JP4941407B2 - Copper-clad laminate and method for producing copper-clad laminate - Google Patents

Copper-clad laminate and method for producing copper-clad laminate Download PDF

Info

Publication number
JP4941407B2
JP4941407B2 JP2008144309A JP2008144309A JP4941407B2 JP 4941407 B2 JP4941407 B2 JP 4941407B2 JP 2008144309 A JP2008144309 A JP 2008144309A JP 2008144309 A JP2008144309 A JP 2008144309A JP 4941407 B2 JP4941407 B2 JP 4941407B2
Authority
JP
Japan
Prior art keywords
resin
copper
drying
clad laminate
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008144309A
Other languages
Japanese (ja)
Other versions
JP2009286095A (en
Inventor
剛志 八塚
潤一郎 大西
勝也 示野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2008144309A priority Critical patent/JP4941407B2/en
Publication of JP2009286095A publication Critical patent/JP2009286095A/en
Application granted granted Critical
Publication of JP4941407B2 publication Critical patent/JP4941407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は銅箔上に複数のポリイミド系樹脂層を形成した銅張積層板およびその製造方法に関し、より詳しくは過熱水蒸気による処理をポリイミド系樹脂層に施した後、この処理面に別のあるいは同じポリイミド系樹脂層を形成した銅張積層板およびその製造方法に関するものである。   The present invention relates to a copper clad laminate in which a plurality of polyimide resin layers are formed on a copper foil and a method for producing the same. More specifically, after the polyimide resin layer is treated with superheated steam, The present invention relates to a copper clad laminate having the same polyimide resin layer and a method for producing the same.

電子機器の電気・電子回路には、絶縁材料と導電材料からなる積層板を回路加工したプリント配線板が使われている。プリント配線板は板状のリジットプリント配線板と柔軟性に富んだフレキシブルプリント配線板に大別できる。
フレキシブルプリント配線板の材料となるフレキシブル基板には、3層フレキシブル基板と2層フレキシブル基板がある。3層フレキシブル基板はポリイミドなどのベースフィルムと銅箔をエポキシ樹脂、アクリル樹脂あるいはポリエステル樹脂等の接着剤を使って貼り合せたものである。一方、2層フレキシブル基板は接着剤を介することなく直接、銅箔の上に耐熱性の絶縁層を設けたものである。エポキシ樹脂、アクリル樹脂あるいはポリエステル樹脂等の接着剤を使わずに、フレキシブル基板を得る方法には下記の3つの方法がある。
(1)キャスト法。銅箔等の金属箔にポリイミド系等の耐熱樹脂溶液を塗布し、乾燥、必要により熱処理を施す。
(2)ラミネート法。ポリイミドフィルム等の耐熱フィルムの少なくとも片側に、熱可塑性の耐熱樹脂層を設けて、該熱可塑性樹脂層と銅箔等の金属箔とを貼り合せる。
(3)めっき法。ポリイミドフィルム等の耐熱フィルムに銅めっき等のめっきを施す。
銅箔等の金属箔にポリイミド系等の耐熱樹脂溶液を塗布し、乾燥、必要により熱処理を施す方法はキャスト法といわれている。キャスト法により得られたフレキシブル配線板は寸法安定性が優れるため、近年のプリント配線板の高密度化、ファインピッチ化に対応した材料である。
キャスト法フレキシブル基板の製造時、耐熱樹脂溶液の溶剤を乾燥するために用いられる乾燥方法には熱風乾燥、熱ロール接触乾燥、赤外線加熱乾燥あるいは遠赤外線加熱乾燥等が用いられている。この際用いられる耐熱性樹脂としてはポリイミド前駆体樹脂、溶剤可溶ポリイミド樹脂、ポリアミドイミド樹脂等が挙げられる。これらの溶剤としてはN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、γ―ブチロラクトン、フェノール、クレゾール等が使われるが、これらの溶剤は高沸点のため乾燥性が悪い。特にN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド等のアミド系溶剤は分子間水素結合により蒸気圧が低いこと、また耐熱性樹脂のガラス転移温度が高いため溶剤の拡散が乏しいこともあり、塗膜中に残留しやすい。残留溶剤は耐熱性の低下や寸法安定性の低下の原因になる。溶剤を残留させないために、乾燥温度や熱処理温度を高くしすぎると、銅箔の変色や特性変化、樹脂の劣化による接着力低下や機械的特性の悪化が起こる。乾燥や熱処理温度が高くなることによる弊害を避けて、溶剤を残留させないために、時間をかけて乾燥や熱処理が行われている。そのため、生産性に問題がある。
また、キャスト法では、ポリイミド系樹脂層の厚みが増すほど、溶剤乾燥に起因する体積収縮により発生する内部応力の影響が顕著になる。たとえ同一の樹脂でも数回に分けて、塗布・乾燥・熱処理が必要となることがある。
キャスト法フレキシブル基板において、銅箔との接着性、回路版での寸法安定性やカールやねじれがないこと、各種耐熱性等の要求を単一のポリイミド系樹脂で満たすことは困難になる。銅箔との接着性、低熱膨張係数、溶剤乾燥性等の特性に優れた樹脂を組み合わせることがなされている。しかし、複数の樹脂を用いると樹脂間での接着性が悪い場合が多く、層間剥離が起こりやすいという問題がある。
特許文献1〜2にはキャスト法により銅箔上に複数のポリイミド系樹脂層を設けることが提案されている。
最近、加熱熱源として過熱水蒸気が脚光を浴びている。過熱水蒸気とは、常圧で飽和水蒸気をさらに加熱して温度を上げた水蒸気のことをいう。過熱水蒸気は温度が150℃以上では放射熱エネルギーが通常の水蒸気と比較して著しく大きくなるため、短時間で物質を加熱することができる。過熱水蒸気は食品の調理、樹脂製品や金属製品の洗浄、食品容器の殺菌、あるいは土壌処理等に用いられている。過熱水蒸気を加熱熱源として用いることは、食品の調理以外ではあまり普及していない。
しかし、過熱水蒸気を一般的な加熱空気と比較すると下記の特徴がある。
(1)加熱空気に比べて熱容量が大きいので、急速加熱が可能。
(2)加熱空気に比べて約2倍の定圧比熱を有するため、加熱能力に優れている。
(3)潜熱のエネルギーを有するので、加熱空気に比べエンタルピーが大きい。
(4)空気による伝熱は対流伝熱に限られるが、過熱水蒸気では対流伝熱、放射伝熱、凝縮伝熱からの複合伝熱作用によるので、熱効率が良い。
過熱水蒸気を加熱熱源として乾燥させることは特許文献3〜8で知られている。特許文献3〜7はセルロース繊維を主成分とする湿紙の水分を過熱水蒸気によって乾燥させる方法が提案されている。特許文献8はポリオレフィンフィルム、ポリアミドフィルム、ポリエステルフィルムへの塗工フィルムやセロハンの湿潤フィルムへの過熱水蒸気の適用が提案されている。非特許文献1には過熱水蒸気の特性や利用例が示されている。
特許第2909844号公報 特許第3034838号公報 特許第2907265号公報 特許第2907266号公報 特許第3007542号公報 特許公開2003−41495号公報 特許公開2005−15924号公報 特許公開2007−276283号公報 過熱水蒸気技術集成 (株)エヌ・ティ・エス(2005年発行)
A printed wiring board obtained by processing a laminated board made of an insulating material and a conductive material is used for an electric / electronic circuit of an electronic device. Printed wiring boards can be broadly classified into plate-shaped rigid printed wiring boards and flexible printed wiring boards with great flexibility.
There are a three-layer flexible substrate and a two-layer flexible substrate as flexible substrates used as the material of the flexible printed wiring board. The three-layer flexible substrate is obtained by bonding a base film such as polyimide and a copper foil using an adhesive such as an epoxy resin, an acrylic resin, or a polyester resin. On the other hand, the two-layer flexible substrate is obtained by providing a heat-resistant insulating layer directly on a copper foil without using an adhesive. There are the following three methods for obtaining a flexible substrate without using an adhesive such as epoxy resin, acrylic resin or polyester resin.
(1) Cast method. A polyimide-based heat-resistant resin solution is applied to a metal foil such as copper foil, dried, and heat-treated if necessary.
(2) Laminating method. A thermoplastic heat-resistant resin layer is provided on at least one side of a heat-resistant film such as a polyimide film, and the thermoplastic resin layer and a metal foil such as a copper foil are bonded to each other.
(3) Plating method. A heat-resistant film such as a polyimide film is plated with copper.
A method of applying a polyimide-based heat-resistant resin solution to a metal foil such as a copper foil, drying it, and subjecting it to a heat treatment if necessary is called a casting method. Since the flexible wiring board obtained by the casting method has excellent dimensional stability, it is a material corresponding to the recent increase in density and fine pitch of printed wiring boards.
As the drying method used for drying the solvent of the heat-resistant resin solution during the production of the cast method flexible substrate, hot air drying, hot roll contact drying, infrared heating drying, far infrared heating drying, or the like is used. Examples of the heat resistant resin used at this time include a polyimide precursor resin, a solvent-soluble polyimide resin, and a polyamideimide resin. As these solvents, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, γ-butyrolactone, phenol, cresol and the like are used, but these solvents have a high boiling point and thus have poor drying properties. In particular, amide solvents such as N-methyl-2-pyrrolidone and N, N-dimethylacetamide have low vapor pressure due to intermolecular hydrogen bonding, and the diffusion of the solvent is poor due to the high glass transition temperature of the heat-resistant resin. Yes, it tends to remain in the coating film. Residual solvent causes a decrease in heat resistance and a decrease in dimensional stability. If the drying temperature or heat treatment temperature is too high in order not to leave the solvent, the discoloration or characteristic change of the copper foil, the adhesive strength is reduced due to the deterioration of the resin, or the mechanical characteristics are deteriorated. Drying and heat treatment are performed over time in order to avoid adverse effects caused by an increase in drying and heat treatment temperature and prevent the solvent from remaining. Therefore, there is a problem in productivity.
Further, in the casting method, as the thickness of the polyimide resin layer increases, the influence of internal stress generated by volume shrinkage due to solvent drying becomes more prominent. Even with the same resin, it may be necessary to apply, dry, and heat-treat several times.
In the cast method flexible substrate, it becomes difficult to satisfy the requirements such as adhesiveness to the copper foil, dimensional stability in the circuit plate, no curling and twisting, and various heat resistances with a single polyimide resin. A combination of resins excellent in properties such as adhesion to copper foil, a low thermal expansion coefficient, and solvent drying properties has been made. However, when a plurality of resins are used, the adhesion between the resins is often poor, and there is a problem that delamination tends to occur.
Patent Documents 1 and 2 propose providing a plurality of polyimide resin layers on a copper foil by a casting method.
Recently, superheated steam has attracted attention as a heating heat source. Superheated steam refers to steam that has been heated by further heating saturated steam at normal pressure. Since superheated steam has a radiant heat energy significantly higher than that of normal steam at a temperature of 150 ° C. or higher, the substance can be heated in a short time. Superheated steam is used for cooking food, washing resin products and metal products, sterilizing food containers, or treating soil. The use of superheated steam as a heating heat source is not very popular except for cooking food.
However, when superheated steam is compared with general heated air, it has the following characteristics.
(1) Since the heat capacity is larger than that of heated air, rapid heating is possible.
(2) Since it has a constant-pressure specific heat about twice that of heated air, it has excellent heating capacity.
(3) Since it has latent heat energy, its enthalpy is larger than that of heated air.
(4) Although heat transfer by air is limited to convection heat transfer, superheated steam has a high heat efficiency because of the combined heat transfer action from convection heat transfer, radiant heat transfer, and condensation heat transfer.
It is known in Patent Documents 3 to 8 to dry superheated steam as a heating heat source. Patent Documents 3 to 7 propose a method of drying moisture of wet paper mainly composed of cellulose fibers with superheated steam. Patent Document 8 proposes application of superheated steam to a polyolefin film, a polyamide film, a coating film on a polyester film, or a wet cellophane film. Non-Patent Document 1 shows characteristics and utilization examples of superheated steam.
Japanese Patent No. 2909844 Japanese Patent No. 3034838 Japanese Patent No. 2907265 Japanese Patent No. 2907266 Japanese Patent No. 3007542 Japanese Patent Publication No. 2003-41495 Japanese Patent Publication No. 2005-15924 Japanese Patent Publication No. 2007-276283 Superheated steam technology assembly NTS Corporation (issued in 2005)

本発明の課題は、接着性や耐熱耐久性に優れた銅張積層板を提供することおよび該銅張積層板を効率よく製造する方法を提供することにある。   The subject of this invention is providing the copper clad laminated board excellent in adhesiveness and heat resistance durability, and providing the method of manufacturing this copper clad laminated board efficiently.

本発明者等は、キャスト法積層体の製造方法について鋭意研究を重ねた結果、本発明に到達した。すなわち、本発明は銅箔上に複数のポリイミド系樹脂層が形成されており、複数のポリイミド系樹脂層は過熱水蒸気により処理されたポリイミド系樹脂層上に形成されたことを特徴とする銅張積層板である。また、銅箔上に複数のポリイミド系樹脂層を形成する際、過熱水蒸気により処理されたポリイミド系樹脂層上に別のあるいは同じポリイミド系樹脂層を形成することを特徴とする銅張積層板の製造方法である。   The inventors of the present invention have arrived at the present invention as a result of intensive studies on a method for producing a cast laminate. That is, in the present invention, a plurality of polyimide resin layers are formed on a copper foil, and the plurality of polyimide resin layers are formed on a polyimide resin layer treated with superheated steam. It is a laminated board. Moreover, when forming a plurality of polyimide resin layers on a copper foil, another or the same polyimide resin layer is formed on a polyimide resin layer treated with superheated steam. It is a manufacturing method.

本発明により、接着性や耐熱耐久性に優れた銅張積層板を効率よく生産できる。   By this invention, the copper clad laminated board excellent in adhesiveness and heat-resistant durability can be produced efficiently.

本発明で用いるポリイミド系樹脂はポリイミド前駆体樹脂、溶剤可溶ポリイミド樹脂、ポリアミドイミド樹脂が挙げられる。ポリイミド系樹脂は通常の方法で重合することができる。例えば、テトラカルボン酸二無水物とジアミンを低温で溶液中で反応させポリイミド前躯体溶液を得る方法、テトラカルボン酸二無水物とジアミンを高温の溶液中で反応させ溶剤可溶性のポリイミド溶液を得る方法、原料としてイソシアネートを用いる方法、原料として酸クロリドを用いる方法などがある。
ポリイミド前躯体樹脂や溶剤可溶ポリイミド樹脂に用いる原料としては、以下に示すような物がある。酸成分としてはピロメリット酸、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸、ビフェニル-3,3’,4,4’-テトラカルボン酸、ジフェニルスルフォン-3,3’,4,4’-テトラカルボン酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸、ナフタレン-2,3,6,7-テトラカルボン酸、ナフタレン-1,2,4,5-テトラカルボン酸、ナフタレン-1,4,5,8-テトラカルボン酸,水素添加ピロメリット酸、水素添加ビフェニル-3,3’,4,4’-テトラカルボン酸等の一無水物、二無水物、エステル化物などを単独、あるいは2種以上の混合物として用いることができる。また、アミン成分としてはp-フェニレンジアミン、m-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、3,4’-ジアミノビフェニル、3,3-ジアミノビフェニル、3,3’-ジアミノベンズアニリド、4,4’-ジアミノベンズアニリド、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、2,6-トリレンジアミン、2,4-トリレンジアミン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルヘキサフルオロプロパン、3,3’-ジアミノジフェニルヘキサフルオロプロパン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルヘキサフルオロイソプロピリデン、p-キシレンジアミン、m-キシレンジアミン、1,4-ナフタレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、2,7-ナフタレンジアミン、o-トリジン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフロロプロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、シクロヘキシル-1,4-ジアミン、イソフォロンジアミン、水素添加4,4’-ジアミノジフェニルメタン、あるいはこれらに対応するジイソシアネート化合物等の単独あるいは2種以上の混合物を用いることができる。また、これら酸成分、アミン成分の組み合わせで別途重合した樹脂を混合して使用することもできる。
ポリアミドイミド樹脂に用いる原料としては、酸成分としてトリメリット酸無水物、ジフェニルエーテル-3,3’,4’-トリカルボン酸無水物、ジフェニルスルフォン-3,3’,4’-トリカルボン酸無水物、ベンゾフェノン-3,3’,4’-トリカルボン酸無水物、ナフタレン-1,2,4-トリカルボン酸無水物、水素添加トリメリット酸無水物等のトリカルボン酸無水物類が単独あるいは混合物として挙げられる。また、トリカルボン酸無水物の他に、ポリイミド樹脂であげたテトラカルボン酸、それらの無水物やジカルボン酸等を併用して用いることもできる。アミン成分としてはポリイミド樹脂であげたジアミン、あるいはジイソシアネートの単独あるいは混合物が挙げられる。また、これら酸成分、アミン成分の組み合わせで別途重合した樹脂を混合して使用することもできる。
本発明で用いるポリイミド系樹脂溶液の溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、テトラメチルウレア、スルフォラン、ジメチルスルフォキシド、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノンを挙げることができる。これらのなかでN-メチル-2-ピロリドン、N,N-ジメチルアセトアミドが好ましい。また、トルエン、キシレン、ジグライム、テトラヒドロフラン、メチルエチルケトン等の溶剤を、溶解性を阻害しない範囲で加えてもかまわない。
本発明で用いる金属箔としては銅箔を用いる。用いる銅箔は電解銅箔、圧延銅箔どちらでもかまわない。また、酸化処理や合金処理あるいはシランカップリング剤やチタンカップリング剤で銅箔の表面処理を行っても良い。銅箔の厚みは特に限定はないが1μmのキャリア付き極薄銅箔から1mmのシートを用いることができる。
本発明において銅張積層板の諸特性、たとえば、機械的特性、電気的特性、滑り性、難燃性などを改良する目的で他の樹脂や各種添加剤を配合あるいは反応させてもかまわない。例としては、滑剤としてはシリカ、タルク、シリコーン化合物等が挙げられる。難燃剤としては含リン化合物、トリアジン系化合物、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。酸化防止剤や紫外線吸収剤等の安定剤、めっき活性剤、有機や無機の充填剤も挙げられる。また、イソシアネート化合物、エポキシ樹脂、フェノール樹脂等の硬化剤やポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂等の他樹脂を配合してもかまわない。
本発明の銅張積層板の製造方法について説明する。ポリイミド系樹脂を過熱水蒸気により熱処理した後に、処理した樹脂面上に、別のあるいは同じポリイミド系樹脂層を設ける。過熱水蒸気による熱処理によりポリイミド系樹脂の表面層で一部分解が起こり、表面活性が高くなり、組成の異なるポリイミド系樹脂でも接着性が改善できる。
本発明ではポリイミド系樹脂溶液を銅箔に塗布し一次乾燥したのち、さらにより高温での乾燥・熱処理を行うことが望ましい。一次乾燥後のコート層中の残存溶剤率を5〜35%、好ましくは15〜30%の範囲に調整することで溶剤の蒸発に伴う体積収縮の影響を小さくすることができ、剥離強度やカールの改善に効果がある。一次乾燥条件は60〜150℃で1〜10分が望ましい。この一次乾燥時に過熱水蒸気を使ってもかまわない。一次乾燥後、二次加熱処理を行う。ポリイミド系樹脂がポリイミド前躯体樹脂の場合には、残留溶剤の除去とイミド化反応を加熱処理で行う。ポリイミド系樹脂が溶剤可溶ポリイミド樹脂やポリアミドイミド樹脂の場合には加熱により溶剤を除去する。二次加熱処理時に、過熱水蒸気による熱処理が望ましい。過熱水蒸気による処理は熱風乾燥や赤外線や遠赤外線乾燥と併用してもかまわない。用いる過熱水蒸気の温度は200〜400℃、好ましくは250〜350℃の範囲にする。熱処理時間は用いる樹脂により異なるが、10秒以上10分以下が望ましい。二次加熱処理時には200℃以上の高温になるため、銅箔の変色や、物性の変化が起こることがある。必要により酸素濃度を下げることが必要となる。銅箔を用いる場合には酸素濃度を5%以下、好ましくは0.5%以下に下げることが望ましい。
熱可塑性ポリイミド系樹脂を表面に設けたポリイミド系フィルムを用いてラミネート法で銅張積層板を製造し、ポリイミド系フィルム面を過熱水蒸気で熱処理をしても良い。
過熱水蒸気により表面処理を施した面に、別のあるいは同じポリイミド系樹脂溶液を塗布すること、あるいは熱可塑性ポリイミド系樹脂を表面に設けたポリイミド系フィルムをラミネートすることにより、二番目のポリイミド系樹脂層を設ける。3番目のポリイミド系樹脂層を設けるには、同様に、二番目のポリイミド系樹脂層を過熱水蒸気により処理した後に、行う。
銅箔と反対面になる最終の樹脂層は樹脂厚みが20μmを超える場合は、真空乾燥機を用いたバッチ処理が樹脂の劣化が少ないことから望ましい。
複数のポリイミド系樹脂の組み合わせは要求される特性に応じて決定される。たとえば、COF(Chip on Film)用銅張積層板では、銅箔と接する樹脂にはインナーリードボンディングに耐えるためにガラス転移温度が350℃以上で銅箔との接着性が良好な樹脂が、銅箔と反対面の樹脂層には、カール低減から低熱膨張率の樹脂が望ましい。
Examples of the polyimide resin used in the present invention include a polyimide precursor resin, a solvent-soluble polyimide resin, and a polyamideimide resin. The polyimide resin can be polymerized by a usual method. For example, a method of obtaining a polyimide precursor solution by reacting tetracarboxylic dianhydride and diamine in a solution at low temperature, and a method of obtaining a solvent-soluble polyimide solution by reacting tetracarboxylic dianhydride and diamine in a high temperature solution. There are a method using isocyanate as a raw material and a method using acid chloride as a raw material.
The raw materials used for the polyimide precursor resin and the solvent-soluble polyimide resin include the following. Examples of acid components include pyromellitic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid, biphenyl-3,3', 4,4'-tetracarboxylic acid, diphenylsulfone-3,3 ', 4, 4'-tetracarboxylic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid, naphthalene-2,3,6,7-tetracarboxylic acid, naphthalene-1,2,4,5-tetracarboxylic acid , Monoanhydrides, dianhydrides, esterified products such as naphthalene-1,4,5,8-tetracarboxylic acid, hydrogenated pyromellitic acid, hydrogenated biphenyl-3,3 ', 4,4'-tetracarboxylic acid Etc. can be used alone or as a mixture of two or more. Examples of the amine component include p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 3,4'-diaminobiphenyl, 3,3-diaminobiphenyl, 3,3'-diaminobenzanilide, 4,4'-diaminobenzanilide, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3 , 4'-diaminobenzophenone, 2,6-tolylenediamine, 2,4-tolylenediamine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylhexafluoropropane, 3,3'-diaminodiphenylhexafluoropropane, 4,4'-diaminodiphenylmeta 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylhexafluoroisopropylidene, p-xylenediamine, m-xylenediamine, 1,4-naphthalenediamine, 1,5-naphthalenediamine, 2,6- Naphthalenediamine, 2,7-naphthalenediamine, o-tolidine, 2,2'-bis (4-aminophenyl) propane, 2,2'-bis (4-aminophenyl) hexafluoropropane, 1,3-bis ( 3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane Bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3- Aminophenoxy) phenyl] hexafuro Propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, One or a mixture of two or more of cyclohexyl-1,4-diamine, isophoronediamine, hydrogenated 4,4′-diaminodiphenylmethane, or the corresponding diisocyanate compounds can be used. In addition, a resin separately polymerized by a combination of these acid component and amine component can be mixed and used.
Raw materials used for polyamideimide resins include trimellitic anhydride, diphenyl ether-3,3 ', 4'-tricarboxylic acid anhydride, diphenylsulfone-3,3', 4'-tricarboxylic acid anhydride, benzophenone as acid components Tricarboxylic acid anhydrides such as -3,3 ′, 4′-tricarboxylic acid anhydride, naphthalene-1,2,4-tricarboxylic acid anhydride, and hydrogenated trimellitic acid anhydride may be used alone or as a mixture. In addition to tricarboxylic acid anhydrides, tetracarboxylic acids mentioned in the polyimide resin, their anhydrides, dicarboxylic acids and the like can also be used in combination. Examples of the amine component include diamines mentioned for polyimide resins, or diisocyanates alone or as a mixture. In addition, a resin separately polymerized by a combination of these acid component and amine component can be mixed and used.
Examples of the solvent for the polyimide resin solution used in the present invention include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, and tetramethylurea. , Sulfolane, dimethyl sulfoxide, γ-butyrolactone, cyclohexanone, and cyclopentanone. Of these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferred. Further, a solvent such as toluene, xylene, diglyme, tetrahydrofuran, methyl ethyl ketone, etc. may be added as long as the solubility is not inhibited.
A copper foil is used as the metal foil used in the present invention. The copper foil to be used may be either an electrolytic copper foil or a rolled copper foil. Further, the copper foil may be surface-treated with an oxidation treatment, an alloy treatment, a silane coupling agent or a titanium coupling agent. The thickness of the copper foil is not particularly limited, but a 1 mm sheet can be used from an ultrathin copper foil with a carrier of 1 μm.
In the present invention, other resins and various additives may be blended or reacted for the purpose of improving various properties of the copper clad laminate such as mechanical properties, electrical properties, slipperiness, and flame retardancy. Examples of the lubricant include silica, talc, and silicone compounds. Examples of the flame retardant include phosphorus-containing compounds, triazine compounds, aluminum hydroxide, and magnesium hydroxide. Also included are stabilizers such as antioxidants and UV absorbers, plating activators, and organic and inorganic fillers. Moreover, you may mix | blend other resins, such as hardening | curing agents, such as an isocyanate compound, an epoxy resin, and a phenol resin, a polyester resin, a polyurethane resin, and a polyamide resin.
The manufacturing method of the copper clad laminated board of this invention is demonstrated. After heat-treating the polyimide resin with superheated steam, another or the same polyimide resin layer is provided on the treated resin surface. Due to the heat treatment with superheated steam, partial decomposition occurs in the surface layer of the polyimide resin, the surface activity is increased, and the adhesion can be improved even with polyimide resins having different compositions.
In the present invention, it is desirable to apply a polyimide resin solution to a copper foil and perform primary drying, followed by further drying and heat treatment at a higher temperature. By adjusting the residual solvent ratio in the coating layer after primary drying to a range of 5 to 35%, preferably 15 to 30%, the influence of volume shrinkage due to the evaporation of the solvent can be reduced, and the peel strength and curl can be reduced. It is effective in improving. The primary drying conditions are preferably 60 to 150 ° C. and 1 to 10 minutes. Superheated steam may be used during the primary drying. After the primary drying, a secondary heat treatment is performed. When the polyimide resin is a polyimide precursor resin, the residual solvent is removed and the imidization reaction is performed by heat treatment. When the polyimide resin is a solvent-soluble polyimide resin or polyamideimide resin, the solvent is removed by heating. Heat treatment with superheated steam is desirable during the secondary heat treatment. The treatment with superheated steam may be used in combination with hot air drying or infrared or far infrared drying. The temperature of the superheated steam used is 200 to 400 ° C, preferably 250 to 350 ° C. The heat treatment time varies depending on the resin used, but is preferably 10 seconds or longer and 10 minutes or shorter. At the time of the secondary heat treatment, the temperature becomes 200 ° C. or higher, which may cause discoloration of the copper foil or changes in physical properties. If necessary, it is necessary to lower the oxygen concentration. When copper foil is used, it is desirable to reduce the oxygen concentration to 5% or less, preferably 0.5% or less.
A copper-clad laminate may be produced by a laminating method using a polyimide film having a thermoplastic polyimide resin provided on the surface, and the polyimide film surface may be heat-treated with superheated steam.
Applying another or the same polyimide resin solution to the surface treated with superheated steam, or laminating a polyimide film with a thermoplastic polyimide resin on the surface, the second polyimide resin Provide a layer. Similarly, the third polyimide resin layer is provided after the second polyimide resin layer is treated with superheated steam.
When the resin thickness of the final resin layer opposite to the copper foil exceeds 20 μm, batch processing using a vacuum dryer is desirable because the resin is less deteriorated.
A combination of a plurality of polyimide resins is determined according to required characteristics. For example, in a copper clad laminate for COF (Chip on Film), a resin that is in contact with the copper foil is a resin that has a glass transition temperature of 350 ° C. or higher and good adhesion to the copper foil in order to withstand inner lead bonding. For the resin layer opposite to the foil, a resin having a low coefficient of thermal expansion is desirable because of curl reduction.

本発明をさらに詳細に説明するために以下に実施例を挙げるが、本発明は実施例になんら限定されるものではない。なお、実施例に記載された測定値は以下の方法によって測定したものである。
寸法変化率:幅10mm、長さ200mmの銅張積層板を用い、エッチング前後での寸法変化率及びエッチングした物をさらに200℃で30分間熱風オーブン中で処理した後の寸法変化率を求めた。
はんだ耐熱:銅箔積層板の銅箔をサブトラクティブ法によりエッチング加工し、幅1mmの回路パターンを作成した。40℃、65%RHで24時間調湿し、フラックス洗浄した後、20秒間320℃の噴流はんだ浴に浸漬し、剥がれや膨れの有無を目視観察した。異常が見られなかった物を○、剥がれや膨れが見られた物を×とした。
接着力:上記、幅1mmの回路パターンを作成したサンプルを引っ張り速度50mm/分、測定温度20℃、引き剥がし角度90度で測定した。
耐熱耐久性:上記、幅1mmの回路パターンを作成したサンプルを150℃に調温した乾燥器に10日間放置後の接着力を測定した。
In order to describe the present invention in more detail, examples are given below, but the present invention is not limited to the examples. In addition, the measured value described in the Example is measured by the following method.
Dimensional change rate: Using a copper clad laminate having a width of 10 mm and a length of 200 mm, the dimensional change rate before and after etching and the dimensional change rate after further processing the etched product in a hot air oven at 200 ° C. for 30 minutes were obtained. .
Solder heat resistance: The copper foil of the copper foil laminate was etched by a subtractive method to create a circuit pattern having a width of 1 mm. After humidity conditioning at 40 ° C. and 65% RH for 24 hours and flux washing, the sample was immersed in a jet solder bath at 320 ° C. for 20 seconds and visually observed for peeling and swelling. The thing in which abnormality was not seen was set as (circle), and the thing in which peeling and the swelling were seen were set as x.
Adhesive force: The above-mentioned sample on which a circuit pattern having a width of 1 mm was measured was measured at a pulling speed of 50 mm / min, a measurement temperature of 20 ° C., and a peeling angle of 90 degrees.
Heat resistance durability: The adhesion strength of the sample prepared with the circuit pattern having a width of 1 mm was measured after being left in a drier adjusted to 150 ° C. for 10 days.

合成例1
反応容器に無水トリメリット酸96g、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物81g、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物74g、1,5-ナフタレンジイソシアネート210g、トリエチルジアミン0.5gおよびN-メチル-2-ピロリドン2.7Kgを加え、150℃まで1時間かけて昇温し、さらに150℃で5時間反応させた。得られたポリアミドイミド樹脂の対数粘度は1.8でガラス転移温度は365℃であった。
Synthesis example 1
In a reaction vessel, 96 g of trimellitic anhydride, 81 g of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 74 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,5 -210 g of naphthalene diisocyanate, 0.5 g of triethyldiamine and 2.7 kg of N-methyl-2-pyrrolidone were added, the temperature was raised to 150 ° C. over 1 hour, and further reacted at 150 ° C. for 5 hours. The obtained polyamidoimide resin had a logarithmic viscosity of 1.8 and a glass transition temperature of 365 ° C.

合成例2
反応容器に無水トリメリット酸154g、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物32g、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物29g、3,3’-ジメチル-4,4’-ビフェニルジイソシアネート264g、トリエチルジアミン0.5gおよびN-メチル-2-ピロリドン2.7Kgを加え、150℃まで1時間かけて昇温し、さらに150℃で5時間反応させた。得られたポリアミドイミド樹脂の対数粘度は1.6でガラス転移温度は285℃であった。
Synthesis example 2
In a reaction vessel, 154 g of trimellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride 32 g, 29 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 Add 264 g of '-dimethyl-4,4'-biphenyl diisocyanate, 0.5 g of triethyldiamine and 2.7 kg of N-methyl-2-pyrrolidone, raise the temperature to 150 ° C. over 1 hour, and further react at 150 ° C. for 5 hours. I let you. The obtained polyamideimide resin had a logarithmic viscosity of 1.6 and a glass transition temperature of 285 ° C.

合成例3
N,N-ジメチルアセトアミド850g、4,4’-ジアミノ-2,2’-ジメチルビフェニル42.4gおよび1,3-ビス(4-アミノフェノキシ)ベンゼン87.6gを反応容器に投入し、攪拌し溶解させた。ついで、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物29.4g2,3,3’,4’-ビフェニルテトラカルボン酸二無水物117.6g加え、室温にて5時間攪拌を続けポリイミド前躯体を得た。
Synthesis example 3
850 g of N, N-dimethylacetamide, 42.4 g of 4,4′-diamino-2,2′-dimethylbiphenyl and 87.6 g of 1,3-bis (4-aminophenoxy) benzene were put into a reaction vessel and stirred. Dissolved. Next, 29.4 g of 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 117.6 g of 3,3', 4,4'-biphenyltetracarboxylic dianhydride was added and stirred at room temperature for 5 hours. Subsequently, a polyimide precursor was obtained.

<実施例 1>
合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて銅箔(三井金属鉱山社製電解銅箔35μm)に、乾燥後の厚みが10μmになるように塗布し、100℃で5分間、熱風により一次乾燥した。さらに過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super-Hi 10」)を用い、10Kg/時間の過熱水蒸気を供給する乾燥・熱処理炉で乾燥・熱処理を行った。得られた片面銅張積層体の樹脂面に、乾燥後の厚みが30μmになるように合成例2で得たポリアミドイミド溶液を塗布し、100℃で5分間、熱風により一次乾燥した。さらに260℃、1mmHgの減圧下で10時間真空乾燥した。得られた銅張積層板の評価として、寸法安定性、はんだ耐熱性、接着力、耐熱耐久性を測定した。結果を表―1に示す。
<Example 1>
The polyamideimide solution prepared in Synthesis Example 1 was applied to a copper foil (35 μm electrolytic copper foil manufactured by Mitsui Metal Mining Co., Ltd.) using an applicator so that the thickness after drying was 10 μm, and heated at 100 ° C. for 5 minutes with hot air Primary dried. Further, a steam superheater (“DHF Super-Hi 10” manufactured by Daiichi High Frequency Industrial Co., Ltd.) was used as a superheated steam generator, and drying and heat treatment were performed in a drying / heat treatment furnace supplying superheated steam at 10 kg / hour. The polyamideimide solution obtained in Synthesis Example 2 was applied to the resin surface of the obtained single-sided copper clad laminate so that the thickness after drying was 30 μm, and was primarily dried with hot air at 100 ° C. for 5 minutes. Furthermore, it vacuum-dried at 260 degreeC and the reduced pressure of 1 mmHg for 10 hours. As evaluation of the obtained copper-clad laminate, dimensional stability, solder heat resistance, adhesive strength, and heat resistance durability were measured. The results are shown in Table-1.

<実施例 2>
カネカ社製ポリイミド(PI)フィルム「アピカルAH12.5μm」の両面をプラズマ処理した後、合成例2で調整したポリアミドイミド溶液を乾燥後の厚みが5μmになるように両面に塗布し、340℃で10分間熱風乾燥した。離型紙/ポリアミドイミド両面コートPIフィルム/銅箔(三井金属鉱山社製電解銅箔35μm)の構成で5kg/cmの加圧下380℃で5分間、平板熱プレスした。離型紙を除き、得られた銅張積層板の樹脂面を過熱水蒸気で処理した後、実施例1と同様に乾燥後の厚みが25μmになるように合成例2で得たポリアミドイミド溶液を塗布し、100℃で5分間、熱風により一次乾燥した。さらに実施例1と同様に真空乾燥により銅張積層板を得た。得られた銅張積層板の評価結果を表―1に示す。
<Example 2>
After both sides of Kaneka's polyimide (PI) film “Apical AH 12.5 μm” were plasma-treated, the polyamideimide solution prepared in Synthesis Example 2 was applied to both sides so that the thickness after drying was 5 μm, at 340 ° C. Dry with hot air for 10 minutes. The plate was hot-pressed for 5 minutes at 380 ° C. under a pressure of 5 kg / cm 2 with a configuration of release paper / polyamideimide double-sided coated PI film / copper foil (35 μm electrolytic copper foil manufactured by Mitsui Kinzoku Mine Co., Ltd.). After removing the release paper and treating the resin surface of the obtained copper clad laminate with superheated steam, the polyamideimide solution obtained in Synthesis Example 2 was applied so that the thickness after drying was 25 μm as in Example 1. And primary drying with hot air at 100 ° C. for 5 minutes. Further, a copper clad laminate was obtained by vacuum drying in the same manner as in Example 1. The evaluation results of the obtained copper-clad laminate are shown in Table-1.

<実施例 3>
合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて銅箔(三井金属鉱山社製電解銅箔35μm)に、乾燥後の厚みが10μmになるように塗布し、100℃で5分間、熱風により一次乾燥した。さらに過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super-Hi 10」)を用い、10Kg/時間の過熱水蒸気を供給する乾燥・熱処理炉で乾燥・熱処理を行った。得られた銅張積層体の樹脂面に、乾燥後の厚みが30μmになるように合成例3で得たポリイミド前躯体溶液を塗布し、100℃で5分間一次乾燥した。さらに100℃から昇温速度10℃/分で350℃まで25分の熱処理を行った。さらに続けて350℃で20分間、熱風乾燥を行った。得られた銅張積層板の評価結果を表―1に示す。
<Example 3>
The polyamideimide solution prepared in Synthesis Example 1 was applied to a copper foil (35 μm electrolytic copper foil manufactured by Mitsui Metal Mining Co., Ltd.) using an applicator so that the thickness after drying was 10 μm, and heated at 100 ° C. for 5 minutes with hot air Primary dried. Further, a steam superheater (“DHF Super-Hi 10” manufactured by Daiichi High Frequency Industrial Co., Ltd.) was used as a superheated steam generator, and drying and heat treatment were performed in a drying / heat treatment furnace supplying superheated steam at 10 kg / hour. The polyimide precursor solution obtained in Synthesis Example 3 was applied to the resin surface of the obtained copper-clad laminate so that the thickness after drying was 30 μm, and was primarily dried at 100 ° C. for 5 minutes. Further, heat treatment was performed from 100 ° C. to 350 ° C. at a rate of temperature increase of 10 ° C./min for 25 minutes. Subsequently, hot air drying was performed at 350 ° C. for 20 minutes. The evaluation results of the obtained copper-clad laminate are shown in Table-1.

<比較例 1>
合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて銅箔(三井金属鉱山社製電解銅箔35μm)に、乾燥後の厚みが10μmになるように塗布し、100℃で5分間一次乾燥した。二次熱処理として熱風乾燥だけを行った。得られた銅張積層体の樹脂面に、乾燥後の厚みが30μmになるように合成例2で得たポリアミドイミド溶液を塗布し、100℃で5分間、熱風により一次乾燥した。さらに260℃、1mmHgの減圧下で10時間真空乾燥した。得られた銅張積層板の評価として、寸法安定性、はんだ耐熱性、接着力、耐熱耐久性を測定した。結果を表―1に示す。
<Comparative Example 1>
The polyamideimide solution prepared in Synthesis Example 1 was applied to a copper foil (35 μm electrolytic copper foil manufactured by Mitsui Metal Mining Co., Ltd.) using an applicator so that the thickness after drying was 10 μm, and was primarily dried at 100 ° C. for 5 minutes. . Only hot air drying was performed as the secondary heat treatment. The polyamideimide solution obtained in Synthesis Example 2 was applied to the resin surface of the obtained copper-clad laminate so that the thickness after drying was 30 μm, and was primarily dried with hot air at 100 ° C. for 5 minutes. Furthermore, it vacuum-dried at 260 degreeC and the reduced pressure of 1 mmHg for 10 hours. As evaluation of the obtained copper-clad laminate, dimensional stability, solder heat resistance, adhesive strength, and heat resistance durability were measured. The results are shown in Table-1.

<比較例 2>
実施例2と同様に、PIフィルムの両面に合成例1で調整したポリアミドイミドの層を設け、片面積層体を得た後、過熱水蒸気処理をせずに樹脂面に、実施例1と同様に乾燥後の厚みが25μmになるように合成例2で得たポリアミドイミド溶液を塗布し、100℃で5分間、熱風により一次乾燥した。さらに実施例1と同様に真空乾燥により銅張積層板を得た。得られた銅張積層板の評価結果を表―1に示す。
<Comparative Example 2>
Similar to Example 2, the polyamideimide layer prepared in Synthesis Example 1 was provided on both sides of the PI film, and after obtaining a single-area layered body, the resin surface was not subjected to superheated steam treatment, as in Example 1. The polyamideimide solution obtained in Synthesis Example 2 was applied so that the thickness after drying was 25 μm, and was primarily dried with hot air at 100 ° C. for 5 minutes. Further, a copper clad laminate was obtained by vacuum drying in the same manner as in Example 1. The evaluation results of the obtained copper-clad laminate are shown in Table-1.

<比較例 3>
合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて銅箔(三井金属鉱山社製電解銅箔35μm)に、乾燥後の厚みが10μmになるように塗布し、100℃で5分間、さらに熱風により二次乾燥を行った。さらに、得られた銅張積層体の樹脂面に、乾燥後の厚みが30μmになるように合成例3で得たポリイミド前躯体溶液を塗布し、100℃で5分間一次乾燥した。さらに100℃から昇温速度10℃/分で350℃まで25分の熱処理を行った。さらに続けて350℃で20分間、熱風乾燥を行った。得られた銅張積層板の評価結果を表―1に示す。
<Comparative Example 3>
The polyamide-imide solution prepared in Synthesis Example 1 was applied to a copper foil (35 μm electrolytic copper foil manufactured by Mitsui Metal Mining Co., Ltd.) using an applicator so that the thickness after drying was 10 μm, and further heated at 100 ° C. for 5 minutes. Then, secondary drying was performed. Furthermore, the polyimide precursor solution obtained in Synthesis Example 3 was applied to the resin surface of the obtained copper-clad laminate so that the thickness after drying was 30 μm, and was primarily dried at 100 ° C. for 5 minutes. Further, heat treatment was performed from 100 ° C. to 350 ° C. at a rate of temperature increase of 10 ° C./min for 25 minutes. Subsequently, hot air drying was performed at 350 ° C. for 20 minutes. The evaluation results of the obtained copper-clad laminate are shown in Table-1.

Figure 0004941407
Figure 0004941407

本発明は銅箔に複数のポリイミド系樹脂層を設けた銅張積層板の簡便な製造方法に関するものであり、該製造方法を用いることにより、生産性の改善ができ、さらに接着性や耐熱性耐久性に優れた銅張積層板を提供することができる。   The present invention relates to a simple method for producing a copper-clad laminate in which a plurality of polyimide resin layers are provided on a copper foil. By using this production method, productivity can be improved, and adhesion and heat resistance can be improved. A copper-clad laminate having excellent durability can be provided.

Claims (2)

銅箔上に複数のポリイミド系樹脂層が形成されており、複数のポリイミド系樹脂層は過熱水蒸気により処理されたポリイミド系樹脂層上に形成されていることを特徴とする銅張積層板。   A copper-clad laminate, wherein a plurality of polyimide resin layers are formed on a copper foil, and the plurality of polyimide resin layers are formed on a polyimide resin layer treated with superheated steam. 銅箔上に複数のポリイミド系樹脂層を形成する際、過熱水蒸気により処理されたポリイミド系樹脂層上に別のあるいは同じポリイミド系樹脂層を形成することを特徴とする銅張積層板の製造方法。   When forming a plurality of polyimide resin layers on a copper foil, another or the same polyimide resin layer is formed on the polyimide resin layer treated with superheated steam, .
JP2008144309A 2008-06-02 2008-06-02 Copper-clad laminate and method for producing copper-clad laminate Active JP4941407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144309A JP4941407B2 (en) 2008-06-02 2008-06-02 Copper-clad laminate and method for producing copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144309A JP4941407B2 (en) 2008-06-02 2008-06-02 Copper-clad laminate and method for producing copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2009286095A JP2009286095A (en) 2009-12-10
JP4941407B2 true JP4941407B2 (en) 2012-05-30

Family

ID=41455770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144309A Active JP4941407B2 (en) 2008-06-02 2008-06-02 Copper-clad laminate and method for producing copper-clad laminate

Country Status (1)

Country Link
JP (1) JP4941407B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311310B2 (en) 2012-10-04 2018-04-18 東レ株式会社 Manufacturing method of conductive pattern
JP6343669B2 (en) * 2014-07-10 2018-06-13 太陽インキ製造株式会社 Method for forming resin insulation layer, resin insulation layer and printed wiring board
JP6612168B2 (en) 2016-03-30 2019-11-27 Jx金属株式会社 Copper foil, copper clad laminate, flexible printed circuit board and electronic device
CN110809807A (en) 2017-07-07 2020-02-18 东丽株式会社 Method for manufacturing conductive film, method for manufacturing field effect transistor using same, and method for manufacturing wireless communication device

Also Published As

Publication number Publication date
JP2009286095A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP7382447B2 (en) Double-sided metal-clad laminates and circuit boards
JP4540964B2 (en) Low temperature polyimide adhesive composition
JP2907598B2 (en) Flexible multilayer polyimide film laminates and methods for their manufacture
JP7301495B2 (en) Metal-clad laminates and circuit boards
JP5168009B2 (en) Polyimide and process for producing the same
JPWO2006033272A1 (en) Novel polyimide film with improved adhesion
JP2017165909A (en) Polyimide, resin film, and metal clad laminate
JP2020056011A (en) Resin film, coverlay film, circuit board, copper foil with resin, metal-clad laminate, multilayer circuit board, polyimide and adhesive resin composition
JP5447365B2 (en) Manufacturing method of laminate
JP4941407B2 (en) Copper-clad laminate and method for producing copper-clad laminate
JPWO2007029609A1 (en) Heat resistant adhesive sheet
JP5468913B2 (en) Multilayer polyimide film with resist and method for producing the same
JP2004079826A (en) Laminated body for wiring board
JPWO2007083526A1 (en) Polyimide film and use thereof
JP3952196B2 (en) Method for producing flexible metal foil polyimide laminate
JP2021106248A (en) Metal-clad laminated plate and circuit board
JP2001105530A (en) Flexible metal laminate and production method therefor
JP4183765B2 (en) Manufacturing method of flexible printed wiring board
JP2009061446A (en) Method of treating long object
JP2022017273A (en) Metal-clad laminate and circuit board
JP2010083094A (en) Surface treated metal foil and metal foil/polyimide resin laminate
JP5176696B2 (en) Method for producing polyimide film
JP4684601B2 (en) Manufacturing method of flexible laminated substrate
JP2006305966A (en) Laminate and printed wiring board
JP2009286093A (en) Method for manufacturing laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R151 Written notification of patent or utility model registration

Ref document number: 4941407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350