JP4935839B2 - Motor housing structure - Google Patents

Motor housing structure Download PDF

Info

Publication number
JP4935839B2
JP4935839B2 JP2009054712A JP2009054712A JP4935839B2 JP 4935839 B2 JP4935839 B2 JP 4935839B2 JP 2009054712 A JP2009054712 A JP 2009054712A JP 2009054712 A JP2009054712 A JP 2009054712A JP 4935839 B2 JP4935839 B2 JP 4935839B2
Authority
JP
Japan
Prior art keywords
cooling water
motor
motor housing
cooling medium
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009054712A
Other languages
Japanese (ja)
Other versions
JP2010213402A (en
Inventor
英二 礒山
誠司 星加
洋二 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009054712A priority Critical patent/JP4935839B2/en
Publication of JP2010213402A publication Critical patent/JP2010213402A/en
Application granted granted Critical
Publication of JP4935839B2 publication Critical patent/JP4935839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

本発明は、モータのハウジング構造に関し、特にハウジング内部に冷却媒体流路が形成されたモータのハウジング構造に関する。   The present invention relates to a motor housing structure, and more particularly to a motor housing structure in which a cooling medium flow path is formed inside the housing.

電気自動車やハイブリット車両等に使用される走行駆動用モータは、車両内の限られた空間に搭載する必要があるので小型化が求められており、更に、高い動力性能を得るために高出力化も求められている。このため、モータの体積あたりの出力を向上させることとなるが、出力向上にともなって増加する発熱を小さな放熱面積で冷却する必要があるので、モータの冷却には、冷却効率の高い水冷方式が一般的に用いられている(例えば、特許文献1)。   Travel drive motors used in electric vehicles, hybrid vehicles, etc. need to be mounted in a limited space in the vehicle, so miniaturization is required, and higher output is required to obtain higher power performance. Is also sought. For this reason, the output per volume of the motor will be improved. However, since it is necessary to cool the heat generation that increases as the output increases with a small heat dissipation area, a water cooling method with high cooling efficiency is used for cooling the motor. It is generally used (for example, Patent Document 1).

前記特許文献1のモータでは、ロータ、コイルが巻回されているステータなどのモータ構成部品を収納したモータハウジング内部に冷却水を循環させるための冷却水路を形成し、この冷却水路に冷却水を循環させて、モータ駆動時にコイルなどから発せられる熱を奪うことでモータを冷却する構成である。   In the motor of Patent Document 1, a cooling water passage for circulating cooling water is formed inside a motor housing containing motor components such as a rotor and a stator around which a coil is wound, and cooling water is supplied to the cooling water passage. In this configuration, the motor is cooled by removing heat generated from a coil or the like when the motor is driven.

特開2004−140881号公報JP 2004-140881 A

ところで、車両内に搭載されるモータの外周面近傍には他の部品等も配置されており、また、車両内での冷却水循環配管のレイアウトの制約などによって、モータハウジング内の円周方向に沿って形成される冷却水路の範囲が限定されることがある。このため、モータハウジングの内部には、モータハウジングの円周方向に沿って円弧状の冷却水路が存在する領域と冷却水路が存在しない大きな領域が存在する。   By the way, other parts are also arranged in the vicinity of the outer peripheral surface of the motor mounted in the vehicle, and along the circumferential direction in the motor housing due to restrictions on the layout of the cooling water circulation piping in the vehicle. The range of the cooling water channel formed in this way may be limited. For this reason, the motor housing includes a region where the arc-shaped cooling water channel exists along the circumferential direction of the motor housing and a large region where the cooling water channel does not exist.

このため、モータハウジングの円周方向における冷却水路が存在する領域と冷却水路が存在しない領域では、モータハウジングの肉厚に差異が生じて、モータハウジングの円周方向における剛性が不均一になってしまう。   For this reason, there is a difference in the thickness of the motor housing between the region where the cooling water channel exists in the circumferential direction of the motor housing and the region where the cooling water channel does not exist, and the rigidity of the motor housing in the circumferential direction becomes uneven. End up.

この結果、モータハウジングの内周面にステータを焼き嵌めて収縮締結する際に、モータハウジングの剛性に偏りが生じていることから、モータハウジングに部分的に応力が集中する箇所ができ、この箇所の内部発生応力が他の部分よりも大幅に高くなる。このため、モータハウジングの内周面にステータを焼き嵌めて収縮締結する際に、モータハウジングに部分的に高い応力が集中して発生してもモータハウジングに破損等が生じないように、モータハウジングを強度の高い高価な材質で形成する必要があった。   As a result, when the stator is shrink fitted on the inner peripheral surface of the motor housing and contracted and tightened, the rigidity of the motor housing is biased, so there is a place where stress is partially concentrated on the motor housing. The internally generated stress is significantly higher than other parts. Therefore, when the stator is shrink-fitted and shrink-fitted on the inner peripheral surface of the motor housing, the motor housing is protected from damage or the like even if high stresses are concentrated on the motor housing. Must be formed of an expensive material having high strength.

そこで、本発明は、冷却水路が内部に形成されるモータハウジングの冷却水路がある部分とない部分との肉厚の不均一による剛性の不均衡を低減することができるモータのハウジング構造を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, the present invention provides a motor housing structure capable of reducing a rigidity imbalance due to uneven thickness between a portion having a cooling water passage and a portion having no cooling water passage formed therein. For the purpose.

前記目的を達成するために本発明係るモータのハウジング構造は、ハウジング内部の円周方向に沿って設けられている冷却媒体流路の一端側の冷却媒体供給口又は他端側の冷却媒体排出口のいずれか一方から、ハウジング内部の円周方向に沿って延びる流路延長部を一体に形成したことを特徴としている。   In order to achieve the above object, the housing structure of the motor according to the present invention has a cooling medium supply port on one end side or a cooling medium discharge port on the other end side of the cooling medium flow path provided along the circumferential direction inside the housing. From any one of the above, a flow path extension extending along the circumferential direction inside the housing is integrally formed.

本発明に係るモータのハウジング構造によれば、冷却媒体流路の一端側の冷却媒体供給口又は他端側の冷却媒体排出口のいずれか一方から、ハウジング内部の円周方向に沿って延びる流路延長部を一体に形成したことにより、ハウジングの円周方向における肉厚が略均一になることで、ハウジングの円周方向における剛性が略均一となる。   According to the motor housing structure of the present invention, the flow extending along the circumferential direction inside the housing from either the cooling medium supply port on one end of the cooling medium flow path or the cooling medium discharge port on the other end side. By integrally forming the path extension portion, the thickness in the circumferential direction of the housing becomes substantially uniform, so that the rigidity in the circumferential direction of the housing becomes substantially uniform.

これにより、例えば、ハウジングの内周面にステータを焼き嵌めて収縮締結する際に、ハウジングに部分的に高い応力が集中することなく、ハウジングに発生する内部発生応力はその円周方向において略均一化され、ハウジングに対する最大内部発生応力が低減される。この結果、モータのハウジングを安価な材質で形成することができる。   Thus, for example, when the stator is shrink-fitted and contracted and fastened to the inner peripheral surface of the housing, the internally generated stress generated in the housing is substantially uniform in the circumferential direction without high stress being partially concentrated on the housing. And the maximum internally generated stress on the housing is reduced. As a result, the motor housing can be formed of an inexpensive material.

本発明の実施形態1に係るモータの外観を示す斜視図。1 is a perspective view showing an external appearance of a motor according to Embodiment 1 of the present invention. 本発明の実施形態1に係るモータを示す概略断面図。1 is a schematic cross-sectional view showing a motor according to Embodiment 1 of the present invention. 本発明の実施形態1に係るモータのハウジング構造を示す概略断面図。1 is a schematic cross-sectional view showing a housing structure of a motor according to Embodiment 1 of the present invention. (a)は、実施形態1に係るモータのハウジング構造を示す概略斜視図、(b)は、水路延長部を一体に形成した冷却水路を示す斜視図。(A) is a schematic perspective view which shows the housing structure of the motor which concerns on Embodiment 1, (b) is a perspective view which shows the cooling water channel which formed the water channel extension part integrally. 本発明の実施形態2に係るモータのハウジング構造を示す概略断面図。The schematic sectional drawing which shows the housing structure of the motor which concerns on Embodiment 2 of this invention. (a)は、実施形態2に係るモータのハウジング構造を示す概略斜視図、(b)は、水路延長部を一体に形成した冷却水路を示す斜視図。(A) is a schematic perspective view which shows the housing structure of the motor which concerns on Embodiment 2, (b) is a perspective view which shows the cooling water channel which formed the water channel extension part integrally. 実施形態2に係るモータのハウジング構造を適用したモータハウジング表面にモータ関連部品を設置した状態を示す図。The figure which shows the state which installed the motor related components in the motor housing surface to which the housing structure of the motor which concerns on Embodiment 2 is applied. 実施形態1、2に係るモータのハウジング構造を適用したモータハウジングの鋳造時の模式図。The schematic diagram at the time of casting of the motor housing to which the housing structure of the motor which concerns on Embodiment 1, 2 is applied. 本発明の実施形態3に係るモータのハウジング構造を示す概略斜視図。The schematic perspective view which shows the housing structure of the motor which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係るモータのハウジング構造を示す概略斜視図。The schematic perspective view which shows the housing structure of the motor which concerns on Embodiment 4 of this invention.

以下、本発明を図示の実施形態に基づいて説明する。
〈実施形態1〉
図1は、本発明の実施形態1に係るモータの外観を示す斜視図、図2は、本実施形態に係るモータを示す概略断面図、図3は、本実施形態に係るモータのハウジング構造を示す概略断面図、図4(a)は、本実施形態に係るモータのハウジング構造を示す概略斜視図、図4(b)は、水路延長部を一体に形成した冷却水路を示す斜視図である。
Hereinafter, the present invention will be described based on the illustrated embodiments.
<Embodiment 1>
1 is a perspective view showing an external appearance of a motor according to Embodiment 1 of the present invention, FIG. 2 is a schematic sectional view showing the motor according to this embodiment, and FIG. 3 shows a housing structure of the motor according to this embodiment. 4A is a schematic perspective view showing a housing structure of the motor according to the present embodiment, and FIG. 4B is a perspective view showing a cooling water channel in which a water channel extension is integrally formed. .

図1、図2に示すように、本実施形態のモータ1の枠体である円筒状のモータハウジング2の内側には、コイル3が巻回されたステータ(固定子)4、ロータ(回転子)5が周面に嵌合されたモータ軸6などが設置されている。なお、このモータ1は、例えば、電気自動車やハイブリット車両の駆動系に設置される走行駆動用モータであり、バッテリ(例えば、リチウムイオン電池)から電力供給を受けインバータを介して駆動制御される。   As shown in FIGS. 1 and 2, a stator (stator) 4 around which a coil 3 is wound and a rotor (rotor) are disposed inside a cylindrical motor housing 2 that is a frame of the motor 1 of the present embodiment. ) A motor shaft 6 and the like in which 5 is fitted to the peripheral surface are installed. The motor 1 is, for example, a travel drive motor installed in a drive system of an electric vehicle or a hybrid vehicle, and is driven and controlled via an inverter by receiving power supply from a battery (for example, a lithium ion battery).

モータハウジング2の内部には、図2、図3、図4(a),(b)に示すように、モータハウジング2の円周方向に沿って冷却水(冷却媒体)を流すための円弧状の冷却水路7が形成されており、冷却水路7の一端側には冷却水供給口8が、冷却水路7の他端側には冷却水排水口9がそれぞれ設けられている。冷却水路7は、本実施形態では、車両内での冷却水循環配管のレイアウトの制約などによってモータハウジング2内部の全周に対して約6割程度の範囲に形成されている。冷却水路7の一端側の冷却水供給口8は、モータハウジング2の斜め下方側に配置されており、冷却水路7の他端側の冷却水排水口9は、モータハウジング2の斜め上方側に配置されている。   As shown in FIGS. 2, 3, 4 (a), and (b), the motor housing 2 has an arc shape for flowing cooling water (cooling medium) along the circumferential direction of the motor housing 2. The cooling water channel 7 is formed. A cooling water supply port 8 is provided on one end side of the cooling water channel 7, and a cooling water drain port 9 is provided on the other end side of the cooling water channel 7. In the present embodiment, the cooling water passage 7 is formed in a range of about 60% of the entire circumference of the motor housing 2 due to restrictions on the layout of the cooling water circulation piping in the vehicle. The cooling water supply port 8 on one end side of the cooling water channel 7 is arranged obliquely below the motor housing 2, and the cooling water drain port 9 on the other end side of the cooling water channel 7 is obliquely above the motor housing 2. Has been placed.

このモータ1の冷却動作時においては、ポンプ(不図示)の運転により冷却水循環配管10aを通して冷却水供給口8から冷却水をモータハウジング2内部の冷却水路7に供給し、冷却水路7内を流れる冷却水により、モータ1の駆動時にモータハウジング2の内側に設置されているステータ4に巻回されているコイル3等から発せられる熱を吸熱する。熱を吸熱した冷却水は冷却水排水口9から排出され、冷却水循環配管10bの途中に設けた熱交換器(不図示)で外気と熱交換されて冷却される。冷却された冷却水は冷却水循環配管10aを通して冷却水供給口8から冷却水路7内に再び循環供給される。このように、モータ駆動時に発生する熱によって温度上昇するモータ1を、モータハウジング2内部の冷却水路7を流れる冷却水によって冷却することができる。   During the cooling operation of the motor 1, the cooling water is supplied from the cooling water supply port 8 to the cooling water passage 7 inside the motor housing 2 through the cooling water circulation pipe 10 a by the operation of a pump (not shown) and flows in the cooling water passage 7. The cooling water absorbs heat generated from the coil 3 or the like wound around the stator 4 installed inside the motor housing 2 when the motor 1 is driven. The cooling water that has absorbed heat is discharged from the cooling water drain port 9 and is cooled by heat exchange with outside air by a heat exchanger (not shown) provided in the middle of the cooling water circulation pipe 10b. The cooled cooling water is circulated and supplied again from the cooling water supply port 8 into the cooling water channel 7 through the cooling water circulation pipe 10a. Thus, the motor 1 that rises in temperature due to heat generated when the motor is driven can be cooled by the cooling water flowing through the cooling water passage 7 inside the motor housing 2.

そして、本実施形態では、図2、図3に示すように、モータハウジング2の内部において、円周方向(反時計周り方向)に冷却水路7の冷却水供給口8から冷却水排水口9側に延びる円弧状の水路延長部7a(網目で示した部分)が一体に形成されている。この水路延長部7aの閉塞した先端部は、モータハウジング2内の冷却水排水口9の手前付近に位置している。なお、水路延長部7aの基端側は冷却水路7と連通するように一体に形成されているが、冷却水路7の部分と水路延長部7aの部分を区別するために、水路延長部7aの部分に網目を入れている(以下の各実施形態においても同様である)。   In this embodiment, as shown in FIGS. 2 and 3, inside the motor housing 2, in the circumferential direction (counterclockwise direction) from the cooling water supply port 8 of the cooling water passage 7 to the cooling water drain port 9 side. An arc-shaped waterway extension 7a (portion shown by a mesh) is integrally formed. The closed tip of the water channel extension 7 a is located near the front of the cooling water drain 9 in the motor housing 2. In addition, although the base end side of the water channel extension part 7a is integrally formed so as to communicate with the cooling water channel 7, in order to distinguish the cooling water channel 7 part and the water channel extension part 7a part, A mesh is provided in the portion (the same applies to the following embodiments).

冷却水路7の冷却水供給口8から冷却水排水口9側に延びる水路延長部7aは、冷却水を流すためではなく、この水路延長部7a側のモータハウジング2の円周方向の肉厚を冷却水路4側と同じにするためのものである。即ち、従来のモータハウジング構造では、車両内での冷却水循環配管のレイアウトの制約などによって、モータハウジング内部の円周方向に沿って形成される冷却水路の範囲が限定されているため、モータハウジングの冷却水路が形成されている領域とそれ以外の領域(冷却水路が形成されていない領域)とでは肉厚が大きく異なり、モータハウジングの円周方向における剛性が不均一となる。   The water channel extension 7a extending from the cooling water supply port 8 of the cooling water channel 7 to the cooling water drain port 9 side is not for flowing cooling water, but has a thickness in the circumferential direction of the motor housing 2 on the side of the water channel extension 7a. It is for making it the same as the cooling water channel 4 side. That is, in the conventional motor housing structure, the range of the cooling water passage formed along the circumferential direction inside the motor housing is limited due to restrictions on the layout of the cooling water circulation piping in the vehicle. The thickness of the region where the cooling water channel is formed and the other region (the region where the cooling water channel is not formed) are greatly different, and the rigidity of the motor housing in the circumferential direction is non-uniform.

このように、モータハウジング2の内部において、左回転方向(反時計回り方向)に冷却水路7の冷却水供給口8から冷却水排水口9付近まで延びるように水路延長部7aを形成したことにより、モータハウジング2の円周方向における肉厚が略均一になることで、モータハウジング2の円周方向における剛性が略均一となる。これにより、モータハウジング2の内周面にステータ4を焼き嵌めて収縮締結する際に、モータハウジング2に部分的に高い応力が集中することなく、モータハウジング2に発生する内部発生応力はその円周方向において略均一化され、モータハウジング2に対する最大内部発生応力が低減される。   As described above, the water channel extension 7a is formed in the motor housing 2 so as to extend from the cooling water supply port 8 of the cooling water channel 7 to the vicinity of the cooling water drain port 9 in the counterclockwise direction (counterclockwise direction). Since the thickness of the motor housing 2 in the circumferential direction becomes substantially uniform, the rigidity of the motor housing 2 in the circumferential direction becomes substantially uniform. As a result, when the stator 4 is shrink-fitted on the inner peripheral surface of the motor housing 2 and contracted and fastened, high stress is not concentrated on the motor housing 2 and the internally generated stress generated in the motor housing 2 is reduced to the circle. It is made substantially uniform in the circumferential direction, and the maximum internally generated stress on the motor housing 2 is reduced.

その結果、モータハウジング2の内周面にステータ4焼き嵌めて収縮締結する際に、モータハウジング2を強度の低い材料を使用して形成しても、内部発生応力によってモータハウジング2に破損等が発生することを防止することが可能となる。よって、モータハウジング2の材料として強度の低い安価なものを使用することができ、更に、モータハウジング2全体の肉厚を薄肉化することができるので、材料費の削減が可能となる。   As a result, even when the motor housing 2 is formed using a low-strength material when the stator 4 is shrink fitted and contracted to the inner peripheral surface of the motor housing 2, the motor housing 2 may be damaged due to internally generated stress. It is possible to prevent the occurrence. Therefore, an inexpensive material with low strength can be used as the material of the motor housing 2, and the thickness of the entire motor housing 2 can be reduced, so that the material cost can be reduced.

更に、モータハウジング2を強度の低い安価な材料を使用することができるので、強度の高い材料でモータハウジング2を形成した場合よりも、モータハウジング2の内周面にステータ4を焼き嵌めて収縮締結する際の熱処理条件(加熱時間、加熱温度など)を緩和すること可能となる。   Further, since an inexpensive material with low strength can be used for the motor housing 2, the stator 4 is shrink-fitted on the inner peripheral surface of the motor housing 2 by shrinkage as compared with the case where the motor housing 2 is formed of a material with high strength. It becomes possible to relax the heat treatment conditions (heating time, heating temperature, etc.) at the time of fastening.

〈実施形態2〉
本実施形態では、図5、図6(a),(b)に示すように、モータハウジング2の内部において、円周方向(時計周り方向)に冷却水路7の冷却水排水口9から冷却水供給口8側に延びる円弧状の水路延長部7a(網目で示した部分)を一体に形成している。この水路延長部7aの閉塞した先端部は、モータハウジング2内部の冷却水供給口8の手前付近に位置している。他の構成は実施形態1と同様である。
<Embodiment 2>
In this embodiment, as shown in FIGS. 5, 6 (a), (b), inside the motor housing 2, the cooling water from the cooling water outlet 9 of the cooling water passage 7 in the circumferential direction (clockwise direction). An arcuate water channel extension 7a (portion shown by a mesh) that extends toward the supply port 8 is formed integrally. The closed tip of the water channel extension 7 a is located near the front of the cooling water supply port 8 inside the motor housing 2. Other configurations are the same as those of the first embodiment.

このように、冷却水路7の冷却水排水口9から冷却水供給口8側に延びる水路延長部7aを形成した場合においても、前記した実施形態1と同様の効果を得ることができる。更に、本実施形態では、図5に示したように、水路延長部7aの閉塞した先端側がモータハウジング2の下方側(冷却水供給口8側)に位置し、水路延長部7aの冷却水路7と連通する基端側が冷却水排水口9近傍に位置している。   Thus, even when the water channel extension 7a extending from the cooling water drain port 9 of the cooling water channel 7 to the cooling water supply port 8 side is formed, the same effect as that of the first embodiment can be obtained. Furthermore, in this embodiment, as shown in FIG. 5, the closed end side of the water channel extension 7a is located on the lower side (cooling water supply port 8 side) of the motor housing 2, and the cooling water channel 7 of the water channel extension 7a. The base end side communicating with the cooling water drain port 9 is located in the vicinity.

これにより、モータ駆動にともなう発熱によって水路延長部7a内の加熱された残留空気は、水路延長部7a内に残留することなく上方の冷却水排水口9から冷却水とともに排出される。この結果、水路延長部7a内に熱伝導性の低い空気が存在することはなく、冷却性能の低下を抑えることができる。   Accordingly, the residual air heated in the water channel extension 7a due to heat generated by driving the motor is discharged together with the cooling water from the upper cooling water drain 9 without remaining in the water channel extension 7a. As a result, air with low thermal conductivity does not exist in the water channel extension 7a, and a decrease in cooling performance can be suppressed.

また、前記実施形態1、2のように、水路延長部7aを冷却水路7の冷却水供給口8又は冷却水排水口9に形成することにより、モータハウジング2の円周方向における剛性を略均一にすることができる。これにより、例えば、図7に示すように、モータハウジング2表面に設置したモータ関連部品11などの位置によって、冷却水路7の冷却水供給口8と冷却水排水口9の配置位置に制約がある場合でも、冷却水排水口9(又は、冷却水供給口8)から延びるように水路延長部7aを形成することにより、モータハウジング2の円周方向における剛性を略均一にすることができる。   Further, as in the first and second embodiments, the water channel extension 7a is formed in the cooling water supply port 8 or the cooling water drain port 9 of the cooling water channel 7, so that the rigidity of the motor housing 2 in the circumferential direction is substantially uniform. Can be. Thereby, for example, as shown in FIG. 7, the arrangement positions of the cooling water supply port 8 and the cooling water drain port 9 of the cooling water channel 7 are limited depending on the positions of the motor-related parts 11 installed on the surface of the motor housing 2. Even in this case, the rigidity in the circumferential direction of the motor housing 2 can be made substantially uniform by forming the water channel extension 7a so as to extend from the cooling water drain port 9 (or the cooling water supply port 8).

この結果、モータハウジング2の円周方向に配置される冷却水路7(冷却水供給口8、冷却水排水口9)の位置にかかわらず、モータハウジング2の円周方向における剛性を略均一にすることができるので、モータ1を車両に搭載するときのレイアウト自由度が向上し、モータ設置スペースをより小さくすることが可能となる。   As a result, the rigidity in the circumferential direction of the motor housing 2 is made substantially uniform regardless of the position of the cooling water passage 7 (the cooling water supply port 8 and the cooling water drain port 9) arranged in the circumferential direction of the motor housing 2. Therefore, the degree of freedom in layout when the motor 1 is mounted on the vehicle is improved, and the motor installation space can be further reduced.

また、前記実施形態1、2における、冷却水路7の冷却水供給口8側又は冷却水排水口9側に水路延長部7aを形成したモータハウジング2を鋳造工法で製作する場合においては、例えば、図8に示すように、近接する冷却水路7と水路延長部7aの先端側の両端面に設けられる各中子12の外側端部を中子保持部材12aで保持することができる。なお、符号13a〜13dは中子支えである。   In the case where the motor housing 2 in which the water channel extension 7a is formed on the cooling water supply port 8 side or the cooling water drain port 9 side of the cooling water channel 7 in the first and second embodiments is manufactured by a casting method, for example, As shown in FIG. 8, the outer end portions of the cores 12 provided on both end surfaces of the adjacent cooling water channel 7 and water channel extension 7a can be held by the core holding member 12a. Reference numerals 13a to 13d are core supports.

このように、内部に冷却水路7と水路延長部7aを有するモータハウジング2を鋳造工程で製作する際に、近接する冷却水路7と水路延長部7aの先端側の両端面に設けられる各中子12の外側端部を中子保持部材12aで保持することにより、各中子12を配置するときの安定性が向上し、冷却水路7と水路延長部7aの形状精度を高めることが可能となる。これにより、鋳造歩留まりが向上することで、生産性の向上を図ることができる。   Thus, when manufacturing the motor housing 2 which has the cooling water channel 7 and the water channel extension part 7a in an inside by a casting process, each core provided in the both end surfaces of the adjacent cooling water channel 7 and the water channel extension part 7a at the front end side is provided. By holding the outer end of 12 with the core holding member 12a, the stability when arranging each core 12 is improved, and the shape accuracy of the cooling water channel 7 and the water channel extension 7a can be improved. . Thereby, productivity can be improved by improving the casting yield.

また、中子を配置するときのばらつきを考慮してモータハウジング2の肉厚を厚めにとる必要がなくなるので、モータハウジング2の軽量化を図ることができる。   In addition, since it is not necessary to increase the thickness of the motor housing 2 in consideration of variations when the cores are arranged, the motor housing 2 can be reduced in weight.

〈実施形態3〉
本実施形態では、図9に示すように、モータハウジング2の軸線方向(モータ軸方向)に2本の冷却水路7b,7cを配置し、各冷却水路7b,7cは水路曲折部7dを介して連通している。
<Embodiment 3>
In the present embodiment, as shown in FIG. 9, two cooling water passages 7b and 7c are arranged in the axial direction of the motor housing 2 (motor axial direction), and the respective cooling water passages 7b and 7c are provided via a water passage bent portion 7d. Communicate.

各冷却水路7b,7cは、前記実施形態1、2と同様にモータハウジング2の内部に円周方向に沿って形成されており、冷却水路7bの冷却水供給口8を設けた先端側には、冷却水供給口8から水路曲折部7d側に延びるように形成された水路延長部7aが一体に設けられている。冷却水路7cの先端部に冷却水排水口9が設けられている。   Each of the cooling water channels 7b and 7c is formed along the circumferential direction inside the motor housing 2 in the same manner as in the first and second embodiments. The cooling water channel 7b has a cooling water supply port 8 provided at the front end side. The water channel extension 7a formed so as to extend from the cooling water supply port 8 toward the water channel bent portion 7d is integrally provided. A cooling water drain port 9 is provided at the tip of the cooling water channel 7c.

水路延長部7aの先端近傍と冷却水排水口9は、水路曲折部7dの先端側と近接するように対向している。また、水路延長部7aの先端近傍と冷却水排水口9は、モータハウジング2の軸線方向(モータ軸方向)に対して略同じ位置に設けられている。   The vicinity of the distal end of the water channel extension 7a and the cooling water drain port 9 face each other so as to be close to the front end side of the water channel bent portion 7d. Further, the vicinity of the tip of the water channel extension 7 a and the cooling water drain port 9 are provided at substantially the same position with respect to the axial direction (motor axial direction) of the motor housing 2.

本実施形態のモータハウジング構造を有するモータでは、ポンプ(不図示)の運転により冷却水循環配管(不図示)を通して冷却水供給口8から冷却水がモータハウジング2内の冷却水路7bに供給される。冷却水路7bに供給された冷却水は、水路曲折部7dを通して冷却水路7cに流入し、冷却水排水口9から排出される。このように、モータ駆動時に発生する熱によって温度上昇するモータを、モータハウジング2の内部の冷却水路7b、水路曲折部7d、冷却水路7cを流れる冷却水によって冷却することができる。   In the motor having the motor housing structure of the present embodiment, the cooling water is supplied from the cooling water supply port 8 to the cooling water passage 7b in the motor housing 2 through the cooling water circulation pipe (not shown) by the operation of the pump (not shown). The cooling water supplied to the cooling water channel 7 b flows into the cooling water channel 7 c through the water channel bending portion 7 d and is discharged from the cooling water drain port 9. As described above, the motor that rises in temperature due to the heat generated when the motor is driven can be cooled by the cooling water flowing through the cooling water passage 7b, the water-bending portion 7d, and the cooling water passage 7c inside the motor housing 2.

このように、本実施形態では、モータハウジング2の軸線方向に複数本の冷却水路(本実施形態では、2本の冷却水路7b,7c)を設けているので、幅広の1本の冷却水路を設ける場合に比べて1本あたりの流路断面積を小さくすることができる。これにより、各冷却水路7b,7cを流れる冷却水の流速が増加し、冷却能力をより高めることができる。   Thus, in this embodiment, since a plurality of cooling water channels (in this embodiment, the two cooling water channels 7b and 7c) are provided in the axial direction of the motor housing 2, one wide cooling water channel is provided. Compared with the case where it provides, the channel cross-sectional area per one can be made small. Thereby, the flow velocity of the cooling water flowing through each cooling water channel 7b, 7c is increased, and the cooling capacity can be further increased.

また、本実施形態では、モータハウジング2の内部において、右回転方向(時計回り方向)に冷却水路7bの冷却水供給口8から水路曲折部7d側に延びるように水路延長部7aを形成したことにより、モータハウジング2の円周方向における肉厚が略均一になることで、モータハウジング2の円周方向における剛性が略均一となる。これにより、モータハウジング2の軸線方向に複数本の冷却水路(本実施形態では、2本の冷却水路7b,7c)を配置した場合でも、前記実施形態1、2と同様の効果を得ることができる。   In the present embodiment, the water channel extension 7a is formed in the motor housing 2 so as to extend from the cooling water supply port 8 of the cooling water channel 7b toward the water channel bent portion 7d in the clockwise direction (clockwise direction). As a result, the thickness of the motor housing 2 in the circumferential direction becomes substantially uniform, so that the rigidity of the motor housing 2 in the circumferential direction becomes substantially uniform. Thereby, even when a plurality of cooling water channels (in this embodiment, two cooling water channels 7b and 7c) are arranged in the axial direction of the motor housing 2, the same effects as those of the first and second embodiments can be obtained. it can.

〈実施形態4〉
本実施形態では、図10に示すように、モータハウジング2の軸線方向(モータ軸方向)に2本の冷却水路7b,7cを配置し、各冷却水路7b,7cは水路曲折部7dを介して連通している。
<Embodiment 4>
In the present embodiment, as shown in FIG. 10, two cooling water passages 7b and 7c are arranged in the axial direction of the motor housing 2 (motor axial direction), and the respective cooling water passages 7b and 7c are provided via the water passage bent portion 7d. Communicate.

各冷却水路7b,7cは、前記実施形態1、2と同様にモータハウジング2の内部に円周方向に沿って形成されており、冷却水路7bの先端部に冷却水供給口8が、冷却水路7cの先端部に冷却水排水口9がそれぞれ設けられている。冷却水路7bと冷却水路7cの各先端部は、モータハウジング2の軸線方向(モータ軸方向)に対して、冷却水路7cの先端部の方が下方側に位置するようにずれている。また、本実施形態では、冷却水路7cの水路曲折部7dから冷却水排水口9側に延びるように形成された水路延長部7aが一体に設けられている。   Each of the cooling water channels 7b and 7c is formed along the circumferential direction inside the motor housing 2 in the same manner as in the first and second embodiments, and the cooling water supply port 8 is provided at the tip of the cooling water channel 7b. A cooling water drain port 9 is provided at the tip of 7c. The respective leading end portions of the cooling water passage 7b and the cooling water passage 7c are shifted with respect to the axial direction (motor axial direction) of the motor housing 2 so that the leading end portion of the cooling water passage 7c is positioned on the lower side. Moreover, in this embodiment, the water channel extension part 7a formed so that it may extend in the cooling water drain port 9 side from the water channel bending part 7d of the cooling water channel 7c is provided integrally.

このような冷却水路7b、水路曲折部7d、冷却水路7c、水路延長部7aの配置構成により、モータハウジング2の内部においてモータハウジング2の軸線方向(モータ軸方向)に対して、モータハウジング2の円周方向の少なくとも一部分には、冷却水路7b、水路曲折部7d、冷却水路7c、水路延長部7aうちのいずれか一つ以上の一部が位置している。   With such an arrangement configuration of the cooling water channel 7b, the water channel bending portion 7d, the cooling water channel 7c, and the water channel extension portion 7a, the motor housing 2 is arranged in the motor housing 2 with respect to the axial direction of the motor housing 2 (motor axial direction). At least a part of one or more of the cooling water channel 7b, the water channel bending portion 7d, the cooling water channel 7c, and the water channel extension 7a is located in at least a part of the circumferential direction.

本実施形態のモータハウジング構造を有するモータでは、ポンプ(不図示)の運転により冷却水循環配管(不図示)を通して冷却水供給口8から冷却水がモータハウジング2内の冷却水路7bに供給される。冷却水路7bに供給された冷却水は、水路曲折部7dを通して冷却水路7cに流入し、冷却水排水口9から排出される。このように、モータ駆動時に発生する熱によって温度上昇するモータを、モータハウジング2の内部の冷却水路7b、水路曲折部7d、冷却水路7cを流れる冷却水によって冷却することができる。   In the motor having the motor housing structure of the present embodiment, the cooling water is supplied from the cooling water supply port 8 to the cooling water passage 7b in the motor housing 2 through the cooling water circulation pipe (not shown) by the operation of the pump (not shown). The cooling water supplied to the cooling water channel 7 b flows into the cooling water channel 7 c through the water channel bending portion 7 d and is discharged from the cooling water drain port 9. As described above, the motor that rises in temperature due to the heat generated when the motor is driven can be cooled by the cooling water flowing through the cooling water passage 7b, the water-bending portion 7d, and the cooling water passage 7c inside the motor housing 2.

このように、本実施形態においても、実施形態3と同様にモータハウジング2の軸線方向に複数本の冷却水路(本実施形態では、2本の冷却水路7b,7c)を設けているので、冷却能力をより高めることができる。   As described above, in the present embodiment as well, as in the third embodiment, a plurality of cooling water passages (in this embodiment, two cooling water passages 7b and 7c) are provided in the axial direction of the motor housing 2. You can increase your ability.

また、本実施形態では、モータハウジング2の内部において、右回転方向(時計回り方向)に冷却水路7cの水路曲折部7dから冷却水排水口9側に延びるように水路延長部7aが形成されている。更に、モータハウジング2の内部においてモータハウジング2の軸線方向(モータ軸方向)に対して、モータハウジング2の円周方向の少なくとも一部分には、冷却水路7b、水路曲折部7d、冷却水路7c、水路延長部7aうちのいずれか一つ以上の一部が位置しているので、モータハウジング2の軸線方向(モータ軸方向)における肉厚の均一化の向上を図ることができる。これにより、モータハウジング2の軸線方向(モータ軸方向)に対する剛性の均一化をより高めることができる。   In the present embodiment, the water channel extension 7a is formed in the motor housing 2 so as to extend from the water channel bent portion 7d of the cooling water channel 7c toward the cooling water drain port 9 in the clockwise direction (clockwise direction). Yes. Further, at least a part of the motor housing 2 in the circumferential direction with respect to the axial direction of the motor housing 2 (motor axial direction) inside the motor housing 2 includes a cooling water channel 7b, a water channel bending portion 7d, a cooling water channel 7c, and a water channel. Since any one or more of the extension portions 7a are located, it is possible to improve the uniformity of the thickness in the axial direction of the motor housing 2 (motor axial direction). Thereby, the uniformity of the rigidity with respect to the axial direction (motor shaft direction) of the motor housing 2 can be further increased.

なお、実施形態3、4では、モータハウジング2の軸線方向(モータ軸方向)に2本の冷却水路を配置した構成であったが、モータハウジング2の軸線方向の長さに応じて3本以上の冷却水路を配置するようにしてもよい。   In the third and fourth embodiments, the two cooling water channels are arranged in the axial direction (motor axial direction) of the motor housing 2, but three or more depending on the length of the motor housing 2 in the axial direction. The cooling water channel may be arranged.

前記各実施形態では、電気自動車やハイブリット車両の駆動系に設置される走行駆動用モータにおけるモータハウジング構造の例であったが、これ以外にも、モータハウジングの内部に形成した冷却水路に冷却水を循環させて冷却する構成の電動モータにおいても同様に、本発明を適用することができる。   In each of the above embodiments, the example of the motor housing structure in the travel drive motor installed in the drive system of the electric vehicle or the hybrid vehicle has been described. However, in addition to this, the cooling water is formed in the cooling water passage formed inside the motor housing. Similarly, the present invention can be applied to an electric motor configured to circulate and cool the air.

1 モータ
2 モータハウジング(ハウジング)
3 コイル
4 ステータ
7、7b、7c 冷却水路(冷却媒体流路)
7a 水路延長部(流路延長部)
7d 水路曲折部(連通流路部)
8 冷却水供給口(冷却媒体供給口)
9 冷却水排水口(冷却媒体排水口)
1 Motor 2 Motor housing (housing)
3 Coil 4 Stator 7, 7b, 7c Cooling water channel (cooling medium channel)
7a Water channel extension (channel extension)
7d water channel bend (communication flow path)
8 Cooling water supply port (cooling medium supply port)
9 Cooling water drain (cooling medium drain)

Claims (5)

モータを冷却する冷却媒体が循環される冷却媒体流路がハウジング内部の円周方向に沿って設けられ、前記冷却媒体流路の一端側に冷却媒体供給口が、前記冷却媒体流路の他端側に冷却媒体排出口が設けられており、前記冷却媒体流路がハウジング内部の円周方向の略全周ではなく一部の所定範囲に位置するように設けられているモータのハウジング構造において、
前記冷却媒体流路の前記冷却媒体供給口又は前記冷却媒体排出口のいずれか一方から、ハウジング内部の円周方向に沿って延びる流路延長部を一体に形成したことを特徴とするモータのハウジング構造。
A cooling medium flow path through which a cooling medium for cooling the motor is circulated is provided along a circumferential direction inside the housing, and a cooling medium supply port is provided at one end side of the cooling medium flow path, and the other end of the cooling medium flow path. In the housing structure of the motor, provided with a cooling medium discharge port on the side, and the cooling medium flow path is located in a part of a predetermined range instead of substantially the entire circumference in the circumferential direction inside the housing.
A motor housing, wherein a flow path extension extending along a circumferential direction inside the housing is integrally formed from either the cooling medium supply port or the cooling medium discharge port of the cooling medium flow path. Construction.
前記流路延長部の円周方向に延びる閉塞している先端側は、前記冷却媒体流路の他端側の前記冷却媒体排出口又は前記冷却媒体供給口近傍に位置していることを特徴とする請求項1に記載のモータのハウジング構造。   The closed tip side extending in the circumferential direction of the flow path extension is located in the vicinity of the cooling medium discharge port or the cooling medium supply port on the other end side of the cooling medium flow path. The motor housing structure according to claim 1. 前記流路延長部の円周方向に延びる閉塞している先端側が、該流路延長部の基端側よりも下方側に位置していることを特徴とする請求項2に記載のモータのハウジング構造。   3. The motor housing according to claim 2, wherein a closed distal end side extending in a circumferential direction of the flow path extension portion is positioned below a proximal end side of the flow path extension portion. Construction. 前記冷却媒体流路は、前記ハウジングの軸線方向に複数本されており、前記各冷却媒体流路は連通流路部を介して連通していることを特徴とする請求項1に記載のモータのハウジング構造。   2. The motor according to claim 1, wherein a plurality of the cooling medium flow paths are provided in the axial direction of the housing, and each of the cooling medium flow paths is connected via a communication flow path portion. Housing structure. 前記ハウジングの軸線方向に対して、該ハウジングの円周方向の少なくとも一部分には、前記冷却媒体流路、前記流路延長部、前記連通流路部のうちの少なくとも一つが位置していることを特徴とする請求項4に記載のモータのハウジング構造。   At least one of the cooling medium flow path, the flow path extension, and the communication flow path is located at least in a part of the housing in the circumferential direction with respect to the axial direction of the housing. The motor housing structure according to claim 4.
JP2009054712A 2009-03-09 2009-03-09 Motor housing structure Active JP4935839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054712A JP4935839B2 (en) 2009-03-09 2009-03-09 Motor housing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054712A JP4935839B2 (en) 2009-03-09 2009-03-09 Motor housing structure

Publications (2)

Publication Number Publication Date
JP2010213402A JP2010213402A (en) 2010-09-24
JP4935839B2 true JP4935839B2 (en) 2012-05-23

Family

ID=42972978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054712A Active JP4935839B2 (en) 2009-03-09 2009-03-09 Motor housing structure

Country Status (1)

Country Link
JP (1) JP4935839B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069693B (en) 2011-02-18 2014-01-01 本田技研工业株式会社 Case for rotating electrical machine
JP5831768B2 (en) * 2011-11-11 2015-12-09 株式会社安川電機 Rotating electric machine and vehicle
JP2013141334A (en) * 2011-12-28 2013-07-18 Denso Corp Rotary electric machine
KR101927216B1 (en) * 2012-06-22 2018-12-10 엘지이노텍 주식회사 Motor
JP6106873B2 (en) * 2012-11-26 2017-04-05 株式会社明電舎 Motor frame waterway structure
KR20140081936A (en) * 2012-12-18 2014-07-02 현대자동차주식회사 Motor unit having cooling channel
JP2014140276A (en) * 2013-01-21 2014-07-31 Mitsubishi Electric Corp Liquid-cooled rotary electric machine
JP2017070085A (en) * 2015-09-30 2017-04-06 Ntn株式会社 Electric motor
JP7412204B2 (en) * 2020-02-10 2024-01-12 株式会社Subaru Motor housing and motor unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288445A (en) * 1988-09-26 1990-03-28 Nippon Sheet Glass Co Ltd Washing method for glass
JP3758631B2 (en) * 2002-10-15 2006-03-22 三菱ふそうトラック・バス株式会社 Motor cooling structure for hybrid electric vehicle
JP2006197785A (en) * 2004-12-14 2006-07-27 Nissan Motor Co Ltd Cooling device of motor

Also Published As

Publication number Publication date
JP2010213402A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4935839B2 (en) Motor housing structure
KR102030302B1 (en) Motor rotor holder and motor
JP5358667B2 (en) Permanent magnet generator
US8492952B2 (en) Coolant channels for electric machine stator
US8593020B2 (en) Electric motor and electric vehicle having the same
KR101394600B1 (en) Cooling system of water jacket style generator
KR20130141502A (en) Coolant channels for electric machine stator
CN102428629A (en) Dual-rotor motor having heat dissipation
JP5331521B2 (en) Toroidal winding motor
JP4066982B2 (en) Stator cooling structure for disk-type rotating electrical machine
US20220213874A1 (en) Cooling device, motor, and wind turbine set
JP2019176648A (en) Stator frame, stator, and rotary electric machine
JP4576309B2 (en) Rotating electric machine
US10298087B2 (en) Electric machine
CN112470372A (en) Cooling radiator for motor fan unit
JPH07288949A (en) Electric motor to drive vehicle
JP4928986B2 (en) Fully closed electric motor for vehicle drive
KR101276065B1 (en) Cooling system of water jacket style generator
JP5892091B2 (en) Multi-gap rotating electric machine
JP2019154208A (en) Rotary electric machine
CN210404939U (en) Motor and vehicle
KR101412589B1 (en) Electric motor and electric vehicle having the same
JP2007318919A (en) Totally-enclosed motor for vehicles
KR20130032828A (en) Electric machine module cooling system and method
JP2011250601A (en) Electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111207

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150