JP2008289315A - 駆動装置及び光学機器 - Google Patents

駆動装置及び光学機器 Download PDF

Info

Publication number
JP2008289315A
JP2008289315A JP2007133843A JP2007133843A JP2008289315A JP 2008289315 A JP2008289315 A JP 2008289315A JP 2007133843 A JP2007133843 A JP 2007133843A JP 2007133843 A JP2007133843 A JP 2007133843A JP 2008289315 A JP2008289315 A JP 2008289315A
Authority
JP
Japan
Prior art keywords
magnetic field
frame
optical
movable member
field detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007133843A
Other languages
English (en)
Inventor
Satoshi Araya
聡 新家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007133843A priority Critical patent/JP2008289315A/ja
Publication of JP2008289315A publication Critical patent/JP2008289315A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】低コスト且つ簡便な構成で、しかも可動部材の位置検出を精度良く行うことができる駆動装置、及びこれを用いた光学機器を提供する。
【解決手段】圧電アクチュエータPの可動部材3に一体的に付設された磁界発生部材7と、圧電アクチュエータPを固定するフレーム9に付設され、前記可動部材の進退動作に基づく前記磁界発生部材の移動に伴う磁界変化を検出する磁界検出素子6と、磁界検出素子6を固定すると共にフレーム9に固定されることによって、磁界検出素子6をフレーム9に位置決めして取り付ける介在部材21,30を備える。フレーム9は、内部に陥入した状態で介在部材21,30を介して磁界検出素子6を固定するための固定孔13を有し、介在部材21,30は、固定孔13の磁界発生部材7の移動経路に交差する方向に間隙22,39を有するように固定孔内に固定される。
【選択図】図5A

Description

本発明は、各種の精密駆動部に適用される駆動装置に関し、特にデジタルカメラ等の撮像装置や光ピックアップ等の光学機器におけるレンズ駆動機構等に好適に適用される駆動装置に関するものである。
撮像装置や光ピックアップ等におけるレンズ駆動機構に適用される駆動装置として、圧電アクチュエータ等を駆動源とする非磁力源タイプのものが知られている。例えば、例えば特許文献1には、圧電アクチュエータを駆動源とする駆動装置が開示されている。この駆動装置においては、圧電素子の一端に固定された駆動部材の電気抵抗を利用して、前記駆動部材に摩擦係合された可動部材の位置を検出するという、可動部材の位置検出手法が採用されている。また、特許文献2にも圧電アクチュエータを駆動源とする駆動装置が開示されており、その可動部材の位置検出を、可動部材に設けられた可動電極と、固定部に設けられた固定電極との間の静電容量変化によって行う手法が開示されている。
特開2000−205809号公報 特開2003−185406号公報 特開2003−97904号公報
しかし、これらの非磁力源タイプの駆動装置にあっては、可動部材の位置検出の点において次のような不都合がある。
(1)特許文献1の駆動装置においては、駆動部材の電気抵抗を利用して可動部材の位置検出を行うという接触式のセンシング方式を採用しており、可動部材と駆動部材の接触抵抗が変動するため、高い分解能を得ることは困難である。なお、アクチュエータ性能向上のためには軽量・高剛性の駆動部材が望まれるが、センシングのための電気抵抗値と高剛性を両立するための駆動部材の材料選択が困難であるという問題もある。
(2)特許文献2の駆動装置においては、上記と異なり非接触式のセンシング手段を採用しているが、交流電圧を可動電極もしくは固定電極に印加する必要があり、検出回路が複雑になりコスト面及び信頼性の面で不利である。さらに、高い分解能を得るためには固定電極と可動電極との空隙を極めて小さくしなければならないという問題もある。
さらに、磁気センサなどの電子部品のパッケージは、一般的に部品のロット間での製造精度が低く、部品ごとの形状精度のばらつきが大きい。また、当該電子部品をFCPへの実装する場合の実装誤差も同程度に大きい。かかる電子部品を取り付ける工程においては、パッケージ外形を基準とし、はめ合いなどで位置決めを行うことが好ましいが、形状精度の問題からはめ合い隙間を大きく取らざるを得ず、実質的にははめ合いで位置決めを高精度に行うのは困難であった。したがって、このような磁気センサを固定する場合、とりわけ、複数のセンサを用いる場合には、取り付け精度自体を高める必要があり、このための製造の手間は非常に大きいものであった。
このような問題に鑑みて、磁気センサを直接取り付けるのではなく、アレイ状に配置することによって、センサ間の取り付け精度を高めたり(特許文献3)、接着剤充填などにより取り付け位置を調整することが行われている。
このような取り付けに関して、駆動装置の動作環境の変動に起因する可動部材の位置検出精度低下の問題がある。例えば可動部材の位置検出に磁気センサが広く用いられるが、そのセンシング特性は環境温度等により変移する。また、駆動装置の用途によっては、高温の環境下において使用する必要があり、磁気センサを取り付けるための部材の膨張による磁気センサの位置が変化し、結果として環境温度等の変化により可動部材の位置検出精度が低下する。このような電子部品を相対位置センサとして用い、起動時に原点位置をイニシャライズするような使い方をする場合、イニシャライズ後に温度変化があると温度による磁気センサと磁石との相対位置ずれが問題となる。
また、充填接着によりセンサの位置決めを行う場合、大きいはめ合い隙間の中央付近にホール素子を位置決めするために、複雑で高価な位置決め装置や画像処理装置などが必要となる。さらに固定部材を使用する場合と同様に接着剤の線膨張による位置ずれも発生するという問題がある。
従って本発明は、上記の問題に鑑みて、低コスト且つ簡便な構成で、しかも可動部材の位置検出を精度良く行うことができる駆動装置、及びこれを用いた光学機器を提供することを目的とする。
本発明は、上記技術的課題を解決するために、以下の構成の駆動装置及び光学機器を提供する。
本発明の第1態様によれば、フレームに取り付けられた案内軸上を可動部材が進退する機構を備えた駆動手段と、
前記駆動手段に一体的に付設され、可動部材の進退方向に表面磁束密度が変化するように構成された磁界発生部材と、
前記フレームの前記磁界発生部材の移動経路近傍に付設され、前記可動部材の進退動作に基づく前記磁界発生部材の移動に伴う磁界変化を検出する磁界検出素子と、
前記磁界検出素子を固定すると共に前記フレームに固定されることによって、前記磁界検出素子を前記フレームに位置決めして取り付ける介在部材と、
該磁界検出素子の検出信号に基づいて前記可動部材のポジションを求める演算手段と、を備え、
前記フレームは、内部に陥入した状態で前記介在部材を介して前記磁界検出素子を固定するための固定孔を有し、
前記介在部材は、前記固定孔の前記磁界発生部材の移動経路に沿った方向の外壁に接触することによって前記介在部材を固定するフレーム接触部を有し、前記固定孔の前記磁界発生部材の移動経路に交差する方向に間隙を有するように前記固定孔内に固定されることを特徴とする、駆動装置を提供する。
本発明の第2態様によれば、前記介在部材は、中央に前記磁界検出素子を収納する収納孔を有する板状部材で構成された本体を有し、前記本体から前記収納孔に向けて突出して設けられ、前記磁界検出素子に当接して前記磁界検出素子を固定する素子固定部を備えることを特徴とする、第1態様の駆動装置を提供する。
本発明の第3態様によれば、前記介在部材は、前記素子固定部として、前記移動経路に沿って延在する突起で構成された第1素子固定部を備え、
前記第1素子固定部と前記フレーム接触部とが、前記移動経路の直交方向において略同じ位置に設けられていることを特徴とする、第2態様の駆動装置を提供する。
本発明の第4態様によれば、前記介在部材は、前記移動経路に交差する方向に対向する周縁に、前記固定孔の前記磁界発生部材の移動経路に交差する方向に対向する外壁に接触する第2フレーム接触部を有し、
前記介在部材は、前記素子固定部として、さらに、前記磁界検出素子の前記移動経路に交差する方向に延在する突起で構成された第2素子固定部を有し、
前記第2フレーム接触部と前記第2素子固定部は、前記移動経路に沿った方向に対してそれぞれ異なる位置に設けられていることを特徴とする、第2又は第3態様の駆動装置を提供する。
本発明の第5態様によれば、前記介在部材は、前記移動経路に交差する方向の周縁まで延在する溝部を有し、
前記溝部によって、前記磁界発生部材の移動経路に交差する方向に存在する2つの間隙を連通する空間経路を構成することを特徴とする、第1から第4態様のいずれか1つの駆動装置を提供する。
本発明の第6態様によれば、前記磁界検出素子は、前記可動部材の進退方向に沿って複数が並置されていることを特徴とする、第1から第5態様のいずれか1つの駆動装置を提供する。
本発明の第7態様によれば、磁界検出素子が、ホール素子であることを特徴とする第6態様の駆動装置を提供する。
本発明の第8態様によれば、前記フレーム及び前記介在部材は、非磁性金属で構成されていることを特徴とする、第1から第7態様のいずれか1つの駆動装置を提供する。
本発明の第9態様によれば、前記フレームは非磁性金属であり、前記介在部材は樹脂又は繊維含有樹脂で構成され、前記介在部材の線膨張係数は、0.1から10×10-5/Kであることを特徴とする、第1から第7態様のいずれか1つの駆動装置を提供する。
本発明の第10態様によれば、前記フレームは非磁性金属であり、前記介在部材は樹脂又は繊維含有樹脂で構成され、
前記フレームと前記介在部材の線膨張係数の比が0.5から2であることを特徴とする、第1から第7態様のいずれか1つの駆動装置を提供する。
本発明の第11態様によれば、前記樹脂は、液晶ポリマー、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエステル、ポリイミド、フッ素樹脂のいずれかであり、前記含有繊維は、ガラス、カーボン、シリカ、非磁性金属、セラミック繊維であることを特徴とする、第9又は第10態様の駆動装置を提供する。
本発明の第12態様によれば、駆動手段が、一端に前記案内軸が固定され他端が前記フレームに固定された電気機械変換素子と、前記案内軸上に移動可能に保持された可動部材とを備える圧電アクチュエータであることを特徴とする第1から第11態様のいずれか1つの駆動装置を提供する。
本発明の第13態様によれば、少なくとも一つの光学素子が光軸上に配置された機構を備える光学機器において、
第1から第12態様のいずれかの駆動装置における可動部材が、前記光学素子を保持して該光学素子をその案内軸上に進退動作させる保持体として機能するよう構成したことを特徴とする光学機器を提供する。
本発明の第14態様によれば、光学素子の光軸と、可動部材の進退方向とが平行になるように、光学素子が可動部材により保持されていることを特徴とする第13態様の光学機器を提供する。
本発明の第15態様によれば、光学機器が撮像装置であり、光学素子が、その撮影光学系の一部を構成する光学素子であることを特徴とする第14態様の光学機器を提供する。
本発明の第16態様によれば、光学機器が光ピックアップ装置であり、光学素子が、その光ピックアップ光学系の一部を構成する光学素子であることを特徴とする第15態様の光学機器を提供する。
本発明の第17態様によれば、光学素子が、光ピックアップ光学系のレンズであり、前記レンズが可動部材の進退動作により光軸方向に移動されることにより、収差補正が行われるよう構成されていることを特徴とする第16態様の光学機器を提供する。
本発明によれば、可動部材に対して一体的に付設された磁界発生部材の進退動作に伴う磁界変化が、フレームに固定された磁界検出素子により検出されることで可動部材の位置が求められる。そして、磁界検出素子は、介在部材を介してフレームに固定されている。一般的には、電子部品である磁界検出素子に対して、介在部材及びフレームの製造精度は高いので、介在部材を用いることによって、磁界検出素子のフレームへの取り付け位置精度を高くすることができる。また、介在部材は、フレームの固定孔の磁界発生部材の移動経路に沿った方向の外壁に接触することによって固定すると共に、移動経路に交差する方向に間隙を有するように配置されるので、熱変形の影響がこの間隙によって吸収され、介在部材の線膨張による位置ずれ方向が磁力線方向と直交することとなる。よって、介在部材の熱膨張の影響は、間隙により吸収され、移動経路に沿った方向への熱膨張によって位置の変動を生じさせにくくすることができる。
また、介在部材を中央に収納孔を有する板状部材で構成することにより、簡単な構成で磁界検出素子の位置決めを行うことができる。さらに、介在部材に設けられる第1素子固定部とフレーム接触部とが、移動経路の直交方向において略同じ位置に設けられていることにより、介在部材の熱膨張によって、介在部材に加わる移動経路に沿った方向に応力を介在部材の同じ位置に付加させることができ、磁界検出素子が熱変形によって移動経路に沿った方向に位置ずれすることを防止することができる。
さらに、本発明の第4態様によれば、移動経路に交差する方向においては、第2フレーム接触部と第2素子固定部との移動経路に沿った方向の位置をずらすことにより、介在部材の熱膨張が生じた場合、介在部材に加わる移動経路に交差する方向の応力の位置をずらすことができ、磁界検出素子が移動経路に沿った方向へ移動することが防止される。
本発明の第5態様によれば、介在部材を固定するために、間隙に接着剤を充填する場合において、1箇所から充填すれば必要箇所全てに接着剤が行き渡り、介在部材とフレームを固定する工程の手間を省力化することができる。
本発明の第6態様によれば、可動部材の進退方向に沿って配置される複数の磁界検出素子を用いることにより、2つの出力を用いて簡易な演算をすることにより、磁界検出素子の検出特性が動作環境の変化によって変わった場合でも、その変化の影響を受けることなく、位置検出を行うことができる。また、磁界検出素子としてホール素子を用いることで、小型駆動装置への組み込み性に優れ、安価である点で好適である。
フレームと介在部材に非磁性金属や樹脂又は繊維含有樹脂を用いることにより、磁力検出に用いられる磁界の影響をフレームと介在部材に与えることなく、高精度に位置検出を行うことができる。このとき、介在部材の線膨張係数は、0.1から10×10-5/Kであることが好ましく、フレームと介在部材の線膨張係数の比が0.5から2であることが好ましい。
第13態様若しくは第14態様にかかる光学機器によれば、各種の光学機器が備えている光学素子の光軸上への移動制御を、本発明の上記のいずれかの態様の駆動装置により行うよう構成しているので、低コスト且つ簡便な構成で、しかも可動部材の位置検出を動作環境変化に影響されることなく精度良く行うことができるという効果を奏する。
第15態様にかかる光学機器によれば、デジタルカメラ等の撮像装置において、その撮影光学系に組み付けられているズームレンズ等の駆動を、低コスト且つ簡便な構成で、しかも動作環境変化に影響されず精度良く行わせることができるという利点がある。
第16態様にかかる光学機器によれば、光ピックアップにおいて、そのピックアップ光学系に組み付けられているレンズ等の駆動を、低コスト且つ簡便な構成で、しかも動作環境変化に影響されず精度良く行わせることができるという利点がある。また、第17態様にかかる光学機器によれば、上記いずれかの態様の駆動装置により収差補正を行わせる構成であり、当該駆動装置の利便性をより向上させることができる。
以下、図面に基づいて、本発明の第実施形態に掛かる駆動装置ついて詳細に説明する。
(全体構成)
図1は本発明にかかる駆動装置Sのシステム構成図である。この駆動装置Sは、駆動手段の一例としての圧電アクチュエータPと、この圧電アクチュエータPを駆動させる駆動回路4及び制御回路5と、圧電アクチュエータPが備える可動部材3に一体的に付設されその進退方向に表面磁束密度が変化されている磁界発生部材7と、この磁界発生部材7により生成される磁界を検出する磁界検出素子6と、該磁界検出素子6の検出信号に基づいて前記可動部材3のポジションを求める検出回路(演算手段)8とを備えている。なお、前記磁界検出素子6、磁界発生部材7、及び検出回路8は、可動部材3の位置センサ部を構成する。
圧電アクチュエータPは、電気機械変換素子1と、該電気機械変換素子1の一端に固定された案内軸2と、案内軸2上に移動可能に保持された可動部材3とから構成されている。前記電気機械変換素子1としては、ピエゾ素子等の圧電素子を好適に用いることができる。電気機械変換素子1(以下、圧電素子1という)の電歪方向(伸縮方向)の一端側には、前記案内軸2が接着等の手法により固着されており、前記圧電素子1の伸縮動作により図中矢印aの方向へ移動されるようになっている。一方、圧電素子1の他端側はフレーム9(当該駆動装置Sの本体ボディ等)に固定されており、これにより圧電素子1の伸長方向が規制されている。
可動部材3は、例えばレンズ鏡筒や精密ステージの可動片等の被駆動体に対して移動力を与える部材である。この可動部材3は貫通孔を備えており、この貫通孔に前記案内軸2が挿通される態様で、所定の摩擦係合力をもって案内軸2に取り付けられている。
図2A及び図2Bは、上記のような圧電アクチュエータPの動作原理を説明するための図であり、図2Aは案内軸2上における可動部材3の進退動作状態を示す模式図であり、また図2Bは案内軸2の軸変位を時間軸に示したグラフ図である。つまり、図2Bに示すような軸変位動作を案内軸が為すように、圧電素子1に対して鋸歯状の駆動パルス電圧が与えられるものである。なお、図2A(a)、(b)、(c)の各状態図と、図2B中に付記している記号(a)、(b)、(c)のタイミングとは一致させて図示されている。
先ず図2A(a)の状態を初期状態とすると、図2B(b)の状態に移行するとき、すなわち繰り出し方向へ伸長するとき、図2Bのグラフ図に示すように、圧電素子1(案内軸2)は緩やかに伸び変位する。これに伴って案内軸2も緩やかな速度で繰り出し方向に移動されることから、案内軸2に摩擦係合された可動部材3は、その摩擦係合力により同期追随して変位する。次に、図2A(b)から図2A(c)の状態へ移行するとき、つまり圧電素子1に前記鋸歯状駆動パルス電圧の急峻な立下がり部の電圧が印加された場合、圧電素子1は急速に縮み変位する。これに伴って案内軸2も急峻な速度で戻り方向に移動されることから、可動部材3と案内軸2の摩擦係合部に滑りが生じることとなる。この滑りにより、可動部材3は案内軸2の軸変位に追随して変位せず、戻り方向に僅かに戻るようになる。このような動作が繰り返されることにより、可動部材3は案内軸2の軸上を圧電素子1から離れる方向に移動されるものである。
本発明において用いられる駆動手段としては、上記の圧電アクチュエータPのように、いわゆる「非磁力源タイプ」の駆動手段を用いることが望ましい。具体的には、駆動手段が備える可動部材3の進退に伴って生じる表面磁束密度が0.1mT以下のものである一方、磁界発生部材7が発生する表面磁束密度の最大値が1mT以上とすることが望ましい。このように、駆動手段の動作により発生される表面磁束密度を、磁界発生部材7が発生する表面磁束密度の1/10程度以下に抑制することで、漏れ磁束により磁界検出素子6の検出信号が乱されず、可動部材3の高精度な位置決めが達成できるようになる。
このような「非磁力源タイプ」の駆動手段としては、上記構成の圧電アクチュエータPのほか、超音波モータを用いて可動部材3を進退動作させる超音波アクチュエータや、形状記憶部材を用いて可動部材3を進退動作させる形状記憶アクチュエータなどを例示することができる。
図1に戻って、制御回路5は、図示省略の上位コンピュータなどから与えられる位置指令(可動部材3の変位指令)を受け取り、可動部材3を指令位置に移動させるための駆動制御信号を生成する。この駆動制御信号は、前記検出回路8から送信される可動部材3の位置信号と、前記位置指令に基づく位置信号との差に応じ、可動部材3が所定の移動量だけ移動するように生成される。
このように生成された駆動制御信号は、駆動回路4に入力される。駆動回路4は、前記駆動制御信号に基づいて、可動部材3が所定の移動量だけ移動するよう、圧電素子1を駆動させる駆動信号を生成し、圧電素子1を実際に駆動させる。
磁界発生部材7は、前記可動部材3に一体的に付設され、可動部材3の進退動作に応じてその進退方向(すなわち、可動部材3の移動経路に沿って)に磁界発生部材7も移動されるよう構成されている。この磁界発生部材7は、可動部材3に直接的に固定しても良いが、可動部材3に取り付けられる被駆動部材(レンズホルダなど)に固定する等して、間接的に可動部材3に取り付けるようにしても良い。この磁界発生部材7としては、図3に示すように、可動部材3の進退方向に表面磁束の向きが変化されたものが用いられる。表面磁束密度の変化態様としては特に制限はなく、固定的に配置されている磁界検出素子6に対して、自身の進退移動による表面磁束密度変化が作用する変化態様を具備していれば良い。その具体例については、後に詳述する。
磁界検出素子6は、前記可動部材3の進退動作に基づく磁界発生部材7の移動に伴う磁界変化を検出するもので、前記磁界発生部材7の移動経路近傍に固定的に並置された第1の磁界検出素子6Aと第2の磁界検出素子6Bとを備えている。この実施形態では、二つの磁界検出素子を用いた場合を示しているが、3個以上の複数個の磁界検出素子を並置するようにしても良い。
上記磁界検出素子6A、6Bとしては、各種の磁気センサを用いることができる。代表的なものとして、磁気抵抗効果用いたMR素子やホール効果を用いたホール素子など、検出された磁界に応じて電気信号を出力する磁界検出素子を例示することができる。このうちホール素子は、一般に小型であってこの種駆動装置Sへの組込み性に優れ、また安価であることから、好適に用いることができる。
検出回路8は、前記磁界検出素子6の検出信号に基づいて、可動部材3のポジションを求める演算手段として機能する。すなわち、前記第1の磁界検出素子6A及び第2の磁界検出素子6Bによりそれぞれ検出された磁界検出信号が検出回路8に入力され、当該2つの磁界検出信号を増幅、演算することで、可動部材3の現在位置情報である位置信号が生成される。ここで生成された位置信号は、前記制御回路5へ出力される。
(光学機器への適用)
図4は、本発明の実施形態にかかる駆動装置Sを、デジタルカメラ等の撮像装置や光ピックアップ装置等の光学機器における光学素子の駆動系に応用した場合の構成例である。すなわち、少なくとも一つの光学素子が光軸上に配置された機構を備える光学機器において、上記で説明した駆動装置Sにおける可動部材3に光学素子を保持させ、該光学素子をその案内軸上に進退動作させるようにした実施形態を示している。
図4では、駆動される光学素子としてレンズホルダ11で保持されたレンズ12を例示している。このレンズ12は、適用される光学機器が撮像装置である場合は、その撮影光学系の一部を構成するレンズ(ズームレンズ)であり、適用される光学機器が光ピックアップ装置である場合は、その光ピックアップ光学系の一部を構成するレンズである。
この実施形態にかかる光学機器は、前述のレンズホルダ11で保持されたレンズ12と、このレンズ12を進退動作させる圧電アクチュエータPと、レンズホルダ11の側縁に固着される磁界発生部材7と、該磁界発生部材7に対向配置された第1の磁界検出素子6A及び第2の磁界検出素子6Bを備える磁界検出素子6と、レンズホルダ11をガイドする副軸10とを備えて構成されている。
レンズホルダ11は、その一端側が圧電アクチュエータPの可動部材3に連結している。このレンズホルダ11の取り付けは、レンズ12の光軸と、可動部材3の進退方向(つまり案内軸2の延在方向)とが平行になる位置関係とされている。一方、レンズホルダ11の他端側には貫通孔が設けられており、前記貫通孔に副軸10が挿通されている。従ってレンズホルダ11は、圧電アクチュエータPの可動部材3により進退動作力が与えられ、副軸10によりガイドされつつ進退動作するようになっている。なお、圧電アクチュエータPの圧電素子1は、該光学機器の本体ボディ等を構成するフレーム9に設けられている取り付け部90に固定されている。
磁界発生部材7は、可動部材3の側縁部に固定されている。磁界検出素子6は、磁界発生部材7に対向するようフレーム9に配置されている。フレーム9は、磁界発生部材7からの磁界の影響を少なくするために、アルミニウムや真鍮などの非磁性金属で構成されている。なお、磁界発生部材7を可動部材3に直接的に取り付けるのではなく、レンズホルダ11の他端側(副軸10の側)に取り付けるように構成していてもよい。この場合、磁界検出素子6が磁界発生部材7に対向するような位置に設けるために、フレーム9の形状を変更することが好ましい。
(位置センサ部の第1実施形態)
図5Aは、この駆動装置Sにおいて位置センサを構成する部分、すなわち磁界検出素子6、磁界発生部材7、および検出回路8から構成される位置センサ部分の一例を示した構成図である。図5Bは、図5Aの位置センサ部分の分解斜視図である。図5Cは、図5AのVC−VC線での断面図である。
この実施形態においては、磁界発生部材7として、図3に示すように、可動部材3の進退方向aに沿って、正着磁が支配的な正着磁部と、負着磁が支配的な負着磁部と、両者の間に配置され、正・負着磁が相殺される中間部とを備えるものが用いられている。すなわち、厚み方向に正極及び負極が配置された2つの磁石71,72を用い、2つの磁石を可動部材3の進退方向に沿って正極及び負極が交互に配置されるように配置する。
すなわち、第1磁石71はS極が磁界検出素子6との対向面に、第2磁石72はN極が磁界検出素子6との対向面にそれぞれ配向され、両磁石が互いに対向する側辺同士で固着された形態の磁界発生部材である。
磁界検出素子6は、磁界発生部材7に対向するよう、介在部材21を介してフレーム9に固定されている。磁界検出素子6は、磁界発生部材7の進退方向に沿って第1の磁界検出素子6Aと第2の磁界検出素子6Bとが固定的に並置されている。従って、磁界発生部材7が矢印aの方向に移動すると、第1の磁界検出素子6Aおよび第2の磁界検出素子6B周辺の磁界が、磁界発生部材7から与えられる表面磁束密度の変化に応じてそれぞれ変化するため、第1、第2の磁界検出素子6A、6Bが検出する出力信号も変化する。
しかも、第1の磁界検出素子6Aと第2の磁界検出素子6Bとが同時刻において検出する磁束密度は、磁界発生部材7がN極部分からS極部分へ緩やかに変化する形状を備えていることから、それぞれの配置位置に応じて異なる磁束密度が検出されることになる。すなわち、磁界発生部材7の表面磁束密度は、その進退方向に対して、図中左端近傍で正の最大値をとり、中央部でゼロとなり、図中右端近傍で負の最大値(絶対値)をとり、またその変化は略線形となることから、第1の磁界検出素子6Aと第2の磁界検出素子6Bとからは、同時刻において異なる表面磁束密度が検出される。
このように磁界発生部材7を構成することによって、第1の磁界検出素子6A及び第2の磁界検出素子6Bにより検出される磁界は、第1磁石71と第2磁石72との境界部分の、各磁界検出素子における検出ポイントの通過の前後により大きく変化する。よって可動部材3の可動範囲が比較的狭い駆動装置Sに適している。
なお、磁界発生部材7の進退方向の幅は、可動部材3がその移動ストローク範囲において如何なる位置にあっても、磁界発生部材7と磁界検出素子6との対向関係を確保できる長さに選定しておくことが望ましい。すなわち、磁界検出素子6が、可動部材3と一体的に進退動作を行う磁界発生部材7に対向して固定的に配置される場合において、可動部材3の進退動作領域の全域に亘り、磁界発生部材7からの磁力線が磁界検出素子6に作用するよう、磁界発生部材7の形状を選定することが望ましい。このような構成であれば、可動部材3が全ストローク範囲において可動部材3の位置検出が行えるので好ましい。なお、磁界発生部材7と磁界検出素子6との間隙は、離れすぎると検出精度が低下し、近すぎると磁石7と磁気センサ6が接触する危惧があるため、0.1〜0.3mm程度に設定することが望ましい。
磁界検出素子6をフレーム9に取り付ける介在部材21は、図5Aに示すように、板状のアルミニウムや真鍮などの非磁性金属、樹脂又は繊維強化樹脂で構成される。樹脂の具体例としては、液晶ポリマー、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエステル、ポリイミド、フッ素樹脂等が例示でき、樹脂に含有する繊維の例としては、ガラス、カーボン、シリカ、非磁性金属、セラミックの繊維が例示できる。
介在部材21は、フレーム9を構成する材料と近似の線膨張係数を持つ材料で構成されていることが好ましく、両者の比が0.5から2であることが好ましい。具体的な線膨張係数の値としては、0.1から10×10-5/Kであることが好ましい。
第1実施形態にかかる介在部材21は、板状の部材であり、磁界検出素子6A,6Bを接着剤で接着して保持する。磁界検出素子6A,6Bは通常パッケージ化されており、2つの素子がフレキシブル基板などに貼り合わされた状態のものが用いられる場合がある。この場合は、図5Cに示すように、フレキシブル基板50に貼り合わされた素子6A,6Bを接着剤27を用いて介在部材21に接着させる。板状の部材である介在部材21は、その製造精度が極めて高く、また、単純な構造であるため、当該部材に磁界検出素子6A,6Bを位置決めして接着する場合の取り付け位置の精度を高くすることができる。両者の位置決めには、例えば、磁界検出素子6A,6Bを取り付けるための専用の治具を用いて、介在部材21と磁界検出素子6A,6Bの位置決めを行い、接着剤で固定するようにすればよい。
磁界検出素子6A,6Bを貼り付けた介在部材21は、フレーム9に設けられた貫通孔である固定孔13内に固定される。固定孔13は、介在部材21が挿入されて介在部材を固定するため、介在部材21がフレーム9の厚み方向の位置決めをするための構造(突起や貫通孔の大きさをフレーム9の厚み方向に異ならせる等)を備えていてもよい。フレーム9は例えば、ダイキャスト部品などで構成されるため、固定孔13の寸法についても製造精度は極めて高くすることができる。よって、介在部材21とフレーム9の固定孔13とのはめ合い精度を高くすることができる。したがって、磁界検出素子6A,6Bを形状の複雑なフレームに直接取り付ける場合と比較して、パッケージ外形誤差、実装位置ずれなどを吸収する必要がなく、フレーム9に対する磁界検出素子6A,6Bの取り付け位置の精度を高くすることができる。
フレーム9に設けられた固定孔13は、介在部材21に対して、図5Aに示すように、移動経路に沿った方向であるX軸方向に略等しい寸法で構成され、移動経路に直交する方向であるY軸方向には介在部材よりも大きい寸法に構成されている。すなわち、介在部材のX軸方向両端が、固定孔13のX軸方向に沿った外壁14へ接触してX軸方向の位置が特定される。一方、介在部材のY軸方向に沿った寸法は、固定孔13よりも短く構成される。よって、介在部材を固定孔13に組み入れたとき、固定孔13のY軸方向に沿った外壁15と介在部材21との間には、間隙22が形成される。
介在部材21と固定孔13の寸法をこのように構成することにより、駆動装置の使用環境が高温となるような場合、センサの位置検出に熱による線膨張の影響を少なくすることができる。すなわち、図5Aに示すような磁力線方向で磁界検出素子が位置ずれする場合、磁界発生部材の磁極の向きに垂直なY方向に比較して、磁極の向きに沿ったX方向の方が磁界検出素子6A,6Bの出力の感度が高い。したがって、フレーム9と介在部材21間のX方向のはめ合い公差を小さくすることで磁界検出素子6A,6Bの出力の変化を抑えることができる。また、フレキシブル基板50やパッケージ本体の線膨張分は介在部材21と磁界検出素子6A,6Bの接着面以外の間隙22で吸収されるため、介在部材21の線膨張の影響を抑えることができる。さらに、介在部材21とフレーム9を線膨張係数が近似した材料で構成することにより、ほぼ同じ程度の熱変形となり、フレーム9に対する磁界検出素子6A,6Bの位置の変化を抑えることができる。
なお、固定孔13に陥入した介在部材21をフレーム9に固定するために、間隙22から接着剤を充填し、両者を固定することが好ましい。間隙22から充填された接着剤は、磁界検出素子6A,6Bが存在せず、磁界検出素子6A,Bに対して凹状になっている介在部材21の表面26を通って介在部材21とフレキシブル基板50の間に全体に行き渡って充填され、介在部材21をフレーム9に固定する。
本実施形態にかかる位置センサ部の構成によれば、板状の介在部材を用いることにより、簡単な構成でフレームと磁界検出素子との位置あわせの組み付け精度を高めることができる。また、可動部材の移動方向に直交するY軸方向に設けられた間隙により、線膨張が吸収されることによって、可動部材の移動方向に沿った磁界検出素子の位置ずれを少なく抑えることができる。
(位置センサ部の第2実施形態)
図6Aは、第2実施形態にかかる位置センサ部に用いられる介在部材の構成を示す平面図であり、図6Bは、図6AのVIB-VIB線での断面図である。本実施形態にかかる位置センサ部の構成は、使用する介在部材の構成が異なるのみであり、基本的な構成は、第1実施形態と共通する。以下、主に異なる部分について説明を進める。
介在部材30は、本体31の中央に磁界検出素子6を収納する収納孔32を有するガラス繊維強化液晶ポリマーで構成された板状部材である。介在部材30を構成する素材としては、他に、ポリアミド、ポリアセタール、ポリカーボネート、変性PPE、ポリエステル、ポリイミド、フッ素樹脂などのエンジニアリングプラスチックやアルミニウム、真鍮などの非磁性金属などを用いてもよい。また、繊維強化樹脂として、強化繊維としてガラス、カーボン、シリカ等を用いることができる。
介在部材30は、フレーム9を構成する材料と近似の線膨張係数を持つ材料で構成されていることが好ましく、両者の比が0.5から2であることが好ましい。具体的な線膨張係数の値としては、0.1から10×10-5/Kであることが好ましい。
介在部材30は、移動経路に沿った方向であるX軸方向の寸法が長い略矩形型に構成される。X軸方向に対向するX軸縁部34aの中央部分には、フレーム9に設けられた固定孔13のX軸方向に沿った外壁に当接する第1フレーム接触部34が設けられている。また、移動経路に直交する方向に対向しY軸方向に沿ったY軸側縁部33aは曲線状に構成されており、Y軸縁33aの両端がフレーム9に設けられた固定孔13のY軸方向の壁に当接する第2フレーム接触部33を構成する。
介在部材30の本体31の少なくとも一方の表面には、Y軸縁部33a及びX軸縁部34aから収納孔32へ連通する溝部37,38が設けられている。溝部37,38は、後述するように、介在部材30を用いて磁界検出素子6をフレーム9に固定するときに用いられる接着剤を介在部材30の周囲に行き渡らせるための空間経路を形成するためのものである。
介在部材30に設けられた収納孔32には、内側に磁界検出素子6が収納されて固定される。図7に示すように、フレキシブル基板50に搭載された磁界検出素子6A,6Bを介在部材30の収納孔32に収まるように陥入する。収納孔32には、その外縁から内側方向に延在する突起状の第1及び第2の素子固定部35,36が設けられている。第1及び第2の素子固定部35,36は、収納孔32内に陥入された磁界検出素子6(6A,6B)の収壁に接触することによって、磁界検出素子6を固定する。第1及び第2の素子固定部35,36は、介在部材30の本体部31の厚み寸法に対して、薄い厚み寸法に構成されているため、後述するように、介在部材とフレームとを固定するための接着剤の充填工程において、接着剤が全体に行き渡りやすくなる。
第1の素子固定部36は、X軸方向に沿って設けられており、磁界検出素子6のX軸方向沿いの壁に接触する。第1の素子固定部36は、第1フレーム接触部34とY軸方向に略同じ位置に設けられており、フレーム9への固定時に第1フレーム接触部34によって介在部材30の本体部31に加わる押圧力73と、第1の素子固定部36によって介在部材の本体部31に加わる押圧力74が、本体部31の同じ位置に加えられることになる(図8A参照)。
また、第2の素子固定部35は、Y軸方向に沿って4箇所に設けられており、それぞれY軸方向に対向する組がそれぞれの磁界検出素子6のY軸方向外周に接触する。上記のように、第2のフレーム接触部33は、介在部材の4角に設けられており、第2フレーム接触によって介在部材30の本体部31に加えられる押圧力71と、第2の素子固定部35によって介在部材30の本体部31に加えられる押圧力72は、異なる位置に作用する(図8A参照)。
図8Aは、2つの磁界検出素子6A,6Bを固定した介在部材30がフレームの固定孔13に固定された状態を示す平面図であり、図8Bは、図8AのVIIIB−VIIIB線での断面図である。図8A、図8Bに示すように、介在部材30は、フレーム9の固定孔13内のX軸方向に沿って外壁14とY軸方向に沿った外壁15とに、それぞれ第1フレーム接触部34、第2フレーム当接部33が当接することによって位置決め及び固定される。板状の部材である介在部材30は、極めて高い製造精度で製造することができるため、固定孔13に嵌め合わされたときの磁界検出素子6A,6Bのフレーム9に対する取り付け位置精度を高くすることができる。
上記のように、Y軸縁33aは、中央部分に凹になるような曲線状に形成されているため、固定孔13に収納された場合に、介在部材30のY軸方向両側に間隙39が形成される。この間隙39によって、高温環境での介在部材30の線膨張の寸法変化分を吸収することができ、磁界検出素子6A,6Bの位置の変化を抑えることができる。
また、上記のように、第1の素子固定部36は、第1フレーム接触部34とY軸方向に略同じ位置に設けられており、フレーム9への固定時に第1フレーム接触部34によって介在部材30の本体部31に加わる押圧力73と、第1の素子固定部36によって介在部材の本体部31に加わる押圧力74が、本体部31の同じ位置に加えられるため、介在部材30の線膨張によって寸法が変化した場合、2つの押圧力が釣り合うため、磁界検出素子6A,6BがX軸方向に位置ずれをおこしにくい。さらに、上記のように、第2フレーム接触によって介在部材30の本体部31に加えられる押圧力71と、第2の素子固定部35によって介在部材30の本体部31に加えられる押圧力72は、異なる位置に作用するため、線膨張による寸法変化により押圧力の変化は、磁界検出素子6A,6BのY位置変化として発現されることとなる。
なお、固定孔13に陥入した介在部材30をフレーム9に固定するために、間隙39から接着剤を充填し、両者を固定することが好ましい。間隙39から充填された接着剤は、介在部材30の本体部31に設けられた溝部37,38とフレキシブル基板50によって画定される経路を通って、介在部材21とフレキシブル基板50の間に全体に行き渡って充填され、介在部材21をフレーム9に固定する。
本実施形態にかかる位置センサ部の構成によれば、中央部分に収納孔32が設けられた介在部材30を用いることにより、フレーム9と磁界検出素子6A,6Bとの位置あわせの組み付け精度を高めることができる。また、可動部材の移動方向に直交するY軸方向に設けられた間隙39により、線膨張が吸収されることによって、可動部材の移動方向に沿った磁界検出素子の位置ずれを少なく抑えることができる。また、介在部材30の固定孔への固定を行う第1及び第2フレーム接触部と介在部材への磁界検出素子6A,6Bへの固定を行う第1及び第2の素子固定部35,36の取り付け位置をそれぞれ異ならせることによって、線膨張による介在部材30の寸法変化による磁界検出素子6A,6Bの位置変化がY軸方向となるようにすることができる。
なお、本発明は上記実施形態に限定されるものではなく、その他種々の態様で実施可能である。例えば上記実施形態では、磁界発生部材7として磁石を用いる場合について説明したが、着磁シートなどを用いることが可能である。
本発明にかかる駆動装置のシステム構成図である。 摩擦駆動型の圧電アクチュエータの動作原理を説明するための説明図である。 摩擦駆動型の圧電アクチュエータの駆動軸変位を表す説明図である。 本発明にかかる駆動装置の位置センサ部分の構成を示す模式図である。 本実施形態にかかる駆動装置を、光学機器における光学素子の駆動系に応用した場合の構成例を示す構成図である。 位置センサ部分の一例を示した構成図である。 図5Aの位置センサ部分の分解斜視図である。 図5AのVC−VC線での断面図である。 本実施形態にかかる駆動装置の他の構成の位置センサ部に用いられる介在部材の構成を示す平面図である。 図6AのVIB-VIB線での断面図である。 図6Aの介在部材と介在部材に取り付けられる磁界検出素子の組み立て工程を説明する図である。 2つの磁界検出素子を固定した介在部材がフレームの固定孔に固定された状態を示す平面図である。 、図8AのVIIIB−VIIIB線での断面図である。
符号の説明
1 圧電素子(電気機械変換素子)
2 案内軸
3 可動部材
4 駆動回路
5 制御回路
6 磁界検出素子
6A 第1の磁界検出素子
6B 第2の磁界検出素子
7 磁界発生部材
71 第1磁石
72 第2磁石
8 検出回路(演算手段)
8C 演算器(演算手段)
80 制御部(演算手段)
9 フレーム
10 副軸
11 レンズホルダ
12 レンズ(光学素子)
13 固定孔
14,15 外壁
21,30 介在部材
31 本体
32 収納孔
33 第2フレーム接触部
33a Y軸縁
34 第1フレーム接触部
34a X軸縁部
35 第2の素子固定部
36 第1の素子固定部
37,38 溝部
50 フレキシブル基板
P 圧電アクチュエータ

Claims (17)

  1. フレームに取り付けられた案内軸上を可動部材が進退する機構を備えた駆動手段と、
    前記駆動手段に一体的に付設され、可動部材の進退方向に表面磁束密度が変化するように構成された磁界発生部材と、
    前記フレームの前記磁界発生部材の移動経路近傍に付設され、前記可動部材の進退動作に基づく前記磁界発生部材の移動に伴う磁界変化を検出する磁界検出素子と、
    前記磁界検出素子を固定すると共に前記フレームに固定されることによって、前記磁界検出素子を前記フレームに位置決めして取り付ける介在部材と、
    該磁界検出素子の検出信号に基づいて前記可動部材のポジションを求める演算手段と、を備え、
    前記フレームは、内部に陥入した状態で前記介在部材を介して前記磁界検出素子を固定するための固定孔を有し、
    前記介在部材は、前記固定孔の前記磁界発生部材の移動経路に沿った方向の外壁に接触することによって前記介在部材を固定するフレーム接触部を有し、前記固定孔の前記磁界発生部材の移動経路に交差する方向に間隙を有するように前記固定孔内に固定されることを特徴とする、駆動装置。
  2. 前記介在部材は、中央に前記磁界検出素子を収納する収納孔を有する板状部材で構成された本体を有し、前記本体から前記収納孔に向けて突出して設けられ、前記磁界検出素子に当接して前記磁界検出素子を固定する素子固定部を備えることを特徴とする、請求項1に記載の駆動装置。
  3. 前記介在部材は、前記素子固定部として、前記移動経路に沿って延在する突起で構成された第1素子固定部を備え、
    前記第1素子固定部と前記フレーム接触部とが、前記移動経路の直交方向において略同じ位置に設けられていることを特徴とする、請求項2に記載の駆動装置。
  4. 前記介在部材は、前記移動経路に交差する方向に対向する周縁に、前記固定孔の前記磁界発生部材の移動経路に交差する方向に対向する外壁に接触する第2フレーム接触部を有し、
    前記介在部材は、前記素子固定部として、さらに、前記磁界検出素子の前記移動経路に交差する方向に延在する突起で構成された第2素子固定部を有し、
    前記第2フレーム接触部と前記第2素子固定部は、前記移動経路に沿った方向に対してそれぞれ異なる位置に設けられていることを特徴とする、請求項2又は3に記載の駆動装置。
  5. 前記介在部材は、前記移動経路に交差する方向の周縁まで延在する溝部を有し、
    前記溝部によって、前記磁界発生部材の移動経路に交差する方向に存在する2つの間隙を連通する空間経路を構成することを特徴とする、請求項1から4のいずれか1つに記載の駆動装置。
  6. 前記磁界検出素子は、前記可動部材の進退方向に沿って複数が並置されていることを特徴とする、請求項1から5のいずれか1つに記載の駆動装置。
  7. 前記磁界検出素子が、ホール素子であることを特徴とする請求項6に記載の駆動装置。
  8. 前記フレーム及び前記介在部材は、非磁性金属で構成されていることを特徴とする、請求項1から7のいずれか1つに記載の駆動装置。
  9. 前記フレームは非磁性金属であり、前記介在部材は樹脂又は繊維含有樹脂で構成され、前記介在部材の線膨張係数は、0.1から10×10-5/Kであることを特徴とする、請求項1から7のいずれか1つに記載の駆動装置。
  10. 前記フレームは非磁性金属であり、前記介在部材は樹脂又は繊維含有樹脂で構成され、
    前記フレームと前記介在部材の線膨張係数の比が0.5から2であることを特徴とする、請求項1から7のいずれか1つに記載の駆動装置。
  11. 前記樹脂は、液晶ポリマー、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエステル、ポリイミド、フッ素樹脂のいずれかであり、前記含有繊維は、ガラス、カーボン、シリカ、非磁性金属、セラミック繊維であることを特徴とする、請求項9又は10に記載の駆動装置。
  12. 駆動手段が、一端に前記案内軸が固定され他端が前記フレームに固定された電気機械変換素子と、前記案内軸上に移動可能に保持された可動部材とを備える圧電アクチュエータであることを特徴とする請求項1から11のいずれか1つに記載の駆動装置。
  13. 少なくとも一つの光学素子が光軸上に配置された機構を備える光学機器において、
    請求項1から12のいずれかに記載の駆動装置における可動部材が、前記光学素子を保持して該光学素子をその案内軸上に進退動作させる保持体として機能するよう構成したことを特徴とする光学機器。
  14. 光学素子の光軸と、可動部材の進退方向とが平行になるように、光学素子が可動部材により保持されていることを特徴とする請求項13記載の光学機器。
  15. 光学機器が撮像装置であり、光学素子が、その撮影光学系の一部を構成する光学素子であることを特徴とする請求項14記載の光学機器。
  16. 光学機器が光ピックアップ装置であり、光学素子が、その光ピックアップ光学系の一部を構成する光学素子であることを特徴とする請求項15記載の光学機器。
  17. 光学素子が、光ピックアップ光学系のレンズであり、前記レンズが可動部材の進退動作により光軸方向に移動されることにより、収差補正が行われるよう構成されていることを特徴とする請求項16記載の光学機器。
JP2007133843A 2007-05-21 2007-05-21 駆動装置及び光学機器 Pending JP2008289315A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133843A JP2008289315A (ja) 2007-05-21 2007-05-21 駆動装置及び光学機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133843A JP2008289315A (ja) 2007-05-21 2007-05-21 駆動装置及び光学機器

Publications (1)

Publication Number Publication Date
JP2008289315A true JP2008289315A (ja) 2008-11-27

Family

ID=40148509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133843A Pending JP2008289315A (ja) 2007-05-21 2007-05-21 駆動装置及び光学機器

Country Status (1)

Country Link
JP (1) JP2008289315A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051838A1 (ja) * 2014-09-29 2016-04-07 富士フイルム株式会社 レンズ装置
WO2019211935A1 (ja) * 2018-05-01 2019-11-07 オリンパス株式会社 光学ユニット
KR20200013743A (ko) * 2020-01-23 2020-02-07 엘지이노텍 주식회사 카메라 모듈

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051838A1 (ja) * 2014-09-29 2016-04-07 富士フイルム株式会社 レンズ装置
JP6096393B2 (ja) * 2014-09-29 2017-03-15 富士フイルム株式会社 レンズ装置
CN106687843A (zh) * 2014-09-29 2017-05-17 富士胶片株式会社 透镜装置
CN106687843B (zh) * 2014-09-29 2018-06-26 富士胶片株式会社 透镜装置
US10151919B2 (en) 2014-09-29 2018-12-11 Fujifilm Corporation Lens device
US10802271B2 (en) 2014-09-29 2020-10-13 Fujifilm Corporation Lens device
WO2019211935A1 (ja) * 2018-05-01 2019-11-07 オリンパス株式会社 光学ユニット
US11953672B2 (en) 2018-05-01 2024-04-09 Olympus Corporation Optical unit
KR20200013743A (ko) * 2020-01-23 2020-02-07 엘지이노텍 주식회사 카메라 모듈
KR102193718B1 (ko) 2020-01-23 2020-12-22 엘지이노텍 주식회사 카메라 모듈

Similar Documents

Publication Publication Date Title
JP4600060B2 (ja) 駆動装置
US6215605B1 (en) Driving device
US6134057A (en) Drive and guide mechanism and apparatus using the mechanism
US20050232094A1 (en) Driving device and an optical apparatus
US7733587B2 (en) Position detecting device capable of improving detection accuracy
CN103176331A (zh) 光学影像稳定器
WO2014115490A1 (en) Correcting optical device, image deflection correcting device and imaging device
JP7321688B2 (ja) 振動波アクチュエータ及びそれを用いた撮像装置、ステージ装置
JP4941104B2 (ja) 位置検出装置、駆動装置及び光学機器
US7759634B2 (en) Position detecting device capable of improving detection accuracy
US20070189744A1 (en) Camera module
JP4483950B2 (ja) レンズ鏡筒および撮像装置
JP2008289315A (ja) 駆動装置及び光学機器
JP2009047680A (ja) 駆動装置およびそれに使用される位置検出装置
US7113697B2 (en) Displacement detection device and lens barrel
JP4751688B2 (ja) レンズ鏡筒
JP2008278727A (ja) 駆動装置
JP2009225654A (ja) 位置検出機能を備えたピエゾアクチュエータシステム及びその方法
JP5864913B2 (ja) 磁気抵抗素子を用いた位置検出装置の調整方法及びレンズユニットの調整方法
JP4374060B1 (ja) 磁気利用の位置検出方法及び位置検出センサ
JP2000241694A (ja) レンズ鏡筒
JP2007025124A (ja) 像ぶれ補正装置
KR20070011941A (ko) 소형 카메라 모듈의 변위 감지 센서
JP2014130044A (ja) 移動ユニット
JP2013041200A (ja) 磁気抵抗素子を用いた位置検出装置及びこれを用いたレンズ鏡筒

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081003