JP4941104B2 - 位置検出装置、駆動装置及び光学機器 - Google Patents

位置検出装置、駆動装置及び光学機器 Download PDF

Info

Publication number
JP4941104B2
JP4941104B2 JP2007140206A JP2007140206A JP4941104B2 JP 4941104 B2 JP4941104 B2 JP 4941104B2 JP 2007140206 A JP2007140206 A JP 2007140206A JP 2007140206 A JP2007140206 A JP 2007140206A JP 4941104 B2 JP4941104 B2 JP 4941104B2
Authority
JP
Japan
Prior art keywords
magnetic field
optical
movable member
detection
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007140206A
Other languages
English (en)
Other versions
JP2008292386A (ja
Inventor
龍一 吉田
隆之 干野
一三 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007140206A priority Critical patent/JP4941104B2/ja
Publication of JP2008292386A publication Critical patent/JP2008292386A/ja
Application granted granted Critical
Publication of JP4941104B2 publication Critical patent/JP4941104B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Lens Barrels (AREA)

Description

本発明は、磁界の変化を検出することによって可動体の位置を検出する位置検出装置、及びその位置検出装置を搭載した駆動装置に関し、特に、デジタルカメラなどの撮像装置や光ピックアップなどの光学機器におけるレンズ駆動機構などに適用される位置検出装置、駆動装置駆動に関するものである。
特許文献1及び2には、可動部材の位置を、可動部材に付設した磁界発生部材による磁界の変化として、磁界検出手段によって検出する位置検出装置が記載されている。
図11に、特許文献1に記載されている位置検出装置の概略構成を示す。図11に示す位置検出装置100は、N極に着磁された幅1/2δのN極部102と、S極に着磁された幅1/2δのS極部103とが交互に繰り返して配置された磁界発生部材104と、2つの磁界検出素子105a,105bとを有する。磁界発生部材104の磁極の周期は、δである。2つの磁界検出素子105a,105bは、(1+1/4)δの距離の間隔をおいて設けられている。アンプ106a,106bで増幅した磁界検出素子105a,105bからの検出信号A,Bは、演算装置107で演算処理されて出力される。
このように、2つの磁界検出素子105a,105bが磁界周期δに対し1/4周期分だけ間隔をおいて設けられているのは、位置検出の線形性が最もよくなるためである。すなわち、可動部材の移動方向に対し略正弦波状に変化する磁界を2つの磁界検出素子で検出する場合、2つの磁界検出素子の間隔を(n+1/4)δとすることによって、位置検出精度を高めることができる。
また、図12に特許文献2に記載されている位置検出装置の概略構成を示す。図12に示す位置検出装置110は、厚み方向にN極とS極とが配置された2つの磁石113a,113bをその側辺同士を対向させて配置した磁界発生部材114と、2つの磁界検出素子115a,115bを有する。この位置検出装置は、磁界発生部材114が各1つのN極とS極で構成されている点において図11に示す位置検出装置と異なり、また、2つの磁界検出素子の間隔についての開示はなく、図面上は、磁界発生部材114を構成する磁石113a,113bの長さ寸法に対し1/10程度の間隔となっている。
また、図13に特許文献1に記載されている他の構成の位置検出装置の概略構成を示す。図13に示す位置検出装置は、厚み方向にN極とS極とが配置された2つの磁石123,124をその側辺同士を対向させて配置し、間に不着磁部125を配置した磁界発生部材121と、2つの磁界検出素子126a,126bを備えた磁界検出手段122を備える。アンプ127a,127bで増幅した磁界検出素子126a,126bからの検出信号A,Bは、演算装置1128で演算処理されて出力される。
また、特許文献1には、上記構成の位置検出装置において、磁界発生部材121及び2つの磁界検出素子の間隔について開示されており、磁界発生部材は、例えば、全長が6.2mm、幅が2.5mm、厚みが1.0mmであり、2つの磁界検出素子126a,126bの間隔は1.6mmであることが開示されている。この数値から演算すると、2つの磁界検出素子126a,126bの間隔は、磁界周期の略1/3.87となっており、上記の通り、線形性を高めるために磁界周期δに対し略1/4周期の間隔が設けられている。
特開2006−292396号公報 特開平1−150812号公報
しかし、図12及び図13に示すそれぞれ1つのS極とN極が設けられている磁界発生部材を有する位置検出装置においては、位置検出の高い線形性が確保することが困難であり、さらに高精度の位置検出を行うことができる位置検出装置が求められていた。
したがって、本発明が解決しようとする技術的課題は、コンパクトで線形性の高い位置検出装置、駆動装置及び光学機器を提供することである。
本発明は、上記技術的課題を解決するために、以下の構成の位置検出装置を提供する。
本発明の第1態様によれば、進退可能に構成された可動部材に一体的に付設され、可動部材の進退方向にN極及びS極が各1極のみ着磁されて表面磁束密度が可動部材の進退方向に変化するように構成された磁界変化を有する磁界発生部材と、
前記可動部材の進退動作に基づく前記磁界発生部材の移動に伴う磁界変化を検出し、間隔Aをおいて前記可動部材の進退方向に並べて配置された2つの磁界検出素子を備える磁界検出手段と、
前記磁界検出手段の検出信号に基づいて、前記可動部材の位置を求める演算手段とを備え、
前記磁界発生部材は、厚さ方向に正着磁された矩形状の第1磁石と、厚さ方向に負着磁された矩形状の第2磁石とを備えており、前記第1磁石と第2磁石の側辺同士を対向させて固着した略四角形状を呈しており、前記進退方向長さL、厚さtを有し、
前記磁界検出手段を構成する2つの磁界検出素子の間隔Aは、
L/4<A<L/4+t/2
となるように構成されていることを特徴とする、位置検出装置を提供する。
本発明の第2態様によれば、前記第1磁石と第2磁石とは、非着磁部分を間にして側辺同士を対向させて固着されていることを特徴とする、第1態様の位置検出装置を提供する。
本発明の第3態様によれば、前記磁界検出素子は、ホール素子であることを特徴とする、第1又は第2態様の位置検出装置を提供する。
本発明の第4態様によれば、第1から第3態様のいずれか1つの位置検出装置と、
前記磁界検出手段が固定されたフレームに一端が固定され、前記可動方向に伸縮する電気機械変換素子と、
前記電気機械変換素子の他端に連結され、前記可動部材が摩擦係合する案内軸と、
を備えることを特徴とする駆動装置を提供する。
本発明の第5態様によれば、少なくとも1つの光学素子が光軸上に配置された機構を備える光学機器であって、
第4態様の駆動装置における可動装置が、前記光学素子を保持して該光学素子をその案内軸上に進退動作させる保持体として機能するように構成したことを特徴とする光学機器を提供する。
本発明の第6態様によれば、光学素子の光軸と、可動部材の進退方向とが平行になるように、光学素子が可動部材により保持されていることを特徴とする第5態様の光学機器を提供する。
本発明の第7態様によれば、光学機器が撮像装置であり、光学素子が、その撮影光学系の一部を構成する光学素子であることを特徴とする第5態様の光学機器を提供する。
本発明の第8態様によれば、光学機器が光ピックアップ装置であり、光学素子が、その光ピックアップ光学系の一部を構成する光学素子であることを特徴とする第態様の光学機器を提供する。
本発明の第9態様によれば、光学素子が、光ピックアップ光学系のレンズであり、前記レンズが可動部材の進退動作により光軸方向に移動されることにより、収差補正が行われるよう構成されていることを特徴とする第8態様の光学機器を提供する。
本発明によれば、各1つのS極及びN極を有する磁界発生部材と、2つの磁界検出素子を備える磁界検出手段を備える位置検出装置においては、2つの磁界検出素子の間隔Aを磁界周期の1/4よりも磁界発生手段の厚み寸法によって決定する寸法だけ大きくすることによって、線形性を高めることができる。すなわち、各1つのS極及びN極を有する磁界発生部材においては、磁界発生部材の両端に発生する磁界は、外側の磁石の影響がないため、磁束が大きく磁石を回り込むことになる。そのため、磁束がフラットになる位置は、磁界発生部材の端部より外側になる。したがって、磁界検出部材によって検出される検出値が同一方向で0クロスする間隔は、磁界発生部材の磁石の寸法よりも広くなる。すなわち、上記構成においては、磁界検出部材によって検出される磁界周期が、磁界発生部材を構成する磁石の両極間の距離よりも長くなる。したがって、磁界周期の1/4よりも若干長い間隔を設けることによって、位置検出装置の位置検出精度を高めることができる。
また、第態様の位置検出装置によれば、正着磁部と負着磁部とが直線的に入れ替わることから、可動部材の微小な移動でも大きな磁界変動を生じさせることが可能であるので、可動部材が比較的狭い範囲で可動する装置において検出精度を高めることができる。
また、磁界検出素子としてホール素子を用いれば、一般にホール素子は小型であることから、装置への組み込み性にすぐれ、安価であるため、位置検出装置を小型かつ安価に提供することができる。
また、本発明の第4態様の駆動装置によれば、検出精度の高い位置検出装置と電気機械変換素子を用いた駆動装置とを組み合わせることによって、小型で検出精度が高い駆動装置を提供することができる。
第5態様若しくは第6態様にかかる光学機器によれば、各種の光学機器が備えている光学素子の光軸上への移動制御を、本発明の上記のいずれかの態様の駆動装置により行うよう構成しているので、低コスト且つ簡便な構成で、しかも可動部材の位置検出を動作環境変化に影響されることなく精度良く行うことができる。
第7態様にかかる光学機器によれば、デジタルカメラ等の撮像装置において、その撮影光学系に組み付けられているズームレンズ等の駆動を、低コスト且つ簡便な構成で、しかも動作環境変化に影響されず精度良く行わせることができる。
第8態様にかかる光学機器によれば、光ピックアップにおいて、そのピックアップ光学系に組み付けられているレンズ等の駆動を、低コスト且つ簡便な構成で、しかも動作環境変化に影響されず精度良く行わせることができる。また、第9態様にかかる光学機器によれば、上記いずれかの態様の駆動装置により収差補正を行わせる構成であり、当該駆動装置の利便性をより向上させることができる。
以下、本発明の一実施形態に係る位置検出装置を用いた駆動装置について、図面を参照しながら説明する。
(全体構成)
図1は本発明の実施形態にかかる位置検出装置を搭載した駆動装置Sのシステム構成図である。この駆動装置Sは、圧電アクチュエータP(駆動手段)と、この圧電アクチュエータPを駆動させる駆動回路4及び制御回路5と、圧電アクチュエータPが備える可動部材3に一体的に付設されその進退方向に表面磁束密度が変化されている磁界発生部材7と、この磁界発生部材7により生成される磁界を検出する磁界検出手段6と、該磁界検出手段6の検出信号に基づいて前記可動部材3のポジションを求める検出回路8とを備えている。なお、前記磁界検出手段6、磁界発生部材7、及び検出回路8は、可動部材3の位置センサ部を構成する。
圧電アクチュエータPは、電気機械変換素子1と、該電気機械変換素子1の一端に固定された駆動部材(案内軸)2と、該駆動部材2上に移動可能に保持された可動部材3とから構成されている。前記電気機械変換素子1としては、ピエゾ素子等の圧電素子を好適に用いることができる。電気機械変換素子1(以下、圧電素子1という)の電歪方向(伸縮方向)の一端側には、前記駆動部材2が接着等の手法により固着されており、前記圧電素子1の伸縮動作により図中矢印aの方向へ移動されるようになっている。一方、圧電素子1の他端側は固定部9(当該駆動装置Sの本体ボディ等)に固定されており、これにより圧電素子1の伸長方向が規制されている。
可動部材3は、例えばレンズ鏡筒や精密ステージの可動片等の被駆動体に対して移動力を与える部材である。この可動部材3は貫通孔を備えており、この貫通孔に前記駆動部材2が挿通される態様で、所定の摩擦係合力をもって駆動部材2に取り付けられている。
図2A及び図2Bは、上記のような圧電アクチュエータPの動作原理を説明するための図であり、図2Aは駆動部材2上における可動部材3の進退動作状態を示す模式図であり、また図2Bは駆動部材2の軸変位を時間軸に示したグラフ図である。つまり、図2Bに示すような軸変位動作を駆動部材が為すように、圧電素子1に対して鋸歯状の駆動パルス電圧が与えられるものである。なお、図2A(a)、(b)、(c)の各状態図と、図2B中に付記している記号(a)、(b)、(c)の時間ポイントとは一致させて描いている。
先ず図2A(a)の状態を初期状態とすると、図2A(b)の状態に移行するとき、すなわち繰り出し方向へ伸長するとき、図2Bのグラフ図に示すように、圧電素子1(駆動部材2)は緩やかに伸び変位する。これに伴って駆動部材2も緩やかな速度で繰り出し方向に移動されることから、駆動部材2に摩擦係合された可動部材3は、その摩擦係合力により同期追随して変位する。次に、図2A(b)から図2A(c)の状態へ移行するとき、つまり圧電素子1に前記鋸歯状駆動パルス電圧の急峻な立下がり部の電圧が印加された場合、圧電素子1は急速に縮み変位する。これに伴って駆動部材2も急峻な速度で戻り方向に移動されることから、可動部材3と駆動部材2の摩擦係合部に滑りが生じることとなる。この滑りにより、可動部材3は駆動部材2の軸変位に追随して変位せず、戻り方向に僅かに戻るようになる。このような動作が繰り返されることにより、可動部材3は駆動部材2の軸上を圧電素子1から離れる方向に移動されるものである。
本実施形態において用いられる駆動手段としては、上記の圧電アクチュエータPのように、いわゆる「非磁力源タイプ」の駆動手段を用いることが望ましい。具体的には、駆動手段が備える可動部材3の進退に伴って生じる表面磁束密度が0.1mT以下のものである一方、磁界発生部材7が発生する表面磁束密度の最大値が1mT以上とすることが望ましい。このように、駆動手段の動作により発生される表面磁束密度を、磁界発生部材7が発生する表面磁束密度の1/10程度以下に抑制することで、漏れ磁束により磁界検出手段6の検出信号が乱されず、可動部材3の高精度な位置決めが達成できるようになる。
このような「非磁力源タイプ」の駆動手段としては、上記構成の圧電アクチュエータPのほか、超音波モータを用いて可動部材3を進退動作させる超音波アクチュエータや、形状記憶部材を用いて可動部材3を進退動作させる形状記憶アクチュエータなどを例示することができる。
図1に戻って、制御回路5は、図示省略の上位コンピュータなどから与えられる位置指令(可動部材3の変位指令)を受け取り、可動部材3を指令位置に移動させるための駆動制御信号を生成する。この駆動制御信号は、前記検出回路8から送信される可動部材3の位置信号と、前記位置指令に基づく位置信号との差に応じ、可動部材3が所定の移動量だけ移動するように生成される。
このように生成された駆動制御信号は、駆動回路4に入力される。駆動回路4は、前記駆動制御信号に基づいて、可動部材3が所定の移動量だけ移動するよう、圧電素子1を駆動させる駆動信号を生成し、圧電素子1を実際に駆動させる。
磁界発生部材7は、前記可動部材3に一体的に付設され、可動部材3の進退動作に応じてその進退方向に磁界発生部材7も移動されるよう構成されている。この磁界発生部材7は、可動部材3に直接的に固定しても良いが、可動部材3に取り付けられる被駆動部材に固定する等して、間接的に可動部材3に取り付けるようにしても良い。この磁界発生部材7としては、可動部材3の進退方向に表面磁束密度が変化されたものが用いられる。表面磁束密度の変化態様としては特に制限はなく、固定的に配置されている磁界検出手段6に対して、自身の進退移動による表面磁束密度変化が作用する変化態様を具備していれば良い。その具体例については、後に詳述する。
磁界検出手段6は、前記可動部材3の進退動作に基づく磁界発生部材7の移動に伴う磁界変化を検出するもので、前記磁界発生部材7の移動経路近傍に固定的に並置された第1の磁界検出素子6Aと第2の磁界検出素子6Bとを備えている。また、この実施形態では、二つの磁界検出素子6A、6Bを可動部材3の移動方向に沿って並置した例を示しているが、磁界発生部材7としてその進退方向の面において直交する方向にも表面磁束密度変化が現れるものを用いた場合は、前記直交方向に複数の磁界検出素子を並置するよう構成することもできる。
上記磁界検出素子6A、6Bとしては、各種の磁気センサを用いることができる。代表的なものとして、磁気抵抗効果用いたMR素子やホール効果を用いたホール素子など、検出された磁界に応じて電気信号を出力する磁界検出素子を例示することができる。このうちホール素子は、一般に小型であってこの種駆動装置Sへの組込み性に優れ、また安価であることから、好適に用いることができる。
検出回路8は、前記磁界検出手段6の検出信号に基づいて、可動部材3のポジションを求める演算手段として機能する。すなわち、前記第1の磁界検出素子6A及び第2の磁界検出素子6Bによりそれぞれ検出された磁界検出信号が検出回路8に入力され、当該2つの磁界検出信号を増幅、演算することで、可動部材3の現在位置情報である位置信号が生成される。ここで生成された位置信号は、前記制御回路5へ出力される。
(位置検出装置の構成)
図3Aは、この駆動装置Sにおいて位置検出装置を構成する部分、すなわち磁界検出手段6、磁界発生部材7、および検出回路8から構成される位置検出装置の一例を詳細に示した構成図である。この実施形態においては、磁界発生部材7として、可動部材3の進退方向に沿って、正着磁が支配的な1つの正着磁部と、負着磁が支配的な1つの負着磁部とを備えるものが用いられている。このような磁界発生部材7であれば、正着磁部、負着磁部という磁気発生条件が可動部材3の進退方向に異なる磁界発生部材が、可動部材3の進退に応じて移動するので、可動部材の進退による磁界変動が大きくなるという利点がある。
その具体的な構成として、図3Aでは、厚さ方向に正着磁(つまり、磁界検出手段6に対向する面がN極で、その裏面がS極)された矩形の第1磁石7Aと、厚さ方向に負着磁(つまり、磁界検出手段6に対向する面がS極で、その裏面がN極)された矩形の第2磁石7Bとを備えており、前記第1・第2磁石7A、7Bの側辺同士を対向させて固着した略四角形状を呈する磁界発生部材7を例示している。したがって、磁界発生部材7の表面磁束密度は、その進退方向に対して、図中左端近傍で正の最大値をとり、中央部でゼロとなり、図中右端近傍で負の最大値(絶対値)をとる。磁界発生部材7の寸法としては、厚み方向寸法tが例えば、1.2mmであり、長さ方向寸法Lが4.8mmであり、高さ寸法Hは例えば1.5mmである。
このように構成することにより、第1の磁界検出素子6A及び第2の磁界検出素子6Bにより検出される磁界は、第1磁石72Aと第2磁石72Bとの境界部分の、各磁界検出素子における検出ポイントの通過の前後により大きく変化するので、同様に可動部材3の可動範囲が比較的狭い駆動装置Sに適している。
さらに磁界発生部材7は、第1磁石72Aと第2磁石72Bとの複着磁方式としているので、該磁界発生部材72が発生する磁束は、対向配置されている磁界検出手段6を直交する方向(図面奥側から手前へ伸びる方向)に貫通することになる。従って、磁界検出手段6に作用する磁束が多くなり、感度良く磁界検出を行うことができる。
このような磁界発生部材7が磁界検出手段6に対向するよう可動部材3に固定されている。そして、磁界発生部材7の進退方向に沿って第1の磁界検出素子6Aと第2の磁界検出素子6Bとが間隔A(例えば,1.5mm)をおいて固定的に並置されている。従って、磁界発生部材7が矢印aの方向に移動すると、第1の磁界検出素子6Aおよび第2の磁界検出素子6B周辺の磁界が、磁界発生部材7から与えられる表面磁束密度の変化に応じてそれぞれ変化するため、第1、第2の磁界検出素子6A、6Bが検出する出力信号も変化することとなる。しかも、第1の磁界検出素子6Aと第2の磁界検出素子6Bは、間隔Aをおいて配置されているため、両者が同時刻において検出する磁束密度は、磁界発生部材7の異なる位置を検出し、異なる検出信号が発生される。
磁界発生部材7の進退方向の幅は、可動部材3がその移動ストローク範囲において如何なる位置にあっても、磁界発生部材7と磁界検出手段6との対向関係を確保できる長さに選定しておくことが望ましい。すなわち、磁界検出手段6が、可動部材3と一体的に進退動作を行う磁界発生部材7に対向して固定的に配置される場合において、可動部材3の進退動作領域の全域に亘り、磁界発生部材7からの磁力線が磁界検出手段6に作用するよう、磁界発生部材7の形状を選定することが望ましい。このような構成であれば、可動部材3が全ストローク範囲において可動部材3の位置検出が行えるので好ましい。なお、磁界発生部材7と磁界検出手段6との間隙は、離れすぎると検出精度が低下し、近すぎると磁石7と磁気センサ6が接触する危惧があるため、0.1〜1.2mm程度に設定することが望ましい。
2つの磁界検出素子6A,6Bの間の間隔Aは、磁界発生部材7の長さ寸法及び厚み寸法に応じて算出される値をとることが好ましい。すなわち、2つの磁界検出素子6A,6Bの間隔Aは、2つの磁界検出素子6A,6Bから出力される検出信号の値を異ならせ、2つの信号からの出力によって可動部材3の位置検出の精度を高めるためであり、最も位置検出の精度が高まるように調整されるべきものである。
そして、一般には、間隔Aは、磁界周期の1/4程度とすることが好ましいが、本実施形態では、磁界周期(すなわち、磁界発生部材7の長さ寸法L)の1/4よりも若干長く調整されており、その調整分は、磁界発生部材7の厚み寸法tによって決定される数値である。以下、この理由について詳細に説明する。
図4は、正磁着と負磁着が繰り返し行われている磁界発生部材7xの磁界の変動方向に沿って磁界検出素子6xが相対移動する場合の模式図と磁界検出素子6xからの出力信号値を示す図である。図4に示す位置検出の構造がとられている場合は、x軸方向に繰り返し設けられている磁界に対して、x軸方向に磁界検出素子6xが相対移動する。そして、磁界発生部材7xから発生する磁束Mは、図4(a)に示すように、N極から隣り合うS曲へ磁界発生部材の7xの表裏側にわたって延在することがない。よって、磁界検出素子6x側に発生する磁束Mのみが磁界検出素子6xの検出信号の出力値を決定する。磁界検出素子6xは、磁束Mのz軸方向の成分のみを検出することから、正磁着と負磁着の境界部分では、出力値が0となり、正磁着と負磁着の中央部分での出力値が最大となる。よって、磁界のからの出力値は、図4(b)に示すように、正弦波となる。
この場合磁界検出素子6xの出力信号の周期は、磁界周期(すなわち着磁ピッチLの寸法)に一致する。したがって、2つの磁界検出素子6xを用いて位置検出を行う場合、単純に、2つの磁界検出素子6xを磁界検出素子6xの出力値の周期の1/4だけの間隔をおいて配置することにより、位置検出の精度を高めることができる。
これに対して、正磁着及び負磁着がそれぞれ1箇所である場合は、このように2つの磁界検出素子6xの間隔を設定すると、誤差が大きくなる。図5は、正磁着と負磁着が1つずつである磁界発生部材7xの磁界の変動方向に沿って磁界検出素子6が相対移動する場合の模式図と磁界検出素子6xからの出力信号値を示す図である。上記構成が採用されている場合は、磁界発生部材7xから発生する磁束Mは、図5(a)に示すように、磁界発生部材7xの中央部分では、磁界検出素子側に発生するが、両端では、さらに外側に着磁部分がないため、同じ着磁部分を回り込みながら同じ着磁部分の表裏間で発生する。その結果、磁界発生部材7xの両端位置における磁界検出素子6xの検出値は0にはならず、磁界発生部材7xの外側の点fの部分で検出値0となる。点fの位置は、同じ着磁部分を回り込む磁束によって決定するため、磁界発生部材7xが厚ければ、より大きな弧の磁束となり外側へシフトすることとなる。
よって、磁界検出素子6xの出力信号は、略正弦波に近い値となるが、その周期は、磁界周期(すなわち着磁ピッチLの寸法)よりも長くなり、点f、f間の距離となる。そして、その磁界周期に対しての延長分αは、磁界発生部材7xの厚み寸法により変動する。
以上の理由により、本実施形態では、隣り合う2つの磁界検出素子6A,6Bの間隔Aを磁界周期(すなわち、磁界発生部材7の長さ寸法L)の1/4よりも長くし、L/4<A<L/4+t/2の範囲となるように設定する。
この実施形態において、検出回路8は、演算増幅器からなる第1の加算器8A及び第2の加算器8Bと、第1の加算器8A及び第2の加算器8Bの出力値に基づいて演算処理を行う演算器8Cとを備えている。
第1の加算器8Aは、第1の磁界検出素子6Aが磁界を検出して出力する出力電気信号を増幅するもので、第1の磁界検出素子6Aのプラス側端子61Aが第1の加算器8Aの非反転入力端子に接続されている。また第1の磁界検出素子6Aのマイナス側端子62Aは、第1の加算器8Aの反転入力端子に接続されている。
一方第2の加算器8Bは、第2の磁界検出素子6Bが磁界を検出して出力する出力電気信号を増幅するもので、第2の磁界検出素子6Bのプラス側端子61Bが第2の加算器8Bの反転入力端子に接続されている。また第2の磁界検出素子6Bのマイナス側端子62Bは、第2の加算器8Bの非反転入力端子に接続されている。
このように、第1の磁界検出素子6Aと第2の磁界検出素子6Bとで、それぞれ第1の加算器8A及び第2の加算器8Bへ接続する極性を変えているのは、第1の磁界検出素子6Aは磁界発生部材7のN極磁束を支配的に検知し、一方第2の磁界検出素子6Bは磁界発生部材7のS極磁束を支配的に検知することから、極性を反転させることで後段の演算器8Cにおいて、演算処理を容易に行うためである。
(光学機器への適用)
図6は、本発明における駆動装置Sを、デジタルカメラ等の撮像装置や光ピックアップ装置等の光学機器における光学素子の駆動系に応用した場合の構成例である。すなわち、少なくとも一つの光学素子が光軸上に配置された機構を備える光学機器において、上記で説明した駆動装置Sにおける可動部材3に光学素子を保持させ、該光学素子をその案内軸上に進退動作させるようにした実施形態を示している。
図6では、駆動される光学素子としてレンズホルダ11で保持されたレンズ12を例示している。このレンズ12は、適用される光学機器が撮像装置である場合は、その撮影光学系の一部を構成するレンズ(ズームレンズ)であり、適用される光学機器が光ピックアップ装置である場合は、その光ピックアップ光学系の一部を構成するレンズである。
この実施形態にかかる光学機器は、前述のレンズホルダ11で保持されたレンズ12と、このレンズ12を進退動作させる圧電アクチュエータPと、レンズホルダ11の側縁に固着される磁界発生部材7と、該磁界発生部材7に対向配置された第1の磁界検出素子6A及び第2の磁界検出素子6Bを備える磁界検出手段6と、レンズホルダ11をガイドする副軸10とを備えて構成されている。
レンズホルダ11は、その一端側が圧電アクチュエータPの可動部材3に取り付けられ(保持され)ている。このレンズホルダ11の取り付けは、レンズ12の光軸と、可動部材3の進退方向(つまり駆動部材2の延在方向)とが平行になる位置関係とされている。一方、レンズホルダ11の他端側には貫通孔が設けられており、前記貫通孔に副軸10が挿通されている。従ってレンズホルダ11は、圧電アクチュエータPの可動部材3により進退動作力が与えられ、副軸10によりガイドされつつ進退動作する(図6の上下方向の動作)ようになっている。なお、圧電アクチュエータPの圧電素子1は、該光学機器の本体ボディに設けられている取り付け部90に固定されている。
磁界発生部材7は、可動部材3に直接的に取り付けられるのではなく、レンズホルダ11の他端側(副軸10の側)の側縁部に固定されている。そして磁界検出手段6は、磁界発生部材7に対向するよう配置されている。この磁界検出手段6及び磁界発生部材7については、上述の図3Aの構成が採用されている。
このような構成の光学機器によれば、撮影光学系や光ピックアップなどの光学素子の位置決めは、光軸方向に対する傾き精度が厳しく、優れた直進性と、高い位置決め精度が要求されるところ、前記圧電アクチュエータAを使用して光学素子(レンズ12)を駆動するので、駆動部材2そのものが案内軸の機能を有しているため優れた直進性を有し、また磁界検出手段6により検出された可動部材3の位置情報を用いてフィードバック制御することで、高い位置決め精度を達成できる。
さらに、第1の磁界検出素子6A及び第2の磁界検出素子6Bから出力される2つの出力信号に基づいて可動部材3の位置検出を行うので、実質的に当該光学機器の動作環境温度変化の影響を受けることなく、正確に位置検出を行うことができる。また、第1の磁界検出素子6A及び/又は第2の磁界検出素子6Bの出力値に基づいて温度算出部803により温度を算出し、この温度情報に基づいて位置補正信号生成部806にて位置補正信号を生成し、制御駆動信号に対して動作環境温度に応じた補正を加える構成としているので、被駆動部材である光学素子(レンズ12)にサイズ的な温度依存性があったとしても、正確な移動制御を行えるという利点がある。すなわち、光学機器における光学系全体の温度特性を補償することができるようになる。
なお、図3Aに示した実施形態では、磁界発生部材7を副軸10側に取り付けた例を示したが、他の位置、例えば、レンズホルダ11の直下に設けるようにしてもよい。
さらに、磁界発生部材7と磁界検出手段6との配置関係を入れ替える構成、すなわち可動部材3もしくはレンズホルダ11の可動部分に磁界検出手段6を配置し、固定部分に磁界発生部材7を配置してもよい。この場合においても、上記と実質的に同様な動作を行わせることが可能である。
また上記構成において、光ピックアップ光学系のレンズを被駆動部材とし、該レンズが可動部材の進退動作により光軸方向に移動されることにより、収差補正が行われるよう構成することもできる。すなわち、レンズの球面収差や色収差等に起因する像の乱れを補正するために、本発明にかかる駆動装置を用いてレンズを駆動させ、収差による影響が最小限に抑制できるよう構成しても良い。
(実施例)
図3Aに示す位置検出装置を搭載した、図1に示す駆動装置を用いて、磁界発生部材7の位置に対する出力の変化を実験にて算出した。磁界検出装置の磁界発生部材7は、長さ寸法Lは4.8mm、高さ寸法Hは1.5mm、厚み寸法1.2mmのものを用い、2つの磁界検出素子6A,6Bの間隔Aを1.0,1.2,1.4,1.6,1.8mmと変化させた。磁界検出素子6A,6Bと磁界発生部材7の間隔は0.5mmとして固定した。
また、磁界発生部材7の使用ストロークを2.4mmとした。
図7は、磁界検出素子6A,6Bの出力信号である。それぞれの出力信号は、略正弦波形状となるが、両端において、原点に近似するように伸びる近似部分が発生した。また、間隔Aによって、その周期のズレが変化することとなる。
図8に磁界検出素子6A,6Bの出力値から算出された磁界発生部材の位置に対する出力の変化及びその出力変化のグラフの傾きを示すグラフである。グラフ中の横軸は、中央の原点からのシフト量、縦軸は、出力値の比を示している。図8において、実線が出力の変化の演算結果、破線が演算結果の微分値すなわち出力の変化の傾きを示している。図8(a)は、間隔Aが1.0mmの場合、図8(b)は、間隔Aが1.2mmの場合、図8(c)は、間隔Aが1.4mmの場合、図8(d)は、間隔Aが1.6mmの場合、図8(e)は、間隔Aが1.8mmの場合をそれぞれ示している。図8のグラフでは、グラフの傾きの変化が少ないほど線形性が高く、好ましい。図1に示すように、検出回路8の出力を制御回路5にフィードバックして可動部材3の位置決めを行う場合、ゲイン余裕を持たせる必要があるため、位置検出装置の感度の変化は5倍程度が限度である。よって、傾きの変化が比較的少ない間隔Aが1.4mm、1.6mmのものが好ましいと考えられる。
図8に示す演算結果より、線形性を求めた結果を図9に示す。線形性の指標は、傾きの値の最低値/最大値により算出される。上記の通り、磁界発生部材7の長さ寸法Lは4.8mmであるから、間隔Aが磁界周期の長さの1/4の1.2mmよりも1.4mm,1.6mmの方が線形性に優れており、間隔Aが1.5mm付近で最も線形性が高くなるとの結果を得た。すなわち、従来において最適値と考えられていた磁界周期の1/4である1.2mmに対して、測定結果の最適値は差分0.3mmだけシフトしていることとなる。上記の通り、磁界発生部材の厚み寸法tは1.2mmであるので、最適値のシフト分は磁界発生部材7の厚み寸法tの1/4に相当することとなる。また、シフト分0(すなわち間隔A=1.2mm)とシフト分が厚み寸法tの1/2である0.6mm(すなわち分間隔A=1.8mm)がほぼ同値となる。その結果、間隔Aは、磁界発生部材7の長さ寸法Lの1/4よりも長く、シフト分が磁界発生部材7の厚み寸法tの1/2となるようにすることにより、線形性が高くなるとの結果を得た。
なお、同様の実験を磁界発生部材7の厚み寸法tを0.8mmにしたことを除いて同条件で行った。このときの実験結果を図10に示す。磁界発生部材7の厚み寸法を0.1mm薄くすることにより、線形性の最適値は、0.1mm小さくなることが判明した。すなわち、最も線形性がよくなる間隔Aの条件としては、(L+t)/4であるという実験結果となった。また、間隔Aは、L/4<A<L/4+t/2の範囲とすることで、より線形性を向上させることができるという結果となった。
上記実施例の変形例として、磁界発生部材を図3Bに示すように、中央部に非着磁部分を設けて構成しても、上記と同様の実験を行った結果、磁界発生部材の進退方向長さL及び厚さtに基づき、間隔AをL/4<A<L/4+t/2の範囲とすることによって、線形性が向上するという結果を得た。なお、図3Bにおいては、第1の加算器及び第2の加算器の記載を省略している。
図3Bに示す磁界発生部材71は、厚さ方向に正着磁(つまり、磁界検出手段6に対向する面がN極で、その裏面がS極)された矩形の第1磁石71Aと、厚さ方向に負着磁(つまり、磁界検出手段6に対向する面がS極で、その裏面がN極)された矩形の第2磁石71Bとを備えており、第1・第2磁石71A、71Bの側辺同士の間に非着磁部分72を挟むようにして第1・第2磁石7A、7Bを対向させて固着した略四角形状を呈する構成を採用する。磁界発生部材71の寸法は、例えば、進退方向長さ寸法Lが5.0mm、厚さ寸法tが0.8mm、高さ寸法Hは1.4mmである。また、非着磁部分72の進退方向長さ寸法Wは1mmであり、第1の磁界検出素子6Aと第2の磁界検出素子6Bの間隔Aは例えば1.5mm、磁界検出素子6A,6Bと第1・第2磁石71A、71Bの間隔は0.48mmである。
上記のように第1・第2磁石71A、71Bの間に非着磁部分72を設けた場合であっても、磁界検出素子6A,6Bの間隔AをL/4<A<L/4+t/2の範囲とすることによって、線形性が向上するという結果を得た。
本発明の実施形態にかかる位置検出装置を搭載した駆動装置のシステム構成図である。 摩擦駆動型の圧電アクチュエータの動作原理を説明するための説明図である。 摩擦駆動型の圧電アクチュエータの駆動軸変位を表す説明図である。 本発明にかかる駆動装置の位置センサ部分を詳細に示した構成図である。 本発明にかかる駆動装置の位置センサ部分の変形例を詳細に示した構成図である。 正磁着と負磁着が繰り返し行われている磁界発生部材の磁界の変動方向に沿って磁界検出素子が相対移動する場合の模式図(a)と磁界検出素子からの出力信号値を示す図(b)である。 正磁着と負磁着が1つずつである磁界発生部材の磁界の変動方向に沿って磁界検出素子が相対移動する場合の模式図(a)と磁界検出素子からの出力信号値を示す図(b)である。 図1の駆動装置を、光学機器における光学素子の駆動系に応用した場合の構成例を示す構成図である。 磁界検出素子6A,6Bの出力信号を示すグラフである。 磁界検出素子の間隔を異ならせた場合の磁界検出素子の出力値から算出された磁界発生部材の位置に対する出力の変化及びその出力変化のグラフの傾きを示すグラフである。 図8の算出結果に基づく線形性と間隔Aとの関係を示すグラフである。 磁界発生部材の厚み寸法を0.8mmとした場合の線形性と間隔Aとの関係を示すグラフである。 従来の位置検出装置の構成を示す概略図である。 従来の他の位置検出装置の構成を示す概略図である。 従来のさらに他の位置検出装置の構成を示す概略図である。
符号の説明
1 圧電素子
2 駆動部材
3 可動部材
4 駆動回路
5 制御回路
6 磁界検出手段
6A 第1の磁界検出素子
6B 第2の磁界検出素子
7 磁界発生部材
7A 矩形状の第1磁石
7B 矩形状の第2磁石
8 検出回路
8A 第1の加算器
8B 第2の加算器
8C 演算器
10 副軸
11 レンズホルダ
12 レンズ
A 磁界検出素子の間隔
L 磁界発生部材の長さ寸法
t 磁界発生部材の厚み寸法
P 圧電アクチュエータ

Claims (9)

  1. 進退可能に構成された可動部材に一体的に付設され、可動部材の進退方向にN極及びS極が各1極のみ着磁されて表面磁束密度が可動部材の進退方向に変化するように構成された磁界変化を有する磁界発生部材と、
    前記可動部材の進退動作に基づく前記磁界発生部材の移動に伴う磁界変化を検出し、間隔Aをおいて前記可動部材の進退方向に並べて配置された2つの磁界検出素子を備える磁界検出手段と、
    前記磁界検出手段の検出信号に基づいて、前記可動部材の位置を求める演算手段とを備え、
    前記磁界発生部材は、厚さ方向に正着磁された矩形状の第1磁石と、厚さ方向に負着磁された矩形状の第2磁石とを備えており、前記第1磁石と第2磁石の側辺同士を対向させて固着した略四角形状を呈しており、前記進退方向長さL、厚さtを有し、
    前記磁界検出手段を構成する2つの磁界検出素子の間隔Aが、
    L/4<A<L/4+t/2
    となるように構成されていることを特徴とする、位置検出装置。
  2. 前記第1磁石と第2磁石とは、非着磁部分を間にして側辺同士を対向させて固着されていることを特徴とする、請求項1に記載の位置検出装置。
  3. 前記磁界検出素子は、ホール素子であることを特徴とする、請求項1又は2に記載の位置検出装置。
  4. 請求項1から3のいずれか1つの位置検出装置と、
    前記磁界検出手段が固定されたフレームに一端が固定され、前記可動方向に伸縮する電気機械変換素子と、
    前記電気機械変換素子の他端に連結され、前記可動部材が摩擦係合する案内軸と、
    を備えることを特徴とする駆動装置。
  5. 少なくとも1つの光学素子が光軸上に配置された機構を備える光学機器であって、
    請求項4に記載の駆動装置における可動装置が、前記光学素子を保持して該光学素子をその案内軸上に進退動作させる保持体として機能するように構成したことを特徴とする光学機器。
  6. 光学素子の光軸と、可動部材の進退方向とが平行になるように、光学素子が可動部材により保持されていることを特徴とする請求項5記載の光学機器。
  7. 光学機器が撮像装置であり、光学素子が、その撮影光学系の一部を構成する光学素子であることを特徴とする請求項5記載の光学機器。
  8. 光学機器が光ピックアップ装置であり、光学素子が、その光ピックアップ光学系の一部を構成する光学素子であることを特徴とする請求項記載の光学機器。
  9. 光学素子が、光ピックアップ光学系のレンズであり、前記レンズが可動部材の進退動作により光軸方向に移動されることにより、収差補正が行われるよう構成されていることを特徴とする請求項8記載の光学機器。
JP2007140206A 2007-05-28 2007-05-28 位置検出装置、駆動装置及び光学機器 Expired - Fee Related JP4941104B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140206A JP4941104B2 (ja) 2007-05-28 2007-05-28 位置検出装置、駆動装置及び光学機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140206A JP4941104B2 (ja) 2007-05-28 2007-05-28 位置検出装置、駆動装置及び光学機器

Publications (2)

Publication Number Publication Date
JP2008292386A JP2008292386A (ja) 2008-12-04
JP4941104B2 true JP4941104B2 (ja) 2012-05-30

Family

ID=40167251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140206A Expired - Fee Related JP4941104B2 (ja) 2007-05-28 2007-05-28 位置検出装置、駆動装置及び光学機器

Country Status (1)

Country Link
JP (1) JP4941104B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522960B2 (ja) * 2009-03-17 2014-06-18 オリンパス株式会社 慣性駆動アクチュエータのキャリブレーション方法、慣性駆動アクチュエータ装置及び移動体の位置算出方法
EP2507592B1 (de) * 2009-12-04 2019-01-30 Hirschmann Automotive GmbH Handgasdrehgriff mit drehwinkel-messsystem
JP6297925B2 (ja) * 2014-05-29 2018-03-20 旭化成エレクトロニクス株式会社 カメラモジュール
JP6637324B2 (ja) * 2016-02-10 2020-01-29 メレキシス テクノロジーズ エス エー 変位検出装置
KR102278971B1 (ko) * 2018-11-14 2021-07-20 아사히 가세이 일렉트로닉스 가부시끼가이샤 카메라 모듈
KR102246679B1 (ko) * 2018-12-21 2021-04-30 주식회사 지니틱스 Af 구동 소자의 변위 곡선 선형화 방법
JP7388687B2 (ja) * 2019-09-17 2023-11-29 内山工業株式会社 磁気エンコーダ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570654B2 (ja) * 1987-12-08 1997-01-08 日本精工株式会社 変位検出装置
JP4400500B2 (ja) * 2005-04-06 2010-01-20 コニカミノルタオプト株式会社 位置検出器および位置決め装置

Also Published As

Publication number Publication date
JP2008292386A (ja) 2008-12-04

Similar Documents

Publication Publication Date Title
JP2005284169A (ja) 駆動装置及び光学機器
JP4941104B2 (ja) 位置検出装置、駆動装置及び光学機器
JP4600060B2 (ja) 駆動装置
US8013596B2 (en) Position detector and positioning device
US6456444B1 (en) Lens barrel
US8582205B2 (en) Lens barrel and optical apparatus including the same
US8159746B2 (en) Optical apparatus with image stabilizing and movable lenses and actuators for shifting and/or moving the lenses
KR101438233B1 (ko) 위치 검출 장치 및 광학 기기
KR101032919B1 (ko) 브러시리스 dc 모터 및 촬상장치
WO2006019094A1 (ja) レンズ位置検出装置、レンズ鏡筒および撮像装置
JP2013250468A (ja) レンズ駆動装置
US9635244B2 (en) Image pickup apparatus
JPH10225083A (ja) リニアアクチュエータとこれを用いた光学機器
JP2012068339A (ja) 位置検出センサ及びレンズ駆動装置
JP2006250857A (ja) 位置検出装置及びブレ補正装置
JP2009169202A (ja) レンズ鏡筒および撮像装置
JP5218418B2 (ja) 位置検出器および位置決め装置
JPH11289743A (ja) リニアアクチュエータとこれを用いたレンズ駆動装置及びレンズ鏡筒
JP2012002578A (ja) リニアモータの位置検出システム
JP2009015023A (ja) 駆動装置及びこれを備えた撮像装置
JP2008289315A (ja) 駆動装置及び光学機器
JP4374060B1 (ja) 磁気利用の位置検出方法及び位置検出センサ
JP2005107008A (ja) レンズ鏡筒及び撮像装置
JP2013003524A (ja) 像振れ補正装置、およびそれを用いた光学機器
JP2006243668A (ja) ズームレンズ装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees