JP4928986B2 - Fully closed electric motor for vehicle drive - Google Patents

Fully closed electric motor for vehicle drive Download PDF

Info

Publication number
JP4928986B2
JP4928986B2 JP2007054318A JP2007054318A JP4928986B2 JP 4928986 B2 JP4928986 B2 JP 4928986B2 JP 2007054318 A JP2007054318 A JP 2007054318A JP 2007054318 A JP2007054318 A JP 2007054318A JP 4928986 B2 JP4928986 B2 JP 4928986B2
Authority
JP
Japan
Prior art keywords
rotor
electric motor
rotor core
fully
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007054318A
Other languages
Japanese (ja)
Other versions
JP2008220054A (en
Inventor
信行 八木
茂智 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007054318A priority Critical patent/JP4928986B2/en
Publication of JP2008220054A publication Critical patent/JP2008220054A/en
Application granted granted Critical
Publication of JP4928986B2 publication Critical patent/JP4928986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

本発明は、鉄道車両を駆動するための車両駆動用全閉型電動機に関する。   The present invention relates to a vehicle drive fully-closed electric motor for driving a railway vehicle.

一般に、電車等の鉄道車両では、車体の床下に配置された台車の中に駆動用電動機を装架し、この電動機の回転力を歯車装置を介して車輪に伝達し、車両を走行させる。   In general, in a railway vehicle such as a train, a drive motor is mounted in a carriage disposed under the floor of the vehicle body, and the rotational force of the motor is transmitted to wheels via a gear device to run the vehicle.

従来、このような車両駆動用電動機には、回転軸に設けた通風ファンによって外気を機内に流通させて冷却する開放自己通風方式の電動機を使用していた。しかし、近年になって、外気流入による機内の汚損が無く、長期間分解せずに済ますことができる全閉型電動機の適用が検討されてきている。   Conventionally, such an electric motor for driving a vehicle has used an open self-ventilation type motor that cools the outside air by circulating it through the ventilation fan provided on the rotating shaft. However, in recent years, the application of a fully-closed electric motor that can be prevented from being disassembled for a long period of time without being polluted by outside air inflow has been studied.

この全閉型電動機の場合、開放自己通風方式の電動機に比べて冷却性能が低いため、電動機温度を規定値内に保つためには電動機が大形化してしまい、台車内に収納するのが困難になる問題点がある。そこで、全閉型電動機を車両駆動用に採用するためには、冷却性能を向上させ、小形化を図る必要がある。   In the case of this fully-closed motor, the cooling performance is lower than that of an open self-ventilation type motor. Therefore, the motor becomes large in order to keep the motor temperature within the specified value, and it is difficult to store it in the carriage. There is a problem that becomes. Therefore, in order to employ a fully-closed electric motor for driving a vehicle, it is necessary to improve the cooling performance and reduce the size.

冷却性能を向上させた車両駆動用全閉型電動機の例として、特開2006−25521号公報(特許文献1)に記載された構造のものが知られている。この従来の車両駆動用全閉型電動機は、図10、図11に示すようなものであり、フレーム1の内周部に円筒状のステータ鉄心2を固定し、ステータ鉄心2の内周部の円周上に溝を設け、その溝にステータコイル3を収納している。フレーム1の一端側には、ベアリング6を内蔵したベアリングブラケット4が取り付けてあり、他端側には、ベアリング7を内蔵したベアリングブラケット5が取り付けてある。   As an example of a vehicle-drive fully-closed electric motor with improved cooling performance, a structure described in Japanese Patent Application Laid-Open No. 2006-25521 (Patent Document 1) is known. This conventional vehicle-driving fully-closed electric motor is as shown in FIGS. 10 and 11, and a cylindrical stator core 2 is fixed to the inner peripheral portion of the frame 1, and the inner peripheral portion of the stator core 2 is fixed. A groove is provided on the circumference, and the stator coil 3 is accommodated in the groove. A bearing bracket 4 incorporating a bearing 6 is attached to one end side of the frame 1, and a bearing bracket 5 incorporating a bearing 7 is attached to the other end side.

ステータ鉄心2の内周側に円筒状のロータ鉄心9が配置してあり、このロータ鉄心9の中心部にロータシャフト8が取り付けてある。ロータシャフト8の両端部それぞれは、ベアリング6,7それぞれによって回転自在に軸支させている。ロータ鉄心9の外周部の円周上に溝を設け、その溝の中にロータバー10を収納している。   A cylindrical rotor core 9 is disposed on the inner peripheral side of the stator core 2, and a rotor shaft 8 is attached to the center of the rotor core 9. Both end portions of the rotor shaft 8 are rotatably supported by bearings 6 and 7, respectively. Grooves are provided on the circumference of the outer peripheral portion of the rotor core 9, and the rotor bar 10 is accommodated in the grooves.

このロータ鉄心9には、軸方向に貫通する通風穴9aが形成してある。ロータ鉄心9の駆動側側面部(図10において右側)に、冷却ファン11が取り付けてあり、反駆動側側面部(図10において左側)に、冷却ファン12が取り付けてある。   The rotor iron core 9 is formed with a ventilation hole 9a penetrating in the axial direction. A cooling fan 11 is attached to the drive side surface (right side in FIG. 10) of the rotor core 9, and a cooling fan 12 is attached to the non-drive side surface (left side in FIG. 10).

前者の冷却ファン11の外周部とフレーム1の内周部との間には、円周状の微小間隙で成るラビリンス13が形成してある。後者の冷却ファン12の外周部とフレーム1の内周部との間にも、同様にラビリンス14が形成してある。また、冷却ファン11の両壁面には、ブレード11a,11bが形成してある。冷却ファン12の一方の壁面には、ブレード12aが形成してある。   Between the outer peripheral part of the former cooling fan 11 and the inner peripheral part of the frame 1, a labyrinth 13 composed of a circumferential minute gap is formed. A labyrinth 14 is similarly formed between the outer periphery of the latter cooling fan 12 and the inner periphery of the frame 1. Further, blades 11 a and 11 b are formed on both wall surfaces of the cooling fan 11. A blade 12 a is formed on one wall surface of the cooling fan 12.

フレーム1の駆動側側面の外周部に排気口1bが設けてあり、駆動側ベアリングブラケット4の壁面に入気口4aが設けてある。同様に、フレーム1の反駆動側側面の外周部に排気口1cが設けてあり、反駆動側ベアリングブラケット5の壁面に入気口5aが設けてある。フレーム1の外周面には、多数の冷却フィン1aが形成してある。   An exhaust port 1 b is provided on the outer peripheral portion of the driving side surface of the frame 1, and an inlet port 4 a is provided on the wall surface of the driving side bearing bracket 4. Similarly, an exhaust port 1 c is provided on the outer peripheral portion of the side surface of the non-driving side of the frame 1, and an air inlet port 5 a is provided on the wall surface of the non-driving side bearing bracket 5. A large number of cooling fins 1 a are formed on the outer peripheral surface of the frame 1.

電動機全体は、フレーム1の外周部に設けた取付腕1d,1eをボルト1f,1gにて台車枠100に固定することでこの台車に装架してあり、ロータシャフト8の駆動側軸端部8aを継手を介して駆動歯車装置に直結させている。   The entire motor is mounted on the carriage by fixing mounting arms 1d and 1e provided on the outer periphery of the frame 1 to the carriage frame 100 with bolts 1f and 1g. 8a is directly connected to the drive gear device through a joint.

このような従来の全閉型電動機は、運転時にはロータシャフト8の回転に伴う冷却ファン11,12の回転により、ブレード11a,12aのファン作用によって外気を入気口4a,5aから冷却ファンそれぞれの側面部に吸い込み、排気口1b,1cから排気させるように外気を流通させる。このように冷却ファン11,12の側面に外気を流通させることにより、ロータに発生した熱と熱せられた機内空気の熱を冷却ファン11,12を介して流通外気に放出させる。また、ステータ鉄心2に発生した熱と機内空気の熱は、フレーム1の外周部に設けた冷却フィン1aによっても放熱させて機内を効果的に冷却する。   In such a conventional fully-closed electric motor, during operation, the cooling fans 11 and 12 are rotated along with the rotation of the rotor shaft 8 so that the outside air is supplied from the inlets 4a and 5a by the fan action of the blades 11a and 12a. Outside air is circulated so as to be sucked into the side surface and exhausted from the exhaust ports 1b and 1c. In this way, by allowing the outside air to flow through the side surfaces of the cooling fans 11 and 12, the heat generated in the rotor and the heat of the heated internal air are released to the flowing outside air via the cooling fans 11 and 12. Further, the heat generated in the stator core 2 and the heat of the air inside the machine are also dissipated by the cooling fins 1 a provided on the outer periphery of the frame 1 to effectively cool the inside of the machine.

上述したように冷却性能を高めた車両駆動用全閉型電動機は、ロータ鉄心9にロータバー10を設けた構造のロータを備えたものである。ところが、さらに近年には、ロータに永久磁石を埋め込んだ交流同期電動機が、効率の向上による省エネルギと小形軽量化を図る上で有利になるため、開発が進められている。この永久磁石をロータに埋め込んだ全閉型電動機の場合、永久磁石の劣化を来さないための許容温度がロータバーのものよりも低い。そのため、全閉型の永久磁石同期電動機の場合、従来以上にロータの温度上昇を抑制する必要があり、ロータの冷却を従来以上に向上させる必要がある。同時に、非分解による保守作業の省力化の要望と共に、環境改善の見地から運転時の騒音低減の要望も大きい。   As described above, the fully-driving electric motor for driving a vehicle with improved cooling performance is provided with a rotor having a structure in which a rotor bar 10 is provided on a rotor core 9. However, in recent years, an AC synchronous motor in which a permanent magnet is embedded in a rotor is advantageous in terms of energy saving and reduction in size and weight by improving efficiency. In the case of a fully closed electric motor in which the permanent magnet is embedded in the rotor, the allowable temperature for preventing the permanent magnet from deteriorating is lower than that of the rotor bar. Therefore, in the case of a fully closed permanent magnet synchronous motor, it is necessary to suppress the temperature rise of the rotor more than before, and it is necessary to improve the cooling of the rotor more than before. At the same time, in addition to the demand for labor-saving maintenance work by non-disassembly, there is also a great demand for noise reduction during operation from the viewpoint of environmental improvement.

上述した従来の全閉型電動機の騒音は、冷却ファンの風切り音(送風音)が支配的であり、図10、図11に示した構造の従来の全閉型電動機では開放自己通風冷却方式の電動機に比べて騒音は低下しているものの、さらなる低騒音化が求められている。
特開2006−25521号公報
The noise of the conventional fully-closed motor described above is dominated by the wind noise (fan noise) of the cooling fan. The conventional fully-closed motor having the structure shown in FIGS. Although the noise is lower than that of an electric motor, further noise reduction is required.
JP 2006-25521 A

本発明は、上述した従来技術の課題に鑑みてなされたもので、全閉型永久磁石電動機にあって、ロータの冷却性能を向上させてロータに埋め込まれた永久磁石が受ける温度影響を小さくできて小形化が図れ、同時に、回転時の騒音も低減できる車両駆動用全閉型電動機を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art. In a fully-closed permanent magnet motor, the cooling performance of the rotor can be improved and the temperature effect on the permanent magnet embedded in the rotor can be reduced. It is an object of the present invention to provide a vehicle drive fully-closed electric motor that can be reduced in size and at the same time can reduce noise during rotation.

本発明は、フレームの内周側に取り付けられた円筒状のステータ鉄心、前記フレームの軸方向両端部それぞれに取り付けられ、内蔵したベアリングを介してロータシャフトを支持するベアリングブラケット前記ステータ鉄心の内周側において、前記ロータシャフトに取り付けられ、その外周部近くに永久磁石が埋め込まれたロータ鉄心記ロータ鉄心の軸方向両端面それぞれに密着して取り付けられ、それらの外周面と前記フレームとの間に円周状の微小間隙を形成する2つの放熱体とを備え、前記2つの放熱体それぞれの外側側面と前記ベアリングブラケットそれぞれの内側側面との間に外気導入空間を設け、前記2つの放熱体の前記ロータ鉄心と密着する面を、前記ロータ鉄心の外径近傍に至る径にし、かつ、前記2つの放熱体の機内空気、外気に接する壁面を、円周方向で波打ち状にして複数の凹凸部を有する形状にした車両駆動用全閉型電動機を特徴とする。 The present invention includes a bearing bracket for supporting the rotor shaft through the inner circumferential side cylindrical stator core attached to a frame, mounted on both axial ends respectively of the frame, the built-in bearing, said stator core the inner circumferential side of, attached to the rotor shaft, a rotor core in which a permanent magnet is embedded near the outer periphery, is mounted in close contact with the axial end surfaces respectively of the front SL rotor core, and their outer circumferential surface with two heat radiating body forming a circumferential small gap between the frame, the outside air introduction space provided between the two heat radiator respective outer sides with the bearing bracket respective inner side surface , a surface in close contact with the two of the rotor core of the radiator, the diameter leading outside径近beside the rotor core, and the two radiator Cabin air, a wall surface in contact with the outside air, and wherein the totally enclosed type electric motor for driving a vehicle that is a shape having a plurality of uneven portions in the shape waving in a circumferential direction.

本発明によれば、ロータ鉄心で発生する熱は、そのロータ鉄心の両側面それぞれに広い範囲で密着して設けた放熱体に効率良く伝達でき、そのため、放熱体より外気への放熱が容易になって高い冷却性能が得られ、永久磁石が受ける温度影響を低減でき、同時に、電動機全体の冷却性能が向上するために電動機の小形化が図れる。   According to the present invention, the heat generated in the rotor iron core can be efficiently transferred to the heat dissipating body provided in close contact with both sides of the rotor iron core, so that heat dissipation from the heat dissipating body to the outside air is easy. Thus, a high cooling performance can be obtained, the temperature effect on the permanent magnet can be reduced, and at the same time, the cooling performance of the entire motor can be improved, so that the size of the motor can be reduced.

また本発明によれば、ロータ鉄心の端面に取り付けた放熱体をロータ鉄心と共に回転させることで、ロータ鉄心の熱を従来の冷却ファンに代えてこの放熱体によって外気に放熱させる構造としているので、従来の冷却ファンのブレードによる風切り音のような大きな騒音の発生を抑制でき、低騒音化が図れる。   In addition, according to the present invention, the heat dissipating body attached to the end face of the rotor core is rotated together with the rotor core so that the heat of the rotor core is dissipated to the outside air by this heat dissipating body instead of the conventional cooling fan. Generation of loud noise such as wind noise caused by the blades of a conventional cooling fan can be suppressed, and noise can be reduced.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施の形態)図1、図2を用いて、本発明の第1の実施の形態の車両駆動用全閉型電動機について説明する。フレーム1の内周部に円筒状のステータ鉄心2を固定し、このステータ鉄心2の内周面に形成された複数の溝それぞれの中にステータコイル3を収容し、固定している。フレーム1の外周面には多数の冷却フィン1aが形成してある。フレーム1の軸方向の一端部、すなわち駆動側端部(図1において右側端部)に、ベアリング6を内蔵したベアリングブラケット4が取り付けてある。フレーム1の反駆動側端部(図1において左側端部)に、ベアリンク7を内蔵したベアリングブラケット5が取り付けてある。   (First Embodiment) A fully-closed electric motor for driving a vehicle according to a first embodiment of the present invention will be described with reference to FIGS. A cylindrical stator core 2 is fixed to the inner peripheral portion of the frame 1, and the stator coil 3 is accommodated and fixed in each of a plurality of grooves formed on the inner peripheral surface of the stator core 2. A large number of cooling fins 1 a are formed on the outer peripheral surface of the frame 1. A bearing bracket 4 having a built-in bearing 6 is attached to one end of the frame 1 in the axial direction, that is, a drive side end (right end in FIG. 1). A bearing bracket 5 having a built-in bare link 7 is attached to an end portion on the opposite side of the frame 1 (left end portion in FIG. 1).

ステータ鉄心2の内周側には、ロータ鉄心9が配置してあり、このロータ鉄心9の中心部にロータシャフト8が結合してある。このロータシャフト8の軸両端部それぞれは、ベアリング6,7によって軸支している。ロータ鉄心9の外周部には、複数の永久磁石15が埋め込んである。   A rotor iron core 9 is disposed on the inner peripheral side of the stator iron core 2, and a rotor shaft 8 is coupled to the center of the rotor iron core 9. Both end portions of the shaft of the rotor shaft 8 are supported by bearings 6 and 7. A plurality of permanent magnets 15 are embedded in the outer peripheral portion of the rotor core 9.

ロータ鉄心9の駆動側端部には放熱体16が取り付けてあり、ロータ鉄心9の反駆動側端部にも放熱体17が取り付けてある。放熱体16の外周部とフレーム1の駆動側端部内周部との間の円周上に、微小間隙で成るラビリンス18が形成してある。同様に、放熱体17の外周部とフレーム1の反駆動側端部内周部との間の円周上にも、微小間隙で成るラビリンス19が形成してある。放熱体16,17のロータ鉄心9側の側面それぞれは、外径がロータ鉄心9の外径の近傍まで拡大させ、ロータ鉄心9の両側面それぞれに密着した状態で取り付けてある。   A heat radiator 16 is attached to the drive side end of the rotor core 9, and a heat radiator 17 is also attached to the counter drive side end of the rotor core 9. On the circumference between the outer peripheral part of the radiator 16 and the inner peripheral part of the driving side end of the frame 1, a labyrinth 18 composed of a minute gap is formed. Similarly, a labyrinth 19 composed of a minute gap is also formed on the circumference between the outer peripheral portion of the heat radiating body 17 and the inner peripheral portion of the opposite end portion of the frame 1 on the driving side. The side surfaces of the radiators 16 and 17 on the side of the rotor core 9 are attached so that the outer diameter is enlarged to the vicinity of the outer diameter of the rotor core 9 and is in close contact with both side surfaces of the rotor core 9.

放熱体16の壁面には多数の機外側凹状部16aと機内側凹状部16bを内外交互に円周上に形成して、この壁面を波打ち状にしている。同様に、放熱体17の壁面にも、多数の機外側凹状部と機内側凹状部を内外交互に円周上に形成して、この壁面を波打ち状にしている。   A large number of machine-side concave portions 16a and machine-side concave portions 16b are formed on the circumference alternately on the wall surface of the radiator 16 so that the wall surface is corrugated. Similarly, on the wall surface of the heat dissipating body 17, a large number of machine-side concave portions and machine-side concave portions are alternately formed on the circumference to make the wall surface corrugated.

放熱体16とベアリングブラケット4との間には空間を形成し、ベアリングブラケット4におけるベアリング6よりもやや外側の位置にはこの空間に連通する入気口4aを形成し、フレーム1の駆動側端外周部にはこの空間に連通する排気口1bを形成してある。同様に、放熱体17とベアリングブラケット5との間にも空間を形成し、ベアリングブラケット5におけるベアリング7よりもやや外側の位置にはこの空間に連通する入気口5aを形成し、フレーム1の反駆動側端外周部にはこの空間に連通する排気口1cを形成してある。   A space is formed between the radiator 16 and the bearing bracket 4, and an inlet 4 a communicating with this space is formed at a position slightly outside the bearing 6 in the bearing bracket 4, and the driving side end of the frame 1 is formed. An exhaust port 1b communicating with this space is formed in the outer peripheral portion. Similarly, a space is also formed between the heat radiating body 17 and the bearing bracket 5, and an inlet 5 a communicating with this space is formed at a position slightly outside the bearing 7 in the bearing bracket 5. An exhaust port 1c communicating with this space is formed in the outer periphery of the non-driving side end.

次に、上記構成の車両駆動用全閉型電動機の動作について説明する。永久磁石15を埋め込むことでロータ鉄心9の円周方向に磁気的凹凸が発生しているので、ステータコイル3に交流電力を通電して回転磁界を発生させることで、ロータ鉄心9は磁気誘導されて回転する。この運転時には、電動機内から発生した熱はフレーム1の外周面より外気に放熱される。このとき、フレーム1の外周面には多数の冷却フィン1aが形成されているので放熱面積が広く、冷却フィン1aにより効率良く熱放出できる。   Next, the operation of the vehicle drive fully-closed motor configured as described above will be described. Since the magnetic irregularities are generated in the circumferential direction of the rotor core 9 by embedding the permanent magnet 15, the rotor core 9 is magnetically induced by energizing the stator coil 3 with an alternating current to generate a rotating magnetic field. Rotate. During this operation, heat generated from the electric motor is radiated from the outer peripheral surface of the frame 1 to the outside air. At this time, since a large number of cooling fins 1a are formed on the outer peripheral surface of the frame 1, the heat radiation area is wide, and the cooling fins 1a can efficiently release heat.

また、ロータ鉄心9の熱は、ロータ鉄心9の両端部に設けられた放熱体16,17に伝達した後、放熱体16,17より放熱体の機外側空間に導入された外気に放出される。ここで、放熱体16,17はロータ鉄心9の側面の外径近傍までの径にしてそれに密着して取り付けてあるので、ロータ鉄心9の熱が効率良く放熱体16,17に伝達され、ロータ鉄心9の冷却も効率良くできる。   The heat of the rotor core 9 is transmitted to the heat dissipating bodies 16 and 17 provided at both ends of the rotor core 9 and then released from the heat dissipating bodies 16 and 17 to the outside air introduced into the outside space of the heat dissipating body. . Here, since the heat dissipating bodies 16 and 17 have a diameter up to the vicinity of the outer diameter of the side surface of the rotor core 9 and are attached in close contact therewith, the heat of the rotor core 9 is efficiently transmitted to the heat dissipating bodies 16 and 17. The iron core 9 can be cooled efficiently.

さらに、放熱体16の壁面は、多数の機外側凹状部16aと機内側凹状部16bを円周方向で内外交互に形成して、この壁面を波打ち状にしているので、放熱体16と冷却外気との接触面積が増大し、放熱体から外気への放熱が促進され、冷却性能が向上する。また、放熱体16と機内空気との接触面積も増大することにより、機内空気の冷却効率も向上し、機内各部を良く冷却することができる。   Further, the wall surface of the radiator 16 is formed by alternately forming a large number of outer concave portions 16a and inner concave portions 16b in the circumferential direction so that the wall surface is corrugated. Contact area increases, heat dissipation from the radiator to the outside air is promoted, and cooling performance is improved. Further, by increasing the contact area between the radiator 16 and the in-machine air, the cooling efficiency of the in-machine air can be improved and each part in the machine can be well cooled.

またさらに、放熱体16の外気と接触する壁面が周方向で波打ち状となっているため、ロータ鉄心9と共に放熱体16が回転する時に、外気をこの放熱体16のファン作用によって外周方向に押し出し、常に冷却外気をベアリングブラケット4の中心部に形成されている入気口4aから空間内に流入させ、空間部分を外周方向に押し出し、排気口1bから排出することができる。このように、冷却外気を常時放熱体16の表面に流通させることで、放熱体16の冷却作用はいっそう向上する。   Furthermore, since the wall surface of the heat radiating body 16 that contacts the outside air is wavy in the circumferential direction, when the heat radiating body 16 rotates together with the rotor core 9, the outside air is pushed out in the outer circumferential direction by the fan action of the heat radiating body 16. Cooling outside air can always be caused to flow into the space from the inlet 4a formed in the center of the bearing bracket 4, the space portion can be pushed out in the outer peripheral direction, and discharged from the exhaust port 1b. In this way, the cooling action of the heat radiating body 16 is further improved by allowing the cooling outside air to constantly flow on the surface of the heat radiating body 16.

さらに加えて、放熱体16の回転による冷却外気の送風作用は、波打ち状の滑らかな凹凸面のファン作用によるため、従来構造の冷却ファンのブレードの回転によって発生する風切り音に比べて騒音の発生を低減できる利点もある。   In addition, the cooling action of the cooling air due to the rotation of the heat radiating body 16 is caused by the fan action of the undulating smooth uneven surface, so that noise is generated compared to the wind noise generated by the rotation of the blade of the cooling fan having the conventional structure. There is also an advantage that can be reduced.

同様に、放熱体17についても、多数の機外側凹状部と機内側凹状部を円周方向で内外交互に形成して、この壁面を波打ち状にしているので、放熱体17と冷却外気との接触面積が増大し、放熱体から外気への放熱が促進され、冷却性能が向上する。   Similarly, with respect to the radiator 17, a large number of machine-inside concave parts and machine-inside concave parts are alternately formed in the circumferential direction, and this wall surface is corrugated. The contact area increases, heat dissipation from the radiator to the outside air is promoted, and the cooling performance is improved.

また、放熱体17の外気と接触する壁面が周方向で波打ち状となっているため、放熱体17が回転する時にそのファン作用によって外周方向に押し出し、常に冷却外気をベアリングブラケット5の中心部に形成されている入気口5aから空間内に流入させ、空間部分を外周方向に押し出し、排気口1cから排出することができ、冷却外気を常時放熱体17の表面に流通させることで放熱体17の冷却作用を促進し、ロータ鉄心9及び機内空気の冷却性能が向上する。さらに、放熱体16と同様に、放熱体17についても、その回転による冷却外気の送風作用は波打ち状の滑らかな凹凸面のファン作用によるため、騒音の発生を低減できる。   Further, since the wall surface of the heat radiating body 17 that contacts the outside air is wavy in the circumferential direction, when the heat radiating body 17 rotates, it is pushed out by the fan action in the outer circumferential direction, so that the cooled outside air is always directed to the center of the bearing bracket 5. It is possible to flow into the space from the formed air inlet 5a, push the space portion in the outer circumferential direction, and exhaust the air from the exhaust port 1c. This improves the cooling performance of the rotor core 9 and the in-machine air. Further, similarly to the heat radiating body 16, the heat radiating body 17 can also reduce the generation of noise because the cooling air is blown by the rotation of the fan 17 having a smooth undulating surface.

このように、本実施の形態の車両駆動用全閉型電動機によれば、ロータ鉄心9を効果的に冷却することができ、特に永久磁石15が埋め込まれているロータ鉄心9の外周部分を良く冷却することができて永久磁石15の温度上昇を抑制することができ、その劣化を抑制でき、また、運転時に発生する騒音を低減でき、低騒音化が図れる。   Thus, according to the vehicle drive fully-closed electric motor of the present embodiment, the rotor core 9 can be effectively cooled, and in particular, the outer peripheral portion of the rotor core 9 in which the permanent magnets 15 are embedded is improved. The temperature can be cooled and the temperature increase of the permanent magnet 15 can be suppressed, the deterioration thereof can be suppressed, the noise generated during operation can be reduced, and the noise can be reduced.

(第2の実施の形態)図3、図4を用いて、本発明の第2の実施の形態の車両駆動用全閉型電動機について説明する。本実施の形態の特徴はロータ部分にあり、図3、図4に示す特徴を備えている。尚、第1の実施の形態と共通の構成要素については共通の符号を用いて説明する。   (Second Embodiment) A fully-closed motor for driving a vehicle according to a second embodiment of the present invention will be described with reference to FIGS. The feature of the present embodiment is in the rotor portion, and the features shown in FIGS. 3 and 4 are provided. Note that components common to the first embodiment will be described using common reference numerals.

本実施の形態では、ロータ鉄心9の駆動側側面に取り付けた放熱体20の機外側の壁面に複数のフィン20aを設け、さらに放熱体20の機内側の壁面にも複数のフィン20bを設けている。これらのフィン20a,20bは、回転方向に延びた形状としてある。尚、ロータ鉄心9の反駆動側側面の放熱体についても、同様にフィンを設けたものを採用することができる。   In the present embodiment, a plurality of fins 20 a are provided on the wall surface outside the machine of the radiator 20 attached to the drive side surface of the rotor core 9, and a plurality of fins 20 b are also provided on the wall inside the machine of the radiator 20. Yes. These fins 20a and 20b have a shape extending in the rotation direction. In addition, the thing provided with the fin similarly can be employ | adopted also about the heat sink of the counter drive side side surface of the rotor iron core 9. FIG.

本実施の形態の車両駆動用全閉型電動機の場合、放熱体20の機外側の壁面に多数のフィン20aを設けたことにより、この放熱体20から外気への放熱面積をより大きくとれ、放熱性能を高めることができる。また、放熱体20の機内側の壁面にも多数のフィン20bを設けたことにより、機内空気の熱が放熱体20により伝達しやすくなり、結果的に機内空気をいっそう効果的に冷却できるようになる。この結果、本実施の形態によれば、ロータ鉄心9をいっそう効果的に冷却でき、機内空気の効果的な冷却によって機内各部の冷却効果を高めることもできる。尚、放熱体20に設けたフィン20a,20bを回転方向に延びた形状とすることで、放熱体20の回転時の風切り音を小さくでき、騒音の発生が抑制でき、運転時の騒音を低減できる。   In the case of the fully-closed motor for driving a vehicle according to the present embodiment, by providing a large number of fins 20a on the outer wall surface of the radiator 20, the heat radiation area from the radiator 20 to the outside air can be further increased, and the heat radiation. Performance can be increased. Further, by providing a large number of fins 20b on the inner wall surface of the radiator 20, the heat of the in-machine air can be easily transmitted by the radiator 20, and as a result, the in-machine air can be cooled more effectively. Become. As a result, according to the present embodiment, the rotor core 9 can be cooled more effectively, and the cooling effect of each part in the machine can be enhanced by the effective cooling of the machine air. In addition, by making the fins 20a and 20b provided in the radiator 20 into a shape extending in the rotation direction, wind noise during rotation of the radiator 20 can be reduced, generation of noise can be suppressed, and noise during operation can be reduced. it can.

(第3の実施の形態)図5を用いて、本発明の第3の実施の形態の車両駆動用全閉型電動機について説明する。本実施の形態の特徴はロータ部分にあり、図5に示す特徴を備えている。尚、第1の実施の形態と共通の構成要素については共通の符号を用いて説明する。また、図5におけるC−C線断面図は、第2の実施の形態と同様で図4に示したものとなる。   (Third Embodiment) A fully-closed electric motor for driving a vehicle according to a third embodiment of the present invention will be described with reference to FIG. The feature of the present embodiment resides in the rotor portion and has the feature shown in FIG. Note that components common to the first embodiment will be described using common reference numerals. 5 is the same as that of the second embodiment and is shown in FIG.

本実施の形態では、ロータ鉄心9に密着して第1の放熱分割体21を取り付け、この第1の放熱分割体21に密着して第2の放熱分割体22を取り付け、これらの第1の放熱分割体21と第2の放熱分割体22とを共にボルト23にて一体化にしている。   In the present embodiment, the first heat radiation divided body 21 is attached in close contact with the rotor iron core 9, the second heat radiation divided body 22 is attached in close contact with the first heat radiation divided body 21, and the first Both the heat radiation divided body 21 and the second heat radiation divided body 22 are integrated with a bolt 23.

第2の実施の形態と同様に、第2の放熱分割体22の機外側の壁面に複数のフィン22aを設け、さらに第2の放熱分割体22の機内側の壁面にも複数のフィン22bを設けている。これらのフィン22a,22bは、回転方向に延びた形状としてある。尚、ロータ鉄心9の反駆動側側面の放熱体についても、同様の構造にし、また第2の放熱分割体にフィンを設けたものを採用することができる。   As in the second embodiment, a plurality of fins 22a are provided on the wall surface outside the machine of the second heat radiation divided body 22, and a plurality of fins 22b are also provided on the wall surface inside the machine of the second heat radiation divided body 22. Provided. These fins 22a and 22b have a shape extending in the rotation direction. Note that the heat dissipating body on the side opposite to the driving side of the rotor core 9 can also have a similar structure, and a second heat dissipating divided body provided with fins can be employed.

本実施の形態の車両駆動用全閉型電動機の場合、第2の実施の形態と同様の作用、効果を奏するのに加えて、複雑な形状、構造の放熱体を分割構造とすることで製造が容易になる利点がある。   In the case of the fully-closed electric motor for driving the vehicle according to the present embodiment, in addition to the same operations and effects as those of the second embodiment, the heat radiator having a complicated shape and structure is manufactured as a divided structure. There is an advantage that becomes easier.

尚、本実施の形態にあっては、分割構造とした第1の放熱分割体21と第2の放熱分割体22とを異なった材質の材料で製作することもできる。例えば、第2の放熱分割体22は比較的柔軟な金属材であるアルミニウム合金鋳物とすることで、複雑な形状のものを容易に製作できるようになり、さらに放熱特性を向上させることができる。さらに、放熱体を分割構造とするのに、分割形状は図示のものに限らない。そして3分割以上の分割体とすることの可能である。   In the present embodiment, the first heat dissipating divided body 21 and the second heat dissipating divided body 22 having a divided structure can be manufactured using different materials. For example, the second heat radiation divided body 22 is made of an aluminum alloy casting which is a relatively flexible metal material, so that a complicated shape can be easily manufactured, and the heat radiation characteristics can be further improved. Furthermore, although the heat dissipating body has a divided structure, the divided shape is not limited to the illustrated one. And it is possible to set it as the division body more than 3 divisions.

(第4の実施の形態)図6〜図8を用いて、本発明の第4の実施の形態の車両駆動用全閉型電動機について説明する。尚、図1、図2に示した第1の実施の形態と共通する要素には共通の符号を用いて説明する。   (Fourth Embodiment) A vehicle drive fully-closed electric motor according to a fourth embodiment of the present invention will be described with reference to FIGS. Elements common to the first embodiment shown in FIGS. 1 and 2 will be described using common reference numerals.

本実施の形態の特徴は、ロータ鉄心9内に通風穴9aを形成し、機内空気の循環冷却を可能にした点にある。すなわち、図6〜図8に示すように、ロータ鉄心9の外周部に永久磁石15を埋め込み、ロータ鉄心9の内周部に軸方向に貫通する通風穴9aを回転角度で60度ずつ離れた複数箇所に形成してある。ロータ鉄心9の駆動側端部に放熱体24を取り付け、反駆動側端部に放熱体25を取り付けている。   The feature of this embodiment is that a ventilation hole 9a is formed in the rotor iron core 9 to enable circulating cooling of the in-machine air. That is, as shown in FIGS. 6 to 8, the permanent magnet 15 is embedded in the outer peripheral portion of the rotor core 9, and the ventilation holes 9 a penetrating in the axial direction in the inner peripheral portion of the rotor core 9 are separated by 60 degrees at a rotation angle. It is formed at a plurality of locations. A radiator 24 is attached to the drive side end of the rotor core 9, and a radiator 25 is attached to the non-drive side end.

図6、図7に詳しいように、放熱体24には、等回転角度ピッチずつ回転方向に離れた3箇所それぞれに、径方向に延びる吹き上げダクト24aが形成してある。この吹き上げダクト24aの軸側端部は、連通孔24bを介してロータ鉄心9の通風穴9aに連通させてあり、吹き上げダクト24aの外径側端部は、機内空間に開口させてある。放熱体24における隣り合う吹き上げダクト24a間の中間部分は広い範囲で機内空間に開放させてあり、この中間部部の底部空間も連通穴24cを介してロータ鉄心9の通風穴9aと連通させてある。   As shown in detail in FIGS. 6 and 7, the radiator 24 is formed with blow-up ducts 24 a extending in the radial direction at three locations separated in the rotation direction by equal rotation angle pitches. The axial end portion of the blow-up duct 24a communicates with the ventilation hole 9a of the rotor core 9 through the communication hole 24b, and the outer diameter-side end portion of the blow-up duct 24a is opened to the in-machine space. An intermediate portion between adjacent blow-up ducts 24a in the radiator 24 is open to a wide range in the machine space, and a bottom space of the intermediate portion is also communicated with the ventilation hole 9a of the rotor core 9 through the communication hole 24c. is there.

図6、図8に詳しいように、反対側の放熱体25についても同様であり、等回転角度ピッチずつ回転方向に離れた3箇所それぞれに、径方向に延びる吹き上げダクト25aが形成してある。吹き上げダクト25aと前述の反対側の吹き上げダクト24aとは、回転方向に60度ずれた位置関係に設定してある。この吹き上げダクト25aの軸側端部は連通孔25bを介してロータ鉄心9の通風穴9aに連通させてあり、吹き上げダクト25aの外径側端部は機内空間に開口させてある。放熱体25における隣り合う吹き上げダクト25a間の中間部分は広い範囲で機内空間に開放させてあり、この中間部部の底部空間も連通穴25cを介してロータ鉄心9の通風穴9aと連通させてある。   As shown in detail in FIGS. 6 and 8, the same applies to the radiator 25 on the opposite side, and a blowing duct 25a extending in the radial direction is formed at each of three locations separated in the rotational direction by equal rotational angle pitches. The blowing duct 25a and the above-described opposite blowing duct 24a are set in a positional relationship shifted by 60 degrees in the rotation direction. The axial end portion of the blowing duct 25a communicates with the ventilation hole 9a of the rotor core 9 through the communication hole 25b, and the outer diameter side end portion of the blowing duct 25a is opened to the interior space. An intermediate portion between adjacent blow-up ducts 25a in the radiator 25 is opened to a wide range in the machine space, and a bottom space of the intermediate portion is also communicated with the ventilation hole 9a of the rotor iron core 9 through the communication hole 25c. is there.

放熱体24,25それぞれは、その外側の壁面を第1の実施の形態と同様に波打ち状にすることで外気による放熱性能を高めた構造にしている。尚、放熱体24,25それぞれの外側の壁面は、第2の実施の形態のように放熱フィンを設けた構造にしたり、第3の実施の形態のように分割構造とすることも可能である。   Each of the radiators 24 and 25 has a structure in which the outer wall surface is corrugated like the first embodiment to improve the heat dissipation performance by the outside air. The outer wall surface of each of the radiators 24 and 25 can have a structure in which heat radiating fins are provided as in the second embodiment, or can have a divided structure as in the third embodiment. .

本実施の形態の車両駆動用全閉型電動機では、ロータが回転すれば、駆動側放熱体24の吹き上げダクト24a内の機内空気は外周側に吹き上げられ、駆動側機内空間を矢印のように流通した後に連通穴24cからロータ鉄心9の通風穴9aに流入し、さらにその連通穴9aを通って反駆動側放熱体25の連通穴25bより吹き上げダクト25a内に流入する。そして、吹き上げダクト25a内に流入した機内空気は外周側に吹き上げられ、反駆動側機内空間を流通し、その後に連通穴25cよりロータ鉄心9の通風穴9aに流入し、さらにその連通穴9aを通って駆動側放熱体24の連通穴24bより吹き上げダクト24aに再流入する。こうして、ロータの回転によって機内空気は放熱体24,25のファン作用によって駆動側機内空間、反駆動側機内空間をロータ鉄心9の通風穴9aを通じて循環流通する。この循環する機内空気は放熱体24,25の部分を流通する際に冷却されるので、機内空間を循環することによってロータ鉄心9、永久磁石15、ステータコイル3、ステータ鉄心2等の機内各部を効果的に冷却できる。   In the vehicle drive fully-closed electric motor of the present embodiment, when the rotor rotates, the in-machine air in the blow-up duct 24a of the drive-side radiator 24 is blown to the outer peripheral side, and circulates in the drive-side machine space as indicated by arrows. After that, the air flows into the ventilation hole 9a of the rotor core 9 from the communication hole 24c, and further flows into the blow-up duct 25a through the communication hole 9a through the communication hole 25b of the counter driving side radiator 25. Then, the in-machine air that has flowed into the blow-up duct 25a is blown up to the outer peripheral side, circulates through the counter-drive-side in-machine space, and then flows into the ventilation hole 9a of the rotor core 9 from the communication hole 25c. It passes through the communication hole 24b of the drive side radiator 24 and re-flows into the duct 24a. Thus, the air in the machine circulates and circulates through the ventilation hole 9 a of the rotor core 9 through the air space inside the driving side and the space inside the driving side due to the fan action of the radiators 24 and 25 due to the rotation of the rotor. Since this circulating in-machine air is cooled when it flows through the radiators 24, 25, each part of the in-machine such as the rotor core 9, the permanent magnet 15, the stator coil 3, and the stator core 2 is circulated by circulating in the interior space. It can be cooled effectively.

本実施の形態によれば、ロータ鉄心9の熱は放熱体24,25に伝達した後に外気に放熱され、またロータ鉄心9は通風穴9aを流通する循環気によっても冷却されるので、効果的に冷却される。また、効果的に冷却される放熱体24,25にて機内空気が循環流通されるので、電動機全体としての冷却性能も高くなる。   According to the present embodiment, the heat of the rotor core 9 is transferred to the radiators 24 and 25 and then dissipated to the outside air, and the rotor core 9 is also cooled by the circulating air flowing through the ventilation holes 9a. To be cooled. Further, since the in-machine air is circulated and circulated by the radiators 24 and 25 that are effectively cooled, the cooling performance of the entire motor is also improved.

(第5の実施の形態)図9を用いて、本発明の第5の実施の形態の車両駆動用全閉型電動機について説明する。尚、図1、図2に示した第1の実施の形態と共通する要素には共通の符号を用いて説明する。   (Fifth Embodiment) A vehicle drive fully-closed electric motor according to a fifth embodiment of the present invention will be described with reference to FIG. Elements common to the first embodiment shown in FIGS. 1 and 2 will be described using common reference numerals.

本実施の形態の特徴も、第4の実施の形態と同様にロータ鉄心9内に通風穴9aを形成し、機内空気の循環冷却を可能にした点にある。ただし、第4の実施の形態とは異なり、駆動側器内空間と反駆動側機内空間との間の空気流通は、ロータ鉄心9の通風穴9aとロータ・ステータ間のエアギャップを利用する点が異なる。   As in the fourth embodiment, the feature of this embodiment is that a ventilation hole 9a is formed in the rotor iron core 9 to enable circulating cooling of the in-machine air. However, unlike the fourth embodiment, the air flow between the drive-side device internal space and the non-drive-side internal device space uses an air gap between the rotor core 9 and the rotor / stator. Is different.

すなわち、図9に示すように、ロータ鉄心9の外周部に永久磁石15を埋め込み、ロータ鉄心9の内周部に軸方向に貫通する通風穴9aを複数箇所に形成してある。ロータ鉄心9の駆動側端部に放熱体26を取り付け、反駆動側端部に放熱体27を取り付けている。   That is, as shown in FIG. 9, permanent magnets 15 are embedded in the outer peripheral portion of the rotor core 9, and ventilation holes 9 a penetrating in the axial direction are formed in the inner peripheral portion of the rotor core 9 at a plurality of locations. A heat radiator 26 is attached to the drive side end of the rotor core 9, and a heat radiator 27 is attached to the counter drive side end.

ロータ鉄心9の駆動側端部の放熱体26には、等回転角度ピッチずつ回転方向に離れた複数箇所それぞれに、径方向に延びる吹き上げダクト26aが形成してある。各吹き上げダクト26aの軸側端部は、連通孔26bを介してロータ鉄心9の各通風穴9aに連通させてあり、吹き上げダクト26aの外径側端部は機内空間に開口させてある。   The radiator 26 at the drive side end of the rotor core 9 is formed with a blow-up duct 26a extending in the radial direction at each of a plurality of locations separated in the rotation direction by equal rotation angle pitches. The axial end of each blowing duct 26a communicates with each ventilation hole 9a of the rotor core 9 through the communication hole 26b, and the outer diameter side end of the blowing duct 26a is opened to the in-machine space.

ロータ鉄心9の反駆動側端部の放熱体27には、吹き上げダクトは形成していない。この放熱体27の機内側の部分には、機内空間に広く連通する機内側凹状部27aが形成してあり、また、その機内側凹状部27aの軸側端部の位置にロータ鉄心9の通風穴9aそれぞれと連通する連通穴27bが形成してある。   A blow-up duct is not formed in the heat dissipating body 27 at the end of the rotor core 9 on the non-driving side. A machine-side concave portion 27a that communicates widely with the space inside the machine is formed in the machine-inside portion of the heat dissipating body 27, and the rotor core 9 passes through the position of the axial side end of the machine-side concave portion 27a. A communication hole 27b that communicates with each of the air holes 9a is formed.

本実施の形態の車両駆動用全閉型電動機では、ロータの回転により、駆動側放熱体26の吹き上げダクト26aのファン作用により機内空気が、矢印で示したように駆動側機内空間に吹き上げられた後にステータ鉄心2とロータ鉄心9との間の円管状のエアギャップ空間を流通して反駆動側機内空間に流入し、その後、反駆動側放熱体27の機内側凹状部27a、連通穴27bを経てロータ鉄心9の通風穴9aに流入し、その通風穴9aを流通して連通穴26bより駆動側放熱体26の吹き上げダクト26a内に戻るようにして機内を循環流通する。   In the vehicle drive fully-closed electric motor according to the present embodiment, due to the rotation of the rotor, the air in the machine is blown into the drive-side machine space by the fan action of the blow-up duct 26a of the drive-side radiator 26 as indicated by the arrow. Later, it flows through a circular air gap space between the stator iron core 2 and the rotor iron core 9 and flows into the non-driving side in-machine space. Thereafter, the in-machine concave portion 27a and the communication hole 27b of the non-driving side radiator 27 are provided. Then, it flows into the ventilation hole 9a of the rotor iron core 9, circulates and circulates in the machine so as to return to the blow-up duct 26a of the drive side radiator 26 from the communication hole 26b through the ventilation hole 9a.

本実施の形態によれば、上述したように機内空気が機内空間を循環流通することで、放熱体26,27の部分を流通する際に冷却されるためにこの冷却された機内空気によってロータ鉄心9や機内各部を効果的に冷却することができ、また、冷却された機内空気がロータ鉄心9の外周部を流通してロータ鉄心9の外周部を冷却するためにそこに埋め込まれた永久磁石15も効果的に冷却できて永久磁石15の温度上昇を良く抑制できる。   According to the present embodiment, as described above, since the in-machine air circulates and circulates in the in-machine space, the rotor core is cooled by the cooled in-machine air to be cooled when circulating through the portions of the radiators 26 and 27. 9 and each part in the machine can be effectively cooled, and the permanent magnet embedded in the cooled machine air in order to circulate through the outer peripheral part of the rotor core 9 and cool the outer peripheral part of the rotor core 9 15 can be effectively cooled, and the temperature rise of the permanent magnet 15 can be well suppressed.

本発明の第1の実施の形態の車両駆動用全閉型電動機の断面図。1 is a cross-sectional view of a vehicle drive fully-closed electric motor according to a first embodiment of the present invention. 図1におけるA−A線断面図。FIG. 2 is a sectional view taken along line AA in FIG. 1. 本発明の第2の実施の形態の車両駆動用全閉型電動機における駆動側放熱体とロータ鉄心との断面図。Sectional drawing of the drive side heat radiator and rotor iron core in the fully-closed motor for a vehicle drive of the 2nd Embodiment of this invention. 図3におけるB−B線断面図。BB sectional drawing in FIG. 本発明の第3の実施の形態の車両駆動用全閉型電動機における駆動側放熱体とロータ鉄心の断面図。Sectional drawing of the drive side heat radiator and rotor iron core in the fully-closed motor for a vehicle drive of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の車両駆動用全閉型電動機の断面図。Sectional drawing of the fully closed type motor for a vehicle drive of the 4th Embodiment of this invention. 図6におけるC−C線断面図。CC sectional view taken on the line in FIG. 図6におけるD−D線断面図。The DD sectional view taken on the line in FIG. 本発明の第5の実施の形態の車両駆動用全閉型電動機の断面図。Sectional drawing of the fully closed type motor for a vehicle drive of the 5th Embodiment of this invention. 従来の車両駆動用全閉型電動機の断面図。Sectional drawing of the conventional fully enclosed electric motor for a vehicle drive. 従来の車両駆動用全閉型電動機の正面図。The front view of the conventional fully enclosed electric motor for vehicle drive.

符号の説明Explanation of symbols

1 フレーム
1a 放熱フィン
2 ステータ鉄心
3 ステータコイル
4 ベアリングブラケット
5 ベアリングブラケット
8 ロータシャフト
9 ロータ鉄心
9a 貫通穴
15 永久磁石
16 放熱体
16a 機外側凹状部
16b 機内側凹状部
17 放熱体
20 放熱体
20a,20b フィン
21 放熱分割体
22 放熱分割体
22a,22b フィン
23 ボルト
24 放熱体
24a 吹き上げダクト
24b,24c 流通穴
25 放熱体
25a 吹き上げダクト
25b,25c 流通穴
26 放熱体
26a 吹き上げダクト
26b 流通穴
27 放熱体
27a 機内側凹状部
27b 流通穴
DESCRIPTION OF SYMBOLS 1 Frame 1a Radiation fin 2 Stator iron core 3 Stator coil 4 Bearing bracket 5 Bearing bracket 8 Rotor shaft 9 Rotor iron core 9a Through-hole 15 Permanent magnet 16 Heat radiation body 16a Machine outer side concave part 16b Machine inner side concave part 17 Radiator 20 Heat radiator 20a, 20b Fins 21 Heat radiation divided bodies 22 Heat radiation divided bodies 22a, 22b Fins 23 Bolts 24 Heat radiation bodies 24a Blowing ducts 24b, 24c Flow holes 25 Heat radiation bodies 25a Blowing ducts 25b, 25c Flow holes 26 Heat radiation bodies 26a Blowing ducts 26b Flow holes 27 Heat radiators 27a Machine-side concave part 27b Distribution hole

Claims (5)

フレームの内周側に取り付けられた円筒状のステータ鉄心
前記フレームの軸方向両端部それぞれに取り付けられ、内蔵したベアリングを介してロータシャフトを支持するベアリングブラケット
前記ステータ鉄心の内周側において、前記ロータシャフトに取り付けられ、その外周部近くに永久磁石が埋め込まれたロータ鉄心
記ロータ鉄心の軸方向両端面それぞれに密着して取り付けられ、それらの外周面と前記フレームとの間に円周状の微小間隙を形成する2つの放熱体とを備え
前記2つの放熱体それぞれの外側側面と前記ベアリングブラケットそれぞれの内側側面との間に外気導入空間を設け、
前記2つの放熱体の前記ロータ鉄心と密着する面を、前記ロータ鉄心の外径近傍に至る径にし、かつ、前記2つの放熱体の機内空気、外気に接する壁面を、円周方向で波打ち状にして複数の凹凸部を有する形状にしたことを特徴とする車両駆動用全閉型電動機。
A cylindrical stator core attached to an inner peripheral side of the frame,
Attached to both axial ends respectively of the frame, and a bearing bracket for supporting the rotor shaft via a built-in bearing,
In the inner peripheral side of the stator core, mounted on the rotor shaft, a rotor core in which a permanent magnet is embedded near the outer periphery,
Mounted in close contact with each axial end surfaces of the front SL rotor core, with two heat radiating body forming a circumferential small gap between the frame and those of the outer peripheral surface,
An outside air introduction space is provided between the outer side surface of each of the two radiators and the inner side surface of each of the bearing brackets,
The surface of the two heat dissipators that are in close contact with the rotor core is a diameter that reaches the vicinity of the outer diameter of the rotor iron core , and the wall surface that is in contact with the air and outside air of the two heat dissipators is corrugated in the circumferential direction. A fully-closed electric motor for driving a vehicle characterized by having a shape having a plurality of uneven portions .
前記2つの放熱体の壁面の機内空間側、機外側のいずれか一方又は両方にフィンを多数形成したことを特徴とする請求項1に記載の車両駆動用全閉型電動機。 2. The vehicle-driving fully-closed electric motor according to claim 1, wherein a plurality of fins are formed on either one or both of an inner space side and an outer side of the wall surfaces of the two radiators. 前記ロータ鉄心の内周側に複数の軸方向に貫通した通風穴を設け、前記2つの放熱体のいずれか一方又は両方に、前記通風穴と連通し、かつ、半径方向に延びる複数個の機内空気吹き上げダクトを形成し、回転時に前記ロータ鉄心の前記通風穴を経由して機内空気を循環流通させるようにしたことを特徴とする請求項1に記載の車両駆動用全閉型電動機。 A plurality of axial holes penetrating in the axial direction are provided on the inner peripheral side of the rotor core, and one or both of the two radiators communicate with the ventilation hole and extend in the radial direction. 2. The vehicle-driving fully-closed electric motor according to claim 1 , wherein an air blowing duct is formed, and the in-machine air is circulated and circulated through the ventilation holes of the rotor core during rotation . 前記2つの放熱体を複数の部材で形成したことを特徴とする請求項1又は請求項2に記載の車両駆動用全閉型電動機。 The fully-closed electric motor for driving a vehicle according to claim 1 or 2 , wherein the two radiators are formed of a plurality of members . 前記2つの放熱体を材質の異なる複数の部材で構成したことを特徴とする請求項1又は請求項2に記載の車両駆動用全閉型電動機。 Totally enclosed type electric motor for driving a vehicle according to claim 1 or claim 2, characterized in that is constituted by a plurality of members made of different materials the two heat radiator.
JP2007054318A 2007-03-05 2007-03-05 Fully closed electric motor for vehicle drive Active JP4928986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054318A JP4928986B2 (en) 2007-03-05 2007-03-05 Fully closed electric motor for vehicle drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054318A JP4928986B2 (en) 2007-03-05 2007-03-05 Fully closed electric motor for vehicle drive

Publications (2)

Publication Number Publication Date
JP2008220054A JP2008220054A (en) 2008-09-18
JP4928986B2 true JP4928986B2 (en) 2012-05-09

Family

ID=39839412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054318A Active JP4928986B2 (en) 2007-03-05 2007-03-05 Fully closed electric motor for vehicle drive

Country Status (1)

Country Link
JP (1) JP4928986B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297236B2 (en) * 2009-03-17 2013-09-25 株式会社東芝 Fully closed main motor for vehicles
JP5597481B2 (en) * 2010-08-24 2014-10-01 株式会社東芝 Fully closed main motor
JP5752569B2 (en) * 2011-11-17 2015-07-22 東芝三菱電機産業システム株式会社 Rotating electric machine
US10418882B2 (en) 2014-02-07 2019-09-17 Mitsubishi Electric Corporation Traction motor with cooling fan for improved cooling flow
FR3119278B1 (en) * 2021-01-26 2023-09-08 Alstom Transp Tech Enclosed fan-cooled motor improved by symmetrization
FR3119277B1 (en) * 2021-01-26 2023-09-08 Alstom Transp Tech Enclosed motor cooled by cold wall fan
WO2023127351A1 (en) * 2021-12-28 2023-07-06 ニデック株式会社 Motor fan and motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3266768B2 (en) * 1995-08-28 2002-03-18 三菱電機株式会社 Cage induction motor rotor and cage induction motor
JP2004166464A (en) * 2002-09-20 2004-06-10 Toshiba Corp Railway-car totally-enclosed electric motor
JP4630708B2 (en) * 2004-04-23 2011-02-09 株式会社東芝 Fully enclosed electric motor for vehicle drive
JP4772298B2 (en) * 2004-07-07 2011-09-14 株式会社東芝 Fully closed electric motor for vehicle drive

Also Published As

Publication number Publication date
JP2008220054A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
AU2017370503B2 (en) Motor rotor support frame and motor
US8536744B2 (en) Traction motor
JP4592693B2 (en) Fully enclosed fan motor
JP4928986B2 (en) Fully closed electric motor for vehicle drive
JP4817800B2 (en) Fully enclosed electric motor for vehicle drive
JP4891688B2 (en) Fully enclosed motor
JP2009081994A (en) Fully-closed external-fan cooling electric motor
AU2005255794B2 (en) Totally-enclosed fancooled type motor
JP4772298B2 (en) Fully closed electric motor for vehicle drive
JP2016135026A (en) Rotary device
JP2003143809A (en) Totally-enclosed fan-cooled motor for vehicle
JP2008125221A (en) Driving device for vehicle
JP2006180684A (en) Totally-enclosed motor for vehicle drive
JP2010098791A (en) Totally enclosed rotary electric motor
JP2017060319A (en) Cooling structure for electric motor
JP2011205894A (en) Fully enclosed motor
JP4891656B2 (en) Fully enclosed motor for vehicles
JP5038675B2 (en) Fully enclosed fan motor
US20230327511A1 (en) Cooling structure of in-wheel motor
JPWO2008059687A1 (en) Rotating motor
CN108155756B (en) External rotation type rotating electric machine
JP3690920B2 (en) Sealed motor
KR20150068224A (en) Cooling structure of drive motor
JP4592627B2 (en) Fully closed electric motor for vehicle drive
JP2019083649A (en) Motor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4928986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3