JP2009156599A - Sample preparing method and sample preparation apparatus - Google Patents

Sample preparing method and sample preparation apparatus Download PDF

Info

Publication number
JP2009156599A
JP2009156599A JP2007331987A JP2007331987A JP2009156599A JP 2009156599 A JP2009156599 A JP 2009156599A JP 2007331987 A JP2007331987 A JP 2007331987A JP 2007331987 A JP2007331987 A JP 2007331987A JP 2009156599 A JP2009156599 A JP 2009156599A
Authority
JP
Japan
Prior art keywords
sample
substrate
thin film
dummy substrate
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007331987A
Other languages
Japanese (ja)
Inventor
Satoshi Ito
聡 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2007331987A priority Critical patent/JP2009156599A/en
Publication of JP2009156599A publication Critical patent/JP2009156599A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a planar sample for TEM wherein an observation place is thinned down into a planar form, in a short time. <P>SOLUTION: A sample 2, which contains a mark 2b (observation place) and has a pillar shape, is cut off from a substrate 1 and subsequently rotated by 90°. Thereafter, the back on the side opposite to the surface, to which the mark 2b is arranged of the sample 2, is adhered to the side-end surface of a dummy substrate 9. Subsequently, the part on the side of the back of the sample 2 is cut in parallel with the adhered surface, with the dummy substrate 9 of the sample 2 located at a predetermined depth from the side-end surface of the sample 2 to form a protruding part 2e to the sample 2 so that a predetermined thickness remains from the surface, to which the mark 2b is arranged of the sample 2. Then, the sample 2 is separated from the dummy substrate 9 and adhered to a carrier 6 so that the protruding part 2e of the sample 2 protrudes from the edge of the carrier 6. Thereafter, by having a condensed ion beam 4 irradiated from the direction of the edge of the protruding part 2e of the sample 2, and bu having an observation location formed into a planar membrane shape, a membrane processed surface 2a is formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、透過電子顕微鏡(TEM;Transmission Electron Microscope)用の試料作製方法及び試料作製装置に関し、特に、観察箇所を平面的に薄膜化した試料を作製するための試料作製方法及び試料作製装置に関する。   The present invention relates to a sample preparation method and a sample preparation apparatus for a transmission electron microscope (TEM), and more particularly, to a sample preparation method and a sample preparation apparatus for preparing a sample with a thinned observation portion. .

近年、半導体デバイスの多層配線化、微細化、プロセスの複雑化により、不良箇所の観察が不可欠となっている。半導体デバイスの不良箇所を観察する方法としてTEM観察がある。TEM観察では電子線が透過できるように観察箇所を0.2μm以下に薄膜化した試料を作製する必要がある。薄膜化した試料を作製する方法として、以下に示すような技術が開示されている。   In recent years, observation of defective parts has become indispensable due to the multilayer wiring, miniaturization, and process complexity of semiconductor devices. There is TEM observation as a method of observing a defective portion of a semiconductor device. In TEM observation, it is necessary to prepare a sample in which the observation location is thinned to 0.2 μm or less so that an electron beam can be transmitted. As a method for producing a thinned sample, the following techniques are disclosed.

例えば、特許文献1では、(A)半導体集積回路のシリコン基板の裏面側から不良箇所を特定し、その不良箇所を含む領域のシリコン基板を選択的に薄膜化する工程、(B)前記シリコン基板の裏面側から、不良箇所を含む矩形領域の周囲に収束イオンビームにより溝を形成して中央部に不良箇所を含む小片を形成する工程、(C)前記小片の1つの側面に対し斜め方向から収束イオンビームを照射して前記小片を切り離すとともに、前記溝により形成されるシリコン基板の穴内で、その切り離された小片を前記側面の方向に倒す工程、(D)前記側面とは反対側の側面が上を向くように前記シリコン基板を傾ける工程、及び、(E)上を向いた前記側面に対し垂直方向から収束イオンビームを照射して不良箇所を含む薄膜状の薄片に切り出す工程を含むサンプル作製方法が開示されている。この方法は、試料の観察箇所を平面的に薄膜化する方法(平面間の膜厚を薄膜化した平面試料の作製方法)である。   For example, in Patent Document 1, (A) a step of identifying a defective portion from the back side of a silicon substrate of a semiconductor integrated circuit, and selectively thinning the silicon substrate in a region including the defective portion, (B) the silicon substrate Forming a groove with a focused ion beam around the rectangular area including the defective portion from the back surface side of the substrate, and forming a small piece including the defective portion in the central portion, (C) obliquely with respect to one side surface of the small piece Irradiating a focused ion beam to separate the small piece, and in the hole of the silicon substrate formed by the groove, tilting the cut small piece toward the side surface; (D) a side surface opposite to the side surface; And (E) irradiating a focused ion beam from the vertical direction to the side surface facing upward to cut into a thin film-like slice including a defective portion. Sample preparation method comprising the steps is disclosed. This method is a method of planarly thinning an observation portion of a sample (a method of producing a planar sample with a thin film thickness between planes).

また、特許文献2では、試料素材の加工面にイオンビームを照射して試料ブロックを切り出し、前記試料ブロックの前記加工面を横に向けて試料ブロックを試料台の載置面上に置き、前記試料ブロックにイオンビームを照射して、前記試料ブロックを前記載置面に対してほぼ垂直に立つ薄膜に加工する試料作製方法が開示されている。この方法は、試料の観察箇所を平面的に薄膜化する方法である。   Further, in Patent Document 2, the processing surface of the sample material is irradiated with an ion beam to cut out the sample block, the processing surface of the sample block is turned sideways, the sample block is placed on the mounting surface of the sample table, A sample preparation method is disclosed in which a sample block is irradiated with an ion beam to process the sample block into a thin film that is substantially perpendicular to the mounting surface. This method is a method of thinning the observation portion of the sample in a planar manner.

さらに、収束イオンビーム(FIB;Focused Ion Beam)マイクロサンプリング法により試料の観察箇所を平面的に薄膜化する公知技術として、以下のものがある。まず、基板1において試料2となる目的箇所の回りの一箇所だけ接地し、試料2の平面を法線方向に向けた状態で法線方向からFIB4によって試料2の回りを矩形状の3辺を切削(溝を形成)し、基板1を傾斜させて試料2の残りの1辺を含む裏面側を斜めに切削(溝を形成)して試料2を切り離し、FIB装置に備え付けられたマイクロプローブ3の先端部と、切り出された試料2とをタングステン等の接着剤5で接着させる(図7(A)参照)。次に、マイクロプローブ3を上に引き上げ、試料2をキャリア6まで移動する(図7(B)参照)。次に、試料2をタングステン等の接着剤7でキャリア6に固定し、マイクロプローブ3と試料2を切離す(図7(C)参照)。次に、試料2の平面が垂直になるようにキャリアを傾斜(回転)させる(図7(D)参照)。そして、法線方向からFIB4によって試料2の観察部分の平面を薄膜化するように試料2を薄膜加工(薄膜加工面2aを形成)する(図7(E)参照)。こうして作成された試料2の薄膜加工面2aに電子8を照射してTEM観察・評価を行う(図7(F)参照)。   Further, as a known technique for planarly thinning an observation portion of a sample by a focused ion beam (FIB) microsampling method, there is the following. First, the substrate 1 is grounded at only one point around the target portion to be the sample 2 and the three sides of the rectangular shape around the sample 2 from the normal direction by the FIB 4 with the plane of the sample 2 facing the normal direction. Cutting (forming a groove), tilting the substrate 1 and obliquely cutting the back surface side including the remaining one side of the sample 2 (forming a groove) to separate the sample 2, and the microprobe 3 provided in the FIB apparatus And the cut-out sample 2 are bonded with an adhesive 5 such as tungsten (see FIG. 7A). Next, the microprobe 3 is pulled up, and the sample 2 is moved to the carrier 6 (see FIG. 7B). Next, the sample 2 is fixed to the carrier 6 with an adhesive 7 such as tungsten, and the microprobe 3 and the sample 2 are separated (see FIG. 7C). Next, the carrier is tilted (rotated) so that the plane of the sample 2 is vertical (see FIG. 7D). Then, the sample 2 is thin-film processed (formed with a thin-film processed surface 2a) so that the plane of the observed portion of the sample 2 is thinned by the FIB 4 from the normal direction (see FIG. 7E). The thin film processed surface 2a of the sample 2 thus prepared is irradiated with electrons 8 to perform TEM observation and evaluation (see FIG. 7F).

なお、試料の観察箇所を断面的に薄膜化する方法(断面間の膜厚を薄膜化した平面試料の作製方法)については、特許文献3で開示されている。   Note that Patent Document 3 discloses a method for thinning the observation portion of a sample in a cross-sectional manner (a method for producing a planar sample with a thin film thickness between cross-sections).

特開2006−343101号公報JP 2006-343101 A 特開2004−198276号公報JP 2004-198276 A 特開2002−39926号公報JP 2002-39926 A

特許文献1では、矩形領域の周囲に収束イオンビームにより溝を形成し、斜め方向から収束イオンビームを照射して小片を切り離しているため、小片の切り離しに時間がかかるといった問題がある。また、特許文献1では、シリコン基板の裏面側から薄膜化する際、レーザ加工やウェットエッチングを行っているため、レーザ装置やウェットエッチング装置を用いる必要があり、シリコン基板の移送が多く、工程が増えて手間がかかるといった問題がある。   In Patent Document 1, since a groove is formed by a focused ion beam around a rectangular region and a small piece is separated by irradiating the focused ion beam from an oblique direction, there is a problem that it takes time to separate the small piece. Further, in Patent Document 1, since laser processing or wet etching is performed when thinning from the back side of the silicon substrate, it is necessary to use a laser device or a wet etching device, and there are many transfers of the silicon substrate. There is a problem that it takes more time and effort.

特許文献2では、試料素材の加工面にイオンビームを照射して試料ブロックを切り出しているため、試料ブロックの切り出し加工に時間がかかるといった問題がある。また、特許文献2では、切り出した試料ブロックを試料台の載置面上に置く際、静電気によってガラスプローブの先端部に試料ブロックをトラップして移送することになるため、試料ブロックの落下による破損リスクが高いといった問題がある。さらに、特許文献2では、試料ブロックの加工面を横に向けて試料ブロックを試料台の載置面上に置くため、試料ブロックが試料台にうまく貼り付かないおそれがある。   In Patent Document 2, since the sample block is cut out by irradiating the processed surface of the sample material with an ion beam, there is a problem that it takes time to cut out the sample block. In Patent Document 2, when the cut sample block is placed on the mounting surface of the sample stage, the sample block is trapped and transferred to the tip of the glass probe by static electricity. There is a problem that the risk is high. Furthermore, in Patent Document 2, since the sample block is placed on the mounting surface of the sample stage with the processing surface of the sample block facing sideways, there is a possibility that the sample block does not stick well to the sample stage.

マイクロサンプリング法による公知技術では、ミリング法と比較して微細領域は狙えるものの、FIB加工で基板1から試料2を切り出すのに約240分間かかるといった問題がある。また、観察範囲においても、マイクロプローブ3で持ち上がる試料2の大きさが10〜20μm角程度と限られる。大面積(例えば、20μm角以上)の観察を行いたい場合には、持ち上げる試料2の体積が大きくなってしまうため、マイクロプローブ3と試料2が接着剤5によってうまく接着されないことで試料2が持ち上がらなかったり、持ち上げる際に試料2を落として破損してしまったりするおそれがある。   The known technique based on the microsampling method has a problem that it takes about 240 minutes to cut the sample 2 from the substrate 1 by FIB processing, although a fine region can be aimed at as compared with the milling method. Also in the observation range, the size of the sample 2 lifted by the microprobe 3 is limited to about 10 to 20 μm square. When it is desired to observe a large area (for example, 20 μm square or more), the volume of the sample 2 to be lifted becomes large, so that the sample 2 is lifted up because the microprobe 3 and the sample 2 are not well bonded by the adhesive 5. Otherwise, the sample 2 may be dropped and damaged when it is lifted.

本発明の主な課題は、短時間で観察箇所を平面的に薄膜化したTEM用平面試料を作製することである。   The main subject of the present invention is to produce a planar sample for TEM in which the observation site is thinned in a short time in a short time.

本発明の第1の視点においては、基板を加工して透過型電子顕微鏡で観察するための試料を作製する試料作製方法であって、前記基板から観察箇所を含むとともに柱状になっている前記試料を切り出す第1の工程と、前記第1の工程の後、前記試料を90度回転する第2の工程と、前記第2の工程の後、前記試料の前記観察箇所が配された面の反対側の裏面とダミー基板の側端面とを接着する第3の工程と、前記第3の工程の後、前記試料の前記観察箇所が配された面から所定の厚さを残すようにして、前記試料の側端面から所定の深さで、前記試料と前記ダミー基板との接着面と平行に前記試料の裏面側の部分を切削することで、前記試料に突出部を形成する第4の工程と、前記第4の工程の後、前記試料を前記ダミー基板から分離する第5の工程と、前記第5の工程の後、前記試料の前記突出部がキャリアの端面からはみ出すようにして、前記試料を前記キャリアに接着する第6の工程と、前記第6の工程の後、前記試料の前記突出部の端面の法線方向から収束イオンビームを照射して前記観察箇所を平面的に薄膜化することによって薄膜加工面を形成する第7の工程と、を含むことを特徴とする。   In a first aspect of the present invention, there is provided a sample preparation method for preparing a sample for processing a substrate and observing with a transmission electron microscope, the sample including an observation portion from the substrate and having a columnar shape A first step of cutting the sample, a second step of rotating the sample by 90 degrees after the first step, and a surface opposite to the surface of the sample on which the observation site is arranged after the second step A third step of bonding the back surface of the side and the side end surface of the dummy substrate; and after the third step, leaving a predetermined thickness from the surface on which the observation portion of the sample is disposed, A fourth step of forming a protrusion on the sample by cutting a portion on the back side of the sample parallel to the adhesion surface between the sample and the dummy substrate at a predetermined depth from the side end surface of the sample; After the fourth step, the sample is separated from the dummy substrate. After the fifth step, after the fifth step, after the sixth step, the sixth step of bonding the sample to the carrier such that the protruding portion of the sample protrudes from the end face of the carrier, And a seventh step of forming a thin film processed surface by irradiating a focused ion beam from the normal direction of the end surface of the projecting portion of the sample to form a thin film on the observed portion in a plane. To do.

本発明の第2の視点においては、試料作製装置において、切削により基板を分割するダイサーと、設置された前記基板の位置合せをするためのポジショナと、前記基板の接着に用いられる熱軟化性の接着剤を加熱するホットプレートと、を有する設置台と、前記基板から切り出した試料を把み出す機構と、把み出した前記試料を回転させる機構を有する把持機構と、を備えることを特徴とする。   In a second aspect of the present invention, in the sample preparation apparatus, a dicer for dividing the substrate by cutting, a positioner for aligning the installed substrate, and a heat softening property used for bonding the substrate. A mounting plate having a hot plate for heating the adhesive; a mechanism for grasping a sample cut out from the substrate; and a gripping mechanism having a mechanism for rotating the grasped sample. To do.

本発明によれば、基板から試料を切り出すのに収束イオンビームを用いずダイサーを用いているので、作製時間を短縮することができる。また、切り出した試料を引き上げる際、マイクロプローブを用いなくてもよく、取り扱いが容易であり、試料の破損を防止することができる。また、試料は従来技術の試料と比べて大きいため、大面積の平面TEM観察が可能となる。   According to the present invention, since the dicer is used without cutting the focused ion beam to cut out the sample from the substrate, the manufacturing time can be shortened. Further, when pulling up the cut sample, it is not necessary to use a microprobe, it is easy to handle, and the sample can be prevented from being damaged. Further, since the sample is larger than the sample of the prior art, a large area planar TEM observation is possible.

本発明の実施形態では、基板(図1(A)の1)を加工して透過型電子顕微鏡で観察するための試料(図2の2)を作製する試料作製方法であって、前記基板(図1(A)の1)から観察箇所(図1(A)のマーク2bのある箇所)を含むとともに柱状になっている前記試料(図1(A)の2)を切り出す第1の工程と、前記第1の工程の後、前記試料(図1(B)の2)を90度回転する第2の工程と、前記第2の工程の後、前記試料(図1(C)の2)の前記観察箇所が配された面の反対側の裏面とダミー基板(図1(C)の9)の側端面とを接着する第3の工程と、前記第3の工程の後、前記試料(図1(D)の2)の前記観察箇所(図1(D)のマーク2bのある箇所)が配された面から所定の厚さを残すようにして、前記試料(図1(D)の2)の側端面から所定の深さで、前記試料(図1(D)の2)と前記ダミー基板(図1(D)の9)との接着面と平行に前記試料(図1(D)の2)の裏面側の部分を切削することで、前記試料(図1(D)の2)に突出部(図1(D)の2e)を形成する第4の工程と、前記第4の工程の後、前記試料(図1(E)の2)を前記ダミー基板(図1(E)の9)から分離する第5の工程と、前記第5の工程の後、前記試料(図1(F)の2)の前記突出部(図1(F)の2e)がキャリア(図1(F)の6)の端面からはみ出すようにして、前記試料(図1(F)の2)を前記キャリア(図1(F)の6)に接着する第6の工程と、前記第6の工程の後、前記試料(図2の2)の前記突出部(図2の2e)の端面の法線方向から収束イオンビーム(図2の4)を照射して前記観察箇所を平面的に薄膜化することによって薄膜加工面(図2の2a)を形成する第7の工程と、を含む。   In the embodiment of the present invention, there is provided a sample preparation method for processing a substrate (1 in FIG. 1A) and preparing a sample (2 in FIG. 2) for observation with a transmission electron microscope. A first step of cutting out the sample (2 in FIG. 1 (A)) including the observation location (location with the mark 2b in FIG. 1 (A)) and the columnar shape from 1) in FIG. 1 (A); After the first step, the second step of rotating the sample (2 in FIG. 1B) by 90 degrees and after the second step, the sample (2 in FIG. 1C) A third step of bonding the back surface opposite to the surface on which the observation location is arranged and the side end surface of the dummy substrate (9 in FIG. 1C), and after the third step, the sample ( The sample (FIG. 1D) is left so as to leave a predetermined thickness from the surface on which the observation location (2) in FIG. 1 (D) (where the mark 2b in FIG. 1 (D) is provided). The sample (D) is parallel to the bonding surface between the sample (2 in FIG. 1D) and the dummy substrate (9 in FIG. 1D) at a predetermined depth from the side end surface of 2) in (D). A fourth step of forming a protruding portion (2e in FIG. 1D) on the sample (2 in FIG. 1D) by cutting the back side portion of 2) in FIG. 1D; After the fourth step, a fifth step of separating the sample (2 in FIG. 1 (E)) from the dummy substrate (9 in FIG. 1 (E)), and after the fifth step, The protrusion (2e in FIG. 1 (F)) of the sample (FIG. 1 (F) 2) protrudes from the end face of the carrier (6 in FIG. 1 (F)), and the sample (FIG. 1 (F) ) 2) to the carrier (6 in FIG. 1 (F)), and after the sixth step, the protrusion (2e in FIG. 2) of the sample (2 in FIG. 2). ) From the normal direction of the end face By irradiating an ion beam (4 in FIG. 2); and a seventh step of forming a thin film processing surface (2a in FIG. 2) by a planar manner thinning the observation point.

本発明の実施例1に係る試料作製方法について図面を用いて説明する。図1は、本発明の実施例1に係る試料作製方法を模式的に示した工程斜視図である。図2は、本発明の実施例1に係る試料作製方法の薄膜化工程を模式的に示した斜視図である。   A sample preparation method according to Example 1 of the present invention will be described with reference to the drawings. FIG. 1 is a process perspective view schematically showing a sample preparation method according to Example 1 of the present invention. FIG. 2 is a perspective view schematically showing a thinning process of the sample manufacturing method according to Example 1 of the present invention.

実施例1に係る試料作製方法は、TEM用の試料2を作製する方法であり、試料2の観察箇所を平面(XY面)的を薄膜化する方法である。試料2は、半導体デバイス等の基板1から切り出したものである。実施例1に係る試料作製方法は、以下のようにして行われる。   The sample preparation method according to Example 1 is a method of preparing a sample 2 for TEM, and is a method of thinning the observation part of the sample 2 in a plane (XY plane). Sample 2 is cut from substrate 1 such as a semiconductor device. The sample preparation method according to Example 1 is performed as follows.

まず、OBIRCH法等の公知の不良箇所検出装置(図示せず)を用いて、基板1における不良箇所を検出し、不良箇所の位置を特定したときに、レーザなどにより不良箇所の平面位置を示すマーク2bを基板1の表面に付与する(図1(A)参照)。なお、マーク2bの付与は、FIB装置中で試料2の表面から不良箇所の位置が確認できれば省略することができる。   First, when a defective part in the substrate 1 is detected using a known defective part detection device (not shown) such as the OBIRCH method and the position of the defective part is specified, the planar position of the defective part is indicated by a laser or the like. A mark 2b is applied to the surface of the substrate 1 (see FIG. 1A). The application of the mark 2b can be omitted if the position of the defective portion can be confirmed from the surface of the sample 2 in the FIB apparatus.

次に、ダイサー(図示せず)を用いて、試料2においてマーク2bを含むように基板1を切削して、基板1から四角柱状の試料2を切り出す(図1(A)参照)。この際、試料2の幅(X軸方向の長さ)は、基板1の厚さDmm(Z軸方向の長さ)と同じにすることが好ましい。ダミー基板(図1(C)の9)の厚さと対応させるためである。切り出された試料2の平面形状は、Y軸方向を長手方向とし、X軸方向を短手方向とした矩形状(短冊状)となる。   Next, using a dicer (not shown), the substrate 1 is cut so as to include the mark 2b in the sample 2, and the square columnar sample 2 is cut out from the substrate 1 (see FIG. 1A). At this time, the width (length in the X-axis direction) of the sample 2 is preferably the same as the thickness Dmm (length in the Z-axis direction) of the substrate 1. This is to correspond to the thickness of the dummy substrate (9 in FIG. 1C). The planar shape of the cut sample 2 is a rectangular shape (strip shape) in which the Y-axis direction is the longitudinal direction and the X-axis direction is the short direction.

次に、切り出された試料2を取り出し、マーク2bが付与された面が横(図では右側)に向くように試料2を90度回転させる(図1(B)参照)。   Next, the cut out sample 2 is taken out, and the sample 2 is rotated 90 degrees so that the surface to which the mark 2b is provided is directed to the side (right side in the figure) (see FIG. 1B).

次に、試料2の裏面(マーク付与面の反対面)がダミー基板9の側端面に接するようにして、試料2をダミー基板9に貼り付ける(図1(C)参照)。なお、ダミー基板9の厚さは、基板1の厚さDmmと同じであることが好ましい。試料2とダミー基板9とで段差が生じないようにして、後の切削を正確に行うためである。   Next, the sample 2 is attached to the dummy substrate 9 so that the back surface of the sample 2 (the surface opposite to the mark application surface) is in contact with the side end surface of the dummy substrate 9 (see FIG. 1C). The thickness of the dummy substrate 9 is preferably the same as the thickness Dmm of the substrate 1. This is because the subsequent cutting is accurately performed so that no step is generated between the sample 2 and the dummy substrate 9.

次に、ダイサー(図示せず)を用いて、試料2の表面(マーク付与面)から所定の厚さ(例えば、10〜30μm、好ましくは20μm)を残すようにして、試料2の裏面(貼付面)側の部分を、試料2の側端面から所定の深さ(少なくともマーク2b部分を超える深さ)でY軸方向(試料2とダミー基板6との接着面と平行)に切削する(図1(D)参照)。これにより、試料2の表面(マーク付与面)側の部分が突出部2eとなる。なお、試料2を切削する際、ダミー基板9が切削されてもよい。   Next, by using a dicer (not shown), a predetermined thickness (for example, 10 to 30 μm, preferably 20 μm) is left from the surface (marked surface) of the sample 2, and the back surface of the sample 2 (affixed) (Surface) side portion is cut from the side end surface of the sample 2 at a predetermined depth (at least beyond the mark 2b portion) in the Y-axis direction (parallel to the bonding surface between the sample 2 and the dummy substrate 6) (see FIG. 1 (D)). Thereby, the part by the side of the surface (mark giving surface) of the sample 2 becomes the protrusion part 2e. Note that when the sample 2 is cut, the dummy substrate 9 may be cut.

次に、ダイサー(図示せず)を用いて、ダミー基板9と試料2が分離するようにY軸方向に切削することで、ダミー基板9から試料2を切り離す(図1(E)参照)。   Next, the sample 2 is separated from the dummy substrate 9 by cutting in the Y-axis direction so that the dummy substrate 9 and the sample 2 are separated using a dicer (not shown) (see FIG. 1E).

次に、切り出した試料2の表面(マーク付与面)がキャリア6(Cリング等)の平面に接するとともに試料2の突出部2eがキャリア6の上端面からはみ出すようにして、試料2をキャリア6に貼り付ける(図1(F)参照)。   Next, the cut surface of the sample 2 (marking surface) is in contact with the plane of the carrier 6 (C ring or the like), and the protruding portion 2e of the sample 2 protrudes from the upper end surface of the carrier 6, so that the sample 2 is moved to the carrier 6 (Refer to FIG. 1F).

そして、FIB装置を用いて、FIB4を試料2の突出部2eを、その上端面(観察箇所の側端面)の法線方向(鉛直方向)から照射することにより、TEM観察の際に電子線が透過する厚さ(例えば、0.2μm)になるように、試料2の観察箇所(図1(F)のマーク2b)を平面的に薄膜化し、XY面に薄膜加工面2aを形成する(図2参照)。観察箇所(図1(F)のマーク2b)を平面的に薄膜化するとは、観察箇所の表裏の平面間膜厚を薄くすることである。こうして作成された試料2の薄膜加工面2aに電子を照射してTEM観察・評価を行う。   Then, by using the FIB apparatus, the FIB 4 is irradiated on the projecting portion 2e of the sample 2 from the normal direction (vertical direction) of the upper end surface (side end surface of the observation site), so that an electron beam is observed during TEM observation. The observation portion (mark 2b in FIG. 1 (F)) of the sample 2 is thinned in a planar manner so as to have a transmitting thickness (for example, 0.2 μm), and a thin film processed surface 2a is formed on the XY plane (FIG. 2). To thin the observation portion (the mark 2b in FIG. 1F) in a plane is to reduce the film thickness between the front and back surfaces of the observation portion. The thin film processed surface 2a of the sample 2 thus prepared is irradiated with electrons to perform TEM observation / evaluation.

次に、本発明の実施例1に係る試料作製方法で用いる試料作製装置について図面を用いて説明する。図3は、本発明の実施例1に係る試料作製方法で用いる試料作製装置の構成を示した模式図である。   Next, a sample preparation apparatus used in the sample preparation method according to Example 1 of the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram showing the configuration of a sample preparation apparatus used in the sample preparation method according to Example 1 of the present invention.

試料作製装置20は、図1の基板1からの試料2の切り出し(図1(A)参照)から試料2のキャリア6への貼り付け(図1(F)参照)までの工程で用いる装置である。試料作製装置20は、ダイサー21と、設置台22と、把持機構23と、を有する。   The sample preparation apparatus 20 is an apparatus used in the processes from cutting out the sample 2 from the substrate 1 in FIG. 1 (see FIG. 1A) to attaching the sample 2 to the carrier 6 (see FIG. 1F). is there. The sample preparation device 20 includes a dicer 21, an installation table 22, and a gripping mechanism 23.

ダイサー21は、切削により基板1を分割する装置である。ダイサー21は、カッタを回転させるスピンドル(図示せず)と、カッタを移動させる機構とを有する。   The dicer 21 is a device that divides the substrate 1 by cutting. The dicer 21 has a spindle (not shown) for rotating the cutter and a mechanism for moving the cutter.

設置台22は、基板1(その他の切削対象物)を設置するための台である。設置台22は、基板1の位置合せをするためのポジショナ22aを内蔵している。設置台22は、基板1の接着に用いられる熱軟化性の接着剤を加熱するホットプレート22bを有する。基板1を設置台22に貼り付ける際、ホットプレート22bを加熱して接着剤を軟化させて基板1を設置台22に貼り付け、その後、ホットプレート22bの加熱をやめて接着剤を硬化させることで基板1が設置台22に固定される。また、図1(C)のように試料2をダミー基板9に貼り付ける際や、図1(F)のように試料2をキャリア6に貼り付ける際にもホットプレート22bを同様に用いる。   The installation table 22 is a table for installing the substrate 1 (another cutting object). The installation table 22 has a built-in positioner 22a for aligning the substrate 1. The installation table 22 includes a hot plate 22 b that heats a thermosoftening adhesive used for bonding the substrate 1. When the substrate 1 is attached to the installation table 22, the hot plate 22b is heated to soften the adhesive and the substrate 1 is applied to the installation table 22. Then, the heating of the hot plate 22b is stopped to cure the adhesive. The substrate 1 is fixed to the installation table 22. The hot plate 22b is similarly used when the sample 2 is attached to the dummy substrate 9 as shown in FIG. 1C or when the sample 2 is attached to the carrier 6 as shown in FIG.

把持機構23は、基板1から切り出した試料(図1(B)の2)を把み出す機構である。把持機構23は、図1(B)のように試料2を把み出して回転させる機構を有する。   The gripping mechanism 23 is a mechanism for picking up a sample cut out from the substrate 1 (2 in FIG. 1B). The gripping mechanism 23 has a mechanism for grasping and rotating the sample 2 as shown in FIG.

実施例1に係る試料作製方法よれば、基板1から試料2を切り出すのにFIBを用いずダイサーを用いているので、作製時間を短縮することができる。また、切り出した試料2を引き上げる際、マイクロプローブ(図7の3)を用いなくてもよく、取り扱いが容易であり、試料2の破損を防止することができる。また、試料2は従来技術の試料と比べて大きいため、大面積の平面TEM観察が可能となる。   According to the sample manufacturing method according to Example 1, since the dicer is used without cutting out the FIB to cut out the sample 2 from the substrate 1, the manufacturing time can be shortened. Moreover, when pulling up the cut sample 2, it is not necessary to use a microprobe (3 in FIG. 7), the handling is easy, and damage to the sample 2 can be prevented. In addition, since the sample 2 is larger than the sample of the prior art, a large area planar TEM observation is possible.

実施例1に係る試料作製装置20によれば、基板1からの試料2の切り出し(図1(A)参照)からダミー基板9と試料2の切り離し(図1(E)参照)までの工程で、基板1の移動(搬送)がなく、効率的に試料2を作製することができる。   According to the sample preparation apparatus 20 according to the first embodiment, the process from the cutting of the sample 2 from the substrate 1 (see FIG. 1A) to the separation of the dummy substrate 9 and the sample 2 (see FIG. 1E). The sample 2 can be efficiently produced without moving (transporting) the substrate 1.

本発明の実施例2に係る試料作製方法について図面を用いて説明する。図4は、本発明の実施例2に係る試料作製方法を模式的に示した工程斜視図である。   A sample preparation method according to Example 2 of the present invention will be described with reference to the drawings. FIG. 4 is a process perspective view schematically showing a sample preparation method according to Example 2 of the present invention.

実施例2に係る試料作製方法は、実施例1に係る試料作製方法で作製した試料2の観察箇所の平面(XY面)をTEM観察した結果、観察箇所の断面(YZ面)をTEM観察したい場合に、試料2の観察箇所のYZ面を薄膜化する方法である。なお、観察箇所のXZ面をTEM観察する場合については、実施例3を参照されたい。実施例2に係る試料作製方法は、以下のようにして行われる。   In the sample preparation method according to Example 2, as a result of TEM observation of the plane (XY plane) of the observation portion of the sample 2 prepared by the sample preparation method according to Example 1, it is desired to observe the cross section (YZ plane) of the observation portion by TEM. In this case, the YZ plane at the observation location of the sample 2 is thinned. For the case of TEM observation of the XZ plane at the observation location, see Example 3. The sample preparation method according to Example 2 is performed as follows.

まず、実施例1に係る試料作製方法で作製した試料(図2の2;キャリア6から分離したもの)の突出部2eの側面(段差側の面)をダミー基板10の平面に接するようにして、試料2をダミー基板10に貼り付ける(図4(A)参照)。   First, the side surface (step side surface) of the protrusion 2e of the sample (2 in FIG. 2; separated from the carrier 6) manufactured by the sample manufacturing method according to Example 1 is in contact with the plane of the dummy substrate 10. Then, the sample 2 is attached to the dummy substrate 10 (see FIG. 4A).

次に、ダイサー(図示せず)を用いて、試料2の薄膜加工面2a(XY面)のX軸方向の両外側の余分なダミー基板10と試料2を除去するように、ダミー基板10と試料2の組立体をY軸方向(試料2の突出部2eの端面と平行)に切削して、薄膜加工面2aを含む試料2とダミー基板10の組立体を切り出す(図4(B)参照)。ここでは、薄膜加工面2aを切削しないようにする。   Next, using a dicer (not shown), the dummy substrate 10 and the sample 2 are removed so that the dummy substrate 10 and the sample 2 on both outer sides in the X-axis direction of the thin film processed surface 2a (XY surface) of the sample 2 are removed. The assembly of the sample 2 is cut in the Y-axis direction (parallel to the end surface of the protruding portion 2e of the sample 2), and the assembly of the sample 2 and the dummy substrate 10 including the thin film processed surface 2a is cut out (see FIG. 4B). ). Here, the thin film processed surface 2a is not cut.

次に、切り出した薄膜加工面2aを含む試料2とダミー基板10の組立体のYZ面がキャリア6(Cリング等)の平面に接するとともに試料2がキャリア6の上端面からはみ出すようにして、当該組立体をキャリア6に貼り付ける(図4(C)参照)。   Next, the YZ surface of the assembly of the sample 2 and the dummy substrate 10 including the cut-out thin film processed surface 2a is in contact with the plane of the carrier 6 (C ring or the like) and the sample 2 protrudes from the upper end surface of the carrier 6. The assembly is attached to the carrier 6 (see FIG. 4C).

そして、FIB装置を用いて、FIB4を試料2の薄膜加工面2aの法線方向から照射することにより、TEM観察の際に電子線が透過する厚さになるように、試料2の観察箇所を断面的(YZ面;試料2の突出部2eの端面と平行)に薄膜化し、薄膜加工面2cを形成する(図4(C)参照)。観察箇所を断面的(YZ面)に薄膜化することとは、観察箇所における試料2の突出部2eの端面と平行な断面間の膜厚を薄くすることである。こうして作成された試料2の薄膜加工面2cに電子を照射してTEM観察・評価を行う。   Then, by irradiating the FIB 4 from the normal direction of the thin film processed surface 2a of the sample 2 using an FIB apparatus, the observation location of the sample 2 is set so that the electron beam is transmitted through the TEM observation. A thin film is formed in a cross-sectional view (YZ plane; parallel to the end face of the protruding portion 2e of the sample 2) to form a thin film processed surface 2c (see FIG. 4C). Making the observation part thin in a cross-sectional view (YZ plane) means reducing the film thickness between the cross sections parallel to the end face of the protruding portion 2e of the sample 2 at the observation part. The thin film processed surface 2c of the sample 2 thus prepared is irradiated with electrons to perform TEM observation / evaluation.

実施例2によれば、試料2の薄膜加工面2aを破損することなく、薄膜加工面2cを形成することができ、多面的にTEM観察・評価を行うことが可能となる。   According to Example 2, the thin film processed surface 2c can be formed without damaging the thin film processed surface 2a of the sample 2, and TEM observation / evaluation can be performed in a multifaceted manner.

本発明の実施例3に係る試料作製方法について図面を用いて説明する。図5、図6は、本発明の実施例3に係る試料作製方法を模式的に示した工程斜視図である。   A sample preparation method according to Example 3 of the present invention will be described with reference to the drawings. 5 and 6 are process perspective views schematically showing a sample preparation method according to Example 3 of the present invention.

実施例3に係る試料作製方法は、実施例1に係る試料作製方法で作製した試料2の観察箇所の平面(XY面)をTEM観察した結果、観察箇所の断面(XZ面)をTEM観察したい場合に、試料2の観察箇所のXZ面を薄膜化する方法である。なお、観察箇所のYZ面をTEM観察する場合については、実施例2を参照されたい。実施例3に係る試料作製方法は、以下のようにして行われる。   In the sample preparation method according to Example 3, as a result of TEM observation of the plane (XY plane) of the observation location of the sample 2 manufactured by the sample preparation method according to Example 1, it is desired to observe the cross section (XZ plane) of the observation location by TEM In this case, the XZ plane at the observation location of the sample 2 is thinned. For the case of TEM observation of the YZ plane at the observation location, see Example 2. The sample preparation method according to Example 3 is performed as follows.

まず、実施例1に係る試料作製方法で作製した試料2の突出部2eの側面(段差側の面)をダミー基板10の平面に接するようにして、試料2をダミー基板10に貼り付ける(図5(A)参照)。   First, the sample 2 is affixed to the dummy substrate 10 such that the side surface (step side surface) of the protruding portion 2e of the sample 2 manufactured by the sample manufacturing method according to Example 1 is in contact with the plane of the dummy substrate 10 (see FIG. 5 (A)).

次に、ダイサー(図示せず)を用いて、試料2の薄膜加工面2a(XY面)のX軸方向の両外側の余分なダミー基板10と試料2を除去するように、ダミー基板10と試料2の組立体をY軸方向(試料2の突出部2eの端面と平行)に切削して、薄膜加工面2aを含む試料2とダミー基板10の組立体を切り出す(図5(B)参照)。ここでは、薄膜加工面2aを切削しないようにする。なお、ここでのY軸方向の切削は省略してもよい。   Next, using a dicer (not shown), the dummy substrate 10 and the sample 2 are removed so that the dummy substrate 10 and the sample 2 on both outer sides in the X-axis direction of the thin film processed surface 2a (XY surface) of the sample 2 are removed. The assembly of the sample 2 is cut in the Y-axis direction (parallel to the end surface of the protruding portion 2e of the sample 2) to cut out the assembly of the sample 2 including the thin film processed surface 2a and the dummy substrate 10 (see FIG. 5B). ). Here, the thin film processed surface 2a is not cut. The cutting in the Y-axis direction here may be omitted.

次に、ダイサー(図示せず)を用いて、試料2の薄膜加工面2a(XY面)のY軸方向の両外側の余分なダミー基板10と試料2を除去するように、ダミー基板10と試料2の組立体をX軸方向(基板2の突出部2eの端面と直角)に切削して、薄膜加工面2aを含む試料2とダミー基板10の組立体を切り出す(図6(A)参照)。ここでは、薄膜加工面2aを切削しないようにする。   Next, using a dicer (not shown), the dummy substrate 10 and the sample 2 are removed so as to remove the extra dummy substrate 10 and the sample 2 on both outer sides in the Y-axis direction of the thin film processed surface 2a (XY plane) of the sample 2. The assembly of the sample 2 is cut in the X-axis direction (perpendicular to the end surface of the protruding portion 2e of the substrate 2) to cut out the assembly of the sample 2 and the dummy substrate 10 including the thin film processed surface 2a (see FIG. 6A). ). Here, the thin film processed surface 2a is not cut.

次に、切り出した薄膜加工面2aを含む試料2とダミー基板10の組立体のXZ面がキャリア6(Cリング等)の平面に接するとともに試料2がキャリア6の上端面からはみ出すようにして、当該組立体をキャリア6に貼り付ける(図6(B)参照)。   Next, the XZ plane of the assembly of the sample 2 and the dummy substrate 10 including the cut thin film processed surface 2a is in contact with the plane of the carrier 6 (C ring or the like), and the sample 2 protrudes from the upper end surface of the carrier 6. The assembly is attached to the carrier 6 (see FIG. 6B).

そして、FIB装置を用いて、FIB4を試料2の薄膜加工面2aの法線方向から照射することにより、TEM観察の際に電子線が透過する厚さになるように、試料2の観察箇所を断面的(XZ面;試料2の突出部2eの端面と直角)に薄膜化し、薄膜加工面2dを形成する(図6(B)参照)。観察箇所を断面的(XZ面)に薄膜化することとは、観察箇所における試料2の突出部2eの端面と直角な断面間の膜厚を薄くすることである。こうして作成された試料2の薄膜加工面2dに電子を照射してTEM観察・評価を行う。   Then, by irradiating the FIB 4 from the normal direction of the thin film processed surface 2a of the sample 2 using an FIB apparatus, the observation location of the sample 2 is set so that the electron beam is transmitted through the TEM observation. A thin film is formed in a cross section (XZ plane; perpendicular to the end face of the projecting portion 2e of the sample 2) to form a thin film processed surface 2d (see FIG. 6B). Making the observation location thin in a cross-sectional view (XZ plane) means reducing the film thickness between the cross sections perpendicular to the end face of the protruding portion 2e of the sample 2 at the observation location. The thin film processed surface 2d of the sample 2 thus prepared is irradiated with electrons to perform TEM observation / evaluation.

実施例3によれば、試料2の薄膜加工面2aを破損することなく、薄膜加工面2dを形成することができ、多面的にTEM観察・評価を行うことが可能となる。   According to Example 3, the thin film processed surface 2d can be formed without damaging the thin film processed surface 2a of the sample 2, and TEM observation / evaluation can be performed in a multifaceted manner.

本発明の実施例1に係る試料作製方法を模式的に示した工程斜視図である。It is the process perspective view which showed typically the sample preparation method which concerns on Example 1 of this invention. 本発明の実施例1に係る試料作製方法の薄膜化工程を模式的に示した斜視図である。It is the perspective view which showed typically the thin film formation process of the sample preparation method which concerns on Example 1 of this invention. 本発明の実施例1に係る試料作製方法で用いる試料作製装置の構成を示した模式図である。It is the schematic diagram which showed the structure of the sample preparation apparatus used with the sample preparation method which concerns on Example 1 of this invention. 本発明の実施例2に係る試料作製方法を模式的に示した工程斜視図である。It is the process perspective view which showed typically the sample preparation method which concerns on Example 2 of this invention. 本発明の実施例3に係る試料作製方法を模式的に示した第1の工程斜視図である。It is the 1st process perspective view showing typically the sample preparation method concerning Example 3 of the present invention. 本発明の実施例3に係る試料作製方法を模式的に示した第2の工程斜視図である。It is the 2nd process perspective view showing typically the sample preparation method concerning Example 3 of the present invention. 従来例に係る試料作製方法を模式的に示した工程斜視図である。It is the process perspective view which showed the sample preparation method concerning a prior art example typically.

符号の説明Explanation of symbols

1 基板
2 試料
2a、2c、2d 薄膜加工面
2b マーク
2e 突出部
3 マイクロプローブ
4 FIB(収束イオンビーム)
5 接着剤
6 キャリア
7 接着剤
8 電子
9、10 ダミー基板
20 試料作製装置
21 ダイサー
22 設置台
22a ポジショナ
22b ホットプレート
23 把持機構
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Sample 2a, 2c, 2d Thin film processed surface 2b Mark 2e Protrusion part 3 Microprobe 4 FIB (focused ion beam)
DESCRIPTION OF SYMBOLS 5 Adhesive 6 Carrier 7 Adhesive 8 Electron 9, 10 Dummy board 20 Sample preparation apparatus 21 Dicer 22 Installation stand 22a Positioner 22b Hot plate 23 Grip mechanism

Claims (11)

基板を加工して透過型電子顕微鏡で観察するための試料を作製する試料作製方法であって、
前記基板から観察箇所を含むとともに柱状になっている前記試料を切り出す第1の工程と、
前記第1の工程の後、前記試料を90度回転する第2の工程と、
前記第2の工程の後、前記試料の前記観察箇所が配された面の反対側の裏面とダミー基板の側端面とを接着する第3の工程と、
前記第3の工程の後、前記試料の前記観察箇所が配された面から所定の厚さを残すようにして、前記試料の側端面から所定の深さで、前記試料と前記ダミー基板との接着面と平行に前記試料の裏面側の部分を切削することで、前記試料に突出部を形成する第4の工程と、
前記第4の工程の後、前記試料を前記ダミー基板から分離する第5の工程と、
前記第5の工程の後、前記試料の前記突出部がキャリアの端面からはみ出すようにして、前記試料を前記キャリアに接着する第6の工程と、
前記第6の工程の後、前記試料の前記突出部の端面の法線方向から収束イオンビームを照射して前記観察箇所を平面的に薄膜化することによって薄膜加工面を形成する第7の工程と、
を含むことを特徴とする試料作製方法。
A sample preparation method for preparing a sample for processing a substrate and observing with a transmission electron microscope,
A first step of cutting out the sample including the observation portion from the substrate and having a columnar shape;
A second step of rotating the sample 90 degrees after the first step;
After the second step, a third step of bonding the back surface of the sample opposite to the surface on which the observation location is arranged and the side end surface of the dummy substrate;
After the third step, the sample and the dummy substrate are placed at a predetermined depth from the side end surface of the sample so as to leave a predetermined thickness from the surface on which the observation portion of the sample is disposed. A fourth step of forming a protrusion on the sample by cutting a portion on the back side of the sample in parallel with the adhesive surface;
A fifth step of separating the sample from the dummy substrate after the fourth step;
After the fifth step, a sixth step of bonding the sample to the carrier such that the protruding portion of the sample protrudes from the end surface of the carrier;
After the sixth step, a seventh step of forming a thin film processed surface by irradiating a focused ion beam from the normal direction of the end surface of the projecting portion of the sample to form a thin film on the observation portion in a plane. When,
A method for preparing a sample, comprising:
前記第1の工程で切り出される前記試料の幅は、前記基板の厚さと同じ長さであることを特徴とする請求項1記載の試料作製方法。   The sample preparation method according to claim 1, wherein the width of the sample cut out in the first step is the same as the thickness of the substrate. 前記第4の工程において、前記試料の前記観察箇所が配された面から所定の厚さは、10μm以上かつ30μm以下であることを特徴とする請求項1又は2記載の試料作製方法。   3. The sample preparation method according to claim 1, wherein, in the fourth step, a predetermined thickness is 10 μm or more and 30 μm or less from a surface on which the observation portion of the sample is arranged. 前記第4の工程において、前記試料の側端面から所定の深さは、少なくとも前記観察箇所を超える深さであることを特徴とする請求項1乃至3のいずれか一に記載の試料作製方法。   4. The sample preparation method according to claim 1, wherein, in the fourth step, a predetermined depth from a side end surface of the sample is a depth exceeding at least the observation location. 5. 前記第1の工程での前記試料の切り出し、前記第4の工程での前記試料の前記突出部の形成、及び、前記第5の工程での前記試料と前記ダミー基板との分離では、ダイサーを用いて行うことを特徴とする請求項1乃至4のいずれか一に記載の試料作製方法。   In the cutting out of the sample in the first step, the formation of the protruding portion of the sample in the fourth step, and the separation of the sample and the dummy substrate in the fifth step, a dicer is used. The sample preparation method according to claim 1, wherein the sample preparation method is used. 前記第1乃至第6の工程を1台の装置内で行うことを特徴とする請求項1乃至5のいずれか一に記載の試料作製方法。   The sample preparation method according to any one of claims 1 to 5, wherein the first to sixth steps are performed in one apparatus. 前記第7の工程の後、前記キャリアと分離した前記試料の前記突出部の側面と第2ダミー基板の平面とを接着する第8の工程と、
前記第8の工程の後、前記薄膜加工面以外の領域の前記試料と前記第2ダミー基板の一部を、前記試料の前記突出部の端面と平行に切削して、前記薄膜加工面を含む前記試料と前記第2ダミー基板の組立体を切り出す第9の工程と、
前記第9の工程の後、前記試料が第2キャリアの端面からはみ出すようにして、前記組立体を前記第2キャリアに接着する第10の工程と、
前記第10の工程の後、前記試料の前記薄膜加工面の法線方向から収束イオンビームを照射して、前記観察箇所における前記試料の前記突出部の端面と平行に薄膜化した第2薄膜加工面を形成する第11の工程と、
を含むことを特徴とする請求項1乃至6のいずれか一に記載の試料作製方法。
After the seventh step, an eighth step of bonding the side surface of the protruding portion of the sample separated from the carrier and the plane of the second dummy substrate;
After the eighth step, the sample in a region other than the thin film processed surface and a part of the second dummy substrate are cut in parallel with the end surface of the projecting portion of the sample to include the thin film processed surface. A ninth step of cutting out the assembly of the sample and the second dummy substrate;
After the ninth step, a tenth step of bonding the assembly to the second carrier such that the sample protrudes from the end surface of the second carrier;
After the tenth step, the second thin film processing is performed by irradiating a focused ion beam from the normal direction of the thin film processing surface of the sample to form a thin film parallel to the end surface of the protruding portion of the sample at the observation location. An eleventh step of forming a surface;
The sample preparation method according to claim 1, comprising:
前記第9の工程での前記組立体の切り出しでは、ダイサーを用いて行うことを特徴とする請求項7記載の試料作製方法。   The sample preparation method according to claim 7, wherein the cutting of the assembly in the ninth step is performed using a dicer. 前記第7の工程の後、前記キャリアと分離した前記試料の前記突出部の側面と第3ダミー基板の平面とを接着する第12の工程と、
前記第12の工程の後、前記薄膜加工面以外の領域の前記試料と前記第3ダミー基板の一部を、前記試料の前記突出部の端面と直角に切削して、前記薄膜加工面を含む前記試料と前記第3ダミー基板の組立体を切り出す第13の工程と、
前記第13の工程の後、前記試料が第3キャリアの端面からはみ出すようにして、前記組立体を前記第3キャリアに接着する第14の工程と、
前記第14の工程の後、前記試料の前記薄膜加工面の法線方向から収束イオンビームを照射して、前記観察箇所における前記試料の前記突出部の端面と直角に薄膜化した第3薄膜加工面を形成する第15の工程と、
を含むことを特徴とする請求項1乃至6のいずれか一に記載の試料作製方法。
After the seventh step, a twelfth step of bonding the side surface of the protruding portion of the sample separated from the carrier and the plane of the third dummy substrate;
After the twelfth step, the sample in a region other than the thin film processed surface and a part of the third dummy substrate are cut at right angles to an end surface of the projecting portion of the sample to include the thin film processed surface. A thirteenth step of cutting out the assembly of the sample and the third dummy substrate;
After the thirteenth step, a fourteenth step of bonding the assembly to the third carrier such that the sample protrudes from the end face of the third carrier;
After the fourteenth step, the third thin film processing is performed by irradiating a focused ion beam from the normal direction of the thin film processing surface of the sample to form a thin film perpendicular to the end surface of the protruding portion of the sample at the observation location. A fifteenth step of forming a surface;
The sample preparation method according to claim 1, comprising:
前記第13の工程での前記組立体の切り出しでは、ダイサーを用いて行うことを特徴とする請求項9記載の試料作製方法。   The sample preparation method according to claim 9, wherein the cutting of the assembly in the thirteenth step is performed using a dicer. 切削により基板を分割するダイサーと、
設置された前記基板の位置合せをするためのポジショナと、前記基板の接着に用いられる熱軟化性の接着剤を加熱するホットプレートと、を有する設置台と、
前記基板から切り出した試料を把み出す機構と、把み出した前記試料を回転させる機構を有する把持機構と、
を備えることを特徴とする試料作製装置。
A dicer that divides the substrate by cutting;
An installation table having a positioner for aligning the installed substrate, and a hot plate for heating a thermosoftening adhesive used for bonding the substrate;
A mechanism for grasping the sample cut out from the substrate, a gripping mechanism having a mechanism for rotating the grasped sample,
A sample preparation apparatus comprising:
JP2007331987A 2007-12-25 2007-12-25 Sample preparing method and sample preparation apparatus Pending JP2009156599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331987A JP2009156599A (en) 2007-12-25 2007-12-25 Sample preparing method and sample preparation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331987A JP2009156599A (en) 2007-12-25 2007-12-25 Sample preparing method and sample preparation apparatus

Publications (1)

Publication Number Publication Date
JP2009156599A true JP2009156599A (en) 2009-07-16

Family

ID=40960801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331987A Pending JP2009156599A (en) 2007-12-25 2007-12-25 Sample preparing method and sample preparation apparatus

Country Status (1)

Country Link
JP (1) JP2009156599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105568A (en) * 2009-11-20 2011-06-02 Japan Siper Quarts Corp Sample for quality evaluation of quartz glass crucible, production method of the same, evaluation method using the sample, and production apparatus of the sample
CN105300762A (en) * 2015-10-16 2016-02-03 武汉钢铁(集团)公司 Structure positioning sample preparation method of sheet
JP2019035650A (en) * 2017-08-15 2019-03-07 一般財団法人電力中央研究所 Specimen creation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231998A (en) * 1992-02-21 1993-09-07 Sharp Corp Method of manufacture specimen for electron microscopic observation
JPH11329325A (en) * 1998-05-12 1999-11-30 Canon Inc Manufacture of mesh and thin piece of sample

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231998A (en) * 1992-02-21 1993-09-07 Sharp Corp Method of manufacture specimen for electron microscopic observation
JPH11329325A (en) * 1998-05-12 1999-11-30 Canon Inc Manufacture of mesh and thin piece of sample

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105568A (en) * 2009-11-20 2011-06-02 Japan Siper Quarts Corp Sample for quality evaluation of quartz glass crucible, production method of the same, evaluation method using the sample, and production apparatus of the sample
CN105300762A (en) * 2015-10-16 2016-02-03 武汉钢铁(集团)公司 Structure positioning sample preparation method of sheet
JP2019035650A (en) * 2017-08-15 2019-03-07 一般財団法人電力中央研究所 Specimen creation method

Similar Documents

Publication Publication Date Title
KR101914146B1 (en) Chip manufacturing method
US10155369B2 (en) Wafer debonding system and method
US20170053778A1 (en) Method of preparing a plan-view transmission electron microscope sample used in an integrated circuit analysis
TW200425313A (en) Semiconductor wafer dividing method and apparatus
JP6396038B2 (en) Multiple sample attachment to nanomanipulators for high-throughput sample preparation
JP7134567B2 (en) Destructive testing device and fragment collection method
JP2005003682A (en) Method and device for operating microscopic sample
CN102646566B (en) The SEM sample clamp observed for online SEM and SEM sample observation method
CN102269771B (en) Method for preparing observational sample of transmission electron microscope
CN104075918A (en) Method for preparing micro intercommunicated hole structure transmission electron microscope sample
TW201226094A (en) Dividing method of substrate
JP6301565B1 (en) Method and apparatus for separating a microchip from a wafer and mounting the microchip on a substrate
JP2009156599A (en) Sample preparing method and sample preparation apparatus
TW407329B (en) Manual precision micro-cleavage method
JP2010230518A (en) Thin sample preparing method
US7394075B1 (en) Preparation of integrated circuit device samples for observation and analysis
US9570269B2 (en) Method for manufacturing a TEM-lamella and assembly having a TEM-lamella protective structure
JP7327920B2 (en) Diamond substrate production method
CN113466268B (en) Combined sample and preparation method thereof
JP2009156678A (en) Manufacturing method of fine sample stand aggregate, manufacturing method of fine sample stand, and manufacturing method of sample holder
JP2006329723A (en) Method of manufacturing sample for electron-microscopic observation
JP2010135132A (en) Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample
TW201005274A (en) Electron microscopy specimen, method and device for preparation thereof
JP2011171382A (en) Dividing method
JP5666791B2 (en) Micro sample table and method for manufacturing micro sample table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A977 Report on retrieval

Effective date: 20111222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508