JP4937775B2 - Micro sample table, method for producing the same, micro sample table assembly, and sample holder - Google Patents

Micro sample table, method for producing the same, micro sample table assembly, and sample holder Download PDF

Info

Publication number
JP4937775B2
JP4937775B2 JP2007016366A JP2007016366A JP4937775B2 JP 4937775 B2 JP4937775 B2 JP 4937775B2 JP 2007016366 A JP2007016366 A JP 2007016366A JP 2007016366 A JP2007016366 A JP 2007016366A JP 4937775 B2 JP4937775 B2 JP 4937775B2
Authority
JP
Japan
Prior art keywords
micro sample
micro
base
fixed
guard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007016366A
Other languages
Japanese (ja)
Other versions
JP2008185338A (en
Inventor
大輔 池田
浩二 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Aoi Electronics Co Ltd
Original Assignee
Aoi Electronics Co Ltd
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoi Electronics Co Ltd, SII NanoTechnology Inc filed Critical Aoi Electronics Co Ltd
Priority to JP2007016366A priority Critical patent/JP4937775B2/en
Publication of JP2008185338A publication Critical patent/JP2008185338A/en
Application granted granted Critical
Publication of JP4937775B2 publication Critical patent/JP4937775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、電子顕微鏡観察などに供するための微小試料を固定する微小試料台および微小試料台を有する試料ホルダに関するものである。   The present invention relates to a micro sample stage for fixing a micro sample for use in electron microscope observation and the like and a sample holder having a micro sample stage.

半導体ウエハや半導体デバイスから採取した薄片状の微小試料を透過型電子顕微鏡(TEM)で観察するには、微小試料の電子線照射領域(観察領域)を極力薄くする必要がある。このような薄片化技術としては、例えば、特許文献1に記載されているものが知られている。特許文献1の技術では、試料台の上面に微小試料を立てて固定し、その試料台の側面を薄い半切りメッシュの表面に貼着し、この状態で微小試料の表面にほぼ平行に集束イオンビームを照射して微小試料を薄片化する。薄片化された微小試料をTEM観察するときは、ピンセット等で半切りメッシュ部分を把持してTEMの観察ステージまで運んで取付けを行う。   In order to observe a flaky micro sample collected from a semiconductor wafer or semiconductor device with a transmission electron microscope (TEM), it is necessary to make the electron beam irradiation region (observation region) of the micro sample as thin as possible. As such a thinning technique, for example, a technique described in Patent Document 1 is known. In the technique of Patent Document 1, a micro sample is set up and fixed on the upper surface of a sample stage, and the side surface of the sample stage is attached to the surface of a thin half-cut mesh. In this state, focused ions are substantially parallel to the surface of the micro sample. The sample is thinned by irradiating the beam. When TEM observation is performed on a thin sample, the half-cut mesh portion is grasped with tweezers or the like and is carried to the TEM observation stage for attachment.

特開2006−226970号公報JP 2006-226970 A

特許文献1では、試料台の側面を半切りメッシュの表面に貼着するので、試料台の厚さは、半切りメッシュの厚さ分だけ増えたのと同じとなる。従って、荷電粒子ビームを照射して薄片化の除去加工を行う際に、微小試料だけではなく半切りメッシュの切り欠き端面に対しても照射が行われ、半切りメッシュの逆スパッタにより、微小試料が汚染されるという問題が生じる。   In Patent Document 1, since the side surface of the sample table is attached to the surface of the half-cut mesh, the thickness of the sample table is the same as that increased by the thickness of the half-cut mesh. Therefore, when irradiating with a charged particle beam and performing removal processing for thinning, not only the micro sample but also the cut end surface of the half cut mesh is irradiated, and the micro sample is obtained by reverse sputtering of the half cut mesh. The problem of contamination.

また、ピンセット等で半切りメッシュ部分を把持して微小試料を移動する際に、他の部材に接触させたり、落下させて微小試料を破損する問題もある。   In addition, when the micro sample is moved while holding the half-cut mesh portion with tweezers or the like, there is a problem that the micro sample is damaged by being brought into contact with another member or dropped.

(1)請求項1の発明による試料台は、加工処理が施される微少試料を固定するための微少試料台であって、上面と該上面と平行な底面とを有する基部と、基部の上面から突出するように離間して立設され、微少試料が固定される複数の固定部と、基部の上面から突出するように離間して立設され、固定部よりも突出高さが高い複数の柱状ガード部とを備え、複数の柱状ガード部は、固定部が一対の柱状ガード部に挟まれるように、かつ、固定部と柱状ガード部とが離間して交互に並ぶように配置されていることを特徴とする。
(2)請求項2の発明は、請求項1に記載の微小試料台において、上面の幅方向に関する固定部およびガード部の厚さは、固定部よりもガード部の方が厚く設定されていることを特徴とする。
(3)請求項3の発明は、請求項1または2に記載の微小試料台において、基部と固定部の積層方向をシリコンウエハの厚さ方向とし、そのシリコンウエハからマイクロマシニング技術により一体で作製されることを特徴とする。
(4)請求項4の発明は、請求項1乃至3のいずれか項に記載の微小試料台において、加工処理は荷電粒子ビームによる薄片化処理であることを特徴とする。
(5)請求項5の発明による微小試料台の作成方法は、請求項に記載の微小試料台の製造方法にであって、シリコンウエハの表面から、エッチングおよびダイシングのいずれかにより溝を形成して基部、固定部、および柱状ガード部を形成することを特徴とする。
(6)請求項6の発明による微小試料台集合体は、請求項3に記載の微小試料台を複数備える微小試料台集合体であって、複数の微小試料台が共通のベース基板上に形成されて一体となっていることを特徴とする。
(7)請求項7の発明による試料ホルダは、請求項4に記載の微小試料台と、微小試料台の基部が固定され、該微小試料台を支持する台座と、を備えたことを特徴とする。
(8)請求項8の発明は、請求項7に記載の試料ホルダにおいて、台座は薄板の形状を呈し、薄板の端面に基部の底面が固定され、薄板の厚さは基部の厚さよりも薄く設定されていることを特徴とする。
(1) A sample table according to the invention of claim 1 is a micro sample table for fixing a micro sample to be processed , a base having an upper surface and a bottom surface parallel to the upper surface, and an upper surface of the base . spaced to stand so as to protrude from a plurality of fixing portions which minute sample is fixed, apart from upright so as to protrude from the upper surface of the base portion, a plurality of high projection height than the fixed part The plurality of columnar guard portions are arranged such that the fixed portion is sandwiched between the pair of columnar guard portions, and the fixed portions and the columnar guard portions are arranged alternately and spaced apart from each other. It is characterized by that.
(2) According to the invention of claim 2, in the micro sample table according to claim 1, the thickness of the fixed part and the guard part in the width direction of the upper surface is set to be thicker in the guard part than in the fixed part. It is characterized by that.
(3) The invention of claim 3 is the micro sample stage according to claim 1 or 2, wherein the stacking direction of the base portion and the fixing portion is the thickness direction of the silicon wafer, and the silicon wafer is integrally manufactured from the silicon wafer by micromachining technology. It is characterized by being.
(4) A fourth aspect of the present invention, in the micro sample table according to any one of claims 1 to 3, processing is characterized by flaking process der Rukoto by the charged particle beam.
(5) The method for producing a micro sample table according to the invention of claim 5 is the method for manufacturing the micro sample table according to claim 3 , wherein a groove is formed by etching or dicing from the surface of the silicon wafer. base and, characterized that you form a fixing portion, and the columnar guard portion.
(6) A micro sample table assembly according to the invention of claim 6 is a micro sample table assembly including a plurality of micro sample tables according to claim 3, wherein the plurality of micro sample tables are formed on a common base substrate. It is characterized that you have become integrally.
(7) A sample holder according to the invention of claim 7 comprises the micro sample table according to claim 4, and a pedestal on which the base of the micro sample table is fixed and supports the micro sample table, To do.
(8) The invention according to claim 8 is the sample holder according to claim 7, wherein the pedestal has a thin plate shape, the bottom surface of the base is fixed to the end surface of the thin plate, and the thickness of the thin plate is thinner than the thickness of the base. It is characterized by being set .

本発明の試料ホルダによれば、台座の逆スパッタによる微小試料の汚染を防止することができる。
本発明の微小試料台によれば、ガード部を設けたので、微小試料の破損を防止することができる。
本発明の微小試料台の作成方法によれば、大量の微小試料台を一括して作成することができる。
本発明の微小試料台集合体によれば、一括して作成した大量の微小試料台を個片化した後の取扱いが容易となる。
According to the sample holder of the present invention, it is possible to prevent a minute sample from being contaminated by the reverse sputtering of the pedestal.
According to the micro sample table of the present invention, since the guard portion is provided, it is possible to prevent the micro sample from being damaged.
According to the method for producing a micro sample table of the present invention, a large number of micro sample tables can be created in a lump.
According to the micro sample table assembly of the present invention, it becomes easy to handle a large number of micro sample tables that have been created in one batch.

以下、本発明の実施の形態による微小試料台および試料ホルダについて図1〜6を参照しながら説明する。
図1は、本発明の実施の形態による試料ホルダを模式的に示す図であり、図1(a)は正面図、図1(b)はI−I線断面図、図1(c)は図1(b)の部分拡大図である。図2(a)は、実施の形態による微小試料台の構造を模式的に示す斜視図である。図2(b)、(c)は従来例と実施の形態による作用効果を説明する図である。図1、図2(a)では、XYZ直交座標で方向を表す。
Hereinafter, a micro sample table and a sample holder according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram schematically showing a sample holder according to an embodiment of the present invention. FIG. 1 (a) is a front view, FIG. 1 (b) is a cross-sectional view taken along the line II, and FIG. It is the elements on larger scale of FIG.1 (b). FIG. 2A is a perspective view schematically showing the structure of the micro sample table according to the embodiment. FIGS. 2B and 2C are diagrams for explaining the effects of the conventional example and the embodiment. In FIG. 1 and FIG. 2A, directions are represented by XYZ orthogonal coordinates.

図1を参照すると、試料ホルダ1は、微小試料台10を台座メッシュ100に固定した構造である。例えば、微小試料台10は、ほぼ半円板形状の台座メッシュ100の切り欠き端面100Aに載置されて貼着固定される。すなわち、図1(b)に示されるように、微小試料台10と台座メッシュ100が上下に固定される。微小試料片Sは、固定部12の頂部である上面に立てて固定される。微小試料片Sを固定部12の側面に固定しても良い。微小試料台10と台座メッシュ100が上下に固定されているため、後述するように、微小試料片Sの薄片化調製の際に微小試料片Sの汚染を防止することができ、バックグラウンドノイズの少ない観察や測定が可能となる。   Referring to FIG. 1, the sample holder 1 has a structure in which a micro sample table 10 is fixed to a pedestal mesh 100. For example, the micro sample table 10 is mounted on the cut end surface 100A of the substantially semi-disc-shaped pedestal mesh 100 and fixed thereto. That is, as shown in FIG. 1B, the micro sample table 10 and the base mesh 100 are fixed up and down. The minute sample piece S is fixed upright on the upper surface which is the top of the fixing portion 12. The minute sample piece S may be fixed to the side surface of the fixing portion 12. Since the micro sample stage 10 and the pedestal mesh 100 are fixed vertically, the micro sample piece S can be prevented from being contaminated during the thinning preparation of the micro sample piece S, as will be described later. Fewer observations and measurements are possible.

微小試料台10は、半導体ウエハや半導体デバイスから採取した直方体ブロック状の微小試料片Sを接着などにより保持して、透過型電子顕微鏡(TEM)観察あるいはオージェ電子分光(AES)に供するために、微小試料片Sの薄片化調製を行う作業台として用いられる。そして、試料ホルダ1は、顕微鏡観察あるいは分光分析の際には、微小試料片Sを微小試料台10に保持したまま、台座メッシュ100の部分をピンセットなどで把持されて顕微鏡装置あるいは分光装置へ運搬され、ステージにセットされる。   The micro sample stage 10 holds a rectangular parallelepiped block-shaped micro sample piece S collected from a semiconductor wafer or a semiconductor device by bonding or the like, and uses it for transmission electron microscope (TEM) observation or Auger electron spectroscopy (AES). It is used as a work table for preparing a thin sample piece S. The sample holder 1 carries the pedestal mesh 100 with tweezers or the like while holding the micro sample piece S on the micro sample stage 10 and carries the micro sample piece S to the microscope apparatus or the spectroscopic device during microscopic observation or spectroscopic analysis. And set on the stage.

図1、図2(a)を参照しながら微小試料台10について詳しく説明する。微小試料台10はシリコン製であり、直方体形状の基部11、基部11の上面に立設されて基部11よりも薄い固定部12及び固定部12を挟んで設けられるガード部13を有する。微小試料台10は、基部11の上面11Aに2本の固定部12と3本のガード部13が交互に突設された一体化構造である。強度保持の観点から、基部11の厚さ(Y方向の長さ)は、固定部12、ガード部13よりも厚く作製される。また、ガード部13の厚さは固定部12よりも厚く、ガード部13の高さ(Z方向の長さ)は固定部12よりも高く作製される。固定部12に立設する微小試料片Sの頂部よりもガード部13の頂部を高くするのが好ましい。   The micro sample stage 10 will be described in detail with reference to FIGS. 1 and 2A. The micro sample table 10 is made of silicon, and has a rectangular parallelepiped base portion 11, a fixed portion 12 that is erected on the upper surface of the base portion 11 and is thinner than the base portion 11, and a guard portion 13 that is sandwiched between the fixed portions 12. The micro sample table 10 has an integrated structure in which two fixing portions 12 and three guard portions 13 are alternately projected on the upper surface 11A of the base portion 11. From the viewpoint of maintaining strength, the thickness of the base portion 11 (the length in the Y direction) is made thicker than the fixed portion 12 and the guard portion 13. Further, the guard portion 13 is made thicker than the fixed portion 12, and the height of the guard portion 13 (length in the Z direction) is made higher than that of the fixed portion 12. It is preferable to make the top of the guard part 13 higher than the top of the minute sample piece S standing on the fixing part 12.

図1(c)の部分断面図に示されるように、固定部12のエッジ12eと基部11のエッジ11eを結んだ線分が垂直軸となす傾斜角度θが5〜30°に入るように、基部11の厚さと固定部12の厚さ及び高さが調整されている。   As shown in the partial cross-sectional view of FIG. 1 (c), an inclination angle θ formed by a line segment connecting the edge 12e of the fixed portion 12 and the edge 11e of the base portion 11 with the vertical axis falls within 5 to 30 °. The thickness of the base part 11 and the thickness and height of the fixing part 12 are adjusted.

固定部12の幅(X方向の長さ)と厚さ(Y方向の長さ)は、微小試料片Sの寸法などに応じて任意に形成することができる。例えば、厚さを5μm一定とし、幅を5〜500μmの範囲で任意に変えることができる。微小試料片Sは、その表面、すなわち薄片化調製が行われる平面がXZ面に平行となるように、固定部12に立てて固定される。   The width (the length in the X direction) and the thickness (the length in the Y direction) of the fixing portion 12 can be arbitrarily formed according to the dimensions of the minute sample piece S and the like. For example, the thickness can be fixed to 5 μm, and the width can be arbitrarily changed within a range of 5 to 500 μm. The micro sample piece S is fixed upright on the fixing unit 12 so that the surface thereof, that is, the plane on which the thinning preparation is performed is parallel to the XZ plane.

上述した試料ホルダ1において、台座メッシュ100は薄板の形状を呈し、薄板の上端面に微小試料台10を固定する切り欠き端面(固定面)100Aが設けられている。そして、微小試料台10の底面を切り欠き端面100Aに固定し、微小試料片Sの立設方向が薄板の面方向と一致するようにしている。   In the sample holder 1 described above, the pedestal mesh 100 has a thin plate shape, and a notch end surface (fixed surface) 100A for fixing the micro sample table 10 is provided on the upper end surface of the thin plate. Then, the bottom surface of the micro sample table 10 is fixed to the cut end surface 100A so that the standing direction of the micro sample piece S coincides with the surface direction of the thin plate.

上述したように、微小試料台10は、固定部12の近傍の両側にガード部13を配設しているので、試料ホルダ1を運搬中に他の部材に接触させたり、落下させた場合でも、ガード部13のガード効果により微小試料片Sの破損を回避することができる。特に、先端の尖った他の部材に対しても、ガード部13が固定部12に接近して設けられているため、ガード部13のガード効果は有効に働く。   As described above, since the micro sample stage 10 is provided with the guard portions 13 on both sides in the vicinity of the fixed portion 12, even when the sample holder 1 is brought into contact with other members during transportation or dropped. The damage of the minute sample piece S can be avoided by the guard effect of the guard part 13. In particular, since the guard portion 13 is provided close to the fixed portion 12 with respect to another member having a sharp tip, the guard effect of the guard portion 13 works effectively.

図1に示す状態で、上述した構造と寸法を有する微小試料台10に微小試料片Sを固定して微小試料片Sの薄片化調製を行い、その後に微小試料片SのTEM観察あるいはAES微小分析を行うべく、それらの装置にセットして用いられる。薄片化調製には、集束イオンビーム(FIB:Focused Ion Beam)で加工する方法が用いられる。FIB加工法では、例えば細く絞ったGaビームを−Z方向に対して浅い角度で微小試料片Sへ照射することにより、0.1μmレベルに薄片化する。このとき、固定部12も同時に薄く加工される。従って、固定部12の厚さは、このGaビームの入射角からも制限される。同様に、基部11の厚さも制限される。 In the state shown in FIG. 1, the micro sample piece S is fixed to the micro sample stage 10 having the above-described structure and dimensions, and the micro sample piece S is prepared to be thinned, and then the TEM observation of the micro sample piece S or the AES micro In order to carry out the analysis, it is set in these devices and used. For the thinning preparation, a method of processing with a focused ion beam (FIB) is used. In the FIB processing method, for example, the fine sample piece S is irradiated with a finely focused Ga + beam at a shallow angle with respect to the −Z direction, so that it is thinned to a level of 0.1 μm. At this time, the fixing portion 12 is also processed to be thin at the same time. Therefore, the thickness of the fixed portion 12 is limited also from the incident angle of the Ga + beam. Similarly, the thickness of the base 11 is also limited.

FIB加工段階では、微小試料片Sの表面には、Gaビームの照射による逆スパッタにより異物などが付着する可能性がある。その発生源は、微小試料台10と台座メッシュ100である。特に、台座メッシュ100はモリブデンなどの金属で作製されるため、台座メッシュ100へのGaビーム照射は極力避ける必要がある。そのためには、台座メッシュ100の切り欠き端面100A上に微小試料台10を載置する構造は非常に有効である。 In the FIB processing stage, foreign matter or the like may adhere to the surface of the minute sample piece S due to reverse sputtering by irradiation with a Ga + beam. The generation source is the micro sample stage 10 and the base mesh 100. In particular, since the pedestal mesh 100 is made of a metal such as molybdenum, it is necessary to avoid Ga + beam irradiation to the pedestal mesh 100 as much as possible. For this purpose, a structure in which the micro sample table 10 is placed on the cut-out end surface 100A of the base mesh 100 is very effective.

図2(c)に示すように、台座メッシュ100の側面に微小試料台10を固定した場合、イオンビームなどの荷電粒子ビームが台座メッシュ100の切り欠き端面100Aに照射され、台座メッシュ100を逆スパッタする。この点、図2(b)の実施の形態のように、微小試料台10を台座メッシュ100の切り欠き端面100Aの上面に設置することにより、荷電粒子ビームが台座メッシュ100を逆スパッタすることがない。なお、このような作用効果を得る微小試料台にあっては、ガード部13は必須の構成ではない。   As shown in FIG. 2 (c), when the micro sample table 10 is fixed to the side surface of the pedestal mesh 100, a charged particle beam such as an ion beam is irradiated to the cut end surface 100 A of the pedestal mesh 100, and the pedestal mesh 100 is reversed. Sputter. In this regard, as in the embodiment of FIG. 2B, the charged particle beam can reverse-sputter the pedestal mesh 100 by installing the micro sample stage 10 on the upper surface of the cut end surface 100A of the pedestal mesh 100. Absent. In addition, in the micro sample stand which obtains such an effect, the guard part 13 is not an essential structure.

なお、微小試料片Sの表面に付着した異物を除去する方法としては、例えばArビームをYZ面に対して低角度で、微小試料台10の下方から微小試料片Sへ照射するイオンミリングの手法が用いられる。 In addition, as a method of removing the foreign matter adhering to the surface of the micro sample piece S, for example, ion milling that irradiates the micro sample piece S from below the micro sample stage 10 with an Ar + beam at a low angle with respect to the YZ plane. A technique is used.

次に、本実施の形態の微小試料台10の製造工程について、図3〜図5に示す工程Aから工程Rまでを詳しく説明する。図3〜図5でも、図1,2に対応させたXYZ直交座標で方向を表す。
本実施の形態の微小試料台10は、単結晶シリコンウエハを材料としてマイクロマシニングにより多数が作製され、微小試料台10の上下方向(Z方向)が単結晶シリコンウエハの厚さ方向となるように形成される。
Next, the process from the process A to the process R shown in FIGS. 3 to 5, directions are represented by XYZ orthogonal coordinates corresponding to FIGS.
A large number of micro sample tables 10 of the present embodiment are manufactured by micro machining using a single crystal silicon wafer as a material, and the vertical direction (Z direction) of the micro sample table 10 is the thickness direction of the single crystal silicon wafer. It is formed.

図3は、微小試料台10の製造工程A〜Fを説明する図であり、図3(a1)〜(a6)は微小試料台10が形成される単結晶シリコンウエハを上から見た部分平面図、図3(b1)〜(b6)は、それぞれ図3(a1)〜(a6)のII−II線に沿った部分断面図である。   FIG. 3 is a diagram for explaining the manufacturing steps A to F of the micro sample stage 10, and FIGS. 3A1 to 3A6 are partial plan views of the single crystal silicon wafer on which the micro sample stage 10 is formed as viewed from above. 3 and FIGS. 3B1 to 3B6 are partial cross-sectional views taken along lines II-II in FIGS. 3A1 to 3A6, respectively.

工程Aでは、単結晶シリコンウエハ101をベース基板102に熱硬化性樹脂により接着する。接着作業は、熱硬化性樹脂ペーストをスピンコータによりベース基板102上に塗布し、単結晶シリコンウエハ101を貼付けた後にホットプレートで加熱する。ベース基板102は、製造工程終盤で多数の微小試料台10が分離しないようにするためのものであり、製造プロセスに支障がなければどのような材料を用いてもよいが、単結晶シリコンウエハ101と同一のもの、あるいは熱膨張率の差が小さい材料を用いるのが好ましい。   In step A, the single crystal silicon wafer 101 is bonded to the base substrate 102 with a thermosetting resin. In the bonding operation, a thermosetting resin paste is applied onto the base substrate 102 by a spin coater, the single crystal silicon wafer 101 is attached, and then heated with a hot plate. The base substrate 102 is for preventing a large number of minute sample bases 10 from being separated at the end of the manufacturing process, and any material may be used as long as it does not interfere with the manufacturing process. It is preferable to use the same material or a material with a small difference in thermal expansion coefficient.

工程Bでは、単結晶シリコンウエハ101上にスパッタリングによりSiO膜103を成膜する。
工程Cでは、SiO膜103の表面にスピンコータによりレジスト104を塗布し、ホットプレートを用いてプリベークを行う。
In step B, a SiO 2 film 103 is formed on the single crystal silicon wafer 101 by sputtering.
In step C, a resist 104 is applied to the surface of the SiO 2 film 103 by a spin coater and prebaked using a hot plate.

工程Dでは、フォトマスクを用い、マスクアライナーによりレジスト104のパターン露光と現像を行う。現像によりパターン外の不要なレジスト層を除去する。図3(a4)に示すように、X方向に形成された3個のパターンを含む領域が1つの微小試料台10を構成する単位となるので、図3(a4)には2つの単位が示されている。   In step D, pattern exposure and development of the resist 104 are performed using a photomask using a mask aligner. An unnecessary resist layer outside the pattern is removed by development. As shown in FIG. 3 (a4), since the region including the three patterns formed in the X direction is a unit constituting one micro sample table 10, two units are shown in FIG. 3 (a4). Has been.

工程Eでは、レジスト104をマスクとしてSiO膜103をバッファード弗酸でウエットエッチングし、レジスト104で覆われていない部分のSiO膜103を除去する。
工程Fでは、リムーバによりマスクとして使用されたレジスト104を除去する。
In step E, the SiO 2 film 103 is wet-etched with buffered hydrofluoric acid using the resist 104 as a mask, and the portion of the SiO 2 film 103 not covered with the resist 104 is removed.
In step F, the resist 104 used as a mask is removed by a remover.

図4は、微小試料台10の製造工程G〜Lを説明する図であり、図4(a1)〜(a6)は単結晶シリコンウエハを上から見た部分平面図、図4(b1)〜(b6)は、それぞれ図4(a1)〜(a6)のII−II線に沿った部分断面図である。   4A and 4B are diagrams for explaining the manufacturing steps G to L of the micro sample table 10, and FIGS. 4A1 to 4A6 are partial plan views of the single crystal silicon wafer as viewed from above, and FIGS. (B6) is a fragmentary sectional view which followed the II-II line | wire of Fig.4 (a1)-(a6), respectively.

工程Gでは、シリコンウエハ101のSiO膜103が形成された面にスパッタリングによりAl膜105を成膜する。
工程Hでは、Al膜105の表面にスピンコータによりレジスト106を塗布し、ホットプレートを用いてプリベークを行う。
In step G, an Al film 105 is formed by sputtering on the surface of the silicon wafer 101 on which the SiO 2 film 103 is formed.
In step H, a resist 106 is applied to the surface of the Al film 105 by a spin coater, and prebaking is performed using a hot plate.

工程Iでは、フォトマスクを用い、マスクアライナーによりレジスト106のパターン露光を行う。現像によりパターン外の不要なレジスト層を除去する。図4(a3)に示すように、X方向に形成された1単位のパターンは、3個の大きなレジストパターン106bと2個の小さなレジストパターン106aを含んでいる。   In step I, a photomask is used and pattern exposure of the resist 106 is performed using a mask aligner. An unnecessary resist layer outside the pattern is removed by development. As shown in FIG. 4A3, one unit pattern formed in the X direction includes three large resist patterns 106b and two small resist patterns 106a.

工程Jでは、レジストパターン106a,106bをマスクとしてAl膜105を混酸P液でウエットエッチングし、レジストパターン106a,106bで覆われていないAl膜105を除去する。その結果、図4(b4)に示すように、単結晶シリコンウエハ101上に、SiO膜103b、Al膜105bおよびレジスト106bからなる3層の大きなパターンと、Al膜105aおよびレジスト106aからなる2層の小さなパターンが残る。 In step J, the Al film 105 is wet-etched with a mixed acid P solution using the resist patterns 106a and 106b as a mask, and the Al film 105 not covered with the resist patterns 106a and 106b is removed. As a result, as shown in FIG. 4 (b4), on the single crystal silicon wafer 101, a large three-layer pattern composed of the SiO 2 film 103b, the Al film 105b, and the resist 106b, and 2 composed of the Al film 105a and the resist 106a. A small pattern of layers remains.

工程Kでは、残存するレジストパターン106a,106bをリムーバで除去する。
工程Lでは、パターンが形成された表面にスピンコータによりレジスト107を塗布し、ホットプレートを用いてプリベークを行う。
In step K, the remaining resist patterns 106a and 106b are removed with a remover.
In step L, a resist 107 is applied to the surface on which the pattern is formed by a spin coater, and prebaking is performed using a hot plate.

図5は、微小試料台10の製造工程M〜Rを説明する図であり、図5(a1)〜(a6)は単結晶シリコンウエハを上から見た部分平面図、図5(b1)〜(b6)は、それぞれ図5(a1)〜(a6)のII−II線に沿った部分断面図である。   FIG. 5 is a diagram for explaining manufacturing steps M to R of the micro sample table 10, and FIGS. 5A1 to 5A6 are partial plan views of the single crystal silicon wafer as viewed from above, and FIGS. (B6) is a fragmentary sectional view which followed the II-II line | wire of Fig.5 (a1)-(a6), respectively.

工程Mでは、フォトマスクを用い、マスクアライナーによりレジスト107のパターン露光を行う。現像によりパターン外の不要なレジスト層を除去する。107Aは、マスクの遮蔽領域を示し、レジスト107が残存する領域である。この残存領域は、工程Iで説明した3個の大きなパターン106bと2個の小さなパターン106aを含む領域である。   In step M, pattern exposure of the resist 107 is performed using a photomask using a mask aligner. An unnecessary resist layer outside the pattern is removed by development. Reference numeral 107A denotes a mask shielding area where the resist 107 remains. This remaining region is a region including the three large patterns 106b and the two small patterns 106a described in step I.

工程Nでは、レジスト107のパターンをマスクとしてICP−RIE(inductively coupled plasma - reactive ion etching)により、シリコンウエハ101を厚さ方向(−Z方向)にドライエッチングする。その結果、図5(b2)に示されるように、シリコンウエハ101に段差が形成される。   In step N, the silicon wafer 101 is dry-etched in the thickness direction (−Z direction) by ICP-RIE (inductively coupled plasma-reactive ion etching) using the pattern of the resist 107 as a mask. As a result, a step is formed in the silicon wafer 101 as shown in FIG.

工程Oでは、マスクとして用いたレジスト107をリムーバで除去する。これにより、Al膜105a,105bのパターンが露出する。   In step O, the resist 107 used as a mask is removed with a remover. Thereby, the pattern of the Al films 105a and 105b is exposed.

工程Pでは、Al膜105a,105bのパターンをマスクとしてICP−RIEによりシリコンウエハ101を厚さ方向(−Z方向)にドライエッチングする。その結果、図5(b4)に示されるように、シリコンウエハ101に段差構造が形成される。すなわち、微小試料台10の固定部12となる101a、ガード部13となる101b、基部11となる101cが形成される。101a、101bおよび101cは、単結晶シリコンウエハ101から一体で形成されたものである。   In step P, the silicon wafer 101 is dry-etched in the thickness direction (−Z direction) by ICP-RIE using the pattern of the Al films 105a and 105b as a mask. As a result, a step structure is formed in the silicon wafer 101 as shown in FIG. That is, 101a that becomes the fixing part 12 of the micro sample stage 10, 101b that becomes the guard part 13, and 101c that becomes the base part 11 are formed. Reference numerals 101 a, 101 b and 101 c are integrally formed from the single crystal silicon wafer 101.

工程Qでは、Al膜105a,105bのパターンを混酸P液でウエットエッチングして除去する。これにより、パターンとなっているSiO膜103bが露出する。 In step Q, the pattern of the Al films 105a and 105b is removed by wet etching with a mixed acid P solution. As a result, the patterned SiO 2 film 103b is exposed.

工程Rでは、露出したSiO膜103bのパターンをマスクとしてICP−RIEによりシリコンウエハ101を厚さ方向(−Z方向)にドライエッチングする。このドライエッチングにより、シリコンウエハ101のSiO膜103bのパターンが存在しない領域は一様に厚さを減じる。その結果、固定部12となる101aは、ガード部13となる101bよりも一様に厚さを減じた分だけ高さが低くなる。この工程Rが終わった後に、残存するSiO膜103bをバッファード弗酸でウエットエッチングして除去する。 In step R, the silicon wafer 101 is dry-etched in the thickness direction (−Z direction) by ICP-RIE using the exposed pattern of the SiO 2 film 103b as a mask. By this dry etching, the region of the silicon wafer 101 where the pattern of the SiO 2 film 103b does not exist is uniformly reduced in thickness. As a result, the height of the 101a serving as the fixed portion 12 is lower than the thickness of 101b serving as the guard portion 13 by a uniform reduction in thickness. After the step R is completed, the remaining SiO 2 film 103b is removed by wet etching with buffered hydrofluoric acid.

図6は、上述した実施の形態のプロセスによって作成された微小試料台10を模式的に示す図であり、図6(a)は上から見た部分平面図、図6(b)は図6(a)のII−II線に沿った部分断面図である。図6に示されるように、上述した製造工程AからRまでを順次行うことにより、2つの微小試料台10が形成される。最後に、土台として用いられたベース基板102から個々の微小試料台10を分離し、微小試料台10が完成する。   6A and 6B are diagrams schematically showing the micro sample stage 10 created by the process of the above-described embodiment. FIG. 6A is a partial plan view seen from above, and FIG. 6B is FIG. It is a fragmentary sectional view in alignment with the II-II line of (a). As shown in FIG. 6, two micro sample tables 10 are formed by sequentially performing the manufacturing steps A to R described above. Finally, the individual micro sample table 10 is separated from the base substrate 102 used as a base, and the micro sample table 10 is completed.

上記の製造工程では、2個の微小試料台10についての一連の作製手順を説明したが、実際の製造工程は、シリコンウエハ単位で行われる、いわゆるバッチ処理である。このバッチ処理では、フォトリソグラフィーを主体とするマイクロマシニングにより、1枚のシリコンウエハから多数の微小試料台10を一括で作製することができ、大幅な製造コストの削減が期待できるものである。さらに、微小試料台10の高さ方向がシリコンウエハの厚さ方向になるように加工するので、材料を無駄なく使用できる。   In the above manufacturing process, a series of manufacturing procedures for the two micro sample tables 10 has been described. However, the actual manufacturing process is a so-called batch process performed in units of silicon wafers. In this batch processing, a large number of minute sample bases 10 can be manufactured at once from one silicon wafer by micromachining mainly using photolithography, and a significant reduction in manufacturing cost can be expected. Furthermore, since the processing is performed so that the height direction of the micro sample table 10 is the thickness direction of the silicon wafer, the material can be used without waste.

上述したように、シリコンウエハ上で同時に作製された複数の微小試料台は、それらの底面でウエハと一体化されている。これを微小試料台集合体と呼ぶ。すなわち、一括して作成した多数の微小試料台10はその底面においてベース基板102により接続されている。したがって、個片化する際の微小試料台の取扱いや作業性が向上する。   As described above, the plurality of micro sample tables simultaneously manufactured on the silicon wafer are integrated with the wafer on the bottom surfaces thereof. This is called a micro sample table assembly. That is, a large number of micro sample bases 10 created in a lump are connected by the base substrate 102 on the bottom surface thereof. Therefore, the handling and workability of the micro sample stage when singulated are improved.

個々に分離された微小試料台10は、図1に示されるように、台座メッシュ100の切り欠き端面100Aに貼着固定され、試料ホルダ1が完成する。すなわち、本実施の形態の試料ホルダ1は、微小試料台10の側面11Bが台座メッシュ100の側面100Bに固定されるのではなく、図1(b)に示されるように、微小試料台10と台座メッシュ100が上下に固定される。切り欠き端面100Aは、微小試料台10の側面からはみ出していないので、図2(b)に示すように、FIB加工による微小試料片Sの薄片化調製の際にFIBが照射されることはない。したがって、微小試料片Sの汚染を防止することができ、バックグラウンドノイズの少ない観察や測定が可能となる。   As shown in FIG. 1, the individually separated micro sample bases 10 are bonded and fixed to the cut end surface 100 </ b> A of the base mesh 100, and the sample holder 1 is completed. That is, in the sample holder 1 of the present embodiment, the side surface 11B of the micro sample table 10 is not fixed to the side surface 100B of the pedestal mesh 100, but as shown in FIG. The base mesh 100 is fixed up and down. Since the cut-out end surface 100A does not protrude from the side surface of the micro sample table 10, as shown in FIG. 2B, FIB is not irradiated during the thinning preparation of the micro sample piece S by FIB processing. . Therefore, contamination of the small sample piece S can be prevented, and observation and measurement with less background noise can be performed.

本実施の形態の微小試料台10は、固定部12の近傍に、たとえば固定部12を挟んでガード部13を配設しているので、試料ホルダ1を運搬中に他の部材に接触させたり、落下させたりした場合でも、ガード部13のガード効果により微小試料片Sの破損を回避することができる。特に、先端の尖った他の部材に対しても、ガード部13が固定部12に接近して設けられているため、ガード部13のガード効果は有効に働く。   In the micro sample table 10 of the present embodiment, for example, the guard part 13 is disposed in the vicinity of the fixing part 12 with the fixing part 12 interposed therebetween, so that the sample holder 1 is brought into contact with other members during transportation. Even if it is dropped, damage to the minute sample piece S can be avoided by the guard effect of the guard portion 13. In particular, since the guard portion 13 is provided close to the fixed portion 12 with respect to another member having a sharp tip, the guard effect of the guard portion 13 works effectively.

また、微小試料台10は、マイクロマシニング技術によりシリコンウエハから一括で多数同時に作製できるので、1個当りの製造コストを大幅に削減できる。また、微小試料台10の高さ方向がシリコンウエハの厚さ方向になるので、材料取りに有利である。微小試料台10同士においても、基部11、固定部12及びガード部13の各部品は一体で作製されているので、強度や寸法精度のばらつきが小さい。   In addition, since a large number of micro sample tables 10 can be manufactured simultaneously from a silicon wafer by a micromachining technique, the manufacturing cost per unit can be greatly reduced. Moreover, since the height direction of the micro sample stage 10 is the thickness direction of the silicon wafer, it is advantageous for material removal. Even in the micro sample bases 10, since the parts of the base 11, the fixing part 12, and the guard part 13 are integrally manufactured, variations in strength and dimensional accuracy are small.

本実施の形態の微小試料台10にも様々な変形が考えられる。固定部12とガード部13の配置や個数、固定部12とガード部13の相対的な高さなどは、任意に変えることができる。たとえば、図7(a)に示すような左右対称形状の多段構造の試料台10Aでもよいし、図7(b)に示すような非対称形状の試料台10Bとしてもよい。また、図7(c)に示すように、固定部12Aとガード部13Aが一体構造の試料台10Cでもよい。さらに、図7(d)に示すように、複数の固定部12B1〜12B3の両側にガード部13Bを設けた試料台10Dでもよい。   Various modifications are also conceivable for the micro sample stage 10 of the present embodiment. The arrangement and number of the fixing portions 12 and the guard portions 13 and the relative heights of the fixing portions 12 and the guard portions 13 can be arbitrarily changed. For example, a sample stage 10A having a multistage structure having a symmetrical shape as shown in FIG. 7A may be used, or a sample stage 10B having an asymmetric shape as shown in FIG. 7B may be used. Further, as shown in FIG. 7C, a sample stage 10C in which the fixing part 12A and the guard part 13A are integrated may be used. Further, as shown in FIG. 7D, a sample stage 10D provided with guard portions 13B on both sides of the plurality of fixing portions 12B1 to 12B3 may be used.

以上では、フォトリソグラフィーにより試料台を作成したが、とくに工程P〜Rをダイシングに代えて試料台を作成してもよい。なお、フォトリソグラフィー処理による加工、およびフォトリソグラフィー処理とダイシング処理による加工はマイクロマシニング技術による加工と呼ぶことができる。   In the above, the sample stage is created by photolithography, but in particular, the sample stage may be created by replacing steps P to R with dicing. Note that processing by photolithography processing and processing by photolithography processing and dicing processing can be called processing by micromachining technology.

本発明は、その特徴を損なわない限り、以上説明した実施の形態に何ら限定されない。例えば、ガード部13は、シリコンで一体製作せずに、基部11と固定部12を形成した後に、別種の材料で作ったガード部13を微小試料台10に付加してもよい。   The present invention is not limited to the embodiments described above as long as the characteristics are not impaired. For example, the guard part 13 may not be integrally formed of silicon, but the guard part 13 made of a different kind of material may be added to the micro sample table 10 after the base part 11 and the fixing part 12 are formed.

本発明の実施の形態に係る試料ホルダを模式的に示す図であり、図1(a)は正面図、図1(b)はI−I線断面図、図1(c)は図1(b)の部分拡大図である。It is a figure which shows typically the sample holder which concerns on embodiment of this invention, Fig.1 (a) is a front view, FIG.1 (b) is a II sectional view, FIG.1 (c) is FIG. It is the elements on larger scale of b). 図2(a)は実施の形態に係る微小試料台の構造を模式的に示す斜視図、(b)は実施の形態の効果を説明する図、(c)は従来の問題点を説明する図である。2A is a perspective view schematically showing the structure of a micro sample table according to the embodiment, FIG. 2B is a diagram for explaining the effect of the embodiment, and FIG. 2C is a diagram for explaining a conventional problem. It is. 実施の形態に係る微小試料台の製造工程A〜Fを説明する図であり、図3(a1)〜(a6)は部分平面図、図3(b1)〜(b6)は、それぞれ図3(a1)〜(a6)のII−II線に沿った部分断面図である。It is a figure explaining manufacturing process AF of the micro sample stand which concerns on embodiment, FIG.3 (a1)-(a6) is a partial top view, FIG.3 (b1)-(b6) is FIG. It is a fragmentary sectional view along the II-II line of a1)-(a6). 実施の形態に係る微小試料台の製造工程G〜Lを説明する図であり、図4(a1)〜(a6)は部分平面図、図4(b1)〜(b6)は、それぞれ図4(a1)〜(a6)のII−II線に沿った部分断面図である。It is a figure explaining the manufacturing process GL of the micro sample stand concerning embodiment, FIG.4 (a1)-(a6) is a partial top view, FIG.4 (b1)-(b6) is FIG. It is a fragmentary sectional view along the II-II line of a1)-(a6). 実施の形態に係る微小試料台の製造工程M〜Rを説明する図であり、図5(a1)〜(a6)は部分平面図、図5(b1)〜(b6)は、それぞれ図5(a1)〜(a6)のII−II線に沿った部分断面図である。FIGS. 5A to 5A are partial plan views, and FIGS. 5B1 to 5B6 are views illustrating the manufacturing steps M to R of the micro sample table according to the embodiment, respectively. It is a fragmentary sectional view along the II-II line of a1)-(a6). 実施の形態に係る微小試料台を模式的に示す図であり、図6(a)は部分平面図、図6(b)は図6(a)のII−II線に沿った部分断面図である。It is a figure which shows typically the micro sample stand which concerns on embodiment, FIG. 6 (a) is a fragmentary top view, FIG.6 (b) is a fragmentary sectional view along the II-II line of Fig.6 (a). is there. 本発明による微小試料台の変形例を示す図である。It is a figure which shows the modification of the micro sample stand by this invention.

符号の説明Explanation of symbols

1:試料ホルダ 10:微小試料台
11:基部 12:固定部
13:ガード部 100:台座メッシュ
100A:切り欠き端面(固定面) 101:シリコンウエハ
102:ベース基板 103:SiO
105:Al膜 S:微小試料片
1: specimen holder 10: the micro sample stage 11: base portion 12: fixing portion 13: guard portion 100: base mesh 100A: notch end surface (fixing surface) 101: silicon wafer 102: base substrate 103: SiO 2 film 105: Al film S: Small sample piece

Claims (8)

加工処理が施される微少試料を固定するための微少試料台であって、
上面と該上面と平行な底面とを有する基部と、
前記基部の前記上面から突出するように離間して立設され、前記微少試料が固定される複数の固定部と、
前記基部の前記上面から突出するように離間して立設され、前記固定部よりも突出高さが高い複数の柱状ガード部とを備え、
前記複数の柱状ガード部は、前記固定部が一対の前記柱状ガード部に挟まれるように、かつ、前記固定部と前記柱状ガード部とが離間して交互に並ぶように配置されていることを特徴とする微小試料台。
A micro sample stage for fixing a micro sample to be processed,
A base having a top surface and a bottom surface parallel to the top surface ;
A plurality of fixing portions which are vertically provided so as to protrude from the upper surface of the base portion and to which the micro sample is fixed;
A plurality of columnar guard portions that are vertically provided so as to protrude from the upper surface of the base portion and have a protruding height higher than the fixed portion ;
The plurality of columnar guard portions are arranged such that the fixing portion is sandwiched between a pair of the columnar guard portions, and the fixing portions and the columnar guard portions are spaced apart and arranged alternately. Characteristic micro sample stage.
請求項1に記載の微小試料台において、
前記上面の幅方向に関する前記固定部および前記ガード部の厚さは、前記固定部よりも前記ガード部の方が厚く設定されていることを特徴とする微小試料台。
In the micro sample stand according to claim 1,
A thickness of the fixed part and the guard part in the width direction of the upper surface is set so that the guard part is thicker than the fixed part .
請求項1または2に記載の微小試料台において、
前記基部と固定部の積層方向をシリコンウエハの厚さ方向とし、そのシリコンウエハからマイクロマシニング技術により一体で作製されることを特徴とする微小試料台。
In the micro sample stand according to claim 1 or 2 ,
A micro sample stage, wherein the stacking direction of the base portion and the fixing portion is the thickness direction of a silicon wafer, and the silicon wafer is integrally manufactured from the silicon wafer by a micromachining technique.
請求項1乃至3のいずれか一項に記載の微小試料台において、
前記加工処理は荷電粒子ビームによる薄片化処理であることを特徴とする微小試料台。
In the micro sample stand as described in any one of Claims 1 thru | or 3 ,
A micro sample stage, wherein the processing is a thinning process using a charged particle beam.
請求項に記載の微小試料台の製造方法であって
前記シリコンウエハの表面から、エッチングおよびダイシングのいずれかにより溝を形成して前記基部、固定部、および柱状ガード部を形成することを特徴とする微小試料台の製造方法。
It is a manufacturing method of the micro sample stand according to claim 3 ,
A method of manufacturing a micro sample table, wherein a groove is formed by etching or dicing from the surface of the silicon wafer to form the base portion, the fixing portion, and the columnar guard portion.
請求項3に記載の微小試料台を複数備える微小試料台集合体であって、
前記複数の微小試料台が共通のベース基板上に形成されて一体となっていることを特徴とする微小試料台集合体。
A micro sample table assembly comprising a plurality of the micro sample tables according to claim 3,
A plurality of micro sample tables are formed on a common base substrate and integrated with each other .
請求項4に記載の微小試料台と、
前記微小試料台の基部が固定され、該微小試料台を支持する台座とを備えた試料ホルダ。
A micro sample stage according to claim 4 ,
Wherein the micro sample stage of the base is fixed, the sample holder and a base for supporting the micro sample stage.
請求項に記載の試料ホルダにおいて、
前記台座は薄板の形状を呈し、
前記薄板の端面に前記基部の底面が固定され
前記薄板の厚さは前記基部の厚さよりも薄く設定されていることを特徴とする試料ホルダ。
The sample holder according to claim 7 ,
The pedestal has a thin plate shape,
The bottom surface of the base is fixed to the end surface of the thin plate,
The thickness of the said thin plate is set thinner than the thickness of the said base, The sample holder characterized by the above-mentioned .
JP2007016366A 2007-01-26 2007-01-26 Micro sample table, method for producing the same, micro sample table assembly, and sample holder Active JP4937775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016366A JP4937775B2 (en) 2007-01-26 2007-01-26 Micro sample table, method for producing the same, micro sample table assembly, and sample holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016366A JP4937775B2 (en) 2007-01-26 2007-01-26 Micro sample table, method for producing the same, micro sample table assembly, and sample holder

Publications (2)

Publication Number Publication Date
JP2008185338A JP2008185338A (en) 2008-08-14
JP4937775B2 true JP4937775B2 (en) 2012-05-23

Family

ID=39728500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016366A Active JP4937775B2 (en) 2007-01-26 2007-01-26 Micro sample table, method for producing the same, micro sample table assembly, and sample holder

Country Status (1)

Country Link
JP (1) JP4937775B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101563B2 (en) * 2009-05-20 2012-12-19 アオイ電子株式会社 Manufacturing method of micro sample stage
JP5666791B2 (en) * 2009-08-25 2015-02-12 アオイ電子株式会社 Micro sample table and method for manufacturing micro sample table
DE102010032894B4 (en) * 2010-07-30 2013-08-22 Carl Zeiss Microscopy Gmbh Tem lamella, process for its preparation and apparatus for carrying out the process
JP2014126470A (en) * 2012-12-27 2014-07-07 Nitto Denko Corp Sample fixing member for auger electron spectroscopic analyzer
JP6231461B2 (en) * 2014-10-31 2017-11-15 アオイ電子株式会社 Sample fixing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084020A (en) * 1996-09-09 1998-03-31 Hitachi Ltd Processing method and inspection method for semiconductor
JP4185604B2 (en) * 1998-11-18 2008-11-26 株式会社日立製作所 Sample analysis method, sample preparation method and apparatus therefor
JP2004179038A (en) * 2002-11-28 2004-06-24 Sumitomo Metal Mining Co Ltd Fixing method of sample for transmission electron microscope and sample table
JP3837132B2 (en) * 2003-12-26 2006-10-25 Tdk株式会社 Sample evaluation method, evaluation substrate, and evaluation substrate formation method
JP4654018B2 (en) * 2004-12-17 2011-03-16 株式会社日立ハイテクノロジーズ Focused ion beam processing apparatus, sample stage, and sample observation method
JP4570980B2 (en) * 2005-02-21 2010-10-27 エスアイアイ・ナノテクノロジー株式会社 Sample stage and sample processing method

Also Published As

Publication number Publication date
JP2008185338A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4426512B2 (en) Micro sample table
JP4937775B2 (en) Micro sample table, method for producing the same, micro sample table assembly, and sample holder
JP5266236B2 (en) Methods and apparatus for sample extraction and handling
KR20220165812A (en) The pellicle film, pellicle frame, pellicle, manufacturing method thereof, photomask, exposure apparatus, the method for manufacturing semiconductor device
JP6396038B2 (en) Multiple sample attachment to nanomanipulators for high-throughput sample preparation
US10895805B2 (en) Pellicle manufacturing method and method for manufacturing photomask with pellicle
TWI687671B (en) Method for preparing a sample for microstructure diagnostics, and sample for microstructure diagnostics
CN102646566B (en) The SEM sample clamp observed for online SEM and SEM sample observation method
JP4570980B2 (en) Sample stage and sample processing method
JP5168920B2 (en) Semiconductor device manufacturing method and marking device
JP4489652B2 (en) Small sample table assembly
JP4460501B2 (en) Micro sample table
CN106596609A (en) Method for making transmission electron microscope samples
JP2009156678A (en) Manufacturing method of fine sample stand aggregate, manufacturing method of fine sample stand, and manufacturing method of sample holder
JP5101563B2 (en) Manufacturing method of micro sample stage
US7394075B1 (en) Preparation of integrated circuit device samples for observation and analysis
Higo et al. Experimental comparison of rapid large-area direct electron beam exposure methods with plasmonic devices
JP2009156599A (en) Sample preparing method and sample preparation apparatus
JP5666791B2 (en) Micro sample table and method for manufacturing micro sample table
TW200830348A (en) Carrier and method for preparing specimen of transmission electron microscope
JP2004253232A (en) Sample fixing table
JP5298230B2 (en) Micro sample table, substrate for preparing micro sample table, and analysis method using micro sample table
CN1475786A (en) Manufacturing method of electronic microscope fixed point test piece
WO2023116160A1 (en) Method and system for calibrating wafer alignment
KR20050033699A (en) Method for forming sample using analysis by tem

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250