JP4946741B2 - 画像処理装置、画像処理方法、及び画像処理システム - Google Patents

画像処理装置、画像処理方法、及び画像処理システム Download PDF

Info

Publication number
JP4946741B2
JP4946741B2 JP2007230660A JP2007230660A JP4946741B2 JP 4946741 B2 JP4946741 B2 JP 4946741B2 JP 2007230660 A JP2007230660 A JP 2007230660A JP 2007230660 A JP2007230660 A JP 2007230660A JP 4946741 B2 JP4946741 B2 JP 4946741B2
Authority
JP
Japan
Prior art keywords
image
face
area
deformation
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007230660A
Other languages
English (en)
Other versions
JP2009064188A (ja
Inventor
淳 星井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007230660A priority Critical patent/JP4946741B2/ja
Priority to US12/203,792 priority patent/US7898592B2/en
Publication of JP2009064188A publication Critical patent/JP2009064188A/ja
Application granted granted Critical
Publication of JP4946741B2 publication Critical patent/JP4946741B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/18Image warping, e.g. rearranging pixels individually
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • H04N23/611Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Image Analysis (AREA)

Description

本発明は、取得した画像データに対して画像処理を行なう画像処理装置、画像処理方法、及び画像処理システムに関して、特に、被写体ごとに画像処理の手法を切替える画像処理装置、画像処理方法、及び画像処理システムに関するものである。
従来、風景等の被写体を電子的に記憶する装置として、ディジタルカメラが知られている。ディジタルカメラは、レンズを通して結像された被写体の映像を電気的にメモリに記憶させることができる。また、記憶された画像データは、ディジタルカメラ及び出力器側で簡単に修整することができる(例えば、特許文献1参照)。
特開2002−344989号公報
上記したディジタルカメラでは、被写体に対してユーザが簡単にピントを合わすことができるよう焦点深度を深く設定している。ここで、焦点深度とは、ある被写体にピントを合わせた時、その焦点面の前後で鮮鋭な像が得られる範囲のことを言う。このような、ディジタルカメラでは、焦点深度が深いため、被写体内に含まれる撮像対象物の位置関係に関係なく、撮像物の鮮鋭度が高くなる。そのため、出力された画像は肉眼を通して結像された画像と異なるものとなる。そのため、従来では、ユーザが画像データに対して画像処理を手動で施し、画像データを肉眼を通して結像された画像に近づけていた。
本発明は、上記課題にかんがみてなされたもので、取得された画像データを、肉眼を通して結像された像に近づくよう自動で画像処理することができる画像処理装置、画像処理方法、及び画像処理システムの提供を目的とする。
上記課題を解決するために、本発明では、顔検出手段が、撮像によって得られた画像データにおける顔を検出し、前記画像データに顔を検出した場合に、顔変形補正手段が、該画像データの顔に対応する領域に対して幅を狭くする顔補正処理を行なう。また、顔検出手段が顔を検出しない場合に、ぼかし処理手段が、該画像データの焦点が合った領域に対しては鮮鋭度を高め、焦点が合っていない領域に対してはぼかし処理を実行する。
レンズを通して結像された人物像は、肉眼を通して結像された人物像に対して水平方向が膨張して見える。そのため、画像データに対して人顔が含まれている場合は、画像データに対して顔補正処理を施し、幅方向を肉眼を通して結像された像に近づける。また、人の目は、注目対象に応じて対象物に対する見方が変化するため、人顔が含まれていない場合は、ピントが合った領域の鮮鋭度を高くし、ピントの合っていない領域にぼかし処理を施す。
このため、画像処理を施された画像データは、被写体を肉眼を通して見た像に近くなる。
次に、本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A.第1実施例:
A−1.画像処理装置の構成:
A−2.顔形状補正印刷処理:
A−3.変形領域の設定:
A−4.変形処理:
B.第2実施例:
A.第1実施例:
A−1.画像処理装置の構成:
図1は、本発明の第1実施例における画像処理装置を構成するディジタルスチルカメラ(以下「DSC」とも呼ぶ)100の構成を概略的に示す説明図である。また、図6は、本発明の第1実施例における画像処理装置を構成するプリンタ300の構成を概略的に示す説明図である。本画像処理装置では、DSC100は、被写体を撮像して画像を生成するとともに、被写体までの距離を距離情報として記憶する。プリンタ300は、生成された画像及び距離情報に応じて、画像処理の手法及び画像処理の強度を変化させて実行する。このときプリンタ300にて実行される画像処理は、レンズを通して結像される画像を肉眼を通して結像される画像に近づけるよう処理するものである。
ここで、被写体とは写しとられる対象のことであり、本発明では、主に、鮮明に写しとられた領域(いわゆるピントのあった領域)に存在する物体の意味で使用する。
DSC100は、対象物を撮像して画像を生成する撮影装置(画像取得装置)として機能すると共に、生成された画像に対する画像処理を行う画像処理装置としても機能する。DSC100は、レンズ102と、レンズ102を駆動して焦点(ピント)の位置や焦点距離を調整するレンズ駆動部104と、レンズ駆動部104を制御するレンズ駆動制御部106と、レンズ102を介して受光面に入力された光を電気信号に変換する撮像素子108と、撮像素子108から出力された電気信号に対するA/D変換を行うA/D変換器110と、外部機器との情報のやり取りのためのインターフェイス部(I/F部)112と、液晶ディスプレイにより構成された表示部114と、ボタンやタッチパネルにより構成された操作部116と、DSC100の各部を制御するCPU118と、ROMやRAMにて構成された内部メモリ200と、を備えている。撮像素子108は、例えばCCDを用いて構成される。DSC100の各構成要素は、バス122を介して互いに接続されている。
内部メモリ200には、画像生成部210が格納されている。画像生成部210は、プログラムモジュールとして、顔領域検出部220と、被写体距離推定部230と、画像ファイル生成部250と、焦点範囲設定部260と、タイミング決定部270とを含んでいる。また、被写体距離推定部230は、情報取得部240を含んでいる。CPU118は、内部メモリ200から、このプログラムを読み出して実行することにより、画像生成部210の機能を実現する。これらの各部の機能については、後述の画像生成処理の説明において詳述する。
図2は、第1実施例のDSC100による画像生成処理の流れを示すフローチャートである。第1実施例における画像生成処理では、所定の条件が満たされた場合に撮影が行われ、画像を表す画像データを含む画像ファイルが生成される。
ステップS110では、画像生成部210が、準備画像を取得する。ここで、準備画像は、撮像画像の候補となる画像であり、撮影前にユーザが撮像装置のファインダー等から確認することができる。ユーザが図示しないシャッターを押下することで該準備画像は撮影画像となる。画像生成部210は、レンズ102や撮像素子108、A/D変換器110を制御して、準備画像を取得する。なお、表示部114が撮影時のファインダーとして利用されている場合には、準備画像が表示部114に表示される。
ステップS120では、顔領域検出部220が、準備画像における顔領域FAを検出する。ここで、顔領域FAとは、対象画像TI上の画像領域であって、少なくとも顔の一部の画像が含まれる領域を意味している。顔領域検出部220による顔領域FAの検出は、例えばテンプレートを利用したパターンマッチングによる方法(特開2004−318204参照)といった公知の顔検出方法を用いて実行される。なお、顔領域検出部220は、被写体としての顔の画像を検出するものであり、「顔検出手段」とも呼ぶことができる。
図3は、顔領域FAの検出結果の一例を示す説明図である。図3の例では、対象画像TIに人物の顔の画像が含まれている。そのため、ステップS120において、対象画像TIから顔領域FAが検出される。この顔領域FAは、両目と鼻と口の画像を含む矩形の領域となっている。なお、顔領域検出部220は、顔領域FAの検出結果として、対象画像TIにおける顔領域FAの位置を特定可能な情報(例えば顔領域FAの4つの頂点の座標)を出力する。また、図3に示すように、本実施例では、対象画像TIの幅をWwi(単位は画素数)と表し、顔領域FAの幅をWfi(単位は画素数)と表すものとする。
ステップS130では、被写体距離推定部230が、準備画像における被写体距離Sdを推定する。被写体距離Sdの推定方法は、情報取得部240が準備画像の全体の幅、顔領域FAの幅、人物Pの顔の幅、レンズの焦点距離、結像面の幅といった情報を取得し、被写体距離推定部230がこれらの情報と以下に示す式(3)とを用いて被写体距離Sdを算出(推定)する。
被写体距離推定部230が、推定する被写体距離Sdとは、対象画像TIの撮像時における撮影装置(より詳細には撮影装置のレンズの主点)から特定種類の被写体までの距離を意味している。また、本実施例では、特定種類の被写体として人物の顔が設定されている。従って、本実施例における被写体距離Sdは、撮影装置から人物の顔までの距離である。
図4は、被写体距離Sdの推定方法を示す説明図である。図4には、対象画像TIの撮像時における撮影装置の結像面ISと被写体としての人物Pの顔との位置関係を示している。レンズの主点UPと人物Pの顔との間の距離である被写体距離Sdは、人物Pの顔の位置を含み結像面ISに平行な面(以下「被写体面SS」とも呼ぶ)における撮像範囲の幅Wwと画角θとにより定まる。また、画角θは、レンズの焦点距離fと結像面ISの幅Wxとの関係により特定される。すなわち、下記の式(1)が成り立つ。
Sd:Ww=f:Wx ・・・(1)
また、被写体面SSにおける撮像範囲の幅Wwは、人物Pの顔の画像が対象画像TI(図3)において占める大きさに基づき特定される。すなわち、被写体面SSにおける幅Wwと人物Pの顔の幅Wfとの比は、対象画像TIにおける画像全体の幅Wwiと顔領域FAの幅Wfiとの比に等しいと考えられる。
Ww:Wf=Wwi:Wfi ・・・(2)
上記式(1)および(2)から、下記の式(3)が導かれる。
Sd=(Wwi×Wf×f)/(Wfi×Wx) ・・・(3)
被写体距離推定部230の情報取得部240(図1)は、式(3)を用いた被写体距離Sdの算出に必要な情報を取得する。具体的には、情報取得部240は、対象画像TIを表す画像ファイルにメタデータとして付加されている対象画像TIの全体の幅Wwiの値(画素数)を取得すると共に、顔領域FA(図3)の幅Wfiの値(画素数)を算出する。顔領域FAの幅Wfiの算出は、例えば顔領域FAの2つの頂点の座標を用いて2つの頂点間の距離を算出することにより行う。
情報取得部240は、また、人物Pの顔の幅Wfの値として、予め設定され内部メモリ320(図1)に格納された典型的な人物の顔の幅(顔の現実の大きさ)の概略値(例えば200mm)を取得する。人物Pの顔の幅Wfの値は、本発明における第2の情報に相当する。
さらに、情報取得部240は、対象画像TIの画像ファイルの付加データに含まれる撮像時のレンズ焦点距離fの値を取得する。ここで、取得されるレンズの焦点距離fの値は、35mmフィルム換算値であり、撮影装置の実際の焦点距離(実焦点距離)とは異なる場合がある。このような場合には、情報取得部240は、結像面ISの幅Wxとして、予め設定された35mmフィルムの幅の値(=36mm)を取得する。なお、画像ファイルの付加データに実焦点距離のデータと撮影装置の撮像素子の幅のデータとが含まれている場合には、情報取得部240が、レンズの焦点距離fとして実焦点距離の値を取得し、結像面ISの幅Wxとして撮像素子の幅の値を取得するとしてもよい。また、画像ファイルの付加データに画角そのものを示すデータが含まれている場合には、情報取得部240が画角を示すデータを取得するとしてもよい。
被写体距離推定部230は、情報取得部240により取得された上記各情報(対象画像TIの全体の幅Wwiの値、顔領域FAの幅Wfiの値、人物Pの顔の幅Wfの値、レンズの焦点距離fの値、結像面ISの幅Wxの値)と、上記式(3)とを用いて、被写体距離Sdを算出(推定)する。
ステップS140(図2)では、タイミング決定部270(図1)が、ステップS130において推定された被写体距離Sdに基づき、画像生成タイミング(撮影タイミング)を決定する。図5は、第1実施例における画像生成処理の概要を示す説明図である。第1実施例における画像生成処理では、画像の生成(撮影)を行う条件として、被写体距離Sdが所定の閾値T1以下であるという条件が定められている。すなわち、図5において被写体としての人物Pが位置P2に居るときは、上記撮影条件が満たされず、撮影は行われない。一方、人物が位置P1に移動すると、上記撮影条件が満たされ、撮影が行われることとなる。なお、このような撮影条件は、例えば防犯カメラの撮影条件として設定されうる。
ステップS140において、タイミング決定部270は、被写体距離Sdと閾値T1とを比較し、被写体距離Sdが閾値T1以下である場合には、画像生成を行うことを決定し、処理をステップS150にすすめる。一方、タイミング決定部270は、被写体距離Sdが閾値T1より大きい場合には、画像生成を行わないことを決定し、処理をステップS110に戻す。図2のステップS110からS140までの処理は、ステップS140において画像生成を行うことが決定されるまで、所定時間経過毎に繰り返し実行される。
ステップS150(図2)では、焦点範囲設定部260(図1)が、ステップS130において推定された被写体距離Sdに基づき、焦点範囲FRを設定する。焦点範囲FRは、撮影時における焦点(ピント)の位置すべき範囲である。焦点範囲設定部260は、図5に示すように、DSC100から被写体距離Sdだけ離れた位置を中心として前後にそれぞれ所定の距離L1の広がりを有する範囲を焦点範囲FRとして設定する。なお、焦点範囲FRは、DSC100の機構上、焦点が位置することができる最大の範囲である最大焦点範囲FRmaxよりも狭い範囲として設定される。
ステップS160(図2)では、画像生成部210(図1)が、レンズ102、レンズ駆動部104、レンズ駆動制御部106を制御して、自動焦点合わせ(オートフォーカス)を行う。具体的には、画像生成部210は、焦点範囲FR内で焦点を移動させつつ撮像により画像を取得し、取得された画像の内の鮮鋭度(コントラスト)が最も大きい画像に対応した位置に焦点を合わせる。一般のDSCにおける自動焦点合わせでは、最大焦点範囲FRmax内で焦点を移動させつつ取得された画像のコントラスト検出が行われる。一方、本実施例のDSC100における自動焦点合わせでは、最大焦点範囲FRmaxよりも狭い範囲である焦点範囲FR内のみで焦点を移動させつつ取得された画像のコントラスト検出が行われるため、焦点合わせに要する時間の短縮を図ることができる。
ステップS170(図2)では、画像生成部210(図1)が、撮影により画像データを生成すると共に、画像ファイル生成部250が、画像データとステップS130において推定された被写体距離Sdを示すデータとを含む画像ファイルを生成する。画像ファイルは、例えばExif規格に則ったファイルとして生成され、被写体距離Sdを示すデータは、付加データとして画像ファイルに付加され、メモリカードMCに記憶される。この画像ファイルは、例えばディジタルスチルカメラ等の撮影装置によりExif(Exchangeable Image File Format)規格に則って生成されたファイルであり、撮像により生成された画像データの他に、撮像時の絞り・シャッタースピード・レンズの焦点距離等の付加データを含んでいる。
以上説明したように、第1実施例のDSC100による画像生成処理では、準備画像における被写体距離Sdの推定が行われ、推定された被写体距離Sdに基づき画像生成(撮影)タイミングが決定される。そのため、DSC100と被写体との距離に関する撮影条件を定めて画像の生成を行うことができる。
第1実施例のプリンタ300は、メモリカードMC等から取得した画像データに基づき画像を印刷する、いわゆるダイレクトプリントに対応したカラーインクジェットプリンタである。また、プリンタ300は、メモリカードMCに記憶された画像データ中に、人の顔に相当する領域が含まれる場合は、この顔領域に対して顔形状補正を行う。また、顔領域が含まれない場合(風景画像)は、被写体距離に応じてぼかし処理を施す。
プリンタ300は、プリンタ300の各部を制御するCPU118と、例えばROMやRAMによって構成された内部メモリ320と、ボタンやタッチパネルにより構成された操作部340と、液晶ディスプレイにより構成された表示部350と、プリンタエンジン360と、カードインターフェース(カードI/F)370と、を備えている。プリンタ300の各構成要素は、バスを介して互いに接続されている。なお、プリンタ300は、さらに、ディジタルスチルカメラ(又はパーソナルコンピュータ)とのデータ通信を行うためのインターフェイスを備えていてもよい。
プリンタエンジン360は、印刷データに基づき印刷を行う印刷機構である。カードインターフェース370は、カードスロット372に挿入されたメモリカードMCとの間でデータのやり取りを行うためのインターフェイスである。なお、本実施例では、メモリカードMCにRGBデータとしての画像データを含む画像ファイルが格納されている。プリンタ300は、カードインターフェース370を介してメモリカードMCに格納された画像ファイルの取得を行う。
内部メモリ320には、顔形状補正部400と、顔領域検出部420と、被写体距離取得部530と、表示処理部510と、ぼかし処理部540と、印刷処理部520とが格納されている。顔形状補正部400と顔領域検出部420は、所定のオペレーティングシステムの下で、それぞれ後述する顔形状補正処理、顔領域検出処理を実行するためのコンピュータプログラムである。表示処理部510は、表示部350を制御して、表示部350上に処理メニューやメッセージを表示させるディスプレイドライバである。ぼかし処理部540は、顔領域以外の背景領域に施すぼかし処理を被写体距離に応じて変化させるコンピュータプログラムである。印刷処理部520は、画像データから印刷データを生成し、プリンタエンジン360を制御して、印刷データに基づく画像の印刷を実行するためのコンピュータプログラムである。CPU118は、内部メモリ320から、これらのプログラムを読み出して実行することにより、これら各部の機能を実現する。
顔形状補正部400は、プログラムモジュールとして、変形態様設定部410と、顔領域調整部430と、変形領域設定部440と、変形領域分割部450と、分割領域変形部460と、変形量設定部490と、を含んでいる。なお、変形態様設定部410は、指定取得部412を含んでいる。これらの各部の機能については、後述の顔形状補正印刷処理の説明において詳述する。なお、後述するように、変形領域分割部450と、分割領域変形部460と、により画像の変形が行われる。そのため、変形領域分割部450と分割領域変形部460とは、併せて「顔変形補正手段」とも呼ぶことができる。なお、プリンタ300における顔領域検出部420は、ディジタルスチルカメラ100における顔領域検出部220と同一の機能を果たすものである。
内部メモリ320には、また、分割点配置パターンテーブル610と分割点移動テーブル620とが格納されている。分割点配置パターンテーブル610および分割点移動テーブル620の内容についても、後述の顔形状補正印刷処理の説明において詳述する。
A−2.本発明における補正印刷処理:
プリンタ300は、メモリカードMCに格納された画像ファイルに基づき、画像の印刷を行う。カードスロット372にメモリカードMCが挿入されると、表示処理部510により、メモリカードMCに格納された画像の一覧表示を含むユーザインターフェースが表示部350に表示される。図7は、画像の一覧表示を含むユーザインターフェースの一例を示す説明図である。図7に示すユーザインターフェースには、8つのサムネイル画像TN1〜TN8と、5つのボタンBN1〜BN5が表示されている。なお、本実施例では、画像の一覧表示は、メモリカードMCに格納された画像ファイルに含まれるサムネイル画像を用いて実現される。
プリンタ300は、図7に示すユーザインターフェースにおいて、ユーザにより、1つ(または複数)の画像が選択されると共に通常印刷ボタンBN3が選択されると、選択された画像を通常通り印刷する通常印刷処理を実行する。他方、当該ユーザインターフェースにおいて、ユーザにより、1つ(または複数)の画像が選択されると共に補正印刷ボタンBN4が選択されると、プリンタ300は、選択された画像について、画像中の顔の形状を補正して補正後の画像を印刷する顔形状補正印刷処理を実行する。図7の例では、サムネイル画像TN1と顔形状補正印刷ボタンBN4とが選択されているため、プリンタ300は、サムネイル画像TN1に対応する画像について顔形状補正印刷処理を行う。
図8は、第1実施例のプリンタ300による補正印刷処理の流れを示すフローチャートである。このフローチャートでは、まず、画像データ中に、顔領域FAが存在するかを特定する(ステップS200〜S210)。画像データ中に、顔領域FAが含まれる場合は、顔形状補正部400(図1)が、顔形状補正処理を実行する(ステップS300〜350)。また、顔領域FAが含まれない場合は、ぼかし処理部540が画像データにぼかし処理を施す(ステップS400〜S440)。本実施例の顔形状補正処理は、画像中の顔の少なくとも一部の形状(例えば顔の輪郭形状や目の形状)を補正する処理である。なお、顔領域FA検出方法としては、DSC100における顔領域FA検出方法と同様であればよい。また、DSC100が顔を検出したことを付加データとして画像ファイル中に付加し、この付加データを用いて検出するものであってもよい。
ステップS200では、顔形状補正部400(図1)が、顔形状補正処理の対象となる対象画像TIを設定する。顔形状補正部400は、図7に示したユーザインターフェースにおいてユーザにより選択されたサムネイル画像TN1に対応する画像を対象画像TIとして設定する。設定された対象画像TIの画像ファイルは、メモリカードMCからカードI/F370を介してプリンタ300に取得され、内部メモリ320の所定領域に格納される。なお、以下では、このようにメモリカードMCから取得され、プリンタ300の内部メモリ320に格納された画像ファイルに含まれる画像データを「元画像データ」とも呼ぶ。また、元画像データにより表される画像を「元画像」とも呼ぶ。
ステップS210では、変形態様設定部410(図1)が、顔形状補正のための画像変形のタイプと画像変形の度合いとを設定する。変形態様設定部410は、画像変形のタイプおよび度合いを設定するためのユーザインターフェースを表示部350に表示するように表示処理部510に指示し、当該ユーザインターフェースを通じてユーザにより指定された画像変形のタイプおよび度合いを選択し、処理に使用する画像変形タイプおよび度合いとして設定する。
図9は、画像変形のタイプおよび度合いを設定するためのユーザインターフェースの一例を示す説明図である。図9に示すように、このユーザインターフェースには、画像変形タイプを設定するためのインターフェイスが含まれている。本実施例では、例えば、顔の形状をシャープにする変形タイプ「タイプA」や、目の形状を大きくする変形タイプ「タイプB」等が選択肢として予め設定されているものとする。ユーザは、このインターフェイスを介して画像変形のタイプを指定する。変形態様設定部410は、ユーザにより指定された画像変形タイプを、実際の処理に使用する画像変形タイプとして設定する。
また、図9に示すユーザインターフェースには、画像変形の度合い(程度)を設定するためのインターフェイスが含まれている。図9に示すように、本実施例では、画像変形の度合いとして、強(S)、中(M)、弱(W)の3段階と、自動と、の4つが選択肢として予め設定されているものとする。ユーザは、このインターフェイスを介して画像変形の度合いを指定する。強、中、弱の3つの内のいずれかが指定された場合には、変形態様設定部410は、指定された画像変形の度合いを、実際の処理に使用する画像変形の度合いとして設定する。「自動」が指定された場合には、後述するように、画像変形の度合い(変形量)が変形量設定部490(図1)によって自動的に設定される。ユーザインターフェースに設けられたチェックボックスは、ユーザが変形態様の詳細指定を希望する場合にチェックされる。
以降では、画像変形のタイプとして顔の形状をシャープにするための変形タイプ「タイプA」が設定され、画像変形の度合いとして「自動」が選択され(ステップS300)、ユーザによる詳細指定の希望はなかったものとして説明を行う。
ステップS320(図8)において、プリンタ300は、検出された顔領域FAに基づいて変形領域TAを設定する。変形領域TAは、対象画像TI上の領域であって顔形状補正のための画像変形処理の対象となる領域である。変形領域TAの設定方法については、後述の「A−3.変形領域の設定」において詳述する。図3(b)は、ステップS320における変形領域TAの設定結果を示す説明図である。図3(b)中の破線は、ステップS320において検出された顔領域FAを示しており、図3(b)中の太実線は、設定された変形領域TAを示している。
ステップS330(図8)では、被写体距離取得部530(図6)が、メモリカードMCを参照して、付加情報から被写体距離Sdを取得する。ステップS340では、変形量設定部490(図1)が、変形量(「変形の度合い」または「変形の程度」とも呼ぶ)を設定する。変形量設定部490による変形量の設定方法については、後述の「A−4.変形処理」において詳述する。
ステップS350(図8)では、ステップS320で設定された変形領域TAに対し、変形処理が行われる。変形処理の具体的内容については、後述の「A−4.変形処理」において詳述する。
図10は、変形処理が行われた結果を示す説明図である。図10(a)は、図8のステップS350における変形処理が行われる前の対象画像TIを示しており、図10(b)は、変形処理後の対象画像TIを示している。図10(b)に示すように、変形処理後の対象画像TIでは、変形領域TA内の人物の顔の画像が細くなっている。なお、ステップS600における変形処理は対象画像TI中の変形領域TA内の画像にのみ施され、変形領域TAの外の画像は変形されない。その結果、画像の全体を過剰に変形させずに、被写体を変形させることができる。
図10の例では、顔の左右の頬のライン(顔の輪郭)の画像が変形量DQだけ内側に移動している。この変形量DQは、図8のステップS340において設定された量である。このような変形処理によって、変形処理後の顔の画像の幅Wdは、変形前の顔の画像の幅Woと比べて、変形量DQの2倍だけ狭くなる。本実施例では、顔画像の幅の方向をパターンマッチング方法により検出した矩形顔領域FAの長手方向に垂直な方向とする。しかしながら、幅方向はこれに限らず様々な方向をとり得る。
このように幅が狭くなるように画像を変形する理由は、画像の観察によって得られる被写体の印象を、実物の観察によって得られる印象に近づけるためである。
図11は、被写体の印象の違いを示す説明図である。図11中には、被写体Sと、人(観察者)の右目REと左目LEと、撮影装置としてのカメラCMとが示されている。なお、図11では、観察者の上面から見た位置関係を示している。
図11の例では、説明を簡単にするために、上面から見た被写体Sの形状が半径rの円であるものと仮定している。なお、このような丸い被写体Sとしては、人の頭に限らず、種々の被写体(例えば、円筒形の建物やボール)が挙げられる。この被写体Sは、2つの目RE、LEの真正面に位置している。また、カメラCMは、2つの目RE、LEの中点MPに配置されている。すなわち、カメラCMは、観察者とほぼ同じ位置から、被写体Sを見る。なお、図中のx軸は、被写体Sの中心Cと、中点MPとを通る座標軸である。y軸は、中心Cを通り、x軸に垂直な座標軸である。2つの目RE、LEは、このy軸に沿って並んでいる。距離Lは、2つの目RE、LEの間の距離を示している。また、距離dは、中心Cと目RE、LEとの間のx軸に沿った距離を示している。
図11中の第1幅W1は、被写体Sの幅を示している。この第1幅W1は、カメラCMから見える部分の幅を示している。カメラCMから見える部分は、被写体Sの表面の内の、カメラ被写体範囲SRC内の部分である。このカメラ被写体範囲SRCは、カメラCMの視野の全範囲の内の被写体Sが占める範囲を示している。
図11中の第2幅W2も、被写体Sの幅を示している。ただし、この第2幅W2は、両目RE、LEから見える部分の幅を示している。両目RE、LEから見える部分は、被写体Sの表面の内の、右被写体範囲SRRと左被写体範囲SRLとの重なる範囲の内の部分である。右被写体範囲SRRは、右目REの視野の全範囲の内の被写体Sが占める範囲を示し、左被写体範囲SRLは、左目LEの視野の全範囲の内の被写体Sが占める範囲を示している。
図11に示すように、右目REと左目LEとの間では、被写体Sの見える部分が異なっている。すなわち、右目REから見える部分は右目RE側に偏っており、左目LEから見える部分は左目LE側に偏っている。このような場合には、人(観察者)による被写体Sの認識は、両目RE、LEに共通な可視部分から強い影響を受けると推定される。例えば、人は、両目RE、LEに共通な可視部分の幅W2が被写体Sの幅であるという認識を持つと推定される。
また、図11に示すように、第2幅W2は第1幅W1よりも狭い。すなわち、撮像によって生成された画像を観察すると、実際の被写体Sを観察したときと比べて幅が広い印象を受ける。そこで、図10(b)に示すように幅が狭くなるように画像を変形することによって、画像の観察によって得られる被写体の印象を、実物の観察によって得られる印象に近づけることができる。
図12は、第1幅W1に対する第2幅W2の比率Riと、距離dとの関係を示すグラフである。横軸は距離dを示し、縦軸は比率Riを示している。また、図12には、これらの幅W1、W2を示す関数も示されている。これらの幅W1、W2は、半径rと距離dと距離Lとの関数で表されている。なお、図12のグラフでは、半径rと距離Lとは固定されている。
図12に示すように、比率Ri(W2/W1)は、距離dが小さいほど小さい。また、この比率Ri(W2/W1)は、「1.0」よりも小さく、距離dが大きいほど「1.0」に近くなる。
図13(a)は、変形量DQと被写体距離Sdとの関係を示すグラフである。図13(b)は、変形前の幅Woに対する変形後の幅Wdの比率Rwと、被写体距離Sdとの関係を示すグラフである。これらのグラフでは、横軸がステップS570(図8)で推定された被写体距離Sdを示している。
図13(a)に示す変形量DQは、図13(b)に示す比率Rwが図12に示す比率Riと同じとなるように、予め設定されている。この結果、被写体距離Sdの値が小さいほど、変形量DQは大きな値に設定される。ここで、距離Lと半径rとは所定値に予め固定されている。目の距離Lとしては、例えば、100mmを採用可能である。また、半径r、すなわち、被写体Sの大きさとしては、被写体を代表する値(例えば、100mm)を採用可能である。なお、本実施例では、変形量DQは、変形領域TA内における幅の変化率(この場合は減少率)を示している。
上述した図8のステップS340では、変形量設定部490(図1)が、予め設定された図13(a)に示す対応関係を用いて、ステップS330において取得された被写体距離Sdから変形量DQを決定する。図8のステップS350では、このように決定された変形量DQを利用して画像が変形される(図10(b))。その結果、被写体距離Sdに合わせて画像を適切に変形させることができる。具体的には、画像の観察によって得られる被写体の印象を、実物の観察によって得られる印象に近づけることができる。
ステップS210(図8)で、顔領域FAが検出されない場合、ステップS400では、ぼかし処理部540が、フォーカス領域とその他の領域とを識別する。フォーカス領域FCとは、対象画像TIaにおけるDSC100がオートフォーカスによってピントを合わせた領域である(図2、ステップS160)。図14には、対象画像TIaにおける設定されたフォーカス領域FCと、その他の領域(背景領域)BCとを示している。
ステップS410では、被写体距離取得部530(図)が、被写体距離Sdを取得する。被写体距離Sdの取得方法は、メモリカードMCに記憶された付加情報から取得するものとする。
ステップS420では、ぼかし処理部540が、フォーカス領域FCに対してその他の領域(背景領域)BCに比べ鮮鋭度を高めるよう画像処理を施す。具体的には、フォーカス領域FCに対してコントラストを大きくするよう処理を行なう。また、フォーカス領域FCに対してシャープネス処理を施すものであってもよい。
ステップS430では、ぼかし度合い設定部542(図6)が、ぼかし度合い(「ぼかし強度」とも呼ぶ)を設定する。ぼかし度合いは、対象画像TIa中の背景領域に施すぼかし処理の度合い(強度)である。ぼかし度合い設定部542は、予め定められたぼかし度合いと被写体距離Sdとの関係に基づき、ぼかし度合いを設定する。
図15は、ぼかし度合いと被写体距離Sdとの関係を示すグラフである。横軸は被写体距離Sdを示し、縦軸はぼかし度合いを示している。図15に示すように、ぼかし度合いと被写体距離Sdとの関係は、被写体距離Sdが大きいほどぼかし度合いが大きくなるように定められている。被写体距離Sdが大きくなるほど、ぼかし度合いと被写体距離Sdとの関係を図15に示すように定めることによって自然で好ましいぼかし処理が実現される。ぼかし度合い設定部542は、ステップS410で取得された被写体距離Sdと図15に示した関係とに基づき、ぼかし度合いを設定する。
ステップS430(図8)では、ぼかし処理部540(図6)がぼかし処理を行う。ぼかし処理部540は、対象画像TIa中に設定されたフォーカス領域FCの画像に対し、コントラストを強調するよう画像処理を施し、背景領域BCに対しては、ステップS4200で設定されたぼかし度合いでぼかし処理を行う。なお、ぼかし処理は、例えばガウスフィルタを用いた公知の方法により実行される。図16は、ぼかし処理後の対象画像TIaの一例を示す説明図である。図16(a)には、被写体距離Sdが比較的小さい場合におけるぼかし処理後の対象画像TIaを示しており、図16(b)には、被写体距離Sdが比較的大きい場合におけるぼかし処理後の対象画像TIaを示している。図16(a)および図16(b)に示すように、被写体距離Sdが小さい方が、フォーカス領域以外の画像のぼけ具合が大きくなる。
その後、ぼかし処理後の画像の表示(図8のステップS230)および印刷(図8のステップS240)が実行される。補正後の対象画像TIが表示された表示部350により、ユーザは、補正結果を確認することができる。ユーザが補正結果に満足せず「戻る」ボタンを選択した場合には、例えば表示部350に変形タイプおよび変形度合いを選択する画面が表示され、ユーザによる変形タイプや変形度合いの再度の設定が実行される。ユーザが補正結果に満足し、「印刷」ボタンを選択した場合には、以下の補正画像印刷処理が開始される。
ステップS240(図8)では、印刷処理部520(図6)が、プリンタエンジン360を制御して、顔形状補正処理後の対象画像TIの印刷を行う。印刷処理部520は、補正処理後の対象画像TIの画像データに、解像度変換やハーフトーン処理などの処理を施して印刷データを生成する。生成された印刷データは、印刷処理部520からプリンタエンジン360に供給され、プリンタエンジン360は対象画像TIの印刷を実行する。これにより、補正後の対象画像TIの印刷が完了する。
以上説明したように、本実施例のプリンタ300では、推定された被写体距離Sdに基づき、被写体距離Sdが小さいほど変形の度合いが大きくなる(変形量が大きくなる)ように画像変形における変形の度合い(変形量)が設定され、設定された変形量DQを利用して画像の変形処理が行われる。そのため、画像の観察によって得られる被写体の印象を実物の観察によって得られる印象に近づけるような、画像の変形処理を実現することができる。
A−3.変形領域の設定:
上述した顔形状補正処理(図8)における変形領域TAの設定処理(ステップS320)について詳述する。図17は、顔領域FAの検出結果の一例を示す説明図である。図17に示すように、図8のステップS320において、対象画像TIから顔領域FAが検出されている。図17に示した基準線RLは、顔領域FAの高さ方向(上下方向)を定義すると共に、顔領域FAの幅方向(左右方向)の中心を示す線である。すなわち、基準線RLは、矩形の顔領域FAの重心を通り、顔領域FAの高さ方向(上下方向)に沿った境界線に平行な直線である。
変形領域TAは、顔領域FAに基づき設定される。ここで、顔領域FAの検出に用いられる公知の顔検出方法(テンプレートを利用したパターンマッチングによる方法等)は、顔全体や顔の部位(目や口等)について位置や傾き(角度)を詳細に検出するものではなく、対象画像TI中から顔の画像が概ね含まれると考えられる領域を顔領域FAとして設定するものである。他方、顔の画像は、一般に、観察者の注目度が高いため、顔領域FAに基づき設定された変形領域TAと顔の画像との位置や角度の関係によっては、顔形状補正後の画像が不自然なものとなる可能性がある。そこで、本実施例では、より自然で好ましい顔形状補正が実現されるように、ステップS320で検出された顔領域FAについて、以下に説明する位置調整および傾き調整を行うものとしている。
図18は、変形領域設定処理の流れを示すフローチャートである。ステップS510では、顔領域調整部430(図1)が、ステップS320(図8)で検出された顔領域FAの高さ方向の位置調整を行う。ここで、顔領域FAの高さ方向の位置調整とは、顔領域FAの基準線RL(図17参照)に沿った位置を調整して、対象画像TIにおける顔領域FAを再設定することを意味している。
図19は、顔領域FAの高さ方向の位置調整処理の流れを示すフローチャートである。ステップS511では、顔領域調整部430(図1)が、特定領域SAを設定する。ここで、特定領域SAとは、対象画像TI上の領域であって、顔領域FAの高さ方向の位置調整を実行する際に参照する所定の参照被写体の画像を含む領域である。参照被写体は、例えば「目」に設定することができ、その場合、特定領域SAは「目」の画像を含む領域として設定される。
図20は、特定領域SAの一例を示す説明図である。本実施例では、顔領域調整部430(図1)が、特定領域SAを顔領域FAとの関係に基づいて設定する。具体的には、顔領域FAの大きさを、基準線RLに直行する方向および基準線RLに平行な方向に、所定比率で縮小(または拡大)した大きさの領域であって、顔領域FAの位置と所定の位置関係を有する領域が、特定領域SAとして設定される。すなわち、本実施例では、顔領域検出部420により検出された顔領域FAとの関係に基づき特定領域SAを設定すれば、特定領域SAが両方の目の画像を含む領域となるように、上記所定比率や所定の位置関係が予め設定されている。なお、特定領域SAは、目の画像とまぎらわしい画像(例えば髪の毛の画像)がなるべく含まれないように、両目の画像を含む限りにおいて、なるべく小さい領域として設定されることが好ましい。
また、図20に示すように、特定領域SAは、基準線RLに対して対称な矩形形状の領域として設定される。特定領域SAは、基準線RLにより、向かって左側の領域(以下「左分割特定領域SA(l)」とも呼ぶ)と、向かって右側の領域(以下「右分割特定領域SA(r)」とも呼ぶ)とに分割される。特定領域SAは、左分割特定領域SA(l)と右分割特定領域SA(r)とのそれぞれに片目の画像が含まれるように設定される。
ステップS512(図19)では、顔領域調整部430(図6)が、特定領域SAにおける目の画像の位置を検出するための評価値を算出する。図21は、評価値の算出方法の一例を示す説明図である。本実施例では、RGB画像データとしての対象画像TIの各画素のR値(R成分値)が評価値の算出に用いられる。これは、肌の部分の画像と目の部分の画像とではR値の差が大きいため、R値を評価値の算出に用いることにより、目の画像の検出精度を向上させることができると考えられるからである。また、本実施例では、対象画像TIのデータがRGBデータとして取得されているため、R値を評価値の算出に用いることにより、評価値の算出の効率化を図ることができるからでもある。なお、図21に示すように、評価値の算出は、2つの分割特定領域(右分割特定領域SA(r)および左分割特定領域SA(l))のそれぞれについて個別に行われる。
顔領域調整部430は、図21に示すように、分割特定領域(右分割特定領域SA(r)および左分割特定領域SA(l))内に、基準線RLと直行するn本の直線(以下「対象画素特定線PL1〜PLn」と呼ぶ)を設定する。対象画素特定線PL1〜PLnは、分割特定領域の高さ(基準線RLに沿った大きさ)を(n+1)等分する直線である。すなわち、対象画素特定線PL同士の間隔は、すべて等間隔sである。
顔領域調整部430は、対象画素特定線PL1〜PLnのそれぞれについて、対象画像TIを構成する画素の中から評価値の算出に用いる画素(以下「評価対象画素TP」と呼ぶ)を選択する。図22は、評価対象画素TPの選択方法の一例を示す説明図である。顔領域調整部430は、対象画像TIを構成する画素の内、対象画素特定線PLと重なる画素を評価対象画素TPとして選択する。図22(a)は、対象画素特定線PLが対象画像TIの画素の行方向(図22のX方向)と平行である場合を示している。この場合には、各対象画素特定線PLと重なる画素行上の画素(図22(a)において○印を付した画素)が、各対象画素特定線PLについての評価対象画素TPとして選択される。
一方、顔領域FAの検出方法や特定領域SAの設定方法によっては、図22(b)に示すように、対象画素特定線PLが対象画像TIの画素の行方向(X方向)と平行とはならない場合も生ずる。このような場合にも、原則として、各対象画素特定線PLと重なる画素が、各対象画素特定線PLについての評価対象画素TPとして選択される。ただし、例えば図22(b)における対象画素特定線PL1と画素PXaおよびPXbとの関係のように、ある対象画素特定線PLが、対象画像TIの画素マトリクスの同一列に位置する(すなわちY座標が同一の)2つの画素と重なる場合には、重なり部分の距離のより短い方の画素(例えば画素PXb)は評価対象画素TPから除外される。すなわち、各対象画素特定線PLについて、画素マトリクスの1つの列からは1つの画素のみが評価対象画素TPとして選択される。
なお、対象画素特定線PLの傾きが、X方向に対して45度を超える場合には、上記説明において画素マトリクスの列と行との関係が逆転し、画素マトリクスの1つの行から1つの画素のみが評価対象画素TPとして選択されることとなる。また、対象画像TIと特定領域SAとの大きさの関係によっては、1つの画素が複数の対象画素特定線PLについての評価対象画素TPとして選択される場合もある。
顔領域調整部430は、対象画素特定線PLのそれぞれについて、評価対象画素TPのR値の平均値を評価値として算出する。ただし、本実施例では、各対象画素特定線PLについて、選択された複数の評価対象画素TPの内、R値の大きい一部の画素を評価値の算出対象から除外するものとしている。具体的には、例えば、ある対象画素特定線PLについてk個の評価対象画素TPが選択された場合、評価対象画素TPが、R値の比較的大きい0.75k個の画素により構成される第1グループと、比較的R値の小さい0.25k個の画素により構成される第2グループとの2グループに分けられ、第2グループに属する画素のみが評価値としてのR値の平均値の算出対象となる。このように一部の評価対象画素TPを評価値の算出対象から除外する理由については後述する。
以上のように、本実施例では、顔領域調整部430により各対象画素特定線PLについての評価値が算出される。ここで、対象画素特定線PLは基準線RLに直行する直線であるため、評価値は、基準線RLに沿った複数の位置(評価位置)について算出されると表現することができる。また、評価値は、各評価位置について、基準線RLに直行する方向に沿った画素値の分布の特徴を表す値と表現することができる。
ステップS513(図19)では、顔領域調整部430(図6)が、特定領域SAにおける目の位置を検出し、検出結果に基づき高さ基準点Rhを決定する。まず、顔領域調整部430は、図21の右側に示すように、各分割特定領域について、基準線RLに沿った評価値(R値の平均値)の分布を表す曲線を作成し、評価値が極小値をとる基準線RL方向に沿った位置を目の位置Ehとして検出する。なお、左分割特定領域SA(l)における目の位置EhをEh(l)と表し、右分割特定領域SA(r)における目の位置EhをEh(r)と表わす。
黄色人種の場合、分割特定領域中の肌の画像を表す部分はR値が大きい一方、目(より詳細には目の中央の黒目部分)の画像を表す部分はR値が小さいと考えられる。そのため、上述のように、評価値(R値の平均値)が極小値をとる基準線RLに沿った位置を目の位置Ehと判断することが可能となる。但し、他の人種(白色人種や黒色人種)を対象とする場合には、他の評価値(例えば、輝度や明度やB値)が用いられる。
なお、図21に示すように、分割特定領域には、目の画像以外にもR値の小さい他の画像(例えば、眉や髪の毛の画像)が含まれている場合もある。そのため、顔領域調整部430は、基準線RLに沿った評価値の分布を表す曲線が複数の極小値をとる場合には、極小値をとる位置の内、最も下側の位置を目の位置Ehと判断する。一般に、目の画像より上側には眉や髪の毛等のR値の小さい画像が位置することが多い一方、目の画像より下側にはR値の小さい画像が位置することが少ないと考えられることから、このような判断が可能となる。
また、上記曲線が、目の画像の位置よりも下側(主に肌の画像に対応した位置)であっても、評価値が大きいながらも極小値をとる可能性があるため、極小値の内、所定の閾値より大きいものは無視するものとしてもよい。あるいは、単純に、各対象画素特定線PLについて算出された評価値の内の最小値に対応した対象画素特定線PLの位置を目の位置Ehとしてもよい。
なお、本実施例では、顔において周囲との色の差が比較的大きいと考えられる部位である目(目の中央の黒目部分)を顔領域FAの位置調整の参照被写体として用いている。しかし、評価値としてのR値の平均値は、対象画素特定線PL上の複数の評価対象画素TPを対象として算出されるため、例えば、黒目の周縁の白目部分の画像の影響により、黒目部分の検出の精度が低下する怖れがある。本実施例では、上述したように、参照被写体とは色の差が大きいと考えられる一部の評価対象画素TP(例えば上述した第1のグループに属する比較的R値の大きい画素)を評価値の算出対象から除外することにより、参照被写体の検出精度をより向上させている。
次に、顔領域調整部430は、検出された目の位置Ehに基づき高さ基準点Rhを決定する。図23は、高さ基準点Rhの決定方法の一例を示す説明図である。高さ基準点Rhは、顔領域FAの高さ方向の位置調整の際に、基準として用いられる点である。本実施例では、図23に示すように、左右2つの目の位置Eh(l)およびEh(r)の中間に位置する基準線RL上の点が高さ基準点Rhとして設定される。すなわち、左の目の位置Eh(l)を示す直線EhL(l)と基準線RLとの交点と、右の目の位置Eh(r)を示す直線EhL(r)と基準線RLとの交点と、の中点が、高さ基準点Rhとして設定される。
なお、本実施例では、顔領域調整部430が、検出された目の位置Ehに基づき、顔画像の概略の傾き角(以下「概略傾き角RI」と呼ぶ)を算出するものとしている。顔画像の概略傾き角RIは、対象画像TI中の顔の画像が、顔領域FAの基準線RLに対して概ねどれぐらい傾いているかを推定した角度である。図24は、概略傾き角RIの算出方法の一例を示す説明図である。図24に示すように、顔領域調整部430は、まず、左分割特定領域SA(l)の幅Ws(l)を半分に分割する直線と直線EhL(l)との交点IP(l)と、右分割特定領域SA(r)の幅Ws(r)を半分に分割する直線と直線EhL(r)との交点IP(r)とを決定する。そして、交点IP(l)と交点IP(r)とを結ぶ直線に直交する直線ILと、基準線RLとのなす角が、概略傾き角RIとして算出される。
ステップS514(図19)では、顔領域調整部430(図6)が、顔領域FAの高さ方向の位置調整を行う。図25は、顔領域FAの高さ方向の位置調整方法の一例を示す説明図である。顔領域FAの高さ方向の位置調整は、高さ基準点Rhが、位置調整後の顔領域FAにおける所定の位置に位置することとなるように、顔領域FAを再設定することにより行う。具体的には、図25に示すように、高さ基準点Rhが、顔領域FAの高さHfを所定の比率r1対r2で分けるような位置に位置することとなるように、顔領域FAが基準線RLに沿って上下に位置調整される。図25の例では、破線で示した調整前の顔領域FAを上方向に移動することにより、実線で示した調整後の顔領域FAが再設定されている。
顔領域FAの位置調整の後、ステップS520(図18)では、顔領域調整部430(図6)が、顔領域FAの傾き調整(角度調整)を行う。ここで、顔領域FAの傾き調整とは、対象画像TIにおける顔領域FAの傾きを顔の画像の傾きに適合するように調整して、顔領域FAを再設定することを意味している。本実施例では、顔領域FAの傾き調整を実行する際に参照する所定の参照被写体は、「両目」と設定されている。本実施例における顔領域FAの傾き調整では、傾き調整の調整角度の選択肢を表す複数の評価方向が設定され、各評価方向に対応した評価特定領域ESAが両目の画像を含む領域として設定される。そして、各評価方向について評価特定領域ESAの画像の画素値に基づき評価値が算出され、評価値に基づき決定される傾き調整の調整角度を用いて顔領域FAの傾きが調整される。
図26は、第1実施例における顔領域FAの傾き調整処理の流れを示すフローチャートである。また、図27は、顔領域FAの傾き調整のための評価値の算出方法の一例を示す説明図である。ステップS521(図26)では、顔領域調整部430(図6)が、初期評価特定領域ESA(0)を設定する。初期評価特定領域ESA(0)は、顔領域FAの位置調整後の基準線RL(図25参照)と平行な方向(以下「初期評価方向」とも呼ぶ)に対応付けられた評価特定領域ESAである。本実施例では、位置調整後の顔領域FAに対応した特定領域SA(図25参照)が、そのまま初期評価特定領域ESA(0)として設定される。なお、顔領域FAの傾き調整における評価特定領域ESAは、顔領域FAの位置調整時の特定領域SAとは異なり、左右2つの領域に分割されることはない。図27の最上段には、設定された初期評価特定領域ESA(0)が示されている。
ステップS522(図26)では、顔領域調整部430(図6)が、複数の評価方向と各評価方向に対応した評価特定領域ESAとを設定する。複数の評価方向は、傾き調整の調整角度の選択肢を表す方向として設定される。本実施例では、基準線RLとのなす角が所定の範囲内である複数の評価方向線ELが設定され、評価方向線ELと平行な方向が評価方向として設定される。図27に示すように、基準線RLを初期評価特定領域ESA(0)の中心点(重心)CPを中心として反時計回りおよび時計回りに所定の角度α刻みで回転させることにより定まる直線が、複数の評価方向線ELとして設定される。なお、基準線RLとのなす角がφ度である評価方向線ELをEL(φ)と表す。
本実施例では、上述した各評価方向線ELと基準線RLとのなす角についての所定の範囲は±20度と設定される。ここで本明細書では、基準線RLを時計回りに回転させたときの回転角は正の値で表され、基準線RLを反時計回りに回転させたときの回転角は負の値で表される。顔領域調整部430は、基準線RLを反時計回りおよび時計回りにα度、2α度・・・と20度を超えない範囲で回転角を増加させつつ回転させ、複数の評価方向線ELを設定する。図27には、基準線RLを−α度,−2α度,α度回転させることによりそれぞれ定まる評価方向線EL(EL(−α),EL(−2α),EL(α))が示されている。なお、基準線RLは、評価方向線EL(0)とも表現できる。
各評価方向を表す評価方向線ELに対応した評価特定領域ESAは、初期評価特定領域ESA(0)を、中心点CPを中心として、評価方向線ELの設定時の回転角と同じ角度で回転させた領域である。評価方向線EL(φ)に対応した評価特定領域ESAは、評価特定領域ESA(φ)と表される。図27には、評価方向線EL(−α),EL(−2α),EL(α)のそれぞれに対応した評価特定領域ESA(ESA(−α),ESA(−2α),ESA(α))が示されている。なお、初期評価特定領域ESA(0)も評価特定領域ESAの1つとして扱われるものとする。
ステップS523(図26)では、顔領域調整部430(図6)が、設定された複数の評価方向のそれぞれについて、評価特定領域ESAの画像の画素値に基づき評価値を算出する。本実施例では、顔領域FAの傾き調整における評価値として、上述した顔領域FAの位置調整における評価値と同様に、R値の平均値が用いられる。顔領域調整部430は、評価方向に沿った複数の評価位置についての評価値を算出する。
評価値の算出方法は、上述した顔領域FAの位置調整における評価値の算出方法と同様である。すなわち、顔領域調整部430は、図27に示すように、各評価特定領域ESA内に、評価方向線ELに直交する対象画素特定線PL1〜PLnを設定し、各対象画素特定線PL1〜PLnについて評価対象画素TPを選択し、選択された評価対象画素TPのR値の平均値を評価値として算出する。
評価特定領域ESAにおける対象画素特定線PLの設定方法や評価対象画素TPの選択方法は、領域を左右に分割するか否かの違いはあるものの、図21および図22に示した顔領域FAの位置調整における方法と同様である。なお、顔領域FAの位置調整時と同様に、選択された評価対象画素TPの内の一部(例えばk個の評価対象画素TPの内のR値の比較的大きい0.75k個の画素)を評価値の算出対象から除外するとしてもよい。図27の右側には、各評価方向について、算出された評価値の評価方向線ELに沿った分布を示している。
なお、対象画素特定線PLは評価方向線ELに直行する直線であるため、評価値は、評価方向線ELに沿った複数の位置(評価位置)について算出されると表現することができる。また、評価値は、各評価位置について、評価方向線ELに直行する方向に沿った画素値の分布の特徴を表す値と表現することができる。
ステップS524(図26)では、顔領域調整部430(図6)が、顔領域FAの傾き調整に用いる調整角度を決定する。顔領域調整部430は、各評価方向について、ステップS523において算出された評価値の評価方向線ELに沿った分散を算出し、分散の値が最大となる評価方向を選択する。そして、選択された評価方向に対応した評価方向線ELと基準線RLとのなす角を、傾き調整に用いる調整角度として決定する。
図28は、各評価方向についての評価値の分散の算出結果の一例を示す説明図である。図28の例では、回転角が−α度である評価方向において、分散が最大値Vmaxをとる。従って、−α度、すなわち反時計回りにα度の回転角が、顔領域FAの傾き調整に用いる調整角度として決定される。
評価値の分散の値が最大となるときの評価方向に対応した角度が傾き調整に用いる調整角度として決定される理由について説明する。図27の上から2段目に示すように、回転角が−α度であるときの評価特定領域ESA(−α)では、左右の目の中央部(黒目部分)の画像が、概ね対象画素特定線PLに平行な方向(すなわち評価方向線ELに直行する方向)に並ぶような配置となっている。また、このときには、左右の眉の画像も同様に、概ね評価方向線ELに直行する方向に並ぶような配置となる。従って、このときの評価方向線ELに対応した評価方向が、概ね顔の画像の傾きを表す方向であると考えられる。このときには、一般にR値が小さい目や眉の画像と一般にR値が大きい肌の部分の画像との位置関係が、対象画素特定線PLの方向に沿って両者が重なる部分の小さい位置関係となる。そのため、目や眉の画像の位置における評価値は比較的小さくなり、肌の部分の画像の位置における評価値は比較的大きくなる。従って、評価方向線ELに沿った評価値の分布は、図27に示すように、比較的ばらつきの大きい(振幅の大きい)分布となり、分散の値は大きくなる。
一方、図27中の最上段および3段目、4段目に示すように、回転角が0度,−2α度,α度であるときの評価特定領域ESA(0),ESA(−2α),ESA(α)では、左右の目の中央部や左右の眉の画像が、評価方向線ELに直行する方向に並ばず、ずれた配置となっている。従って、このときの評価方向線ELに対応した評価方向は、顔の画像の傾きを表していはいない。このときには、目や眉の画像と肌の部分の画像との位置関係が、対象画素特定線PLの方向に沿って両者が重なる部分の大きい位置関係となる。そのため、評価方向線ELに沿った評価値の分布は、図27に示すように、比較的ばらつきの小さい(振幅の小さい)分布となり、分散の値は小さくなる。
以上のように、評価方向が顔の画像の傾きの方向に近い場合には、評価方向線ELに沿った評価値の分散の値が大きくなり、評価方向が顔の画像の傾きの方向から遠い場合には、評価方向線ELに沿った評価値の分散の値が小さくなる。従って、評価値の分散の値が最大となるときの評価方向に対応した角度を傾き調整に用いる調整角度として決定すれば、顔領域FAの傾きが顔の画像の傾きに適合するような顔領域FAの傾き調整を実現することができる。
なお本実施例では、評価値の分散の算出結果が、角度の範囲の臨界値、すなわち−20度または20度において最大値をとるような結果となった場合には、顔の傾きが正確に評価されていない可能性が高いと考えられるため、顔領域FAの傾き調整を行わないものとしている。
また本実施例では、決定された調整角度が、上述した顔領域FAの位置調整の際に算出された概略傾き角RIと比較される。調整角度と概略傾き角RIとの差が所定の閾値より大きい場合には、顔領域FAの位置調整および傾き調整における評価や決定の際に何らかの誤りが発生したと考えられるため、顔領域FAの位置調整および傾き調整を行わないものとしている。
ステップS525(図26)では、顔領域調整部430(図6)が、顔領域FAの傾き調整を行う。図29は、顔領域FAの傾き調整方法の一例を示す説明図である。顔領域FAの傾き調整は、顔領域FAを、初期評価特定領域ESA(0)の中心点CPを中心に、ステップS524において決定された調整角度だけ回転させることにより行う。図29の例では、破線で示した調整前の顔領域FAを反時計回りにα度回転させることにより、実線で示した調整後の顔領域FAが設定される。
顔領域FAの傾き調整終了後のステップS530(図18)では、変形領域設定部440(図6)が、変形領域TAを設定する。変形領域TAは、対象画像TI上の領域であって顔形状補正のための画像変形処理の対象となる領域である。図30は、変形領域TAの設定方法の一例を示す説明図である。図30に示すように、本実施例では、変形領域TAは、顔領域FAを基準線RLと平行な方向(高さ方向)および基準線RLに直行する方向(幅方向)に伸張(または短縮)した領域として設定される。具体的には、顔領域FAの高さ方向の大きさをHf、幅方向の大きさをWfとすると、顔領域FAを、上方向にk1・Hf、下方向にk2・Hfだけ伸ばすと共に、左右にそれぞれk3・Wfだけ伸ばした領域が、変形領域TAとして設定される。なお、k1,k2,k3は、所定の係数である。
このように変形領域TAが設定されると、顔領域FAの高さ方向の輪郭線に平行な直線である基準線RLは、変形領域TAの高さ方向の輪郭線にも平行な直線となる。また、基準線RLは、変形領域TAの幅を半分に分割する直線となる。
図30に示すように、変形領域TAは、高さ方向に関しては、概ね顎から額までの画像を含み、幅方向に関しては、左右の頬の画像を含むような領域として設定される。すなわち、本実施例では、変形領域TAが概ねそのような範囲の画像を含む領域となるように、顔領域FAの大きさとの関係に基づき、上述の係数k1,k2,k3が予め設定されている。
A−4.変形処理:
上述した顔形状補正処理(図8)における変形処理(ステップS360)について詳述する。図31は、変形処理の流れを示すフローチャートである。ステップS610では、変形領域分割部450(図6)が、変形領域TAを複数の小領域に分割する。図32は、変形領域TAの小領域への分割方法の一例を示す説明図である。変形領域分割部450は、変形領域TAに複数の分割点Dを配置し、分割点Dを結ぶ直線を用いて変形領域TAを複数の小領域に分割する。
分割点Dの配置の態様(分割点Dの個数および位置)は、分割点配置パターンテーブル610(図6)により、ステップS310(図8)において設定される変形タイプと対応付けて定義されている。変形領域分割部450は、分割点配置パターンテーブル610を参照し、ステップS310において設定された変形タイプと対応付けられた態様で分割点Dを配置する。本実施例では、上述したように、変形タイプとして顔をシャープにするための変形「タイプA」(図9参照)が設定されているため、この変形タイプに対応付けられた態様で分割点Dが配置される。
図32に示すように、分割点Dは、水平分割線Lhと垂直分割線Lvとの交点と、水平分割線Lhおよび垂直分割線Lvと変形領域TAの外枠との交点とに配置される。ここで、水平分割線Lhおよび垂直分割線Lvは、変形領域TA内に分割点Dを配置するための基準となる線である。図32に示すように、顔をシャープにするための変形タイプに対応付けられた分割点Dの配置では、基準線RLと直行する2本の水平分割線Lhと、基準線RLに平行な4本の垂直分割線Lvとが設定される。2本の水平分割線Lhを、変形領域TAの下方から順に、Lh1,Lh2と呼ぶ。また、4本の垂直分割線Lvを、変形領域TAの左から順に、Lv1,Lv2,Lv3,Lv4と呼ぶ。
水平分割線Lh1は、変形領域TAにおいて、顎の画像より下方に配置され、水平分割線Lh2は、目の画像のすぐ下付近に配置される。また、垂直分割線Lv1およびLv4は、頬のラインの画像の外側に配置され、垂直分割線Lv2およびLv3は、目尻の画像の外側に配置される。なお、水平分割線Lhおよび垂直分割線Lvの配置は、水平分割線Lhおよび垂直分割線Lvと画像との位置関係が結果的に上述の位置関係となるように予め設定された変形領域TAの大きさとの対応関係に従い実行される。
上述した水平分割線Lhと垂直分割線Lvとの配置に従い、水平分割線Lhと垂直分割線Lvとの交点と、水平分割線Lhおよび垂直分割線Lvと変形領域TAの外枠との交点とに、分割点Dが配置される。図32に示すように、水平分割線Lhi(i=1または2)上に位置する分割点Dを、左から順に、D0i,D1i,D2i,D3i,D4i,D5iと呼ぶものとする。例えば、水平分割線Lh1上に位置する分割点Dは、D01,D11,D21,D31,D41,D51と呼ばれる。同様に、垂直分割線Lvj(j=1,2,3,4のいずれか)上に位置する分割点Dを、下から順に、Dj0,Dj1,Dj2,Dj3と呼ぶものとする。例えば、垂直分割線Lv1上に位置する分割点Dは、D10,D11,D12,D13と呼ばれる。
なお、図32に示すように、本実施例における分割点Dの配置は、基準線RLに対して対称の配置となっている。
変形領域分割部450は、配置された分割点Dを結ぶ直線(すなわち水平分割線Lhおよび垂直分割線Lv)により、変形領域TAを複数の小領域に分割する。本実施例では、図32に示すように、変形領域TAが15個の矩形の小領域に分割される。
なお本実施例では、分割点Dの配置は、水平分割線Lhおよび垂直分割線Lvの本数および位置により定まるため、分割点配置パターンテーブル610は水平分割線Lhおよび垂直分割線Lvの本数および位置を定義していると言い換えることも可能である。
ステップS620(図31)では、分割領域変形部460(図6)が、対象画像TIの変形領域TAを対象とした画像の変形処理を行う。分割領域変形部460による変形処理は、ステップS610で変形領域TA内に配置された分割点Dの位置を移動して、小領域を変形することにより行われる。
変形処理のための各分割点Dの位置の移動態様(移動方向および移動距離)は、分割点移動テーブル620(図6)により、ステップS310(図8)において設定される変形タイプと変形の度合いとの組み合わせに対応付けて、予め定められている。分割領域変形部460は、分割点移動テーブル620を参照し、ステップS120において設定された変形タイプと変形の度合いとの組み合わせに対応付けられた移動方向および移動距離で、分割点Dの位置を移動する。
変形タイプとして顔をシャープにするための変形「タイプA」(図9参照)が設定され、変形度合いとして程度「中」の度合いが設定されている場合には、これらの変形タイプおよび変形度合いの組み合わせに対応付けられた移動方向および移動距離で、分割点Dの位置が移動されることとなる。
また、変形度合いとして「自動」が選択されている場合には、分割点Dの移動方向および移動距離が、変形量設定部490によって設定された変形量DQに基づいて決定される。
図33は、分割点移動テーブル620の内容の一例を示す説明図である。また図34は、分割点移動テーブル620に従った分割点Dの位置の移動の一例を示す説明図である。図36には、分割点移動テーブル620により定義された分割点Dの位置の移動態様の内、顔をシャープにするための変形タイプと変形度合い「自動」との組み合わせに対応付けられた移動態様を示している。図33に示すように、分割点移動テーブル620には、各分割点Dについて、基準線RLと直交する方向(H方向)および基準線RLと平行な方向(V方向)に沿った移動量が示されている。なお、分割点移動テーブル620に示された移動量の単位は、対象画像TIの画素ピッチPPである。また、テーブル中の移動量DQpは、変形量設定部490(図6)によって決定される。
図8のステップS350では、変形量設定部490は、設定した変形量DQを画素ピッチに換算することによって、移動量DQpを算出する。また、H方向については、向かって右側への移動量が正の値として表され、向かって左側への移動量が負の値として表され、V方向については、上方への移動量が正の値として表され、下方への移動量が負の値として表される。例えば、分割点D11は、H方向に沿って右側に画素ピッチPPのDQp倍の距離だけ移動され、V方向に沿って上方に画素ピッチPPの2*DQp倍の距離だけ移動される。また、例えば分割点D22は、H方向およびV方向共に移動量がゼロであるため、移動されない。なお、変形度合いとして「強(S)」、「中(M)」、「弱(W)」のいずれかが選択された場合には、移動量DQpとして、変形量設定部490によって調整された値の代わりに、各変形度合いに対応付けて予め定められた値が利用される。
なお、本実施例では、変形領域TAの内外の画像間の境界が不自然とならないように、変形領域TAの外枠上に位置する分割点D(例えば図32に示す分割点D10等)の位置は移動されないものとしている。従って、図33に示した分割点移動テーブル620には、変形領域TAの外枠上に位置する分割点Dについての移動態様は定義されていない。
図34では、移動前の分割点Dは白抜きの丸で、移動後の分割点Dや位置の移動の無い分割点Dは黒丸で示されている。また、移動後の分割点Dは分割点D’と呼ばれるものとする。例えば分割点D11の位置は、図34において右上方向に移動され、分割点D’11となる。
なお、本実施例では、基準線RLに対して対称な位置関係にある2つの分割点Dの組み合わせ(例えば分割点D11とD41との組み合わせ)のすべてが、分割点Dの移動後も、基準線RLに対して対称な位置関係を維持するように、移動態様が定められている。
分割領域変形部460は、変形領域TAを構成する各小領域について、分割点Dの位置移動前の状態における小領域の画像が、分割点Dの位置移動により新たに定義された小領域の画像となるように、画像の変形処理を行う。例えば、図34において、分割点D11,D21,D22,D12を頂点とする小領域(ハッチングを付して示す小領域)の画像は、分割点D’11,D’21,D22,D’12を頂点とする小領域の画像に変形される。
図35は、分割領域変形部460による画像の変形処理方法の概念を示す説明図である。図35では、分割点Dを黒丸で示している。図35では、説明を簡略化するために、4つの小領域について、左側に分割点Dの位置移動前の状態を、右側に分割点Dの位置移動後の状態を、それぞれ示している。図35の例では、中央の分割点Daが分割点Da’の位置に移動され、その他の分割点Dの位置は移動されない。これにより、例えば、分割点Dの移動前の分割点Da,Db,Dc,Ddを頂点とする矩形の小領域(以下「変形前注目小領域BSA」とも呼ぶ)の画像は、分割点Da’,Db,Dc,Ddを頂点とする矩形の小領域(以下「変形後注目小領域ASA」とも呼ぶ)の画像に変形される。
本実施例では、矩形の小領域を小領域の重心CGを用いて4つの三角形領域に分割し、三角形領域単位で画像の変形処理を行っている。図35の例では、変形前注目小領域BSAが、変形前注目小領域BSAの重心CGを頂点の1つとする4つの三角形領域に分割される。同様に、変形後注目小領域ASAが、変形後注目小領域ASAの重心CG’を頂点の1つとする4つの三角形領域に分割される。そして、分割点Daの移動前後のそれぞれの状態において対応する三角形領域毎に、画像の変形処理が行われる。例えば、変形前注目小領域BSA中の分割点Da,Ddおよび重心CGを頂点とする三角形領域の画像が、変形後注目小領域ASA中の分割点Da’,Ddおよび重心CG’を頂点とする三角形領域の画像に変形される。
図36は、三角形領域における画像の変形処理方法の概念を示す説明図である。図36の例では、点s,t,uを頂点とする三角形領域stuの画像が、点s’,t’,u’を頂点とする三角形領域s’t’u’の画像に変形される。画像の変形は、変形後の三角形領域s’t’u’の画像中のある画素の位置が、変形前の三角形領域stuの画像中のどの位置に相当するかを算出し、算出された位置における変形前の画像における画素値を変形後の画像の画素値とすることにより行う。
例えば、図36において、変形後の三角形領域s’t’u’の画像中の注目画素p’の位置は、変形前の三角形領域stuの画像中の位置pに相当するものとする。位置pの算出は、以下のように行う。まず、注目画素p’の位置を、下記の式(4)のようにベクトルs’t’とベクトルs’u’との和で表現するための係数m1およびm2を算出する。
Figure 0004946741
次に、算出された係数m1およびm2を用いて、下記の式(5)により、変形前の三角形領域stuにおけるベクトルstとベクトルsuとの和を算出することにより、位置pが求まる。
Figure 0004946741
変形前の三角形領域stuにおける位置pが、変形前の画像の画素中心位置に一致した場合には、当該画素の画素値が変形後の画像の画素値とされる。一方、変形前の三角形領域stuにおける位置pが、変形前の画像の画素中心位置からはずれた位置となった場合には、位置pの周囲の画素の画素値を用いたバイキュービック等の補間演算により、位置pにおける画素値を算出し、算出された画素値が変形後の画像の画素値とされる。
変形後の三角形領域s’t’u’の画像中の各画素について上述のように画素値を算出することにより、三角形領域stuの画像から三角形領域s’t’u’の画像への画像変形処理を行うことができる。分割領域変形部460は、図34に示した変形領域TAを構成する各小領域について、上述したように三角形領域を定義して変形処理を行い、変形領域TAにおける画像変形処理を行う。
ここで、変形タイプとして顔をシャープにするための変形「タイプA」(図9参照)が設定され、変形度合いとして「自動」が設定された場合を例に取り、顔形状補正の態様についてより詳細に説明する。図37は、この場合における顔形状補正の態様を示す説明図である。図37には、変形領域TAを構成する各小領域の変形態様のイメージを矢印により示している。
図37の例に示す顔形状補正では、基準線RLと平行な方向(V方向)に関し、水平分割線Lh1上に配置された分割点D(D11,D21,D31,D41)の位置は上方に移動される一方、水平分割線Lh2上に配置された分割点D(D12,D22,D32,D42)の位置は移動されない(図33参照)。従って、水平分割線Lh1と水平分割線Lh2との間に位置する画像は、V方向に関して縮小される。上述したように、水平分割線Lh1は顎の画像より下方に配置され、水平分割線Lh2は目の画像のすぐ下付近に配置されるため、この顔形状補正では、顔の画像の内、顎から目の下にかけての部分の画像がV方向に縮小されることとなる。この結果、画像中の顎のラインは上方に移動する。
他方、基準線RLと直交する方向(H方向)に関しては、垂直分割線Lv1上に配置された分割点D(D11,D12)の位置は右方向に移動され、垂直分割線Lv4上に配置された分割点D(D41,D42)の位置は左方向に移動される(図33参照)。さらに、垂直分割線Lv2上に配置された2つの分割点Dの内、水平分割線Lh1上に配置された分割点D(D21)の位置は右方向に移動され、垂直分割線Lv3上に配置された2つの分割点Dの内、水平分割線Lh1上に配置された分割点D(D31)の位置は左方向に移動される(図33参照)。従って、垂直分割線Lv1より左側に位置する画像は、H方向に関して右側に拡大され、垂直分割線Lv4より右側に位置する画像は、左側に拡大される。また、垂直分割線Lv1と垂直分割線Lv2との間に位置する画像は、H方向に関して縮小または右側に移動され、垂直分割線Lv3と垂直分割線Lv4との間に位置する画像は、H方向に関して縮小または左側に移動される。さらに、垂直分割線Lv2と垂直分割線Lv3との間に位置する画像は、水平分割線Lh1の位置を中心にH方向に関して縮小される。
上述したように、垂直分割線Lv1およびLv4は、頬のラインの画像の外側に配置され、垂直分割線Lv2およびLv3は、目尻の画像の外側に配置される。そのため、図37の例における顔形状補正では、顔の画像の内、両目尻より外側の部分の画像が全体的にH方向に縮小される。特に顎付近において縮小率が高くなる。この結果、画像中の顔の形状は、全体的に幅方向に細くなる。
上述したH方向およびV方向の変形態様を総合すると、図37の例に示した顔形状補正により、対象画像TI中の顔の形状がシャープになる。なお、顔の形状がシャープになるとは、いわゆる「小顔」になると表現することもできる。
なお、図37に示す分割点D22,D32,D33,D23を頂点とする小領域(ハッチングを付した領域)は、上述した水平分割線Lh2や垂直分割線Lv2およびLv3の配置方法によると、両目の画像を含む領域となる。図33に示すように、分割点D22およびD32はH方向にもV方向にも移動されないため、この両目の画像を含む小領域は変形されない。このように図37の例では、両目の画像を含む小領域については変形しないこととし、顔形状補正後の画像がより自然で好ましいものとなるようにしている。
また、対象画像TI上の一部の変形領域が変形される代わりに、対象画像TIの全体のアスペクト比を変更するものであってもよい。この場合、被写体の幅方向に沿って対象画像TIを圧縮する変形処理するものの他、被写体の高さ方向に沿って対象画像TIを伸張する変形処理であってもよい。この場合も、被写体の高さに対する幅の比率が小さくなるので、画像の観察によって得られる被写体の印象を、実物の観察によって得られる印象に近づけることができる。
B.第二の実施形態
上記した第一の実施形態では、被写体距離Sdとして撮影装置から被写体までの距離を使用し、被写体距離Sdに応じて画像処理の度合いを変更した。さらに、対象画像TIにおける各撮像対象の間の相対的な距離を使用し、対象画像TI内の領域ごとに画像処理の度合いを変化させるものであってもよい。ここで、撮像対象とは、対象画像TI内に存在する各物体を意味する。また、各撮像対象の相対的な距離とは、対象画像TIに含まれる各撮像対象の間の距離を言う。
肉眼を通して結像される画像は、注目対象からの距離に応じて鮮鋭度が変化する。つまり、肉眼では注目対象に対しては鮮鋭度が高くなるようピントを調整するため、注目対象から距離が遠ざかるほど鮮鋭度が低下していく。そのため、DSC100において、フォーカスが合わせられた領域(フォーカス領域FC)を基準として、フォーカス領域FCからの距離に応じて鮮鋭度が変化するよう、画像データに対して処理を行なう。なお、第二の実施形態におけるDSC100とプリンタ300の構成は第一の実施形態と同様である。
図38は、対象画像TIにおけるフォーカス領域FCと、背景領域BCとの位置関係を示す。また、図39は、フォーカス領域FCと、背景領域BCとの距離関係を説明する図である。図に示すように、背景領域BC1,BC2に含まれる物体はフォーカス領域FCに対して撮影位置側に存在する物体である。また、背景領域BC3,BC4に含まれる物体は、フォーカス領域FCに対して後方に存在する物体である。また、図40は、相対的距離Sd2とぼかし度合いとの関係を示す図である。なお、図40におけるぼかし度合いは、相対的距離Sd2が大きくなるほど、ぼかし度合いが大きくなるものである。
図41は、第2実施例のDSC100による距離算出の流れを示すフローチャートである。なお、この処理は図2におけるステップS130で実行される。ステップS700では、被写体距離推定部230は、ピントを合わせたい領域に対してオートフォーカスを行いフォーカス領域FCを取得する。ステップS710にて、レンズ102はまだ1回も移動されていないため、被写体距離推定部230は、レンズ駆動制御部106を制御し、レンズ102を所定位置まで移動させて焦点を変化させる(ステップS720)。
そして、レンズ102を所定位置まで移動させた状態で距離推定用画像を取得する(ステップS730)。ステップS710〜S730の一連のステップにより、情報取得部240は、焦点の異なる複数枚の距離推定用画像を取得する。
図42は、レンズ位置の変化における、フォーカス領域FCと背景領域BCとの空間周波数の変化を示す図である。なお、図42では、横軸は、レンズ102の移動後の位置を示し、縦軸は、各領域における空間周波数の値を示す。被写体距離推定部230は、取得した複数枚の距離推定用画像における、各レンズ位置での各領域の空間周波数を検出する(ステップS740)。このとき、被写体距離推定部230は、図38に示す、各領域ごとの空間周波数の値を検出していく。
また、被写体距離推定部230は、検出した空間周波数の値を領域ごとに比較して、相対的な位置関係を算出する(ステップS750)。図42に示すように、レンズ102の位置の変化に応じて、各領域における空間周波数は変化する。ここで、空間周波数が高いレンズ位置は、領域に対してピントが合っているとみなすことができるため、空間周波数の値の変化に応じて、レンズ102が領域に対してピントが合っているかを判断することができる。具体的には、各領域における空間周波数の値と、レンズ102の位置関係とを対応付けるテーブルを記憶しておき、このテーブルを参照することで、各領域間の相対的な位置関係を算出すればよい。なお、ステップS710で、レンズ102を移動させる回数を多くしていけば、空間周波数のサンプル数が増加するため、より詳細に相対的な位置関係を検出することができる。
例えば領域BC1は、レンズ位置が手前から前方に移動するに従って空間周波数が高くなり、位置f1近傍でピークとなる。その後、空間周波数はレンズ102が手前から前方に移動するに従い低くなっていく。このため、フォーカス領域FCにおける空間周波数の値の変化(f0でピーク)と比較した場合、領域BCは、フォーカス領域FCに対して前方に存在する物体であると判断することができる。なお、f0は、フォーカス領域FCを形成する画像にピントが合わせられた時の、レンズ102の位置である。上記した空間周波数の変化と、フォーカス領域、及び他の背景領域とにおける周波数の変化を比較することにより、各領域のフォーカス領域に対する相対的な位置関係を算出することが可能となる。
情報取得部240は、算出した各領域の相対的位置関係を各領域に対応させた付加情報として記憶する。このとき、記憶される付加情報としての相対的距離Sd2は、領域を構成する各画素ごとに対応させて記憶されるものである。また、画像データがRGBの色データのチャンネルの他、その他のチャンネルを有する場合は、このチャンネルに直接記憶させてもよい。
こうして記憶された距離情報Sd2は、プリンタ300側で読み取られ、ぼかし処理部540におけるぼかし度合いの算定として使用される。つまり、ぼかし処理部540は、図8におけるステップS280において、図40に示されたぼかし度合いを基に、領域ごとにぼかし度合いを設定し処理を実行する。そのため、補正後の画像データでは、フォーカス領域FCに対してはコントラストを上げる処理が実行され、他の領域に対しては、相対的距離Sd2に応じてぼかし処理の度合いを変えて実行される。このため、図38に示すように、フォーカス領域FCは鮮明な画像となり、背景領域BC2,BC3はぼかし処理の度合いが小さく、背景領域BC1,BC4はぼかし処理の度合いが大きくなる。
これにより、フォーカス領域FCからの相対的な距離に応じてぼかしの度合いが変化するため、補正後の画像データは肉眼を通じて結像した画像に近くなる。
本発明の第1実施例における画像処理装置としてのディジタルスチルカメラ100の構成を概略的に示す説明図である。 第1実施例のDSC100による画像生成処理の流れを示すフローチャートである。 顔領域FAの検出結果の一例を示す説明図である。 被写体距離Sdの推定方法を示す説明図である。 第3実施例における画像生成処理の概要を示す説明図である。 本発明の第1実施例における画像処理装置としてのプリンタ300の構成を概略的に示す説明図である。 画像の一覧表示を含むユーザインターフェースの一例を示す説明図である。 第1実施例のプリンタ300による顔形状補正印刷処理の流れを示すフローチャートである。 画像変形のタイプおよび度合いを設定するためのユーザインターフェースの一例を示す説明図である。 変形処理が行われた結果を示す説明図である。 被写体の印象の違いを示す説明図である。 第1幅W1に対する第2幅W2の比率Riと距離dとの関係を示すグラフである。 変形量DQと被写体距離Sdとの関係、および、比率Rwと被写体距離Sdとの関係を示すグラフである。 背景ぼかし印刷処理の対象画像TIaの一例を示す説明図である。 ぼかし度合いと被写体距離Sdとの関係を示すグラフである。 ぼかし処理後の対象画像TIaの一例を示す説明図である。 顔領域FAの検出結果の一例を示す説明図である。 変形領域設定処理の流れを示すフローチャートである。 顔領域FAの高さ方向の位置調整処理の流れを示すフローチャートである。 特定領域SAの一例を示す説明図である。 評価値の算出方法の一例を示す説明図である。 評価対象画素TPの選択方法の一例を示す説明図である。 高さ基準点Rhの決定方法の一例を示す説明図である。 概略傾き角RIの算出方法の一例を示す説明図である。 顔領域FAの高さ方向の位置調整方法の一例を示す説明図である。 第1実施例における顔領域FAの傾き調整処理の流れを示すフローチャートである。 顔領域FAの傾き調整のための評価値の算出方法の一例を示す説明図である。 各評価方向についての評価値の分散の算出結果の一例を示す説明図である。 顔領域FAの傾き調整方法の一例を示す説明図である。 変形領域TAの設定方法の一例を示す説明図である。 変形処理の流れを示すフローチャートである。 変形領域TAの小領域への分割方法の一例を示す説明図である。 分割点移動テーブル620の内容の一例を示す説明図である。 分割点移動テーブル620に従った分割点Dの位置の移動の一例を示す説明図である。 分割領域変形部460による画像の変形処理方法の概念を示す説明図である。 三角形領域における画像の変形処理方法の概念を示す説明図である。 この場合における顔形状補正の態様を示す説明図である。 対象画像TIにおけるフォーカス領域FCと、背景領域BCとの位置関係を示す。 フォーカス領域FCと、背景領域BCとの距離関係を説明する図である。 相対的距離Sd2とぼかし度合いとの関係を示す図である。 レンズ位置の変化における、フォーカス領域FCと背景領域BCでの空間周波数の変化を示す図である。 レンズ位置の変化における、フォーカス領域FCと背景領域BCとの空間周波数の変化を示す図である。
符号の説明
100…ディジタルスチルカメラ、102…レンズ、104…レンズ駆動部、106…レンズ駆動制御部、108…撮像素子、110…A/D変換器、114…表示部、116…操作部、118…CPU、122…バス、200…内部メモリ、210…画像生成部、220…顔領域検出部、230…被写体距離推定部、240…情報取得部、250…画像ファイル生成部、260…焦点範囲設定部、270…タイミング決定部、300…プリンタ、320…内部メモリ、340…操作部、350…表示部、360…プリンタエンジン、370…カードインターフェース(カードI/F)、372…カードスロット、400…顔形状補正部、410…変形態様設定部、412…指定取得部、420…顔領域検出部、430…顔領域調整部、440…変形領域設定部、450…変形領域分割部、460…分割領域変形部、490…変形量設定部、510…表示処理部、520…印刷処理部、530…被写体距離取得部、540…ぼかし処理部、542…ぼかし度合設定部、610…分割点配置パターンテーブル、620…分割点移動テーブル

Claims (5)

  1. 撮像によって生成された画像データにおける顔を検出する顔検出手段と、
    前記画像データに含まれる撮影対象物の位置関係を推定する位置関係推定手段と、
    前記顔検出手段が顔を検出した場合、前記撮影対象物の前記推定された位置関係が撮影位置から近くなるほど該検出した顔の幅を狭くする顔補正処理を行なう顔変形補正手段と、
    前記顔検出手段が顔を検出しない場合に、該画像データの焦点が合った領域に対しては鮮鋭度を高める処理を実行し、焦点が合っていない領域に対しては、前記推定された位置関係が撮影位置から遠くなるほどぼかし処理の度合いを強くするようぼかし処理を実行するぼかし処理手段とを有することを特徴とする画像処理装置。
  2. 前記位置関係推定手段は、
    前記画像データにおける顔に対しては、前記画像データに含まれる撮影対象物の位置関係を、焦点から前記撮影対象物までの距離を示す被写体距離をもとに推定し、
    前記顔以外の領域に対しては、前記画像データにおける前記焦点が合った領域での空間周波数を基準とした同空間周波数の変化に応じて、前記位置関係を推定することを特徴とする請求項1に記載の画像処理装置。
  3. 本画像処理装置は、前記画像データに対して複数種類の画像処理を施すことが可能であって、
    前記複数種類の画像処理の実行を受付け、受け付けた前記画像処理を実行することを特徴とする請求項1又は請求項2のいずれか一項に記載の画像処理装置。
  4. 被写体を撮像して得られた画像データに所定の画像処理を施す画像処理方法において、 前記画像データにおける顔を検出し、
    前記画像データに含まれる撮影対象物の位置関係を推定し、
    顔を検出した場合、前記撮影対象物の前記推定された位置関係が撮影位置から近くなるほど該検出した顔の幅を狭くする顔補正処理を行い、
    顔を検出しない場合に、該画像データの焦点が合った領域に対しては鮮鋭度を高める処理をし、焦点が合っていない領域に対しては、前記推定された位置関係が撮影位置から遠くなるほどぼかし処理の度合いを強くするようぼかし処理をすることを特徴とする画像処理方法。
  5. 写体を撮像して画像データを得る画像データ取得装置と、前記取得された画像データに画像処理を施すとともに、該画像データを出力する出力装置とを備える画像処理システムにおいて、
    前記画像データ取得装置は、
    前記画像データに含まれる撮影対象物の位置関係を推定する位置関係推定手段と、
    前記画像データと、前記推定した位置関係を示すデータを含む画像ファイルを生成する画像ファイル生成手段と、を有し、
    前記出力装置は、
    前記画像データにおける顔を検出する顔検出手段と、
    前記顔検出手段が顔を検出した場合、前記撮影対象物の前記推定された位置関係が撮影位置から近くなるほど該検出した顔の幅を狭くする顔補正処理を行なう人顔補正手段と、
    前記顔検出手段が顔を検出しない場合、前記画像データの焦点が合った領域に対しては鮮鋭度を高める処理を実行し、焦点が合っていない領域に対しては、前記推定された位置関係が撮影位置から遠くなるほどぼかし処理の度合いを強くするようぼかし処理を実行するぼかし処理手段を有することを特徴とする画像処理システム。
JP2007230660A 2007-09-05 2007-09-05 画像処理装置、画像処理方法、及び画像処理システム Active JP4946741B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007230660A JP4946741B2 (ja) 2007-09-05 2007-09-05 画像処理装置、画像処理方法、及び画像処理システム
US12/203,792 US7898592B2 (en) 2007-09-05 2008-09-03 Image processing apparatus, image processing method, and image processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230660A JP4946741B2 (ja) 2007-09-05 2007-09-05 画像処理装置、画像処理方法、及び画像処理システム

Publications (2)

Publication Number Publication Date
JP2009064188A JP2009064188A (ja) 2009-03-26
JP4946741B2 true JP4946741B2 (ja) 2012-06-06

Family

ID=40406808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230660A Active JP4946741B2 (ja) 2007-09-05 2007-09-05 画像処理装置、画像処理方法、及び画像処理システム

Country Status (2)

Country Link
US (1) US7898592B2 (ja)
JP (1) JP4946741B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527037B1 (ko) * 2009-06-23 2015-06-16 엘지전자 주식회사 이동 단말기 및 그 제어방법
US8811747B2 (en) 2011-10-28 2014-08-19 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
US9025835B2 (en) 2011-10-28 2015-05-05 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
US9025836B2 (en) 2011-10-28 2015-05-05 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
US9008436B2 (en) 2011-10-28 2015-04-14 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
US20130108119A1 (en) * 2011-10-28 2013-05-02 Raymond William Ptucha Image Recomposition From Face Detection And Facial Features
US8938100B2 (en) 2011-10-28 2015-01-20 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
WO2014103045A1 (ja) * 2012-12-28 2014-07-03 楽天株式会社 画像処理装置、画像処理方法、画像処理プログラム及びそのプログラムを記録するコンピュータ読み取り可能な記録媒体
JP6589294B2 (ja) * 2015-02-27 2019-10-16 株式会社ニコン 画像表示装置
US10303973B2 (en) * 2015-04-15 2019-05-28 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium for lighting processing on image using model data
JP6882715B2 (ja) * 2017-01-31 2021-06-02 ブラザー工業株式会社 コンピュータプログラム、および、画像処理装置
CN109712065A (zh) * 2017-10-25 2019-05-03 丽宝大数据股份有限公司 身体信息分析装置及其脸形模拟方法
CN107864336B (zh) * 2017-11-24 2019-07-26 维沃移动通信有限公司 一种图像处理方法、移动终端

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0981724A (ja) * 1995-09-20 1997-03-28 Canon Inc 画像処理装置及びその方法
JP3303128B2 (ja) * 1998-04-15 2002-07-15 東京大学長 複数画像を用いる画像処理方法およびそれに用いる複数画像同時撮像型カメラ装置
US7212668B1 (en) * 2000-08-18 2007-05-01 Eastman Kodak Company Digital image processing system and method for emphasizing a main subject of an image
JP3725454B2 (ja) 2001-01-17 2005-12-14 セイコーエプソン株式会社 画像ファイルの出力画像調整
JP2002247439A (ja) * 2001-02-13 2002-08-30 Ricoh Co Ltd 画像入力装置、画像入力方法、およびその方法をコンピュータで実行するためのプログラムが格納されているコンピュータが読み取り可能な記録媒体
JP3855939B2 (ja) * 2003-01-31 2006-12-13 ソニー株式会社 画像処理装置、画像処理方法及び撮影装置
JP2004318204A (ja) * 2003-04-10 2004-11-11 Sony Corp 画像処理装置、画像処理方法及び撮影装置
JP4747003B2 (ja) * 2005-06-22 2011-08-10 富士フイルム株式会社 自動合焦制御装置およびその制御方法
JP4664805B2 (ja) 2005-11-17 2011-04-06 アイシン精機株式会社 顔端検出装置、顔端検出方法、及び、プログラム
JP4127296B2 (ja) * 2006-06-09 2008-07-30 ソニー株式会社 撮像装置、および撮像装置制御方法、並びにコンピュータ・プログラム
JP5171468B2 (ja) * 2008-08-06 2013-03-27 キヤノン株式会社 撮像装置及び撮像装置の制御方法
US8570429B2 (en) * 2009-02-27 2013-10-29 Samsung Electronics Co., Ltd. Image processing method and apparatus and digital photographing apparatus using the same

Also Published As

Publication number Publication date
US7898592B2 (en) 2011-03-01
US20090059030A1 (en) 2009-03-05
JP2009064188A (ja) 2009-03-26

Similar Documents

Publication Publication Date Title
JP4946741B2 (ja) 画像処理装置、画像処理方法、及び画像処理システム
JP4973393B2 (ja) 画像処理装置、画像処理方法、画像処理プログラムおよび画像処理システム
JP2009031870A (ja) 被写体距離推定のための画像処理
JP5239625B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP2009053914A (ja) 画像処理装置および画像処理方法
US20090245655A1 (en) Detection of Face Area and Organ Area in Image
JP4289414B2 (ja) 画像変形のための画像処理
JP2007066199A (ja) 画像処理装置及び画像処理方法
JP4289415B2 (ja) 画像変形のための画像処理
JP2009211450A (ja) 画像処理装置、画像処理方法及び画像処理用コンピュータプログラム
JP4389954B2 (ja) 画像処理装置、画像処理方法、コンピュータープログラム、記録媒体、および、プリンタ
JP5256974B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP4816538B2 (ja) 画像処理装置および画像処理方法
JP4289420B2 (ja) 画像処理装置および画像処理方法
JP4816540B2 (ja) 画像処理装置および画像処理方法
JP4737324B2 (ja) 画像処理装置、画像処理方法およびコンピュータプログラム
JP2009151825A (ja) 画像処理装置および画像処理方法
JP2009055305A (ja) 画像に情報を付加する画像処理
JP2009217506A (ja) 画像処理装置及び画像処理方法
JP4946729B2 (ja) 画像処理装置
JP2008250400A (ja) 画像処理装置および画像処理方法
JP2011141889A (ja) 画像処理装置および画像処理方法
JP4862723B2 (ja) 被写体の位置検出のための画像処理
JP5163801B2 (ja) 装置、方法、及びコンピュータープログラム
JP4930525B2 (ja) 画像変形のための画像処理

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4946741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250