JP4940941B2 - 欠陥修正装置及び欠陥修正方法 - Google Patents

欠陥修正装置及び欠陥修正方法 Download PDF

Info

Publication number
JP4940941B2
JP4940941B2 JP2006348375A JP2006348375A JP4940941B2 JP 4940941 B2 JP4940941 B2 JP 4940941B2 JP 2006348375 A JP2006348375 A JP 2006348375A JP 2006348375 A JP2006348375 A JP 2006348375A JP 4940941 B2 JP4940941 B2 JP 4940941B2
Authority
JP
Japan
Prior art keywords
defect
template
image
wiring
repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006348375A
Other languages
English (en)
Other versions
JP2008159930A (ja
Inventor
亜希子 筒井
清美 清井
亮 輿石
直人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006348375A priority Critical patent/JP4940941B2/ja
Publication of JP2008159930A publication Critical patent/JP2008159930A/ja
Application granted granted Critical
Publication of JP4940941B2 publication Critical patent/JP4940941B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ディスプレイ装置の製造工程で行われる欠陥修正の技術に関し、特にフラットパネルディスプレイ(FPD;Flat Panel Display)のTFT(Thin Film Transistor)基板等の基板上に形成されたデバイスパターンや配線パターンにおける欠陥を修正するのに好適な欠陥修正装置及び欠陥修正方法に関する。
従来、ディスプレイ装置として、有機EL(Electro Luminescence)ディスプレイや液晶ディスプレイなどの所謂フラットパネルディスプレイが広く知られ、普及している。これらのディスプレイ装置は、薄膜トランジスタ(TFT)やキャパシタなどの素子、及びこれらの素子に電気的に連結された複数の配線(例えば信号配線や電位供給配線)などの様々な導電部材を含む配線基板によって構成される。
このディスプレイ装置を構成する配線基板の量産においては、例えば異物の存在によって、本来互いに離れて設けられる配線や素子が電気的に連結された短絡や、本来連続的に設けられる配線や素子が内部で互いに分離された断線などの、所謂欠陥が生じることがある。このような量産時の欠陥の発生は、ディスプレイ装置が大型化するにつれ、その駆動用の配線基板となるTFT基板に生じる欠陥箇所が増加して歩留まりが低下するため、欠陥箇所を修正する欠陥修正工程が必須となっている。
このような短絡や断線などの欠陥に対する修正手法としては、例えばレーザ光照射による短絡箇所を切断する手法(レーザリペア)のほか、レーザCVD(Chemical Vapor Deposition;化学気相成長)法による断線箇所の結線などが挙げられる。欠陥修正を行う装置の一例として、所用の加工形状に整合したビーム形状で均等なエネルギーのレーザ光を対象物に照射して所定箇所を正確に、かつ能率よく加工し、修正を行うレーザ加工装置がある(例えば、特許文献1参照)。
特開2005−186100号公報
ところで、特許文献1に記載のように、単純に欠陥画像(被検査画像)と基準パターン画像(参照画像)との差画像を欠陥範囲として修正を行った場合、その欠陥の種類を把握していないと修正に失敗する可能性がある。というのも、欠陥修正手法の選定や欠陥に照射するレーザ光のパルス周期、レーザパワー、レーザ光のスポット形状や発振時間等の各パラメータの選定を作業員のスキルや経験に頼っており、それによってその選定結果が異なってくるからである。
例えば、ディスプレイ用のTFT基板などの場合には、各画素に対応する配線部内に、信号配線や走査配線のみならず複数の電位供給配線が存在するため、画素内の配線密度の増大化や画素構造の複雑化が著しい。
同一の配線に接して生じている欠陥や、配線部内で略同位置に生じている欠陥等の修正においても、周囲に位置している部材の種類や有無に応じてそれぞれ異なる欠陥修正手法を選定することが必要となる。例えば、レーザ光照射による短絡箇所の切断を検討する場合、熱拡散によって周囲の薄膜トランジスタ(TFT)等に変質が生じることを回避する必要がある。
特に、有機ELディスプレイのように配線部(画素)を構成する配線の種類や配置が複雑な場合とか、配線の両端に電源が接続されている電位供給配線などの両側駆動の配線が他の片側駆動配線と混在して配線部を構成している場合などには、欠陥に対する修正手法の選択肢が極端に増大し、これに伴って適切な修正手法を選びとることも困難となる。
このようにフラットパネルディスプレイのパネル製造においては、欠陥の発生態様とこれに対する修正手法(修正手順)の選択肢が著しく増加している。1つの欠陥の修正を行うために複数箇所にレーザ光照射を行う必要性が生じると、レーザ光照射条件(レーザ加工パラメータ)の設定に手間と時間がかかり作業効率が悪化する。
しかして、パネル製造ラインの欠陥修正工程では、作業者がその場で欠陥を確認して、欠陥修正手法を決定し、レーザリペア等の欠陥修正作業を行うため、タクトタイムがかかりすぎ、欠陥修正工程の作業速度がライン全体の量産速度に追いついていない問題がある。
多くのパネル製造工場では、複数台の欠陥修正装置(レーザリペア機)を購入し、各欠陥修正装置を担当する作業者を増員することで、このような問題を回避している。
しかしながら、このような回避方法を採用した場合、欠陥修正装置や作業者数の著しい増加により、装置コストや作業者の工数費が膨らみ、利益が著しく低下するという深刻な問題が発生する。
本発明は斯かる点に鑑みてなされたものであり、欠陥修正工程の作業効率を向上させ、タクトタイムの短縮と作業者の工数費の削減を実現することを目的とする。
上記課題を解決するため、本発明は、複数の配線パターン及びその周辺回路が形成された配線基板内の欠陥を検査し、検出された欠陥をレーザ光を用いて修正する欠陥修正方法において、過去に実施された欠陥修正手法を含む複数の欠陥修正手法をデータベースに蓄積する工程と、配線基板の検査対象箇所を撮影した欠陥画像と、欠陥のない参照画像とを照合して欠陥を検出する工程と、その検出された欠陥の配線基板内における位置に基づいて、データベースから欠陥修正手法を読み出して所定の条件に従い選定する工程と、その選定された欠陥修正手法に基づき欠陥の修正を実行する工程とを有している。そして、欠陥修正手法が欠陥の特徴を示すテンプレート情報と、実際の修正方法及び欠陥の位置を示すオブジェクト情報から構成されており、検出された欠陥の情報がテンプレート情報及びオブジェクト情報の特定の条件に一致しているものを欠陥修正手法として出力することを特徴とする。
上記構成によれば、基板上に形成されたTFT基板等の配線基板内における欠陥修正対象領域について、基準画像における原点とサイズを指定し、想定される欠陥の箇所と修正方法をテンプレートとして登録し、それぞれに対する付加情報を設定することで最適な欠陥修正手法を自動で選択、実行が可能となる。個々の欠陥修正手法は座標情報を持つだけなので、画像ごとの登録が不必要なためデータベース化がしやすく、付加情報も配線基板ごとに設定ができるため、よりフレキシブル(柔軟)な欠陥修正手法の選択が可能となる。
本発明の欠陥修正装置及び欠陥修正方法によれば、欠陥修正工程の作業効率が向上し、タクトタイムの短縮と作業者の工数費の削減が実現できる。
以下、本発明の実施の形態例について、図1〜図20を参照しながら説明する。
本実施形態では、目的とする配線基板がディスプレイ装置を構成する場合について、つまり配線基板を構成する多数の配線部をディスプレイ装置の画素に対応して2次元マトリクス状に多数形成するとともに、これと周辺回路を配線により結線している場合について、説明を行う。
図1は、本発明のディスプレイ装置が適用されたフラットパネルディスプレイの製造過程における基板の一実施の形態の例を示すものである。
この例では、共通の基板3に4台分のフラットパネルディスプレイの配線基板1が形成されている。配線基板1は、後述する繰り返しパターンを有するエリア(繰り返しパターン区域53、図2参照)、配線52を介して繰り返しパターンから外部へ接続する周辺回路51のエリア(周辺回路区域57、図20参照)、繰り返しパターン区域53と周辺回路区域57の境となるエリア(最外周区域54、図20参照)に分けられる。繰り返しパターン区域53と最外周区域54は、配線部2の繰り返しにより構成される。
図2に、複数の配線パターン(配線部2)が基板3上に形成されてなる繰り返しパターン区域53を示す。繰り返しパターン区域53は、配線部2が繰り返し形成された領域のうちの最外周区域54を除いた部分である。
図3は、本発明の一実施形態に係る配線基板の製造工程のフローチャートである。このフローチャートは、配線パターン形成工程から、欠陥検査工程を経て、欠陥修正工程までの流れを示している。
本実施形態においては、まず、基板3上に、走査配線と、層間絶縁膜と、信号配線及び電位供給配線とを、目的とする配線部2の主要構成として積層形成することによって、配線部形成工程を実施する(ステップS1,S2,S3)。また、周辺回路51及び配線52を形成し、周辺回路51と最外周区域の配線部2を接続する。この周辺回路51と配線52の形成工程は、上記ステップS1〜S3における走査配線、層間絶縁膜、信号配線及び電位供給線を形成する工程の前後いずれでもよい。
続いて、最終的な配線基板1を構成する共通の基板3に対し、多数の配線部2を光学的に観察して欠陥配線部2aを検出する光学検査工程を実施する(ステップS4)。欠陥配線部2aの基板3における欠陥位置情報が欠陥修正装置のコンピュータ等の制御部に送られる。この光学検査工程においては、図1の欠陥配線部2aを含む画像(欠陥画像)から、欠陥配線部2aの存在のみならず、欠陥(パターン欠陥、異物など)及びその位置をはじめとする所謂パターン欠陥分類情報のほか、欠陥のサイズや種類(材料や状態など)等の特徴をも特定する。
そして、欠陥修正工程では、欠陥修正装置が自動的に上記欠陥位置情報を読み込むことにより、欠陥修正装置のステージが制御されて欠陥位置に移動し、観察系で欠陥を確認し、レーザ照射等を行うことにより欠陥を修正する。
後述するように、予めデータベースに蓄積された、又は過去に実施された欠陥修正手法を含む欠陥修正手法(テンプレート)を、光学検査工程で検出された欠陥と、目的とする所定の配線部2を構成する複数の領域との位置関係に対応して選択的に読み出して(ステップS5)、選択された適切な欠陥修正手法によって、欠陥配線部2aを修正し(ステップS6)、配線基板1の製造を完了する。
本発明では、予め登録されている過去の欠陥修正手法(欠陥修正手順)のデータファイル(テンプレート)を呼び出せるようにしたことで欠陥修正工程を大幅に効率化できる。さらに、欠陥の位置、サイズ、種類等を検出して、適切な修正データが選択されることで欠陥の修正工程の自動化が可能となるものである。
図3に、配線基板に対する欠陥修正工程を実行する欠陥修正装置の一例の構成図を示す。
本実施形態に係る欠陥修正装置200は、レーザ光照射により短絡箇所を切断する装置、所謂レーザリペア装置の例であるが、レーザCVD法などの配線の結線処理を行える装置に適用することも可能である。本実施形態の欠陥修正装置200は、対物レンズ208と基板3との間にレーザCVD法を実施できる加工装置を備えており、それについては後に詳述する。
図3において、欠陥修正装置200は、予め欠陥検査装置300によって行われた欠陥検査の結果として、基板3上の欠陥の位置情報を、欠陥修正装置200内にある全体制御部(以下、「制御部」という。)202により受け取ることができる。この制御部202はパーソナルコンピュータ等のコンピュータ(演算処理装置)であり、画像解析及び修正方法生成部201とともに修正方法生成手段を構成する。
制御部202ではステージ制御部207にコマンドを送り、基板3が搭載されたXYステージ205を動かし、欠陥検査装置300で検出された欠陥箇所が対物レンズ208の真下になるように調整する。次にフォーカスステージ210を動かして対物レンズ208と基板3の間隔を調整し、撮像装置217で光学レンズ214gを透過した光の合焦点画像が撮像できるようにする。なお、ここではハーフミラー215a,215b、光学レンズ214a、及びランプ209による落射照明により、適切な明るさを持つ画像が得られるようにしている。撮像された欠陥箇所が含まれる画像(欠陥画像)は、欠陥画像メモリ218に一旦保存される。
次に、制御部202はステージ制御部207にコマンドを送ってXYステージ205を動かし、欠陥箇所の隣接画素もしくは当該欠陥箇所から繰り返しとなるパターン数個分、即ち全く同じ画素パターンとなる位置まで移動した位置が対物レンズ208の真下になるようにして、欠陥の無い画像(参照画像)を撮像し、参照画像メモリ219に保存する。ここでいう画素は、図1に示した配線部2に相当するものである。
欠陥抽出部(欠陥検出部)220は、欠陥画像メモリ218に保存された欠陥画像と、参照画像メモリ219に保存された参照画像とを位置合わせした後に差画像を生成することで、欠陥部位の画像を抽出し、抽出した欠陥部位の画像を詳細位置情報抽出部221及び特徴抽出部222に出力する。
詳細位置情報抽出部221は、抽出された欠陥の基板3上における正確な位置をXYステージ205の現在位置及び欠陥画像から算出し、その情報を修正方法生成部226に送る。
特徴抽出部222は欠陥抽出部220で抽出された欠陥の形態及び種類等を特定するための情報である欠陥の色、大きさ、コントラスト、形状等の各種特徴情報を数値化して修正方法生成部226へ出力する。
修正方法生成部226は、詳細位置情報221及び特徴抽出部222から得られる詳細位置情報、特徴情報から、修正機構部204の各ユニットをどのように動作させるかを規定するための適切な欠陥修正情報(リペアレシピ情報)を修正手法データベース225から読み出す。
具体的には、例えば欠陥位置情報抽出部221からの詳細位置情報に基づいて、欠陥箇所が後述する複数のエリア(区域)に区分けされた配線基板のどの位置に存在するかを判定し、欠陥位置に適した欠陥修正処理が実施されるような制御を実行する。
制御部202は修正方法生成部226によって生成された欠陥修正情報に基づく修正手法(テンプレート)を、欠陥画像と重ね合わせてディスプレイ(表示装置)227に表示する。なお、制御部202は、状況に応じて位置や特徴等の欠陥情報に基づき欠陥修正情報のリペアオブジェクトの一部を補正することができる。また、一つの欠陥修正情報には複数の修正手法が含まれることもある。
作業員はディスプレイ227に表示された修正手法を見て問題があると判断すれば、例えばキーボートやマウス等の入力装置(入力部)228を操作して別の修正手法を選択することもできるし、修正手法(欠陥修正情報)の一部又は全部を変更することもできる。更に修正方法生成部226にて修正手法データベース225から複数の欠陥修正手法が読み出された場合、その複数の欠陥修正手法をディスプレイ227に表示して作業員に選択を促し、作業員が入力装置228を操作して選択した欠陥修正手法に従い、欠陥修正を行う。
制御部202は、入力装置228から入力された操作信号を受信すると、欠陥修正手法の選択や変更の履歴を、修正手法データベース225に記録する。修正手法データベース225に蓄積された修正手法は、次回以降の欠陥修正に利用される。
最終的に欠陥修正手法が決定されれば、その欠陥修正手法に従って制御部202は、修正機構部制御部216にコマンドを送り、修正機構部204内の各ユニットを動作させ、欠陥の修正を行う。修正機構部204は、レーザ光源213から照射されたレーザビームを光学レンズ214b,214cにて補正した後に、可変スリット212を通過させることにより、照射サイズ、角度を変更できるようにしてある。
可変スリット212は、例えば、XY−θスリットと呼ばれるもので、長方形のX、Y方向の開口長と、回転角θが変更できるスリットであり、修正機構制御部216からの駆動信号により駆動できるものとする。
可変スリット212によって照射形状を整形されたレーザビームは、光学レンズ214dを通り、ガルバノミラー211a,211bで反射される。ガルバノミラー211a,211bは、2次元に角度可変なミラーであり、修正機構制御部216の制御に従って駆動することで、XYステージ205を動かさずに、対物レンズ208の視野範囲内でレーザビームの光軸、すなわち照射位置を動かすことができる。
このような可変スリット212、ガルバノミラー211a,211bを備える欠陥修正装置200は、欠陥に対し十分な位置精度を持ってレーザビームを照射できるため、精度よくパターン欠陥の修正が可能となる。
そして、ガルバノミラー211a,211bで反射されたレーザビームは、各種光学レンズ214e,214fを透過し、ハーフミラー215aで反射後に、対物レンズ208を介して、基板3に照射される。
上記欠陥検査装置300は、欠陥を探索する方法として光学式検査機を使えるため、導通状態が正常であるパターン欠陥に対しての修正が可能となる。
本実施形態の欠陥修正装置は、過去の修正データ(欠陥修正手法)を呼び出せることで修正工程を大幅に効率化できる。さらに、欠陥位置に見合った適切な欠陥修正手法が選択されることで、欠陥の修正工程の自動化が可能となる。例えば、修正方法生成部226によって生成された欠陥修正手法の中の最も優先度の高い修正方法を常に自動で選択、実行することにより、作業員なしに完全自動で欠陥修正することも可能である。
ここで、本実施形態の欠陥修正装置の要部について説明する。図5に、レーザCVD法やレーザエッチングを実施可能な構成例を示す。この例では、装置の要部、すなわちレーザ光源213から出射されたレーザ光が対物レンズ208を透過して局所排気装置234を経て基板3に照射される構成を示している(その他の全体構成は図4参照)。
本実施形態における欠陥修正加工装置は、少なくとも図5に示すように、XYステージ205上の基板3に対向する局所排気装置(局所成膜/エッチングヘッド)234を有する。本実施形態では、レーザ光源213を用いてレーザパワーの調節等を行っているが、2つの光源装置を用意して使途に応じて使い分けるようにしてもよい。
第1の光源装置は、例えば薄膜形成のためのCVD用レーザ光源を有し、このレーザ光源としては、例えば、波長355nm、パルス幅25ナノ秒(ns)、周波数24kHz、出力2Wのものを用いることができる。また、第2の光源装置は、例えば薄膜除去のためのエッチング(ザッピング)用レーザ光源を有し、このレーザ光源としては、例えば、波長390nm、パルス幅3ピコ秒(ps)、周波数1kHz、出力1mWのものを用いることができる。この第2の光源装置については、パルス幅が10ピコ秒以下の短パルスレーザを搭載することが好ましく、これによって従来の(パルス幅がナノ秒のレーザを搭載した)装置におけるような、加工時の熱拡散が原因で生ずる溶融した状態の金属が新たな層間リークを発生させることを回避できる。XYステージ205は、例えば基板3上の欠陥部を対物レンズ208の視野内に移動し位置決めを行うことが可能である。
レーザ光源213からのレーザ光は、各種光学素子を介して、レーザCVD法やレーザエッチング用のレーザ光Lとして基板3上に集光照射される。すなわち、対物レンズ208に応じた倍率で縮小されたスリットの投影が基板3上に結像されることにより、この結像形状に対応して加工がなされる。
局所排気装置234には、中央に前述したレーザ光Lの透過孔247及び透明窓248と、XYステージ205に載置される加工対象物となる基板3の主たる加工部となる局所排気領域(局所成膜/エッチング領域)251が設けられ、この局所排気領域251に繋がる第1流路257が、原料供給部255及び局所排気部256のいずれか一方に切換手段258を介して連通するように設けられる。
ここで、原料供給部255及び局所排気部256は、それぞれ、XYステージ205に載置されるTFT基板などの加工対象物となる基板3上における薄膜形成及び薄膜除去の補助手段となるものであり、本実施形態においては、それぞれ後述するように、レーザCVD法とレーザエッチングの補助手段となる。
なお、局所排気領域251は、局所排気装置234の下面に臨んで、図6に示すように、排気流路262及び263の端部を構成する吸引溝が形成する略同心環状の内側に、略円筒状空間として透明窓248と基板233との間に形成される。
本実施形態における局所排気装置234においては、更に、例えば圧縮した窒素ガス(N)をXYステージ205側に向けて噴射することによって局所排気装置234を静圧浮上させる圧縮ガス供給部252と、XYステージ205側に向けて噴射された圧縮ガス及び局所排気領域51からのXYステージ205側に供給されたうちの余剰ガス(成膜ガス、パージガス等)を、図6の局所排気装置234の底面図に示されるようなリング状の排気流路(吸引溝)262及び263から排気する排気部253及び254とが設けられる。
また、図示しないが、必要に応じて、局所排気領域251にはパージガス供給部につながるパージガス流路が連結され、このパージガスの導入における圧力、速度、位置、角度等を選定することにより、加工によって生じた異物などが透明窓248の表面に付着することを抑制することなどが可能となる。
局所排気装置234は、XYステージ205上の加工対象物である基板3に対して相対的に変位可能とされ、圧縮ガス供給部252や排気部253及び254のほか、原料供給部255、局所排気部256、パージガス供給手段などによっても浮上剛性の向上を図ることが可能となる。ここで、浮上剛性とは、局所排気装置234と加工対象物(例えば基板3)の間の吸着力であり、この浮上剛性が十分でない場合には、局所排気装置234の加工対象物に対する高さ(ギャップ)の安定性が不十分となるとか、局所排気装置234の機械的もしくは力学的な安定性が不十分になるなどの問題が生じることから、浮上剛性を十分に確保しておくことが望ましい。
本実施形態においては、圧縮ガス供給部252からの圧縮ガスが、供給路及び通気孔を構成するリング状の圧縮ガス供給路261及びその開口部に配置された多孔質通気膜260により、局所排気装置234に対向するXYステージ205に向けて均一に出射され、圧縮ガスの圧力や流量と、各排気部による吸引量のバランスを選定することによって、局所排気装置234の浮上量が決定される。すなわち、局所排気装置234は静圧浮上パッド構成とされる。
なお、原料供給部及び局所排気部は、それぞれ、加工対象物となる基板上における薄膜形成及び薄膜除去の補助手段となるものであり、本実施形態においては、それぞれ、レーザCVD法とレーザエッチングの補助手段となる。
また、本実施形態においては、局所排気装置234にヒーター259が併設されており、このヒーターによって、局所排気領域251を中心とするガスの温度、すなわち薄膜パターン形成装置1のチャンバー内の温度を一定に保つことが可能とされる。
ここで、本実施形態における欠陥修正装置の概略動作を説明する。
まず、基板3に対してレーザCVD法により薄膜を形成する場合には、圧縮ガス供給部(供給源)252から圧縮ガスを圧縮ガス供給路261に供給し、多孔質通気膜260を通して基板233側に噴射し、局所排気装置234を基板3から所定間隔だけ浮上させる。
この状態で、切換手段258を切り換えて、原料供給部(供給源)255から成膜用の原料ガスを第1流路257及び局所排気領域251を通して、基板3の成膜すべき局所に供給する。同時にレーザ光源装置からのレーザ光Lを透過孔247、透明窓248及び局所排気領域251を通して基板3の成膜すべき局所に照射し、成膜用の原料ガスを熱分解して基板3の局所にCVD膜を成膜する。
原料供給部255から供給される成膜用の原料ガス、及び必要に応じて供給されるパージガス(キャリアガス)は、プロセス用途としての使用後に、より内側の吸引溝による排気流路263から排気部254により吸引される。また、多孔質通気膜260より放出された圧縮ガスは、局所排気装置234の内部に向かっていくが、より外側の吸引溝による排気流路262から排気部253により排気される。この構成により、外気の遮断と、プロセスを独立化することが可能となる。
一方、基板3の所定の一部を短パルス幅レーザ光の照射によりエッチング除去する場合は、圧縮ガス供給部252からの圧縮ガスを多孔質通気膜260を通して基板3側に噴射し、局所排気装置234を基板3から所定間隔だけ浮上させ、例えばこの状態で切換手段258を切り換えることによって第1流路257を局所排気部256に連通させると共に、レーザ光Lを基板3のエッチングすべき領域に照射し、形成されている薄膜パターンの一部を熱的に除去する。
このとき、エッチングにより発生したダスト(削りカス)は第1流路257を通して局所排気部256によって排出される。また、パージガスを供給した場合には、エッチングによって生じた異物が透明窓248の内面に付着されるのが抑制される。
このようにして、本実施形態における欠陥修正装置においては、CVD用とエッチング用の2つの種類のレーザを切り替えて適宜選択することにより、基板3に対する加工が可能とされる。
すなわち、例えばエッチング用のレーザを選択した場合には、切換手段258を切り換えて第1流路257を局所排気部256に通じるように排気ポートに切り換えることによって、エッチング時に発生するダスト(削りカス)を排出する構成とすることができる。これにより、局所排気領域251内におけるレーザCVD法による薄膜形成やレーザエッチングによる薄膜除去などの加工が可能となる。
なお、この静圧浮上パッド構成によれば、加工対象物に相当して配置した基板3をスライドさせたところ、基板の反りやうねりに追従して一定の浮上量を確保できたことから、このような局所排気装置234の構成により、基板と局所排気装置の間隔を常に一定に保つことができ、かつ成膜プロセス条件を外気の遮断と独立して制御できるため高品質な薄膜を安定に形成することが可能となることが確認できた。
また、各排気部及び各排気流路による排気ユニット内に、圧力制御用のバルブを設置することによって、レーザCVDプロセスの圧力制御と、レーザ照射部のガス分圧及び流速の制御が可能となる。更に、前述したCVD法及びエッチングの各プロセスに最適な条件を外気遮断とは独立に制御可能とすることもできるし、排気部253及び254には、有毒ガスを除害する機能を付加した構成とすることもできる。
ここで、検査対象の配線基板の繰り返しパターン区域53の配線部2(単位画素)の概略構成を、図7Aに示す。
この配線部2は、基板3上に走査配線(破線図示)4が設けられ、この走査配線4上に、層間絶縁膜5を介して、信号配線6,電流供給配線7,グラウンド電極8が、走査配線4とは直交する方向に主として延在して配置されている。
信号配線6は、グラウンド電極8に連結されたキャパシタ(容量素子)12に対し、第1TFT素子7のゲートを介して対向する構成とされ、更にキャパシタ12は、電流供給配線7がソースとなる第2のTFT素子10のゲートとして設けられている。電流供給配線7に対して第2のTFT素子10を介して対抗する配線は、発光部となる有機EL素子(図示せず)のアノード電極11に連結されている。
この配線部2における動作は、走査配線4をa1、信号配線6をb1、電位供給配線7をb2、グラウンド配線8をb3、第1及び第2のTFT素子9及び10をTr1及びTr2、アノード電極11を有する発光部をEL、キャパシタ12をcとすると、図7Bに示す等価回路図に沿ってなされる。
すなわち、電位供給配線b2には常時電流が供給されており、走査配線a1に走査パルスが印加されかつ信号配線b1に所要の信号が供給されると、第1のTFT素子Tr1がオン状態になり、キャパシタcに所要の信号が書き込まれる。この書き込まれた信号に基づいて第2のTFT素子Tr2がオン状態になり、信号量に応じた電流が電位供給配線b2を通して発光部ELに供給され、発光部ELにおける発光表示がなされる。
図8は、図7に示した配線部2(単位画素)を基板上に複数形成した例(繰り返しパターン例)を示したものである。
本実施形態に係る配線基板の欠陥修正手法においては、配線部の場所で欠陥が生じているかに応じて、つまり光学検査工程で検出された欠陥の位置に応じて、前述した欠陥修正工程で修正手法データベース225から読み出す欠陥配線部2aの修正手法(リペアレシピ)を選定する。
なお以降の説明において、配線部(単位画素)上の欠陥が存在する領域を特に欠陥領域ともいう。
図9に、単位画素(配線部)の座標系を示す。本実施形態に係る配線基板の製造工程では、光学検査工程において欠陥の有無のみならずその位置やサイズ及び種類等を特定するものであるが、欠陥の位置を特定する具体的な手段としては、図9に示すように、単位画素に対応する配線部の一角(例えば左上)を座標原点18とし、XY座標系にある欠陥20aの座標系情報を(x1,y1)として特定する手法が挙げられる。また、欠陥のサイズや種類を特定する具体的な手法としては、欠陥部における反射率や明暗等の物理的特性の、所定の構成における場合との差を検出する手法などが挙げられる。
ところで、単位画素(配線部)はその位置によって材料などの条件が異なる。図9に示すように、任意の配線部2aを例えば以下の4つの領域に分割して説明する。
第1領域14:配線部分(走査線あり)
第2領域15:配線部分(走査線なし)
第3領域16:TFT素子部(走査線あり)
第4領域17:キャパシタ及びTFT素子部(走査線なし)
第1領域14及び第2領域15には熱拡散によって変質する部材が存在しないことから、例えば異物などによる短絡箇所にレーザ光を直接照射して完全修正を行うことが可能な領域である。但し、第1領域14は直下に走査配線4が存在するため、その直上ではレーザ光照射時に注意を要する領域であり、第2領域15は下層に走査配線が存在しないため、例えばより高いエネルギーでレーザ光の照射を行うことが可能な領域となる。
これに対し、第3領域16及び第4領域17は、TFT素子ややキャパシタなどの部材が存在する領域であり、これらに新たな欠陥や変質が生じたりすると、完全修復が難しい領域である。更に、第3領域16では下層に走査配線が存在するため、この第3領域16は、可能な限り直接的な修正加工を避け、やむを得ない場合にも低いエネルギーでレーザ光照射を行うなどの配慮が必要となる、更に難しい領域となる。
このように、それぞれの領域によって適宜適切な修正手法を用いて欠陥修正を行う必要がある。
ここで、修正手法データベース225に登録された欠陥修正情報(テンプレート)を実際の欠陥画像に自動的に反映させる処理について、図10を参照してより具体的に説明する。
この例では、検査対象の配線基板1は、配線パターン(配線部2)が繰り返し形成されて構成されているとする。配線部(繰り返しパターン)内においては、どの条件(欠陥の位置、大きさ、形状、種類等)の欠陥に対してどのような欠陥修正手法を用いるかという情報をテンプレートとして修正手法データベース225に登録しておき、欠陥位置と繰り返しパターンの基準座標、欠陥の種類等の情報を入力することで、修正手法データベース225から最適な欠陥修正情報を持つテンプレートを検索し、検索したテンプレートを欠陥画像に重ね合わせて最適な欠陥修正手法を適用する方法などが有効である。
欠陥修正手法を表すテンプレートは、欠陥を模した欠陥オブジェクトと、配線部上における欠陥オブジェクトの位置及びその特徴に応じて修正処置が施される部分を示したリペアオブジェクトとを含むデータファイルである。例えば欠陥オブジェクトは、当該欠陥オブジェクトの位置や属する領域、規模、形状、当該欠陥オブジェクトが位置する回路等を表示したものである。またリペアオブジェクトは、その欠陥に対応するレーザ照射の位置、出力等を表示したものである。
図10において、欠陥画像(1)の欠陥20bは、配線部分の短絡欠陥の例であり、走査線なしの領域に存在する。まず詳細位置情報抽出部221において、繰り返しパターンの原点18に相当する座標と繰り返しパターン領域を検出する。さらに、原点18からの相対位置により欠陥20bの繰り返しパターン上での欠陥の位置と条件を絞り込む。そして、修正方法生成部226において、欠陥画像(1)の欠陥20bの条件に見合った登録テンプレートを修正手法データベース225から読み出す。
この例では、欠陥20bの位置に応じた欠陥修正手法として、テンプレート(1),(2),(3)が修正手法データベース225に登録されている。修正方法生成部226は、この欠陥位置に基づいて、テンプレート(1)〜テンプレート(3)の中から欠陥20bの修正に最も適した修正手法を選択する。
テンプレート(1)の欠陥オブジェクト32aは、欠陥画像の欠陥20bと画素座標系が略同じであり、グラウンド電極8と信号配線6が短絡している欠陥である。テンプレート(2)の欠陥オブジェクト32bは、欠陥画像の欠陥20bと画素座標系が異なる。また、テンプレート(3)の欠陥オブジェクト32cは、画素座標系は略一致するものの欠陥サイズが大きく、電流供給配線7a,グラウンド電極8,信号配線6が短絡しているため、やはり異なる。
したがって、修正方法生成部226は、欠陥オブジェクト32aの画素座標系の一致及び欠陥サイズの一致による、テンプレート(1)に表示された欠陥修正手法が最適であると判断し、修正手法データベース225から読み出して制御部202へ出力する。そして、制御部202へ読み出されたテンプレート(1)が、ディスプレイ227に表示される。このとき、当該テンプレート(1)の原点19を配線パターン(欠陥画像)の原点18に座標変換して、欠陥画像にリペアオブジェクト33aを重ね合わせる(図示略)。
テンプレート(1)のリペアオブジェクト33aは、欠陥32aによるグラウンド電極8と信号配線6の短絡部分を切断する処理を示している。すなわち、グラウンド電極8と信号配線6を短絡している欠陥20bに対応する欠陥オブジェクト32aが表示されている部分にレーザ光を照射して欠陥20bを切断し、完全修正を行う。
なお、テンプレート(2)は、信号配線6の上部及び下部のリペアオブジェクト33b,33cをレーザ光照射により切断する処理を示す。信号配線6を一部、リペアオブジェクト33b,33c間で切断しても、図7Bの等価回路に示すように、信号配線6(b1)と第1のTFT素子9(Tr1)の接続が維持されるため、最終的に得るディスプレイ装置全体の非点灯や所謂滅線の発生を回避することができる。また、テンプレート(3)のリペアオブジェクト33d,33eは、それぞれ欠陥32cによる電流供給配線7a,グラウンド電極8,信号配線6の短絡部分を切断する処理を示す。
本実施形態の繰り返しパターン区域における欠陥修正方法によれば、欠陥箇所の繰り返しパターン(配線部)内における位置に基づいて、最適なテンプレートを選択することができる。それにより、位置関係に対応して選択される欠陥修正手法の読み込みによって欠陥修正工程を自動化することができ、人為的に区別を行う煩雑さを回避することが可能となる。
なお、欠陥修正データベース225からの修正手順読み出しの際に、テンプレート(1)〜(3)の中に該当する欠陥修正手法がない場合は、最も優先度の高い、例えば使用頻度の高い欠陥修正手法のテンプレートあるいは修正難易度が低い欠陥修正手法のテンプレートなどが自動的に選択され、ディスプレイ227に表示される。そして、表示されたテンプレートによる修正手法を自動的に実行するか、もしくは作業員が目視確認した後に実行する。
また、対象となる欠陥に対して、適した加工設定ファイル(テンプレート)が無い場合は、作業員が入力装置228を操作してマニュアルでレーザ加工条件を設定することが可能であり、更に修正手法データベース227にその設定ファイルを追加することもできる。
また、欠陥が複数の配線部に跨って存在する場合には、欠陥の基準画素に係る主領域及び近接画素に係る副領域と、データベースに蓄積されている欠陥修正手法に紐つけられた主領域及び副領域とが一致する欠陥修正手法を、データベースから優先的に読み出して表示するようにすることで、最適な欠陥修正処理が実施できる。
ところで、回路的な意味合いは等しくても、欠陥の位置によってテンプレートが適用できない問題が起こりうる。例えば、図11に示す欠陥画像(2),(3),(4)はいずれの欠陥20c,20d,20eもグラウンド電極8と信号配線6を短絡するものである。これらの欠陥20c,20d,20eは全て特徴が同じだが、テンプレート(4)は欠陥画像(3)の欠陥20dの欠陥修正しか行えない。それ以外は、テンプレート(4)のリペアオブジェクト33fが中段に位置するのに対して、欠陥画像(2)の欠陥20cが上段、欠陥画像(4)の欠陥20eが下段に位置しており、座標が異なるので適用できない。
そのような場合には、図12に示すように、修正箇所に多少の無駄があっても一つのテンプレート(5)で複数欠陥の位置の違いをカバーする方法がある。テンプレート(5)のように縦長に生成されたリペアオブジェクト33gであれば、図11の欠陥画像(2)〜(4)の上段から下段までの欠陥に対応でき、各欠陥を修正することができる。このように、テンプレートの欠陥修正対象範囲を広げることで、多くの欠陥に対応可能なテンプレートとなる。
あるいは、図13に示すように、欠陥修正処理の無駄を省き、かつ、基板3へのダメージを最小限に抑えるため、複数のテンプレートを用意する方法が挙げられる。図13に示す例では、欠陥画像(2)の上段に位置する欠陥20cに対応可能なリペアオブジェクト33hを持つテンプレート(6)を用意する。また、欠陥画像(3)の中段に位置する欠陥20dに対応可能なリペアオブジェクト33iを持つテンプレート(7)を用意する。さらに、欠陥画像(4)の下段に位置する欠陥20eに対応可能なリペアオブジェクト33jを持つテンプレート(8)を用意する。
図13の例の場合、一つのテンプレートで対応できる欠陥の位置は限定されるが、欠陥修正箇所(レーザ照射範囲)が最小限になるため、配線基板へのダメージが少ない。しかしながら、いずれのテンプレートの修正手法も回路的な条件は一致するため、テンプレートの選択にあたり他のテンプレートと混同しやすくなる。そのため付加情報(以下、「テンプレート情報」とする)をつけて、管理する方法が有効となる。
付加情報(テンプレート情報)としては、以下のような例が考えられる。

・電気回路上の欠陥の特徴情報(オープン、ショートなど)
・リペア後の回路状態の情報(輝点、滅点など)
・配線基板内での繰り返しパターンの位置、何番目の画素かの番号、RGB情報(色情報)
・欠陥が目視で確認できるものかどうか
・同一条件のテンプレートがある場合の優先順位
・過去に実際に欠陥修正を行った回数(実績のあるものを優先するなど)
上記テンプレート情報は、実際に欠陥修正を行う欠陥修正方法の情報(繰り返しパターンの任意の原点からの欠陥と欠陥修正手法の大きさや相対座標)(以下、「オブジェクト情報」とする)とは別に管理できるため、配線基板や繰り返しパターンの条件によって情報の内容を任意に変更できる。配線基板ごとに条件付けを変えることで最適な欠陥修正手法の選出が可能となる。
また、オブジェクト情報ごとにも同様に付加情報を登録することで、欠陥(以下、「欠陥オブジェクト」とする)と修正手法(以下、「リペアオブジェクト」とする)の各々の位置情報とテンプレート情報だけのテンプレートの選別をさらに最適化することもできる。
オブジェクト情報に対する付加情報としては以下のような例が考えられる。

<欠陥オブジェクト>
・欠陥の位置と面積
・欠陥として適用できる範囲
・欠陥が異物であればその構成材料
・色(輝度)

<リペアオブジェクト>
・リペアオブジェクトの形状、角度
・レーザパワー
・リペアオブジェクトが複数ある場合は実行する順番
・膜材料名
リペアオブジェクトに関しては、よく使用される形状や手法のものをある程度グループ化して登録することでさらにタクトの短縮が見込める。グループ化登録の一例として、レーザCVD法による成膜結線が挙げられる。
レーザCVD法による成膜結線では、結線ラインの始点、終点に、結線される配線との電気的なコンタクトを得るために、結線を行う前にザッピング(Zapping)機能を用いて、表面部を軽く削るライトザッピングが必要である。実際の作業においては、ザッピング機能を用いて2回(始点と終点)のザッピング加工を施した後、修正部の結線ライン形状(直線が主流)および位置をマウス操作もしくはキーボード等からの数値入力で行うとともに、材料ガスの流量・圧力、レーザパワー・周波数等のパラメータを入力して結線修正を行う必要がある。これらの一連の処理をグループ化することで作業効率が向上する。
修正方法生成部226が実際にテンプレートを選択する場合、テンプレート情報とオブジェクト情報を実欠陥と比較し、条件が一致するものを最適テンプレートとして制御部202へ出力する。その際、欠陥オブジェクトの位置情報をどのように比較するかで最適なテンプレートが変化する。
上記の比較方法としては以下のような例が考えられる。

・欠陥の中心座標の位置
・欠陥オブジェクトと実欠陥が重なるか、また重なっている場合は重なっている面積
・欠陥自体の大きさが近いか
・近接するパターンをまたがっているか。その場合上下左右のどの位置に重なるか。
図11のように複数の欠陥を同一テンプレートでリペアするような場合、欠陥が実際に重なっているかが重要となるが、図13の例のように複数の欠陥位置に対応してテンプレートを複数用意するような場合は中心座標で比較した方が正確にテンプレートの選択ができる。また、特定の位置の欠陥のみを特定して修正したい場合などは欠陥の中心位置と大きさを比較することが有効である。
そこで、同一の欠陥位置情報で修正方法が複数ある場合、比較方法としては以下のような例が考えられる。

・リペアオブジェクトの数や大きさ
・リペアオブジェクトの種類
・テンプレートでカバーできる欠陥の範囲
これらは修正処理する際にタクトを重視するか等の条件によって優先順位が変わってくる。例えばレーザCVDにおいて、ライトザッピング後に結線ラインを大きく繋ぐより小さく繋ぐ方のが、タクトが少なくなることがある。このように登録したテンプレートの特徴に合わせて有効な比較方法は変化するため、比較方法は限定せず、配線基板の情報とテンプレートの内容によって有効にするかどうか、どのような順番で比較するか、どの方法に重点を置くかを切り替えられるようにしておく。
さらに、これらの比較方法を用いて欠陥との比較を行っても特定のテンプレートに限定できない場合、もしくは欠陥が目視では発見できず、欠陥の位置の特定や比較が不可能なものの場合、もしくは欠陥に該当するテンプレートが存在しない場合には以下のような対処方法が考えられる。

・その欠陥に対するリペア処理をスキップする
・すべての欠陥に対応できる滅点化処理等のテンプレートを用意し、適用する。
・複数候補がある場合は作業者が最適なものを選択できるようにする。
・候補が存在しない場合は作業者がテンプレートを作成して適用できるようにする。
どういった修正処理を行うかは作業者のスキルや用意されたテンプレートの特徴、要求されるタクトタイム等によって変化する。個々のテンプレートは基準原点からの位置情報と回路上の特徴等の情報のみを記録しておけばよいが、作業者がテンプレートの候補を選択したり、新たにテンプレートを作成するためには視覚的にテンプレートの情報を認識しやすくすることも重要となってくる。
図14は、テンプレート情報画面の表示例の説明に供する図であり、Aは欠陥画像、Bは表示テンプレート選択ダイアログである。図14A,Bは、欠陥画像70にオブジェクトのモデル図(見本)を重ねることで、実際にテンプレートを適用させた場合にどの位置が修正されるかをイメージしやすくした例である。図14Aに示すように、選択したテンプレートのリペアオブジェクト33kのモデル図のみを欠陥画像70に重ねて表示している。これにより実物の欠陥20fに対するアプローチと共に繰り返しパターンエリア71の位置と原点18が確認できるようになっている。
また、図14Bにおいて、選択したテンプレートのオブジェクト(欠陥オブジェクト32i、リペアオブジェクト33k)のモデル図を繰り返しパターン画像(テンプレート画像)72に重ねて表示するとともに、テンプレート情報73とオブジェクト情報74が確認できる。このテンプレート選択ダイアログ(テンプレート情報画面)には、「テンプレート名」表示部75があり、プルダウン機能75aなどにより所望のテンプレートを検索して表示させることができる。この例では、信号配線6とグラウンド電極8の短絡欠陥を表す「Vsig-Vini Short」という名称のテンプレートが表示されている。テンプレート情報73には、電気式欠陥検出方法を用いた欠陥の検出結果を示す電気式結果表示部と、欠陥が目視で確認できるものかどうかを表すView Mode表示部がある。オブジェクト情報74は、画素画像表示位置表示部74aを備え、例えば3×3の9つの升目が表示されており、図14Bのテンプレート画像に表示される繰り返しパターンが一つの場合には、中央のみ凹んでいるような表示になる。リペア番号表示部74bは、テンプレートの管理に用いられるリペア番号を表示する。
図15は、テンプレート情報画面の他の例の説明に供する図であり、Aは欠陥画像、Bは表示テンプレート選択ダイアログである。図15Aは、欠陥画像80にオブジェクトのモデル図(見本)を重ねることで、実際にテンプレートを適用させた場合にどの位置が修正されるかをイメージしやすくしたものである。また図15Bは、欠陥画像80内に繰り返しパターンすべての情報を含まないときでもどのようにテンプレートが適用されているかをイメージしやすくした例である。図15Aにおいて、繰り返しパターンエリア81の全範囲が欠陥画像80内にすべて入っていない場合、もしくは欠陥20gが近接する繰り返しパターンエリア81aに重なっている場合、欠陥の中心部が存在する繰り返しパターンエリア81に加えて隣接する繰り返しパターンエリア81aも表示する。この例では、欠陥の中心部が存在する繰り返しパターン81を含め4つの繰り返しパターンを表示している。
また、図15Bのテンプレート画像82において、欠陥オブジェクト32jの中心部が存在する繰り返しパターンエリア83だけでなく近接する繰り返しパターンエリア83aを表示する。本例では、繰り返しパターンエリア83を指定された3箇所にコピー(拡張)して表示している。そのようにすることで、欠陥20gが近接する繰り返しパターンエリア81aに重なっている場合等に、欠陥オブジェクト32jの大きさ、形状が把握でき、適切なテンプレートの選択が行える。この場合、画素画像表示位置表示部74aの表示は、図15Bに示すように、9枡のうちの4枡が凹んでいるような表示となる。また、図15Bは、2つのリペアオブジェト33m,33nにより欠陥修正を実行する例を示しているが、それらの実行順を表す実行順表示部84が設けられている。
図16は、テンプレート編集画面の一例を示す図であり、テンプレート登録作業時の表示方法を応用した例である。図16において、テンプレート情報編集部91とオブジェクト情報編集部92が用意してある。テンプレート情報編集部91は、例えばテンプレート情報、電気式結果、View Modeなどの項目があり、アイコン表示された追加ボタン、編集ボタン、削除ボタンをマウス等を用いて操作することで所望の設定・編集が行える。
オブジェクト情報編集部92は、複数の欠陥オブジェクト93とともにテンプレートに頻繁に使われるリペアオブジェクト94,95,96の形式を登録、選択して繰り返しパターン画像に重ねて表示し、マウス操作等で大きさや角度を任意で変更することができる。この例では、欠陥オブジェクト93の種類として、ショート欠陥が3種類、オープン欠陥が1種類登録されている。また、リペアオブジェクト94,95には、ライン状のレーザCVD法、U字状のレーザCVD法などが登録されている。このリペアオブジェクト94,95は、レーザCVD法で実施する処理をグループ化して表示している。すなわち、一つのリペアオブジェクトの表示で、ライトザッピングを行うCVD結線ラインの始点95aと終点95bを表示するとともに、結線ライン部95cを表示する。このようにグループ化することにより、一つのリペアオブジェクトの表示を見るだけで複数の処理工程が把握できる。また、リペアオブジェクト96は、短絡箇所のレーザ照射処理(ザッピング)を示すものである。また、膜材料97は、欠陥部分の膜材料を表している。この例では、欠陥オブジェクト32jがTAT膜上に存在することを示している。その他、オブジェクト情報編集部92では、画素画像表示位置の設定、リペア番号等の設定が行える。
図17は、テンプレート管理画面の一例を示すものである。テンプレート登録作業時に、図16で登録したテンプレートについて共通項目104をソートして、優先順位が同一のものをサムネイル表示し、テンプレート同士を視覚的にチェックしやすくした例である。本例では、本例では、ほぼ同じ修正内容(ショート欠陥修正)の3つのテンプレート101,102,103が表示されている。重複するものを削除したり、同じ内容のテンプレートをコピーして図16のテンプレート編集画面で編集することにより、重複登録を防止したり、類似した条件のテンプレートを複数作成したい場合に既存のテンプレートから容易に作成することが可能である。
例えば、図17の例では、共通項目104には、テンプレート情報73とオブジェクト情報74から構成される。テンプレート情報73は、例えば電気式結果、View Mode、リペア結果などの項目が用意されている。リペア結果は、リペア後の回路状態の情報を表すものである。また、オブジェクト情報部74は、欠陥の区別に用いられる欠陥情報、近接エリアの有無や近接エリア数を表す近接エリア、その近接エリアの位置を設定する項目などがある。なお、「Vsig-Vini Short_1」,「Vsig-Vini Short_2」,「Vsig-Vini Short_3」のようにテンプレート101,102,103毎に名称を表示すると区別がしやすくなる。
また、テンプレートを選択するにあたり、図18に示す選別オプション画面を用いて、どういった条件を有効にするかを切り替えられるようにすることで、テンプレートの作成状況や基板による選別正解率のばらつきを防ぐこともできる。この例では、入力装置228を用いてアイコン表示された編集ボタン又は優先順位編集ボタンをクリックすると、図18に示す選別オプション画面に遷移する。
図18に示す選別オプション画面の例では、テンプレート情報タブ111とオブジェクト情報タブ112が用意されている。有効項目として、例えば電気式結果、View Mode、基板内回路位置、RGB情報、リペア後回路状態(リペア結果)、リペア実績などがある。また、詳細項目として、リペア後回路優先順位、リペア実績詳細等の項目が用意され、優先順位付けを行うこともできる。それぞれのタブを開いて、入力装置228を用いて有効にしたい項目のチェックボックス113をオンにしたり、詳細項目を登録したりすることにより、テンプレート選別時に有効とする所望の条件を設定、編集できる。
なお、オブジェクト情報タブ112について詳細の記載は省略しているが、既述の欠陥オブジェクト及びリペアオブジェクトに関する情報を用いて、所望の選別オプションを設定する。
ところで、基板3上に複数の配線基板1が複数個配置されている場合に、配線基板の向きが異なるときのテンプレート適用方法について説明する。
図19に、基板3上に基板原点58を中心として配線基板1が4つ配置されている例を示す。この例では、配線基板A,Bと、配線基板C,Dでは、向きが180度逆になっている。欠陥画像をテンプレートと比較する際に、配線基板A,B内で取得した欠陥画像の向きとテンプレートの向きが一致していても、配線基板C、Dで取得した欠陥画像はそのままテンプレートを重ね合わせることはできない。また、メカ設計の仕様によっては配線基板の向きが変わる等の事項は起こりうることであり、必ずテンプレートと同じ向きで欠陥画像が運ばれてくるとも限らない。
例えば、図19の例では、配線基板A内で取得されたある配線部60aの基準画像61と、配線基板C内で取得されたある配線部60cの基準画像64とは向きが180度異なる。このような場合、配線部60aのテンプレート62の原点19の座標と登録されているオブジェクト32k,33oを座標変換し、回転させる。そして、回転後のテンプレート63と基準画像64を重ね合わせることで、配線基板の向きが異なっていてもテンプレートを共有化できる。
配線基板Aに対して配線基板Cが角度θ回転しているとき、配線基板Aのテンプレートの座標(Xa,Ya)に対応する配線基板Cのテンプレートの座標(Xc,Yc)は、
Xc=Xa*cosθ−Ya*sinθ
Yc=Xa*sinθ+Ya*cosθ
で求められる。
このように、同一基板3に複数の配線基板1が形成されている場合、個々の配線基板1の基板3上での位置情報(座標)及び向き(角度)を指定して座標変換を行うことにより、異なる配線基板間で欠陥修正手法(テンプレート)とオブジェクトの設定を共有できる。
以上説明したように、繰り返しパターン画像と基準画像を登録し、修正手法と修正条件を設定することで、適切な修正手法を自動選択、実行することができるようになる。
上記構成において、基準画像における原点とサイズを指定し、想定される欠陥の箇所と修正方法をテンプレートとして登録し、それぞれに対する付加情報を設定することで最適な欠陥修正手法を自動で選択、実行が可能となる。この場合、個々のテンプレートは座標情報を持つだけなので、画像ごとの登録が不必要なためデータベース化がしやすく、付加情報も配線基板ごとに設定ができるため、よりフレキシブル(柔軟)なテンプレートの選択が可能となる。
また、テンプレートを編集、登録、決定する際に基準画像を登録して重ね合わせることで、視覚的にテンプレートが選びやすくなる。
また、同一条件でテンプレートを検索、サムネイル表示を行い、比較、編集することで重複登録等を防止し、より精度の高いテンプレートの作成が可能となる。
さらに同一基板内に複数の基板が存在する場合は、個々の基板のテンプレートを共有化することで、基板の向きが異なっていたり、取得画像が回転していても、欠陥修正方法の取得が可能となる。
したがって、適切な欠陥修正手法が容易かつ精度良く決定され、欠陥修正工程の作業効率が大幅に向上し、タクトタイムを短縮できるとともに作業員の工数費を削減できる。
また、欠陥修正手法を表すテンプレートを欠陥画像と重ね合わせて表示できるようにしたので、作業員が表示された内容を容易かつ明確に視認でき、呼び出された欠陥修正手法が適切かどうかを簡単に判別できる。
なお、以上の説明で挙げた使用材料及びその量、処理時間及び寸法などの数値的条件は好適例に過ぎず、説明に用いた各図における寸法形状及び配置関係も概略的なものである。すなわち、本発明は、この実施の形態に限られるものではない。
さらに、上述した実施形態では、フラットパネルディスプレイのガラス基板上に形成されたデザインパターンの欠陥修正を行なう場合について説明したが、修正対象はこの例に限定されるものではなく、例えば半導体ウェハ、フォトマスク、磁気ディスク等、修正対象基板上に所定パターンが形成されたものに適用できる。
本発明の一実施の形態に係る基板の構成例を示す図である。 本発明の一実施の形態に係る繰り返しパターン区域の説明に供する図である。 本発明の一実施の形態に係る配線基板の製造工程を示すフローチャートである。 本発明の一実施の形態に係る欠陥修正装置の一例の構成図である。 本発明の一実施の形態に係るレーザCVDに用いられる局所排気装置の断面図である。 図5に示した局所排気装置の下面図である。 本発明の一実施の形態に係る単位画素の説明に供する図であり、Aは本発明の一実施の形態に係る単位画素の概略構成、Bはその等価回路を示す。 本発明の一実施の形態に係る単位画素の繰り返しパターン例を示す図である。 本発明の一実施の形態に係る画素座標系の説明に供する図である。 本発明の一実施の形態に係るテンプレート選択の説明に供する図である。 本発明の一実施の形態に係るテンプレート選択の説明に供する図である。 本発明の一実施の形態に係るテンプレートの例を示す説明図である。 本発明の一実施の形態に係るテンプレートの例を示す説明図である。 本発明の一実施の形態に係るテンプレート情報画面の説明に供する図であり、Aは欠陥画像、Bは表示テンプレート選択ダイアログである。 本発明の一実施の形態に係るテンプレート情報画面の説明に供する図であり、Aは欠陥画像、Bは表示テンプレート選択ダイアログである。 本発明の一実施の形態に係るテンプレート編集画面の一例を示す図である。 本発明の一実施の形態に係るテンプレート管理画面の一例を示す図である。 本発明の一実施の形態に係る選択オプション画面の一例を示す図である。基板の構成例を示す図である。 本発明の一実施の形態に係る基板の構成例を示す図である。 本発明の一実施の形態に係るテンプレートの座標変換の説明に供する図である。
符号の説明
1…配線基板、2…配線部(単位画素)、2a…欠陥配線部、3…基板、18…原点、19…原点、20a〜20g…欠陥、70,80…欠陥画像、32a〜32k…欠陥オブジェクト、33a〜33o…リペアオブジェクト、56…配線基板原点、58…基板原点、60a,60c…配線部、71…繰り返しパターンエリア、72…テンプレート画像、73…テンプレート情報、74…オブジェクト情報、74a…画素画像表示位置表示部、91…テンプレート情報編集部、92…オブジェクト情報編集部、93…欠陥オブジェクト、94,95,96…リペアオブジェクト、97…膜材料、104…共通項目、200…欠陥修正装置、202…全体制御部、225…修正手法データベース、226…修正方法生成部、227…ディスプレイ、228…入力装置、300…欠陥検査装置

Claims (12)

  1. 基板上で、複数の配線パターン及びその周辺回路が形成された配線基板内の欠陥を検査し、検出された欠陥をレーザ光を用いて修正する欠陥修正装置において、
    配線基板の検査対象箇所を撮影した欠陥画像と、欠陥のない参照画像とを照合して欠陥を検出する欠陥検出部と、
    欠陥の特徴を示すテンプレート情報と、欠陥を模した欠陥オブジェクト並びに前記配線基板上における前記欠陥オブジェクトの位置及びその特徴に応じた修正処置が施される部分を示したリペアオブジェクトを含むオブジェクト情報から構成された、欠陥修正手法と対応づけられた複数のテンプレートが蓄積されたデータベースと、
    前記欠陥検出部で検出された欠陥の前記配線基板内における位置に基づいて、前記データベースから前記テンプレートを読み出して前記検出された欠陥の情報が前記テンプレート情報及び前記オブジェクト情報の特定の条件に一致しているテンプレートを選定する修正方法生成部と、
    前記修正方法生成部で選定されたテンプレートのリペアオブジェクトに基づき前記欠陥の修正を実行する修正機構部を制御する制御部と、を備え
    前記欠陥オブジェクト及び前記リペアオブジェクトの位置は、前記配線パターンの基準となる原点座標からの相対座標で記録されており
    前記修正方法生成部は、前記欠陥画像における前記欠陥が検出された配線パターンの原点座標に前記テンプレートの原点座標を合わせ、少なくとも前記欠陥の前記配線パターン内における位置及び大きさを前記データベースに蓄積されている前記テンプレートの欠陥オブジェクトの位置及び大きさと比較し、その比較結果に基づいて最適なリペアオブジェクトを有するテンプレートを選定し、
    前記欠陥画像における前記欠陥が検出された配線パターンの原点座標に前記テンプレートの原点座標を合せたときの前記リペアオブジェクトの位置が、前記配線基板に対して欠陥修正を実行する位置である
    陥修正装置。
  2. 前記制御部は、前記欠陥画像に前記選定したテンプレートのリペアオブジェクトを重ねた画像を表示部に表示させる
    請求項に記載の欠陥修正装置。
  3. 前記制御部は、前記欠陥画像に前記テンプレートのリペアオブジェクトを重ねた画像を前記表示部に表示させる場合、前記リペアオブジェクトが複数あるときは各リペアオブジェクトの実行順を表示させる
    請求項に記載の欠陥修正装置。
  4. 前記制御部は、前記配線パターンの画像に前記テンプレートの欠陥オブジェクト及びリペアオブジェクトを重ねた画像を表示部に表示させる
    請求項に記載の欠陥修正装置。
  5. 前記制御部は、少なくとも前記テンプレートのテンプレート情報、並びに選択可能な複数の欠陥オブジェクトと複数のリペアオブジェクトのアイコン及び修正箇所の膜材料名を含むオブジェクト情報を前記表示部に表示させ、
    前記修正方法生成部は、ユーザ操作が行われる入力部からの入力内容に基づいて、前記テンプレートの前記テンプレート情報及び前記オブジェクト情報の内容を設定する
    請求項に記載の欠陥修正装置。
  6. 前記制御部は、前記配線パターンの画像に前記テンプレートの欠陥オブジェクト及びリペアオブジェクトを重ねた画像を前記表示部に表示させる場合、前記リペアオブジェクトが複数あるときは各リペアオブジェクトの実行順を表示させる
    請求項4又は5に記載の欠陥修正装置。
  7. 前記制御部は、前記欠陥オブジェクト及び前記オブジェクト情報に共通の項目を有する複数のテンプレートの画像を前記表示部に表示させる
    請求項5又は6に記載の欠陥修正装置。
  8. 前記制御部は、前記欠陥オブジェクト情報及び前記リペアオブジェクト情報の項目のうち前記テンプレートを選別時に有効にする項目をユーザに入力させる選別オプション画面を前記表示部に表示させる
    請求項5乃至7のいずれかに記載の欠陥修正装置。
  9. 前記基板上の第1の配線基板に対して前記基板上の第2の配線基板が角度θ回転しているとき、前記第1の配線基板のテンプレート上の座標(Xa,Ya)に対応する前記第2の配線基板に対するテンプレートの座標(Xb,Yb)が、
    Xc=Xa*cosθ−Ya*sinθ
    Yc=Xa*sinθ+Ya*cosθ
    で求められ、前記第1の配線基板と前記第2の配線基板で前記テンプレートを共有する
    請求項1乃至3のいずれかに記載の欠陥修正装置。
  10. 複数の配線パターン及びその周辺回路が形成された配線基板内の欠陥を検査し、検出された欠陥をレーザ光を用いて修正する欠陥修正方法において
    線基板の検査対象箇所を撮影した欠陥画像と、欠陥のない参照画像とを照合して欠陥を検出する工程と、
    欠陥の特徴を示すテンプレート情報と、欠陥を模した欠陥オブジェクト並びに前記配線基板上における前記欠陥オブジェクトの位置及びその特徴に応じた修正処置が施される部分を示したリペアオブジェクトを含むオブジェクト情報から構成された、欠陥修正手法と対応づけられた複数のテンプレートが蓄積されたデータベースから、前記テンプレートを読み出して前記検出された欠陥の情報が前記テンプレート情報及び前記オブジェクト情報の特定の条件に一致しているテンプレートを選定する工程と、
    前記選定されたテンプレートのリペアオブジェクトに基づき前記欠陥の修正を実行する工程と、を有し、
    前記欠陥オブジェクト及び前記リペアオブジェクトの位置は、前記配線パターンの基準となる原点座標からの相対座標で記録されており、
    前記欠陥画像における前記欠陥が検出された配線パターンの原点座標に前記テンプレートの原点座標を合わせ、少なくとも前記欠陥の前記配線パターン内における位置及び大きさを前記データベースに蓄積されている前記テンプレートの欠陥オブジェクトの位置及び大きさと比較し、その比較結果に基づいて最適なリペアオブジェクトを有するテンプレートを選定し、
    前記欠陥画像における前記欠陥が検出された配線パターンの原点座標に前記テンプレートの原点座標を合せたときの前記リペアオブジェクトの位置が、前記配線基板に対して欠陥修正を実行する位置である
    陥修正方法。
  11. 前記欠陥画像に前記選定したテンプレートのリペアオブジェクトを重ねた画像を表示部に表示させる
    請求項10に記載の欠陥修正方法。
  12. 前記配線パターンの画像に前記テンプレートの欠陥オブジェクト及びリペアオブジェクトを重ねた画像を表示部に表示させる
    請求項10に記載の欠陥修正方法。
JP2006348375A 2006-12-25 2006-12-25 欠陥修正装置及び欠陥修正方法 Expired - Fee Related JP4940941B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348375A JP4940941B2 (ja) 2006-12-25 2006-12-25 欠陥修正装置及び欠陥修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348375A JP4940941B2 (ja) 2006-12-25 2006-12-25 欠陥修正装置及び欠陥修正方法

Publications (2)

Publication Number Publication Date
JP2008159930A JP2008159930A (ja) 2008-07-10
JP4940941B2 true JP4940941B2 (ja) 2012-05-30

Family

ID=39660502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348375A Expired - Fee Related JP4940941B2 (ja) 2006-12-25 2006-12-25 欠陥修正装置及び欠陥修正方法

Country Status (1)

Country Link
JP (1) JP4940941B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063356B2 (en) 2008-09-05 2015-06-23 Japan Display Inc. Method for repairing display device and apparatus for same
JP5331421B2 (ja) * 2008-09-12 2013-10-30 オリンパス株式会社 レーザリペア装置およびレーザリペア方法
JP5353179B2 (ja) 2008-10-22 2013-11-27 ソニー株式会社 欠陥修正装置および欠陥修正方法
JP5640328B2 (ja) * 2009-05-20 2014-12-17 ソニー株式会社 欠陥修正装置及び欠陥修正方法
JP5236580B2 (ja) * 2009-06-15 2013-07-17 シャープ株式会社 欠陥修正装置および欠陥修正方法
WO2012117656A1 (ja) * 2011-03-02 2012-09-07 パナソニック株式会社 有機elパネルおよびその製造方法
JP6417728B2 (ja) * 2014-06-09 2018-11-07 大日本印刷株式会社 テンプレートの製造方法
JP7110044B2 (ja) * 2018-09-14 2022-08-01 キオクシア株式会社 修正パターン生成装置、パターン欠陥修正システム、修正パターン生成方法、及び半導体装置の製造方法
CN112750050A (zh) * 2020-12-30 2021-05-04 广州兴森快捷电路科技有限公司 加工方法、装置、设备及存储介质
KR102420665B1 (ko) * 2022-04-04 2022-07-14 주식회사 에이치비테크놀러지 Ar 레이저 가공 장치 및 시스템
CN116309574B (zh) * 2023-05-19 2023-08-18 成都数之联科技股份有限公司 一种面板漏制程缺陷检测方法、系统、设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786722A (ja) * 1993-09-14 1995-03-31 Hitachi Ltd パターン欠陥自動修正装置
US7761182B2 (en) * 2005-01-21 2010-07-20 Photon Dynamics, Inc. Automatic defect repair system

Also Published As

Publication number Publication date
JP2008159930A (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4940941B2 (ja) 欠陥修正装置及び欠陥修正方法
JP5110894B2 (ja) 欠陥修正装置、配線基板の製造方法、ディスプレイ装置の製造方法
JP5353179B2 (ja) 欠陥修正装置および欠陥修正方法
US7761182B2 (en) Automatic defect repair system
US7103505B2 (en) Defect analyzer
JP5114943B2 (ja) 欠陥修正装置及び欠陥修正方法
US8262427B2 (en) Defect correcting apparatus and defect correcting method
JP4956984B2 (ja) 欠陥修正装置及び欠陥修正方法
JP2012168539A (ja) 欠陥修正装置
JP4736717B2 (ja) 配線基板の製造方法、及びディスプレイ装置の製造方法
JP4784372B2 (ja) 配線基板の製造方法、ディスプレイ装置の製造方法、及び配線基板の製造装置
JP4940679B2 (ja) 欠陥修正手法の表示方法及び欠陥修正装置
JP5640328B2 (ja) 欠陥修正装置及び欠陥修正方法
JP3696426B2 (ja) パターン欠陥修正装置
JP2011085821A (ja) 欠陥修正装置および欠陥修正方法
JP2011085820A (ja) 欠陥修正装置および欠陥修正方法
JP2005221974A (ja) 欠陥の修正装置及びその修正方法
JP2008014650A (ja) 表面欠陥検査装置
JP2007165647A (ja) 欠陥修正装置及び欠陥修正方法
JP2020171939A (ja) レーザリペア方法、レーザリペア装置
JP5236580B2 (ja) 欠陥修正装置および欠陥修正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees