラミックグリーンシート上に、前記キャビティ用の透孔が形成されていて各層ごとに該透孔の口径が互いに異なる複数層のセラミックグリーンシートを積層して未圧着積層体を形成する積層工程と、前記未圧着積層体を等方圧プレス装置で加圧することにより多層構造の未焼成ブロック体となす圧着工程と、前記未焼成ブロック体を焼成する焼成工程とを備え、前記積層工程で、前記透孔の口径が上層側で漸次小径となるように各セラミックグリーンシートを積層することによって、前記圧着工程で、最上層のセラミックグリーンシートの前記透孔の周縁部分を陥没させて該周縁部分の表面を下窄まりな湾曲面となし、該湾曲面によって前記電子部品の搭載面を包囲する前記キャビティの内壁面が形成されるようにした。
In order to achieve the second object, in the present invention,
In the method of manufacturing a ceramic multilayer substrate having a cavity in which an electronic component is disposed, the cavity through-hole is formed on a ceramic green sheet on which the cavity through-hole is not formed, and the perforation is formed for each layer. A laminating step of laminating a plurality of layers of ceramic green sheets having different hole diameters to form an uncompressed laminate, and pressing the uncompressed laminate with an isotropic pressure pressing device to form a multilayer unfired block body By laminating each ceramic green sheet so that the diameter of the through hole gradually becomes smaller on the upper layer side in the laminating step, comprising a crimping step to bend and a firing step to fire the unfired block body, A curved surface in which the peripheral portion of the through hole of the uppermost ceramic green sheet is depressed in the crimping step so that the surface of the peripheral portion is constricted. None were as inner wall surface of the cavity surrounding the mounting surface of the electronic component is formed by 該湾 curved.
このようにキャビティ用透孔を有する複数層のセラミックグリーンシートを積層する工程で、各グリーンシートのキャビティ用透孔の口径が上層側で漸次小径となるように積層すると、これらの透孔が連続して上窄まりな凹所が形成されるため、次なる圧着工程で等方圧(静水圧)を付与すると、各グリーンシートのうち該凹所へせり出している部分が折り重なるように下窄まりに湾曲して該凹所内へ陥没する。その結果、最上層のグリーンシートのキャビティ用透孔の周縁部分が下層側のグリーンシートのキャビティ用透孔の周縁部分を覆うため、最上層のグリーンシートの該周縁部分の表面がキャビティの内壁面となり、その形状は下窄まりな湾曲面となる。したがって、キャビティ内に配置される電子部品の導通路を表層に集約させたい場合には、その配線パターンを予め最上層のグリーンシートに形成しておけばよくなり、よって導通信頼性の高い配線パターンをキャビティの内壁面に設けることが容易となる。また、キャビティの内壁面が階段状ではなく下窄まりな湾曲面であることから、該内壁面に所望の反射膜を設けることも容易である。 In the step of laminating a plurality of layers of ceramic green sheets having cavity through holes in this way, if the diameters of the cavity through holes of each green sheet are laminated so as to gradually become smaller on the upper layer side, these through holes are continuous. Therefore, when an isotropic pressure (hydrostatic pressure) is applied in the next crimping process, the portion of each green sheet protruding to the recess is folded so as to overlap. Curves and sinks into the recess. As a result, since the peripheral portion of the cavity through hole of the uppermost green sheet covers the peripheral portion of the cavity through hole of the lower layer green sheet, the surface of the peripheral portion of the uppermost green sheet is the inner wall surface of the cavity. Thus, the shape becomes a curved surface with a constriction. Therefore, when it is desired to consolidate the conduction paths of electronic components arranged in the cavity on the surface layer, it is only necessary to form the wiring pattern on the uppermost green sheet in advance, and thus a wiring pattern with high conduction reliability. Can be easily provided on the inner wall surface of the cavity. Further, since the inner wall surface of the cavity is not a stepped shape but a curved curved surface, it is easy to provide a desired reflective film on the inner wall surface.
本発明のキャビティ付きセラミック多層基板は、最上層のセラミックグリーンシートの一部を下窄まりに湾曲させてキャビティの内壁面となしているため、該内壁面にキャビティ内に配置される電子部品の導通路となる配線パターンを容易に設けることができて、該配線パターンの導通信頼性も確保しやすい。また、キャビティの内壁面が階段状ではなく下窄まりな湾曲面であることから、キャビティ内に配置される電子部品が発光素子である場合には、該内壁面に所望の反射膜を容易に設けることができる。 Since the ceramic multilayer substrate with cavities of the present invention has a portion of the uppermost ceramic green sheet curved in a constricted manner to form the inner wall surface of the cavity, the electronic component disposed in the cavity on the inner wall surface is formed. A wiring pattern serving as a conduction path can be easily provided, and the conduction reliability of the wiring pattern can be easily ensured. In addition, since the inner wall surface of the cavity is not a stepped shape but a curved curved surface, if the electronic component placed in the cavity is a light emitting element, a desired reflective film is easily provided on the inner wall surface. be able to.
また、本発明によるキャビティ付きセラミック多層基板の製造方法は、キャビティ用透孔を有する複数層のセラミックグリーンシートを積層する工程で、各グリーンシートのキャビティ用透孔の口径が上層側で漸次小径となるように積層するため、次なる圧着工程で等方圧(静水圧)を付与すると、最上層のグリーンシートのキャビティ用透孔の周縁部分が陥没して該周縁部分の表面が下窄まりな湾曲面となり、該湾曲面によってキャビティの内壁面が形成される。したがって、キャビティ内に配置される電子部品の導通路を表層に集約させたい場合には、その配線パターンを予め最上層のグリーンシートに形成しておけばよくなり、よって導通信頼性の高い配線パターンをキャビティの内壁面に設けることが容易となる。また、キャビティの内壁面が階段状ではなく下窄まりな湾曲面であることから、該内壁面に所望の反射膜を設けることも容易である。 The method for manufacturing a ceramic multilayer substrate with cavities according to the present invention includes a step of laminating a plurality of layers of ceramic green sheets having cavity through holes, wherein the diameter of the cavity through holes of each green sheet is gradually reduced on the upper layer side. When the isotropic pressure (hydrostatic pressure) is applied in the subsequent crimping process, the peripheral portion of the cavity through hole for the uppermost green sheet is depressed and the surface of the peripheral portion is constricted. The inner wall surface of the cavity is formed by the curved surface. Therefore, when it is desired to consolidate the conduction paths of electronic components arranged in the cavity on the surface layer, it is only necessary to form the wiring pattern on the uppermost green sheet in advance, and thus a wiring pattern with high conduction reliability. Can be easily provided on the inner wall surface of the cavity. Further, since the inner wall surface of the cavity is not a stepped shape but a curved curved surface, it is easy to provide a desired reflective film on the inner wall surface.
発明の実施の形態を図面を参照して説明すると、図1は本発明の第1実施形態例に係るセラミック多層基板の要部断面図、図2は該セラミック多層基板の製造工程図である。 An embodiment of the invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an essential part of a ceramic multilayer substrate according to a first embodiment of the present invention, and FIG. 2 is a manufacturing process diagram of the ceramic multilayer substrate.
図1に示すセラミック多層基板1は、低温焼成セラミック(LTCC)からなる複数層(例えば7層)のグリーンシート1a〜1gを積層して加圧・焼成したものであり、このセラミック多層基板1の表層には電子部品40が配置されるキャビティ2が形成されている。キャビティ2の内壁面21は下窄まりな湾曲面となっており、この内壁面21に包囲されたキャビティ2の平坦な内底面が電子部品40用の搭載面22となっている。なお、内壁面21は最上層のグリーンシート1gの一部であり、搭載面22は3層目のグリーンシート1cの一部である。また、最上層のグリーンシート1gの平坦部分には別の電子部品41が搭載され、この電子部品41とキャビティ2内の電子部品40とを導通せしめる配線パターン3,4がそれぞれグリーンシート1g,1cの表面に設けられている。
A ceramic multilayer substrate 1 shown in FIG. 1 is obtained by laminating a plurality of (for example, seven layers) green sheets 1a to 1g made of a low-temperature fired ceramic (LTCC) and pressing and firing them. A
次に、図1に示すセラミック多層基板1の製造方法について図2を参照して説明する。まず、各グリーンシート1a〜1gにそれぞれ所要の配線パターンやビアホールおよびキャビティ用透孔等を形成した後、図2(a)に示すように各グリーンシート1a〜1gを順次積層して図2(b)に示すような未圧着積層体5を形成する。ただし、未圧着積層体5の下層側のグリーンシート1a〜1cにはキャビティ用透孔は形成されておらず、上層側のグリーンシート1d〜1gには互いに口径が異なるキャビティ用透孔2d〜2gが形成されている。また、グリーンシート1dのキャビティ用透孔2dよりもその上層のグリーンシート1eのキャビティ用透孔2eのほうが小径であり、その上層のグリーンシート1fのキャビティ用透孔2fはさらに小径であり、最上層のグリーンシート1gのキャビティ用透孔2gは最も小径である。つまり、かかる積層工程では、グリーンシート1a〜1cを順次積層した後、グリーンシート1d〜1gを順次積層してキャビティ用透孔2d〜2gを上層側が漸次小径となるように連続させるため、これら透孔2d〜2gによって上窄まりな凹所6が形成される。図2(b)に示すように、この凹所6はキャビティ用透孔2d〜2gを画成している各グリーンシート1d〜1gの透孔周縁部分10d〜10gを逆階段状に積層することによって生じる空間である。
Next, a method for manufacturing the ceramic multilayer substrate 1 shown in FIG. 1 will be described with reference to FIG. First, after forming necessary wiring patterns, via holes, cavity through holes, and the like on the green sheets 1a to 1g, the green sheets 1a to 1g are sequentially stacked as shown in FIG. An uncompressed laminate 5 as shown in b) is formed. However, the through-holes for cavities are not formed in the green sheets 1a to 1c on the lower layer side of the uncompressed laminated body 5, and the through-holes for
その後、未圧着積層体5を図示せぬ袋に入れて真空パックしてから、これを図示せぬ等方圧プレス装置で加圧するという圧着工程を行う。この圧着工程で未圧着積層体5には図2(b)に矢印で示すような等方圧(静水圧)が付与されるため、図2(c)に示すような多層構造の未焼成ブロック体7が得られる。すなわち、かかる圧着工程によって、積層状態のグリーンシート1a〜1gが圧着されると共に、凹所6の内方へせり出しているグリーンシート1e〜1gの透孔周縁部分10e〜10gが折り重なるように下窄まりに湾曲して該凹所6内へ陥没する。その結果、4層目のグリーンシート1dの透孔周縁部分10dが5層目のグリーンシート1eの透孔周縁部分10eに覆われ、この5層目のグリーンシート1eの透孔周縁部分10eが6層目のグリーンシート1fの透孔周縁部分10fに覆われ、この6層目のグリーンシート1fの透孔周縁部分10fが最上層のグリーンシート1gの透孔周縁部分10gに覆われるようになる。こうして最上層のグリーンシート1gの透孔周縁部分10gによって、グリーンシート1d〜1fの透孔周縁部分10d〜10fがすべて覆われるため、この最上層のグリーンシート1gの透孔周縁部分10gの表面がキャビティ2の内壁面21となり、その形状は下窄まりな湾曲面となる。
Then, after the uncompressed laminated body 5 is put in a bag (not shown) and vacuum-packed, a pressure-bonding process is performed in which the pressure-bonded laminate 5 is pressurized with an isotropic pressure press (not shown). In this crimping step, an isotropic pressure (hydrostatic pressure) as shown by an arrow in FIG. 2B is applied to the unbonded laminate 5, so that an unfired block having a multilayer structure as shown in FIG. A
しかる後、図2(c)に示す未焼成ブロック体7を焼成することによってセラミック多層基板1が得られ、このセラミック多層基板1の表層に電子部品40,41等を実装することによって図1に示すようなモジュールが完成する。
Thereafter, the
このように本実施形態例にあっては、キャビティ用透孔2d〜2gを有する複数層のグリーンシート1d〜1gを積層する工程で、各グリーンシート1d〜1gのキャビティ用透孔2d〜2gの口径が上層側で漸次小径となるように積層するため、次なる圧着工程で等方圧(静水圧)を付与すると、最上層のグリーンシート1gの透孔周縁部分10gが陥没してその表面が下窄まりな湾曲面となり、該湾曲面によってキャビティ2の内壁面21が形成されるようになっている。したがって、キャビティ2内に配置される電子部品40の導通路となる配線パターン3は、予め最上層のグリーンシート1gに形成しておくことによってキャビティ2の内壁面21に容易に設けることができ、この配線パターン3の導通信頼性も確保しやすい。つまり、従来品ではキャビティの内壁面が複数のグリーンシートによって階段状に形成されるため、該内壁面に配線パターンを設けることは容易でなかったが、本実施形態例のようにキャビティ2の内壁面21が最上層のグリーンシート1gからなる湾曲面として形成されていれば、該内壁面21に配線パターン3を設けることは容易なので、電子部品40の導通路をセラミック多層基板1の表層に集約させて生産性や導通信頼性の向上を図ることができる。
As described above, in the present embodiment, in the step of laminating the plurality of green sheets 1d to 1g having the cavity through
図3は本発明の第2実施形態例に係るセラミック多層基板の要部断面図、図4は該セラミック多層基板の製造工程図であり、図1および図2と対応する部分には同一符号が付してあるため重複する説明は適宜省略する。 FIG. 3 is a cross-sectional view of an essential part of a ceramic multilayer substrate according to a second embodiment of the present invention, and FIG. 4 is a manufacturing process diagram of the ceramic multilayer substrate. Parts corresponding to those in FIGS. Since they are attached, overlapping description will be omitted as appropriate.
図3に示すセラミック多層基板31では、キャビティ2内に配置される電子部品がチップLEDからなる発光素子42であることから、キャビティ2の内壁面21に反射膜32が設けてある。また、このセラミック多層基板31では、電子部品42,41間の導通路としてビアホール33,34や層間配線パターン35を設けることによって、キャビティ2の内壁面21のほぼ全面に反射膜32が設けられるように設計されている。
In the ceramic multilayer substrate 31 shown in FIG. 3, the electronic component disposed in the
図3に示すセラミック多層基板31の製造方法は、基本的には前述した第1実施形態例と同様である。すなわち、まず各グリーンシート1a〜1gにそれぞれ所要の配線パターンやビアホールおよびキャビティ用透孔等を形成する。このとき、図4(a)に示すように、最上層のグリーンシート1gのうち透孔周縁部分10gを含む所定領域には銀等の反射素材を印刷して反射膜32を形成しておく。そして、各グリーンシート1a〜1gを順次積層して、図4(b)に示すように上窄まりな凹所6を有する未圧着積層体5を形成する。この凹所6は第1実施形態例と同様に、各グリーンシート1d〜1gのキャビティ用透孔2d〜2gを上層側が漸次小径となるように連続させたものである。その後、未圧着積層体5を図示せぬ等方圧プレス装置で加圧するという圧着工程を行って、図4(b)に矢印で示すような等方圧(静水圧)を付与することにより、図4(c)に示すような多層構造の未焼成ブロック体7を得る。かかる圧着工程によって、積層状態のグリーンシート1a〜1gが圧着されると共に、凹所6の内方へせり出しているグリーンシート1e〜1gの透孔周縁部分10e〜10gが折り重なるように下窄まりに湾曲して該凹所6内へ陥没するため、最上層のグリーンシート1gの透孔周縁部分10gの表面がキャビティ2の内壁面21となり、その形状は下窄まりな湾曲面となる。これにより、キャビティ2の内壁面21は反射膜32によって広く覆われた状態となる。しかる後、図4(c)に示す未焼成ブロック体7を焼成することによってセラミック多層基板31が得られる。
The manufacturing method of the ceramic multilayer substrate 31 shown in FIG. 3 is basically the same as that of the first embodiment described above. That is, first, a required wiring pattern, a via hole, a cavity through hole, and the like are formed in each of the green sheets 1a to 1g. At this time, as shown in FIG. 4A, a
このように本実施形態例にあっては、キャビティ2の内壁面21に反射膜32が設けてあるため、キャビティ2内に配置される発光素子42の出射光を下窄まりな湾曲面に沿う反射膜32によって所望方向へ効果的に反射させることができる。つまり、従来品ではキャビティの内壁面が階段状に形成されているため、該内壁面に反射膜を設けたとしても、キャビティ内に配置された発光素子の出射光は該反射膜で不所望方向へ反射されやすいが、本実施形態例のように反射膜32が下窄まりな湾曲面に沿って設けられていれば、反射光を有効利用できるため明るさが増大する。また、この反射膜32は予めグリーンシート1gに形成しておくことができるため、キャビティ2の内壁面21に反射膜32を設けることは容易である。
As described above, in the present embodiment example, since the
1,31 セラミック多層基板
1a〜1g グリーンシート
2 キャビティ
2d〜2g キャビティ用透孔
3,4 配線パターン
5 未圧着積層体
6 凹所
7 未焼成ブロック体
10d〜10g 透孔周縁部分
21 内壁面
22 搭載面
32 反射膜
40,41 電子部品
42 発光素子
DESCRIPTION OF SYMBOLS 1,31 Ceramic multilayer substrate 1a-
Claims (4)
前記電子部品の搭載面を包囲する前記キャビティの内壁面が下窄まりに湾曲させてあると共に、該内壁面が最上層の前記セラミックグリーンシートによって形成されていることを特徴とするキャビティ付きセラミック多層基板。 In a ceramic multilayer substrate that is manufactured by pressing and firing a laminate of ceramic green sheets and has cavities in which electronic components are placed,
An inner wall surface of the cavity surrounding the electronic component mounting surface is curved to be constricted, and the inner wall surface is formed by the uppermost ceramic green sheet. substrate.
前記キャビティ用の透孔が形成されていないセラミックグリーンシート上に、前記キャビティ用の透孔が形成されていて各層ごとに該透孔の口径が互いに異なる複数層のセラミックグリーンシートを積層して未圧着積層体を形成する積層工程と、
前記未圧着積層体を等方圧プレス装置で加圧することにより多層構造の未焼成ブロック体となす圧着工程と、
前記未焼成ブロック体を焼成する焼成工程とを備え、
前記積層工程で、前記透孔の口径が上層側で漸次小径となるように各セラミックグリーンシートを積層することによって、前記圧着工程で、最上層のセラミックグリーンシートの前記透孔の周縁部分を陥没させて該周縁部分の表面を下窄まりな湾曲面となし、該湾曲面によって前記電子部品の搭載面を包囲する前記キャビティの内壁面が形成されるようにしたことを特徴とするキャビティ付きセラミック多層基板の製造方法。 In a method for manufacturing a ceramic multilayer substrate having a cavity in which an electronic component is disposed,
A plurality of ceramic green sheets each having a hole for the cavity and having different apertures for each layer are laminated on the ceramic green sheet having no hole for the cavity. A laminating process for forming a pressure-bonded laminate;
A pressure bonding step of forming an unfired block body having a multilayer structure by pressurizing the unbonded laminate with an isotropic pressure press;
A firing step of firing the unfired block body,
In the laminating step, by laminating the ceramic green sheets so that the diameter of the through hole gradually becomes smaller on the upper layer side, the peripheral portion of the through hole of the uppermost ceramic green sheet is depressed in the crimping step. A cavity-coated ceramic multilayer characterized in that the surface of the peripheral portion is formed as a constricted curved surface, and an inner wall surface of the cavity surrounding the mounting surface of the electronic component is formed by the curved surface. A method for manufacturing a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006265668A JP4958509B2 (en) | 2006-09-28 | 2006-09-28 | Ceramic multilayer substrate with cavity and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006265668A JP4958509B2 (en) | 2006-09-28 | 2006-09-28 | Ceramic multilayer substrate with cavity and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008085211A JP2008085211A (en) | 2008-04-10 |
JP4958509B2 true JP4958509B2 (en) | 2012-06-20 |
Family
ID=39355714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006265668A Active JP4958509B2 (en) | 2006-09-28 | 2006-09-28 | Ceramic multilayer substrate with cavity and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4958509B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201242455A (en) * | 2011-02-10 | 2012-10-16 | Asahi Glass Co Ltd | Method for manufacturing substrate for light emitting element and substrate for light emitting element |
JP6418353B2 (en) | 2016-02-24 | 2018-11-07 | 株式会社村田製作所 | Composite substrate, method for manufacturing composite substrate, and method for manufacturing flexible substrate |
CN108289368B (en) * | 2017-01-09 | 2020-07-24 | 鹏鼎控股(深圳)股份有限公司 | High-frequency signal transmission structure and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07193163A (en) * | 1993-12-27 | 1995-07-28 | Murata Mfg Co Ltd | Method for pressing multilayered block having cavity |
JP2005347405A (en) * | 2004-06-01 | 2005-12-15 | Murata Mfg Co Ltd | Method for manufacturing laminated ceramic electronic part |
JP2006049807A (en) * | 2004-07-05 | 2006-02-16 | Ngk Spark Plug Co Ltd | Package for light emitting element |
-
2006
- 2006-09-28 JP JP2006265668A patent/JP4958509B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008085211A (en) | 2008-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018037652A (en) | Method of manufacturing inductor, and inductor | |
JP4958509B2 (en) | Ceramic multilayer substrate with cavity and method for manufacturing the same | |
KR20130086059A (en) | Chip-integrated through-plating of multilayer substrates | |
JP2005072187A (en) | Multilayer circuit board, and its manufacturing method | |
JP2009001008A (en) | Manufacturing method of ceramics laminate | |
JP2003304072A (en) | Multilayer wiring board and method of manufacturing the same | |
JP5618001B2 (en) | Flexible multilayer board | |
JP2007251192A (en) | Electronic part mounting circuit board | |
JP2002305382A (en) | Printed board and manufacturing method thereof | |
JP4930417B2 (en) | Manufacturing method of multilayer wiring board | |
JP5874697B2 (en) | Multilayer printed circuit board and manufacturing method thereof | |
JP6516065B2 (en) | Method of manufacturing resin multilayer substrate | |
JP2004158671A (en) | Multilayer board and its producing process | |
JP2017073516A (en) | Manufacturing method of one-side circuit board and manufacturing method of multilayer circuit board using the same | |
JP2007516593A (en) | Method for manufacturing the central plane | |
JP2007096097A (en) | Electronic component element, method of manufacturing the same and aggregate substrate thereof | |
JP3932827B2 (en) | Manufacturing method of multilayer ceramic electronic component | |
KR20000058317A (en) | Multi layer PCB and making method the same | |
JP5516608B2 (en) | Manufacturing method of ceramic laminated substrate | |
JP6333846B2 (en) | Multilayer carrier substrate manufacturing method | |
KR101500318B1 (en) | manufacturing method of multilayer pattern type PCB using laser | |
JP2008072151A (en) | Circuit board | |
JP2006210533A (en) | Multilayer printed board and its manufacturing method | |
JP6750728B2 (en) | Multi-layer electronic component and multi-layer electronic component module | |
KR100900671B1 (en) | Method of forming conductive via for multilayer interconnection substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100104 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120319 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4958509 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |