JP2006197785A - Cooling device of motor - Google Patents

Cooling device of motor Download PDF

Info

Publication number
JP2006197785A
JP2006197785A JP2005130990A JP2005130990A JP2006197785A JP 2006197785 A JP2006197785 A JP 2006197785A JP 2005130990 A JP2005130990 A JP 2005130990A JP 2005130990 A JP2005130990 A JP 2005130990A JP 2006197785 A JP2006197785 A JP 2006197785A
Authority
JP
Japan
Prior art keywords
motor
cooling
electric motor
cooling device
storage member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005130990A
Other languages
Japanese (ja)
Inventor
Kenji Arai
健嗣 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005130990A priority Critical patent/JP2006197785A/en
Publication of JP2006197785A publication Critical patent/JP2006197785A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the cooling performance of a cooling device provided on a motor which is used for driving and regenerative braking a vehicle. <P>SOLUTION: A cooling space 16 is provided in a part of a motor case 9 in circumferential direction which case constitutes a shell of motors 1 and 2. A heat accumulating member 17 is arranged on the circumferential part except for the part provided with the cooling space 16. When the temperature of a stator 8 on which a coil 13 is wound rises due to heating of a coil 13, the cooling space 16 and the heat accumulating member 17 cool the stator 8. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電機モータや発電機など電動機に冷媒を循環させて冷却する装置につき、この冷却性能を向上させる技術に関するものである。   The present invention relates to a technique for improving the cooling performance of a device that circulates and cools a refrigerant in an electric motor such as an electric motor or a generator.

ハイブリッド車両や電気自動車の駆動系に用いられる電動機は、発熱量が大きく、冷却装置を設ける必要がある。電動機の冷却装置の発明としては従来、例えば特許文献1に記載のようなものが知られている。特許文献1に記載のモータの冷却構造は、モータの外周に取り付けた円筒形状の電動機ケース(モータハウジング)内部に、冷却水を流すための冷却空間(冷却水通路)を設け、この冷却空間(冷却水通路)に冷却水を流すことによってモータ内部のステータを冷却するものである。冷却水路はハウジング内側に設けた内壁とハウジング外側に設けた外壁との隙間に形成される。このモータの横断面を図11に示す。冷却空間Aはモータ径方向に隙間を具え、図11の左方にあるモータ左側部と、図11の下方にあるモータ下部と、図11で右方にあるモータ右側部と周方向にわたり広く分布する。冷却空間を図11のXII−XII線で断面とし、矢の方向からみた展開図を図12に示す。このように、展開した冷却空間は矩形であり、1の隅角部には冷却水入口Bを、他の隅角部には冷却水出口Cを具える。
特開2004−260898号公報
An electric motor used for a drive system of a hybrid vehicle or an electric vehicle has a large calorific value, and it is necessary to provide a cooling device. As an invention of a cooling device for an electric motor, for example, the one described in Patent Document 1 has been known. The motor cooling structure described in Patent Document 1 is provided with a cooling space (cooling water passage) for flowing cooling water inside a cylindrical electric motor case (motor housing) attached to the outer periphery of the motor. The stator inside the motor is cooled by flowing cooling water through the cooling water passage. The cooling water channel is formed in a gap between an inner wall provided inside the housing and an outer wall provided outside the housing. A cross section of this motor is shown in FIG. The cooling space A has a gap in the motor radial direction, and is widely distributed in the circumferential direction with the left side of the motor in FIG. 11, the lower part of the motor in the lower part of FIG. 11, and the right side of the motor in FIG. To do. FIG. 12 is a development view of the cooling space taken along line XII-XII in FIG. 11 and viewed from the direction of the arrow. Thus, the developed cooling space is rectangular, and has a cooling water inlet B at one corner and a cooling water outlet C at the other corner.
JP 2004-260898 A

しかし、上記従来のような冷却構造にあっては、以下に説明するような問題を生ずる。つまり電機モータをハイブリッド車両に搭載する場合等、レイアウト上の制約からモータ外周部分の形状変更や縮小を余儀なくされることがある。この場合、外周方向にわたり広く分布するよう冷却水路を配設することが不可能になる。
また、図11に示すように、モータ上方にフロアトンネルが近接配置されている場合には、レイアウト上の制約から冷却水入口と冷却水出口とをモータ上部に取り付けることができない。したがって、冷却空間をモータ上部に配設することができず、冷却性能の向上を図ることができない。
However, the conventional cooling structure causes problems as described below. That is, when an electric motor is mounted on a hybrid vehicle, the shape of the motor outer peripheral portion may be changed or reduced due to layout restrictions. In this case, it is impossible to dispose the cooling water channel so as to be widely distributed in the outer peripheral direction.
In addition, as shown in FIG. 11, when the floor tunnel is arranged close to the upper side of the motor, the cooling water inlet and the cooling water outlet cannot be attached to the upper part of the motor due to layout restrictions. Therefore, the cooling space cannot be disposed in the upper part of the motor, and the cooling performance cannot be improved.

また、モータの軸長が長い場合や、モータの径が大きい場合には、図12に示す矩形の冷却空間で、矢で示すように冷却水の流量が大きい部分と、破線楕円で示すように冷却水が殆ど流れずによどんで滞留する部分とが生じ、冷却効率が悪化する。あるいは図12に示すような出入口B,Cの配設箇所に代えて、図13に示すような配設箇所に出入口B,Cを変更したとしても、依然として冷却水がよどむ部分が生じてしまう。   Also, when the motor shaft length is long or the motor diameter is large, in the rectangular cooling space shown in FIG. A portion where the cooling water hardly flows and stagnates is generated, and the cooling efficiency is deteriorated. Or even if it changes to the arrangement | positioning location as shown in FIG. 13 instead of the arrangement | positioning location of the entrances B and C as shown in FIG. 12, the part where a cooling water still stagnates will arise.

さらにまた、冷却水の設計流量は、モータの発熱が最大となる条件に合わせて常時一定流量になるよう設定されているのに対し、通常の走行シーンにおいてモータの発熱が最大となることは多くない。このため、通常の走行では必要以上に多くの冷却水をモータに供給していることとなり、燃費が悪化するという問題があった。   Furthermore, the design flow rate of the cooling water is always set to a constant flow rate according to the conditions that maximize the heat generation of the motor, whereas the heat generation of the motor is often maximized in a normal driving scene. Absent. For this reason, in normal driving | running | working, more cooling water was supplied to the motor than needed, and there existed a problem that a fuel consumption deteriorated.

本発明は、上記した周方向に広く冷却空間を配設することができないという問題や、冷却効率が悪化するという問題や、燃費が悪化するという問題を悉く解消して、効果的にモータを冷却することができる冷却装置を提案することを目的とする。   The present invention eliminates the problems that the cooling space cannot be widely provided in the circumferential direction, the problem that the cooling efficiency is deteriorated, and the problem that the fuel consumption is deteriorated, and effectively cools the motor. The object is to propose a cooling device that can do this.

この目的のため本発明による回転電機の冷却装置は、請求項1に記載のごとく、
電動機の外殻を構成する電動機ケースに、電動機を冷却する電動機冷却手段を設けた電動機の冷却装置において、
前記電動機ケースには、比熱が大きい材料からなる蓄冷部材を設け、
該蓄冷部材と、前記電動機の発熱部分と、前記電動機冷却手段との間で熱が移動するよう構成したことを特徴としたものである。
For this purpose, the cooling device for a rotating electrical machine according to the present invention is as described in claim 1.
In the motor cooling device provided with the motor cooling means for cooling the motor in the motor case constituting the outer shell of the motor,
The electric motor case is provided with a cold storage member made of a material having a large specific heat,
Heat is transferred between the cold storage member, the heat generating portion of the electric motor, and the electric motor cooling means.

かかる本発明の冷却装置によれば、蓄冷部材を配設することにより、コイルの発熱量が過渡的に増大しても、蓄冷部材が熱を吸収して冷却効率の悪化を回避することができる。
また、コイルなど発熱部分からの発熱量が増大すると、蓄冷部材が熱を吸収するため、冷媒の設計流量をモータの発熱が最大となる条件に合わせる必要がなくなり、冷却水を供給するポンプの出力を省力化して燃費を向上させることができる。
According to the cooling device of the present invention, by disposing the cool storage member, even if the amount of heat generated by the coil increases transiently, the cool storage member can absorb heat and avoid deterioration of the cooling efficiency. .
In addition, when the amount of heat generated from the heat generating part such as a coil increases, the cool storage member absorbs heat, so the design flow rate of the refrigerant does not need to be adjusted to the condition that maximizes the heat generation of the motor, and the output of the pump that supplies cooling water Can save energy and improve fuel efficiency.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は本発明の実施例になる冷却装置を具えた電動機を、冷却通路の配置とともに示す全体構成図である。
ハイブリッド車両や電機自動車のおいて力行運転および回生運転するために用いられる2つの電動機1,2と、これら電動機1,2に電力を供給するインバータ3とを、1系統の冷却通路を構成する冷却水路4で直列に接続する。冷媒にはオイルより冷却能力の高い冷却水(不凍液)を用いる。さらに冷却水路4上には、冷却水を循環させるためのポンプ5と、冷却水を放熱させるためのラジエータ6を挿置する。これにより、冷却水が電動機1,2とインバータ3とを順次冷却する。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
FIG. 1 is an overall configuration diagram showing an electric motor including a cooling device according to an embodiment of the present invention together with the arrangement of cooling passages.
Cooling that constitutes one system of cooling passages for two electric motors 1 and 2 used for power running operation and regenerative operation in a hybrid vehicle or an electric vehicle and an inverter 3 that supplies electric power to these electric motors 1 and 2 Connect in series with waterway 4. As the refrigerant, cooling water (antifreeze) having a higher cooling capacity than oil is used. Further, a pump 5 for circulating the cooling water and a radiator 6 for radiating the cooling water are inserted on the cooling water channel 4. Thereby, the cooling water sequentially cools the electric motors 1 and 2 and the inverter 3.

図2は本発明の第一実施例になる電動機1,2の固定子8側を軸直角方向に切断して示す横断面図である。また図3は電動機1,2を図2中のIII−III線で断面とし、矢の方向から見て示す展開縦断面図であり、図4は電動機1,2を図2中のIV−IV線で断面とし、矢の方向から見て示す展開図である。また図5は、電動機1,2と斜め外方からみた斜視図である。
電動機1,2は、回転子7と固定子8と電動機ケース9から構成され、図示しないブラケットを介して車体底面を区画するトンネル形状のフロアトンネル10に収まるよう取り付けられる。電動機1,2の軸中心には、出入力シャフト11が延在し、この出入力シャフト11の全周には回転子7を同軸一体に結合する。出入力シャフト11は、力行運転時には駆動トルクを出力し、回生運転時にはトルク入力される。
鋼板を円筒形状に積層した回転子7の軸中心には、回転方向の力を出入力するためのシャフト11を一体に結合する。回転子7の内部には図示しない永久磁石を配設する。回転子7の外周面には、鋼板を中空円筒形状に積層した固定子8の内周面を対向させる。固定子8の内周面には、複数のティース12,12・・・を軸中心へ向けて立設する。これによりティース12は周方向等間隔に櫛歯状に配列し、各ティース12,12・・にはコイル13を巻回する。
FIG. 2 is a cross-sectional view showing the stator 8 side of the motors 1 and 2 according to the first embodiment of the present invention cut in a direction perpendicular to the axis. 3 is a developed longitudinal cross-sectional view of the motors 1 and 2 taken along the line III-III in FIG. 2 and viewed from the direction of the arrows, and FIG. 4 shows the motors 1 and 2 along IV-IV in FIG. It is an expanded view which makes it a cross section with a line and sees from the direction of an arrow. FIG. 5 is a perspective view of the motors 1 and 2 and obliquely viewed from the outside.
The electric motors 1 and 2 are composed of a rotor 7, a stator 8, and an electric motor case 9, and are attached so as to fit in a tunnel-shaped floor tunnel 10 that divides the bottom of the vehicle body via a bracket (not shown). An input / output shaft 11 extends in the center of the motors 1 and 2, and the rotor 7 is coaxially coupled to the entire circumference of the input / output shaft 11. The input / output shaft 11 outputs drive torque during power running operation and receives torque input during regenerative operation.
A shaft 11 for inputting and outputting a force in the rotational direction is integrally coupled to the axial center of the rotor 7 in which steel plates are laminated in a cylindrical shape. A permanent magnet (not shown) is disposed inside the rotor 7. The outer peripheral surface of the rotor 7 is opposed to the inner peripheral surface of the stator 8 in which steel plates are laminated in a hollow cylindrical shape. On the inner peripheral surface of the stator 8, a plurality of teeth 12, 12,... Accordingly, the teeth 12 are arranged in a comb-teeth shape at equal intervals in the circumferential direction, and a coil 13 is wound around each of the teeth 12, 12.

中空円筒形状の固定子8の外周面には、電動機ケース9を取り付ける。電動機1,2のフレームを構成する電動機ケース9は両端を開口とした略円筒形状である。このうち一端を閉塞する円盤形状のケースカバー14の中心には出入力シャフト11を貫通させるとともに、ケースカバー14が軸受を介して出入力シャフト11の一端側を回転自在に枢支する。また、電動機ケース9他端の開口箇所には円盤形状のケースカバー15を取り付け、電機モータ1、2内部を閉塞する。ケースカバー15の中心には出入力シャフト11を貫通させるとともに、ケースカバー15が軸受を介して出入力シャフト11の他端側を回転自在に枢支する。   An electric motor case 9 is attached to the outer peripheral surface of the hollow cylindrical stator 8. The motor case 9 constituting the frames of the motors 1 and 2 has a substantially cylindrical shape with both ends opened. Of these, the input / output shaft 11 is passed through the center of the disk-shaped case cover 14 whose one end is closed, and the case cover 14 pivotally supports one end of the output / input shaft 11 via a bearing. A disc-shaped case cover 15 is attached to the opening at the other end of the motor case 9 to close the interior of the electric motors 1 and 2. The input / output shaft 11 is passed through the center of the case cover 15, and the case cover 15 pivotally supports the other end of the input / output shaft 11 via a bearing.

さらに電動機ケース9内には、電動機1,2の径方向に隙間を設け、この隙間を周方向および軸方向の両端14,15にわたり分布させて冷却空間16とする。
展開した冷却空間16は、図4に示すように矩形になる。矩形の一隅には冷却水が流入するための冷却水入口16iを接続する。また他の隅には冷却水が流出するための冷却水出口16oを接続する。これら出入口16i,16oには冷却水路4を接続する。これにより冷却空間16は冷却水を貯めることができる。
Further, a clearance is provided in the motor case 9 in the radial direction of the motors 1 and 2, and the clearance is distributed over both ends 14 and 15 in the circumferential direction and the axial direction to form a cooling space 16.
The developed cooling space 16 is rectangular as shown in FIG. A cooling water inlet 16i through which cooling water flows is connected to one corner of the rectangle. The other corner is connected to a cooling water outlet 16o through which cooling water flows out. A cooling water channel 4 is connected to the entrances 16i and 16o. Thereby, the cooling space 16 can store cooling water.

なお、図2に示すように、フロアトンネル10と出入口16i,16oが干渉しないよう、出口16iと入口16oを周方向に離間して配置する。例えば入口16iを電動機ケース9の径方向一側部に、出口16oを他側部に配置する。そして、これら出入口16i,16o間には、例えば電動機ケース9の径方向両側部および下部の周方向略3/4周にわたって冷却空間16を配設する。図5に示すように蓄冷部材17は軸方向の両端14,15にわたり分布する。   As shown in FIG. 2, the outlet 16i and the inlet 16o are spaced apart in the circumferential direction so that the floor tunnel 10 and the outlets 16i and 16o do not interfere with each other. For example, the inlet 16i is disposed on one side in the radial direction of the motor case 9, and the outlet 16o is disposed on the other side. And between these entrances 16i and 16o, the cooling space 16 is arrange | positioned over the radial direction both sides of motor case 9, and the circumferential direction substantially 3/4 circumference, for example. As shown in FIG. 5, the cold storage member 17 is distributed over both ends 14 and 15 in the axial direction.

残りの上部略1/4周には、蓄冷部材17を配設する。蓄冷部材17は、図5に示すように軸方向の両端14,15にわたり分布する。蓄冷部材17には、ポリビニルアルコールなど比熱が大きい材料を用いる。この実施例では、電動機ケース9内に径方向の隙間を設け、この隙間を周方向および軸方向に分布させた空間にポリビニルアルコールを封入して蓄冷部材17を構成する。   A cool storage member 17 is disposed around the remaining upper quarter. The cold storage member 17 is distributed over both ends 14 and 15 in the axial direction as shown in FIG. A material having a large specific heat such as polyvinyl alcohol is used for the cold storage member 17. In this embodiment, the cold storage member 17 is configured by providing radial gaps in the electric motor case 9 and enclosing polyvinyl alcohol in a space in which the gaps are distributed in the circumferential direction and the axial direction.

次にこの実施例の冷却装置の機能について説明する。
電動機1,2の出入力シャフト11に結合した7が回転すると、コイル13が発熱し、回転子7および固定子8の温度が上昇する。そこで、ポンプ5を作動させて、電動機1,2の冷却空間16に冷却水を流すと、冷却空間16が、固定子8から熱を吸収し、電動機1,2の温度を全体的に降下させる。
同時に、比熱が大きい材料からなる蓄冷部材17が固定子8から熱を吸収し、回転子7および固定子8の温度を全体的に降下させる。また図2に示すように、冷却空間16の周方向縁と蓄冷部材17の周方向縁が近傍に配設されることから、冷却空間16が上記吸熱した蓄冷部材17から熱を吸収する。
Next, the function of the cooling device of this embodiment will be described.
When 7 connected to the input / output shaft 11 of the electric motors 1 and 2 rotates, the coil 13 generates heat, and the temperatures of the rotor 7 and the stator 8 rise. Therefore, when the pump 5 is operated to flow cooling water through the cooling space 16 of the electric motors 1 and 2, the cooling space 16 absorbs heat from the stator 8 and lowers the temperature of the electric motors 1 and 2 as a whole. .
At the same time, the cold storage member 17 made of a material having a large specific heat absorbs heat from the stator 8 and lowers the temperatures of the rotor 7 and the stator 8 as a whole. As shown in FIG. 2, since the circumferential edge of the cooling space 16 and the circumferential edge of the cool storage member 17 are disposed in the vicinity, the cooling space 16 absorbs heat from the cool storage member 17 that has absorbed heat.

次にこの実施例の冷却装置の効果について説明する。
図6は、通常の走行状態(シーン)におけるこの実施例の電動機1,2の発熱量と温度とを示すタイムチャートであり、比較のため、図11〜13に示す従来例の電動機温度を付す。
電動機1,2の発熱が過渡的に増大すると、(図6中、2箇所)細線で示す従来の冷却装置を具えた電動機温度は急激に上昇し、制限温度Tuに達する。したがって従来例では過渡的に発熱量が大きくなる走行状態を長時間許容することができない。
これに対し、同じ発熱量のもとでは、太線で示す本発明の冷却装置を具えた電動機温度は穏やかに上昇し、また制限温度Tuに達することがない。蓄冷部材17が回転子7および固定子8から熱を吸収するためである。したがって、本発明の冷却装置を具えることにより従来例よりも電動機の冷却性能を改善することができ、過渡的に発熱量が大きくなる走行状態を長時間許容して、車両の過渡的な動力性能が向上する。
Next, the effect of the cooling device of this embodiment will be described.
FIG. 6 is a time chart showing the heat generation amount and temperature of the motors 1 and 2 of this embodiment in a normal running state (scene). For comparison, the motor temperature of the conventional example shown in FIGS. .
When the heat generation of the electric motors 1 and 2 increases transiently (in FIG. 6, two locations), the electric motor temperature provided with the conventional cooling device indicated by the thin line rapidly increases and reaches the limit temperature Tu. Therefore, in the conventional example, it is not possible to tolerate a traveling state in which the amount of heat generation becomes transiently large for a long time.
On the other hand, under the same calorific value, the temperature of the motor provided with the cooling device of the present invention indicated by a thick line rises gently and does not reach the limit temperature Tu. This is because the cold storage member 17 absorbs heat from the rotor 7 and the stator 8. Therefore, by providing the cooling device of the present invention, the cooling performance of the electric motor can be improved as compared with the conventional example, and the running state in which the heat generation amount is transiently increased is allowed for a long time, and the transient power of the vehicle is increased. Performance is improved.

なお、過渡的に発熱量が大きくなる走行状態の終了後は、蓄冷部材17を含めた電動機1,2の温度が緩やかに下降し、従来の電動機温度と一致する。   In addition, after the end of the traveling state in which the heat generation amount becomes transiently large, the temperatures of the electric motors 1 and 2 including the cold accumulating member 17 gradually decrease and coincide with the conventional electric motor temperature.

また本発明の冷却装置を具えることで、従来例よりも電動機発熱量の上限値を緩和することができる。
図7は、この実施例の電動機1,2が制限温度に達するシーンにおける発熱量と温度とを示すタイムチャートであり、比較のため、上記図6中に太線で示した通常の走行状態(シーン)における電動機発熱量および電動機温度を付す。
つまり、電動機温度が一点鎖線のように制限温度Tuまで上昇することを許容すると、電動機発熱量を一点鎖線のように従来例よりも大きくすることが可能になる。したがって、数秒から数分までの電動機の最大出力トルクを増大させることが可能になり、牽引重量が大きい状態で連続的に登坂路を上るといった、最も冷却能力を必要とする走行状態にも好適に対応して、走行性能が向上する。
Further, by providing the cooling device of the present invention, the upper limit value of the motor heat generation amount can be relaxed as compared with the conventional example.
FIG. 7 is a time chart showing the heat generation amount and the temperature in the scene where the electric motors 1 and 2 of this embodiment reach the limit temperature. For comparison, the normal running state (scene) indicated by the bold line in FIG. The motor heat generation amount and the motor temperature are attached.
In other words, if the motor temperature is allowed to rise to the limit temperature Tu as indicated by the alternate long and short dash line, the amount of generated heat of the motor can be increased as compared with the conventional example as indicated by the alternate long and short dashed line. Therefore, it is possible to increase the maximum output torque of the electric motor from several seconds to several minutes, and it is also suitable for a traveling state that requires the most cooling capacity, such as continuously climbing uphill with a large traction weight. Correspondingly, driving performance is improved.

次に本発明の他の実施例について説明する。この実施例では、基本構成については上述した第一実施例と同様とし、蓄冷部材の周方向位置を変更するものである。上述した第一実施例と共通する部分については同一の符号を用いて説明を省略し、異なる部分については新たに符号を付して説明する。
図8は電動機21の固定子8側を軸直角方向に切断して示す横断面図である。電動機ケース9の径方向下部には、上述の蓄冷部材17と同じ形状の蓄冷部材27を、周方向略1/4周にわたって配設する。フロアトンネル10と出入口26i,26oが干渉しないよう、電動機ケース9の径方向両側部には、冷却水入口26iと冷却水出口26oをそれぞれ配置する。展開した形状が矩形となる冷却空間26の隅角部には、出口26iと入口26oを接続する。例えば電動機ケース9の径方向両側部および上部の周方向略3/4周にわたって冷却空間16を配設する。
つまり、この電動機21は、電動機1,2を、上下逆にして、フロアパネル10下方に取り付けたものであり、これらは実質的には同様の構成である。
Next, another embodiment of the present invention will be described. In this embodiment, the basic configuration is the same as that of the first embodiment described above, and the circumferential position of the cold storage member is changed. Description of parts common to the first embodiment described above will be omitted using the same reference numerals, and different parts will be described with new reference numerals.
FIG. 8 is a cross-sectional view showing the stator 8 side of the electric motor 21 cut in a direction perpendicular to the axis. A cool storage member 27 having the same shape as that of the above-described cool storage member 17 is disposed on the lower portion in the radial direction of the electric motor case 9 over approximately 1/4 of the circumferential direction. The cooling water inlet 26i and the cooling water outlet 26o are respectively arranged on both sides in the radial direction of the electric motor case 9 so that the floor tunnel 10 and the outlets 26i and 26o do not interfere with each other. An outlet 26i and an inlet 26o are connected to the corners of the cooling space 26 where the developed shape is rectangular. For example, the cooling space 16 is disposed over both sides of the electric motor case 9 in the radial direction and approximately 3/4 of the circumference in the circumferential direction.
That is, the electric motor 21 is obtained by mounting the electric motors 1 and 2 upside down and below the floor panel 10 and has substantially the same configuration.

次にこの実施例の冷却装置の機能および効果について説明する。
蓄冷部材27は車両底面下に位置することから、走行中は走行風に晒され、蓄冷部材が冷却水のみならず走行風によってさらに冷却される。
したがって、過渡的な電動機発熱量の上限値を第一実施例より許容して高出力駆動が可能となり、過渡的に発熱量が大きくなる走行状態をより長時間実現することができ、車両の過渡的な動力性能がより向上する。
なお、図示はしなかったが、ケースカバー14,15の下部にも蓄冷部材を配置することにより、車両の過渡的な動力性をより向上させることができること勿論である。
Next, functions and effects of the cooling device of this embodiment will be described.
Since the cold storage member 27 is located below the bottom surface of the vehicle, the cold storage member 27 is exposed to traveling wind during traveling, and the cold storage member is further cooled not only by cooling water but also by traveling wind.
Accordingly, the upper limit value of the transient motor heat generation amount is allowed from the first embodiment, so that a high output drive is possible, and a traveling state in which the heat generation amount is transiently increased can be realized for a longer time. The dynamic power performance is further improved.
Although not shown in the drawings, it is a matter of course that the transitional power of the vehicle can be further improved by arranging the cold storage member below the case covers 14 and 15.

次に本発明の別の実施例について説明する。この実施例では、基本構成については上述した各実施例と同様としつつ、蓄冷部材の形状および配置に工夫を加えたものである。上述した各実施例と共通する部分については同一の符号を用いて説明を省略し、異なる部分については新たに符号を付して説明する。
図9は電動機ケース9に設けた冷却空間の展開図である。この実施例では、蓄冷部材からなる壁を冷却空間16,26内に設けて、冷却空間16,26内に冷却水が流れる連続した1本の冷却水路を形成する。
Next, another embodiment of the present invention will be described. In this embodiment, the basic configuration is the same as that of each of the above-described embodiments, but the shape and arrangement of the cold storage member are modified. Description of parts common to the above-described embodiments will be omitted by using the same reference numerals, and different parts will be described by adding new reference numerals.
FIG. 9 is a development view of the cooling space provided in the motor case 9. In this embodiment, walls made of cold storage members are provided in the cooling spaces 16 and 26 to form one continuous cooling water channel through which the cooling water flows in the cooling spaces 16 and 26.

すなわち、冷却空間16(26)には、上述の蓄冷部材17(27)と異なる形状の蓄冷壁37をモータ1,2の軸方向に複数平行に設け、蓄冷壁37の一端37aを冷却空間16(26)の縁部に接着し、他端37bを冷却空間16(26)の縁部から離間させて隙間を設ける。この配列を、互い違いに繰り返して入口16i、26iと出口16o,26oとを結ぶ1本の冷却水路36を形成する。かくして、冷却水路36をモータ1,2の軸方向に沿って往復するような形状で配設する。   That is, in the cooling space 16 (26), a plurality of cold storage walls 37 having a shape different from that of the above-described cold storage member 17 (27) are provided in parallel to the axial direction of the motors 1 and 2, and one end 37a of the cold storage wall 37 is connected to the cooling space 16. Adhering to the edge of (26), the other end 37b is separated from the edge of the cooling space 16 (26) to provide a gap. This arrangement is repeated alternately to form one cooling water channel 36 connecting the inlets 16i, 26i and the outlets 16o, 26o. Thus, the cooling water channel 36 is arranged in such a shape as to reciprocate along the axial direction of the motors 1 and 2.

次にこの実施例の冷却装置の機能および効果について説明する。
この実施例では、冷却水路36を連続した1本の通路にして冷却空間16(26)内を往復するよう張り巡らせたため、冷却水が冷却空間16(26)の隅々まで行き渡る。したがって、図12および図13の従来例で示すような冷却水の滞留が生じず、冷却効率を改善することができる。
なお、冷却水路36の往復方向と、蓄冷壁37の延在方向は、電動機1,2の軸方向または周方向いずれであってもよい。
Next, functions and effects of the cooling device of this embodiment will be described.
In this embodiment, since the cooling water passage 36 is formed as one continuous passage so as to reciprocate in the cooling space 16 (26), the cooling water reaches every corner of the cooling space 16 (26). Therefore, the stagnation of the cooling water as shown in the conventional examples of FIGS. 12 and 13 does not occur, and the cooling efficiency can be improved.
The reciprocating direction of the cooling water passage 36 and the extending direction of the cold storage wall 37 may be either the axial direction or the circumferential direction of the electric motors 1 and 2.

図9に示すように冷却水路36を冷却空間16(26)で往復するよう張り巡らせた実施例の他、冷却水路を電動機ケース9の全周で螺旋状に周回するよう配設するものであってもよい。この場合、電動機ケース9の内部で蓄冷壁47を周方向に螺旋状に周回するよう配設することで、隣り合う蓄冷壁47間で1本の冷却水路46を形成する。冷却水路46の両端には冷却水の入口46iと冷却水の出口46oをそれぞれ設ける。螺旋状の冷却水路46を、電動機1,2の周方向に展開すると図10に示すようなものとなる。
この実施例においても、冷却水路46を連続した1本の通路にして電動機ケース9内を螺旋状に周回するよう張り巡らせたため、冷却水が電動機ケース9の全周に行き渡る。したがって、図12および図13の従来例で示すような冷却水の滞留が生じず、冷却効率を改善することができる。
As shown in FIG. 9, in addition to the embodiment in which the cooling water channel 36 is stretched so as to reciprocate in the cooling space 16 (26), the cooling water channel is arranged so as to spiral around the entire circumference of the motor case 9. May be. In this case, one cooling water channel 46 is formed between the adjacent cool storage walls 47 by arranging the cool storage walls 47 so as to spiral in the circumferential direction inside the electric motor case 9. A cooling water inlet 46i and a cooling water outlet 46o are provided at both ends of the cooling water channel 46, respectively. When the spiral cooling water channel 46 is developed in the circumferential direction of the electric motors 1 and 2, a configuration as shown in FIG. 10 is obtained.
Also in this embodiment, since the cooling water passage 46 is formed as one continuous passage so as to circulate around the electric motor case 9 in a spiral manner, the cooling water spreads over the entire circumference of the electric motor case 9. Therefore, the stagnation of the cooling water as shown in the conventional examples of FIGS. 12 and 13 does not occur, and the cooling efficiency can be improved.

次に本発明の他の実施例について説明する。この実施例では、冷却空間16,26や冷却水路36,46の代わりに空冷フィンを設けた空冷の電動機とする。図14は、この空冷電動機51を軸直角方向に切断して示す横断面図である。また、図15は、この空冷電動機51を、軸を含む面で断面して示す縦断面図である。前述した電動機1,2と共通する部分については同一の符号を用いて説明を省略し、異なる部分については新たに符号を付して説明する。
電動機ケース59は空冷電動機51の外殻を構成する。この電動機ケース59の外周面には複数の空冷フィン53を周方向等間隔に立設する。空冷フィン53は外界へ向けて径方向に突出し、軸方向方向に延在する。ただし、この電動機ケース59をフロアトンネル10下方に取り付けた姿勢における電動機ケース59上部には、空冷フィンを設けない。理由は、フロアトンネル10は車体の凹部を形成し走行風の流れが悪いところ、電動機ケース59上部がフロアトンネル10に内在するレイアウト構成では、走行風による空冷の効果が少ないためである。その代わり、電動機ケース59上部には、蓄冷部材57を配置する。
Next, another embodiment of the present invention will be described. In this embodiment, an air-cooled electric motor provided with air-cooling fins instead of the cooling spaces 16 and 26 and the cooling water channels 36 and 46 is used. FIG. 14 is a cross-sectional view showing the air-cooled electric motor 51 cut in the direction perpendicular to the axis. FIG. 15 is a longitudinal sectional view showing the air-cooled electric motor 51 in a plane including a shaft. The parts common to the electric motors 1 and 2 described above will be described using the same reference numerals, and the different parts will be described with new reference numerals.
The motor case 59 constitutes the outer shell of the air-cooled motor 51. A plurality of air cooling fins 53 are erected on the outer peripheral surface of the electric motor case 59 at equal intervals in the circumferential direction. The air-cooling fins 53 project in the radial direction toward the outside and extend in the axial direction. However, no air-cooling fin is provided on the upper part of the motor case 59 in a posture in which the motor case 59 is attached to the lower side of the floor tunnel 10. The reason is that the floor tunnel 10 forms a recess in the vehicle body and the flow of the traveling wind is poor, and the layout configuration in which the upper portion of the motor case 59 is inherent in the floor tunnel 10 has less air cooling effect due to the traveling wind. Instead, a cold storage member 57 is disposed on the upper part of the electric motor case 59.

蓄冷部材57としては、エチレングリコール水溶液などの液体を用い、ポリアクリル酸ナトリウムなどのポリマー材料に含浸させて、電動機ケース59に設けた凹部59oに収納する。凹部59oには蓋59fを設け、蓄冷部材57を密封する。図14,15に示すように、蓄冷部材57はフロアパネル10と平行に位置し、空冷電動機51とフロアパネル10との隙間空間をなるべく大きく利用する。   As the cold storage member 57, a liquid such as an ethylene glycol aqueous solution is used, impregnated with a polymer material such as sodium polyacrylate, and stored in a recess 59o provided in the motor case 59. The recess 59o is provided with a lid 59f to seal the cold storage member 57. As shown in FIGS. 14 and 15, the cold storage member 57 is positioned in parallel with the floor panel 10, and uses the gap space between the air-cooled electric motor 51 and the floor panel 10 as much as possible.

次に本発明の他の実施例について説明する。この実施例では、電動機ケースの全外周に亘り空冷フィンを設ける。図16は、この空冷電動機61の固定子8側を軸直角方向に切断して示す横断面図である。前述した空冷電動機51と共通する部分については同一の符号を用いて説明を省略し、異なる部分については新たに符号を付して説明する。電動機ケース69は空冷電動機61の外殻を構成する。この電動機ケース69の外周面には全周に複数の空冷フィン53を周方向等間隔に立設する。そして、この電動機ケース69をフロアトンネル10下方に取り付けた姿勢における電動機ケース69上部には、前述した図2に示す蓄冷部材17を配置する。なお、この実施例の固定子およびコイルは、前述した固定子7およびコイル13と同一であるため、図を省略する。   Next, another embodiment of the present invention will be described. In this embodiment, air cooling fins are provided over the entire outer periphery of the motor case. FIG. 16 is a cross-sectional view showing the stator 8 side of the air-cooled electric motor 61 cut in a direction perpendicular to the axis. The parts common to the above-described air-cooled electric motor 51 will be described using the same reference numerals, and different parts will be described by adding new reference numerals. The electric motor case 69 constitutes the outer shell of the air-cooled electric motor 61. On the outer peripheral surface of the electric motor case 69, a plurality of air cooling fins 53 are provided upright at equal intervals in the circumferential direction. Then, the above-described cool storage member 17 shown in FIG. 2 is arranged on the upper part of the motor case 69 in a posture in which the motor case 69 is attached to the lower side of the floor tunnel 10. Note that the stator and the coil in this embodiment are the same as the stator 7 and the coil 13 described above, and thus the illustration is omitted.

次に本発明の他の実施例について説明する。この実施例では、電動機ケースに蓄冷部材を交換するための2本のプラグを設ける。図17は、この空冷電動機71の固定子8側を軸直角方向に切断して示す横断面図である。前述した空冷電動機51と共通する部分については同一の符号を用いて説明を省略し、異なる部分については新たに符号を付して説明する。電動機ケース79は空冷電動機71の外殻を構成する。この電動機ケース79をフロアトンネル10下方に取り付けた姿勢における電動機ケース79上部には、空冷フィン53を立設しないが、電動機ケース79上部以外の外周面には複数の空冷フィン53を周方向等間隔に立設する。電動機ケース79上部には、フロアパネル10と平行に凹部79oを配設して、凹部79o内に蓄冷部材77を充填する。蓄冷部材77としては例えばエチレングリコール水溶液などの液体とし、前述した蓄冷部材57と、基本的には同じ機能を具える。凹部79oには蓋79fを設け、蓄冷部材77を密封する。   Next, another embodiment of the present invention will be described. In this embodiment, the electric motor case is provided with two plugs for replacing the cold storage member. FIG. 17 is a cross-sectional view showing the stator 8 side of the air-cooled electric motor 71 cut in a direction perpendicular to the axis. The parts common to the above-described air-cooled electric motor 51 will be described using the same reference numerals, and different parts will be described by adding new reference numerals. The motor case 79 constitutes the outer shell of the air-cooled motor 71. The air cooling fins 53 are not erected on the upper part of the motor case 79 in a posture in which the motor case 79 is attached to the lower side of the floor tunnel 10, but a plurality of air cooling fins 53 are equally spaced in the circumferential direction on the outer peripheral surface other than the upper part of the motor case 79. To stand. A recess 79o is disposed in the upper part of the motor case 79 in parallel with the floor panel 10, and the recess 79o is filled with a cold storage member 77. The cool storage member 77 is a liquid such as an ethylene glycol aqueous solution, and basically has the same function as the cool storage member 57 described above. The recess 79o is provided with a lid 79f to seal the cold storage member 77.

さらに、凹部79oの一部、少なくと2箇所、を電動機ケース79周方向に沿って側部に拡張する。この拡張は、電動機ケース79をフロアトンネル10下方に取り付けた姿勢において、電動機ケース79とフロアトンネル10との隙間の端部に至るまで、つまり、後述の詰め替え作業を行う作業者が作業可能な位置まで、凹部79oの拡張部79kを拡張する。
拡張部79kには、蓄冷部材を詰めるための入口プラグ72と、古くなった蓄冷部材を排出するための出口プラグ73とを夫々接続する。これらプラグ72,73は通常は閉塞しておき、蓄冷部材を凹部79oに密封しておく。蓄冷部材が劣化し所要の蓄冷効果を果たさなくなると、詰め替え作業を行う。なお、この実施例の固定子およびコイルは、前述した固定子7およびコイル13と同一であるため、図を省略する。
Further, a part of the recess 79o, at least two places, is extended to the side along the circumferential direction of the motor case 79. This expansion extends to the end of the gap between the motor case 79 and the floor tunnel 10 in a posture where the motor case 79 is mounted below the floor tunnel 10, that is, a position where an operator who performs a refilling operation described later can work. Until the expansion portion 79k of the recess 79o is expanded.
An inlet plug 72 for filling the cool storage member and an outlet plug 73 for discharging the old cool storage member are connected to the expansion portion 79k. These plugs 72 and 73 are normally closed, and the cold storage member is sealed in the recess 79o. When the cold storage member deteriorates and does not perform the required cold storage effect, refilling work is performed. Note that the stator and the coil in this embodiment are the same as the stator 7 and the coil 13 described above, and thus the illustration is omitted.

次に、これら実施例の冷却装置の機能および効果について説明する。
車体の底面の一部をなすフロアトンネル10が、車両前後方向に延在する車両においては、走行風が空冷フィン53と平行に流れるため、電動機ケース59,69,79の下部を効率よく冷却することができる。
Next, functions and effects of the cooling device of these embodiments will be described.
In a vehicle in which the floor tunnel 10 forming a part of the bottom surface of the vehicle body extends in the vehicle front-rear direction, the traveling wind flows parallel to the air cooling fins 53, so that the lower portions of the motor cases 59, 69, and 79 are efficiently cooled. be able to.

さらに、空冷電動機51,61,71の出力が中ぐらいの状態における熱の流れにつき、空冷電動機61を代表して図16左半分に、矢で示すと、固定子8で発生した熱は、電動機ケース69へ移動し、電動機ケース69の外周面や、空冷フィン53から外界へ放出される。また、電動機ケース69に設けた蓄冷部材17へ移動した熱は、蓄冷部材17から電動機ケース69を伝って電動機ケース69下部の空冷フィンで外界へ放出される。
特に、車両走行中にあっては、走行風が電動機ケース69下部の空冷フィン53、53・・・から多くの熱を奪熱する。ここでいう電動機出力が中ぐらいの状態とは、図6下段や、図7下段に実線で示す電動機発熱量が平らな一定量の状態であって、連続的に表れ、一定速走行時の電動機発熱量を発熱する。
Further, regarding the heat flow in the state where the outputs of the air-cooled motors 51, 61, 71 are medium, the heat generated in the stator 8 is represented by arrows in the left half of FIG. It moves to the case 69 and is discharged from the outer peripheral surface of the motor case 69 and the air cooling fins 53 to the outside. Further, the heat transferred to the cold storage member 17 provided in the electric motor case 69 is released from the cold storage member 17 through the electric motor case 69 to the outside by air cooling fins below the electric motor case 69.
In particular, during traveling of the vehicle, the traveling wind draws a lot of heat from the air cooling fins 53, 53. The state where the motor output is medium here means that the motor heat generation amount shown by the solid line in the lower part of FIG. 6 or the lower part of FIG. Exotherm heat value.

これに対し、空冷電動機51,61,71の出力が過渡的に大きくなる状態における熱の流れにつき、空冷電動機61を代表して図16右半分に、矢で示すと、固定子8で発生した熱は、電動機ケース69へ移動し、電動機ケース69の外周面や、空冷フィン53から外界へ放出される。また、電動機発熱量が過渡的に増大するため、空冷フィン53で放出しきれなかった熱は、電動機ケース69を伝って電動機ケース69上部の蓄冷部材17に吸熱される。ここでいう電動機出力が過渡的に大きくなる状態とは、図6下段や、図7下段に表れた電動機発熱量が一時的にピークとなる状態であって、過渡的に現れ、加速走行時の電動機発熱量を発熱する。   On the other hand, the heat flow in a state where the outputs of the air-cooled electric motors 51, 61, and 71 are transiently increased is generated in the stator 8 as shown by arrows in the right half of FIG. The heat moves to the motor case 69 and is released from the outer peripheral surface of the motor case 69 and the air cooling fins 53 to the outside. Further, since the amount of heat generated by the electric motor increases transiently, the heat that cannot be released by the air cooling fins 53 is absorbed by the cold accumulating member 17 above the electric motor case 69 through the electric motor case 69. The state in which the motor output transiently increases here is a state in which the motor heat generation amount shown in the lower part of FIG. 6 or the lower part of FIG. The motor generates heat.

この後、電動機51,61,71は再び中ぐらいの出力で運転し、熱の流れが図16左半分になると、蓄例部材17は放熱し、その温度が低下する。   Thereafter, the motors 51, 61, 71 are operated again at a medium output, and when the heat flow becomes the left half of FIG. 16, the stored member 17 dissipates heat, and its temperature decreases.

したがって、その実態構成を図には示さなかったが蓄冷部材57,17,77を具えず空冷フィン53のみを具えた従来の空冷電動機にあっては、その電動機温度を図6上段に細線で示すと、発熱量が過渡的に大きくなる高出力時は、従来の空冷電動機では、制限温度Tuに直ぐに達してしまうという問題があった。この結果、例えば車両が平坦路を加速走行後に、登坂路を一定速走行し、再び平坦路で加速走行するといった高出力で連続して走行することができないという問題があった。   Therefore, although the actual configuration is not shown in the figure, in the conventional air-cooled electric motor having only the air-cooling fins 53 without the cold storage members 57, 17, 77, the electric motor temperature is indicated by a thin line in the upper part of FIG. At the time of high output where the calorific value becomes transiently large, the conventional air-cooled motor has a problem that it reaches the limit temperature Tu immediately. As a result, there has been a problem that, for example, the vehicle cannot continuously travel at a high output after accelerating on a flat road, traveling on an uphill road at a constant speed, and accelerating on a flat road again.

しかし、本実施例の空冷電動機51,61,71にあっては、その電動機温度を図6上段に太線で示して比較すると、出力が過渡的に大きくなっても電動機51,61,71で発生した熱が蓄冷部材57,17,77に向かうため、電動機51,61,71は制限温度Tuに直ぐに達せず、従来の空冷電動機よりも電動機温度の最大値を下げることができる。この結果、発熱量が過渡的に大きくなる高出力状態の持続時間を長くすることが可能となり、高出力で連続して走行することができるようになる。 したがって、この実施例においても図6に示すように通常の運転では、制限温度Tuに達することがない。   However, in the air-cooled electric motors 51, 61, 71 of this embodiment, when the electric motor temperature is shown by a bold line in the upper part of FIG. 6, even if the output becomes transiently large, the electric motor 51, 61, 71 generates Since the generated heat is directed to the cold storage members 57, 17, and 77, the electric motors 51, 61, and 71 do not immediately reach the limit temperature Tu, and the maximum value of the electric motor temperature can be lowered as compared with the conventional air-cooled electric motor. As a result, it is possible to extend the duration of the high output state in which the heat generation amount becomes transiently large, and it is possible to continuously travel at a high output. Therefore, also in this embodiment, as shown in FIG. 6, the normal temperature does not reach the limit temperature Tu.

あるいは、図7上段に太線で示すように、電動機51,61,71は制限温度Tuに直ぐに達しないことから、図7に一点鎖線で示すように、電動機発熱量のピークが大きくなることを許容して、過渡的な最大出力を大きくすることが可能となり、車両の過渡的な動力性能を向上することができる。   Alternatively, as shown by the thick line in the upper part of FIG. 7, since the motors 51, 61, 71 do not reach the limit temperature Tu immediately, the peak of the motor heat generation amount is allowed to increase as shown by the one-dot chain line in FIG. Thus, the transient maximum output can be increased, and the transient power performance of the vehicle can be improved.

このように、上記各実施例では、 電動機1,2,21,51,61,71の外殻を構成する電動機ケース9,59,69,79に、電動機1,2,21,51,61,71を冷却する電動機冷却手段を設けるとともに、電動機ケース9,59,69,79には、比熱が大きい材料からなる蓄冷部材17,27,37,47,57,77を設け、蓄冷部材17,27,37,47,57,77と、電動機の発熱部分である固定子8およびコイル13と、電動機冷却手段との間で熱が移動するよう構成したことから、
電動機1,2,21,51,61,71の出力が過渡的に大きくなって固定子8およびコイル13の発熱量が過渡的に増大する場合には、蓄冷部材17,27,37,47,57,77が熱を吸収し、コイルの発熱量が過渡的に増大しても、冷却効率の悪化を回避することができる。
また、図6に示すように、従来例よりも電動機温度の最大値を下げることができるため、冷媒の設計流量をモータの発熱が最大となる条件に合わせる必要がなくなり、冷却水を供給するポンプの出力を省力化して燃費を向上させることができる。
Thus, in each of the above embodiments, the electric motor 1,2,21,51,61,71 includes the electric motor case 9,59,69,79 constituting the outer shell of the electric motor 1,2,21,51,61,71. The motor case 9, 59, 69, 79 is provided with a cool storage member 17, 27, 37, 47, 57, 77 made of a material having a large specific heat, and the cool storage member 17, 27 is provided. , 37, 47, 57, 77, the stator 8 and the coil 13 which are heat generating portions of the motor, and the motor cooling means are configured to transfer heat,
When the output of the motors 1, 2, 21, 51, 61, 71 is transiently increased and the amount of heat generated by the stator 8 and the coil 13 is transiently increased, the cold storage members 17, 27, 37, 47, Even if 57 and 77 absorb heat and the heat generation amount of the coil increases transiently, deterioration of the cooling efficiency can be avoided.
Further, as shown in FIG. 6, since the maximum value of the motor temperature can be lowered as compared with the conventional example, it is not necessary to match the design flow rate of the refrigerant to the condition that the heat generation of the motor is maximized, and the pump that supplies the cooling water The output can be saved and the fuel consumption can be improved.

ここでいう電動機冷却手段とは、例えば図2,8に示すように、電動機ケース9に冷媒が流れる冷却空間16,26を設け、図1に示す回路を用いて該冷却空間16,26に冷媒を流す構成をいう。
したがって、レイアウトの都合上、電動機ケースの外周方向全周に亘り分布するよう冷却水路を配設することが不可能な場合でも、冷却性能の悪化を回避することができる。そして、図6に示すように電動機温度が急上昇して制限温度Tuに達することを抑制し、車両の過渡的な動力性能を向上させることができる。
さらにまた、ポンプ5の設計流量を、モータの発熱が最大となる条件よりも低い実用域に合わせて設定することが可能となり、ポンプ5の消費エネルギーを低減して、燃費が向上する。
For example, as shown in FIGS. 2 and 8, the motor cooling means here is provided with cooling spaces 16 and 26 through which a refrigerant flows in the motor case 9, and the refrigerant shown in FIG. The structure that flows.
Therefore, even if it is impossible to dispose the cooling water channel so as to be distributed over the entire outer circumference of the electric motor case for the sake of layout, deterioration of the cooling performance can be avoided. And as shown in FIG. 6, it can suppress that an electric motor temperature raises rapidly and reaches limit temperature Tu, and can improve the transient motive power performance of a vehicle.
Furthermore, the design flow rate of the pump 5 can be set in accordance with a practical range lower than the condition in which the heat generation of the motor is maximized, reducing the energy consumption of the pump 5 and improving the fuel consumption.

具体的には、電動機ケース9を略円筒形状に形成し、この電動機ケース9の周方向の一部には、蓄冷部材17または27を設け、この電動機ケースの周方向他の部分には、蓄冷部材17,27に近接させて冷却空間16を設けて、コイル13の発熱量が増大するシーンでは蓄冷部材17,27が冷却空間16と相俟って、熱を吸収する。なお、蓄冷部材はこの実施例のように一個所に配置してもよい他、複数箇所に分割配置してもよいこと勿論である。   Specifically, the motor case 9 is formed in a substantially cylindrical shape, a cold storage member 17 or 27 is provided in a part of the motor case 9 in the circumferential direction, and a cold storage member is provided in the other circumferential part of the motor case 9. In the scene where the cooling space 16 is provided close to the members 17 and 27 and the amount of heat generated by the coil 13 increases, the cold storage members 17 and 27 combine with the cooling space 16 to absorb heat. Of course, the cold storage member may be arranged at one place as in this embodiment, or may be divided and arranged at a plurality of places.

また、上記他の実施例では、電動機ケース9の下部に蓄冷部材27を配設したことから、走行風によって蓄冷部材27をさらに冷却することが可能となり、車両の過渡的な動力性能をより向上させることができる。   In the other embodiment, since the cold storage member 27 is disposed in the lower part of the electric motor case 9, the cold storage member 27 can be further cooled by the traveling wind, and the transient power performance of the vehicle is further improved. Can be made.

また、上記別の実施例では、電動機ケース9に蓄冷壁37,47によって形成された冷却水路36,46を設けるとともに、冷却通路36,46を連続した1本の通路にして、前記電動機ケースに往復状(図9)または螺旋状(図10)に張り巡らせるよう配設したことから、冷却水が滞留することなく電動機ケース9の全周に行き渡り、冷却効果を向上させることができる。
また、蓄熱壁37,47を冷却水によって効果的に冷却することが可能になり、車両の過渡的な動力性能をより向上させることができる。
In another embodiment, the motor case 9 is provided with cooling water passages 36 and 46 formed by the cold storage walls 37 and 47, and the cooling passages 36 and 46 are formed as one continuous passage so that the motor case 9 Since it is arranged so as to stretch in a reciprocating manner (FIG. 9) or a spiral shape (FIG. 10), the cooling water can be spread over the entire circumference of the motor case 9 without stagnating, and the cooling effect can be improved.
Further, the heat storage walls 37 and 47 can be effectively cooled by the cooling water, and the transient power performance of the vehicle can be further improved.

電動機冷却手段は、上記の冷媒を用いる構成の他、空冷フィン53を設けて空冷としてもよい。   The motor cooling means may be air-cooled by providing air-cooling fins 53 in addition to the configuration using the above refrigerant.

さらに上記他の実施例では、図14,16,17に示すように車体底面の凹部をなすフロアトンネル10内に空冷電動機51,61,71を取り付けた姿勢で、蓄冷部材57,17,77をフロアトンネル10近傍に配置したことから、走行風が小さいフロアトンネル10と電動機ケース59,69,79上部との隙間を有益に利用しつつ、走行風が大きい電動機ケース59,69,79下部で電動機の発熱を効率よく放熱することができる。   Further, in the other embodiment described above, as shown in FIGS. Since it is arranged in the vicinity of the floor tunnel 10, the gap between the floor tunnel 10 with a small traveling wind and the upper part of the motor case 59, 69, 79 is used effectively, while the motor at the lower part of the motor case 59, 69, 79 with a large traveling wind is used. Can be efficiently dissipated.

また、上記他の実施例では、図17に示すように電動機ケース79には凹部79oと蓋59fで囲まれた空間を設け、この空間をエチレングリコールなど比熱が大きい流動体で充填することにより蓄冷部材77を構成し、この空間には、この流動体を詰め替えるための入口プラグ72と、排出するための出口プラグ73とを設けたことから、蓄冷部材77が所望の吸熱効果を果たさず劣化した場合には、容易に蓄冷部材77の交換をすることができる。特に、蓄冷部材77をフロアトンネル10内に配置する実施例にあっては、交換作業の効率を大きく向上させることができる。   In the other embodiment, as shown in FIG. 17, the motor case 79 is provided with a space surrounded by a recess 79o and a lid 59f, and this space is filled with a fluid having a large specific heat, such as ethylene glycol. The member 77 is configured, and in this space, the inlet plug 72 for refilling the fluid and the outlet plug 73 for discharging are provided, so that the cold storage member 77 is deteriorated without achieving a desired endothermic effect. In this case, the cold storage member 77 can be easily replaced. In particular, in the embodiment in which the cold storage member 77 is disposed in the floor tunnel 10, the efficiency of the replacement work can be greatly improved.

なお、上述したのはあくまでも本発明の一実施例であり、本発明はその主旨に逸脱しない範囲において種々変更が加えられうるものである。   The above description is merely an example of the present invention, and the present invention can be variously modified without departing from the spirit of the present invention.

本発明の実施例になる冷却装置を具えた電動機を、冷却通路の配置とともに示す全体構成図である。It is a whole block diagram which shows the electric motor provided with the cooling device which becomes an Example of this invention with arrangement | positioning of a cooling channel | path. 同実施例の冷却装置を軸直角方向に切断して示す横断面図である。It is a cross-sectional view which cut | disconnects and shows the cooling device of the Example in the direction orthogonal to an axis. 同実施例の冷却装置を図2中のIII−III線で断面とし、矢の方向から見て示す展開縦断面図である。It is the expansion | deployment longitudinal cross-sectional view which makes the cooling device of the Example the cross section along the III-III line in FIG. 2, seeing from the direction of an arrow. 同実施例の冷却装置を図2中のIV−IV線で断面とし、矢の方向から見て示す展開図である。FIG. 4 is a development view showing the cooling device of the same embodiment as a cross-section taken along line IV-IV in FIG. 2 as seen from the direction of an arrow. 同実施例の冷却装置について通常の走行状態における発熱量と温度とを示すタイムチャートである。It is a time chart which shows the emitted-heat amount and temperature in a normal driving state about the cooling device of the Example. 同実施例の冷却装置を具えた電動機を、斜め外方からみた斜視図である。It is the perspective view which looked at the electric motor provided with the cooling device of the Example from diagonally outward. 同実施例の電動機が制限温度に達する走行状態における発熱量と温度とを示すタイムチャートである。It is a time chart which shows the emitted-heat amount and temperature in the driving | running | working state in which the electric motor of the Example reaches the limit temperature. 他の実施例になる冷却装置を軸直角方向に切断して示す横断面図である。It is a cross-sectional view showing a cooling device according to another embodiment cut in the direction perpendicular to the axis. 別の実施例になる冷却装置の展開図である。It is an expanded view of the cooling device which becomes another Example. 別の実施例になる冷却装置の展開図である。It is an expanded view of the cooling device which becomes another Example. 従来例の冷却装置を具えた電動機を、軸直角方向に切断して示す横断面図である。It is a cross-sectional view which shows the electric motor provided with the cooling device of the prior art example by cutting in the direction perpendicular to the axis. 同従来例の冷却装置を図11中のXII−XII線で断面とし、矢の方向から見て示す展開図である。FIG. 12 is a development view showing the cooling device of the conventional example as a cross section taken along line XII-XII in FIG. 11 as seen from the direction of an arrow. 従来例の冷却装置を図11中のXII−XII線で断面とし、矢の方向から見て示す展開図である。FIG. 12 is a development view in which a cooling device of a conventional example is taken as a cross section taken along line XII-XII in FIG. 11 and viewed from the direction of an arrow. 他の実施例になる冷却装置を軸直角方向に切断して示す横断面図である。It is a cross-sectional view showing a cooling device according to another embodiment cut in the direction perpendicular to the axis. 同実施例の冷却装置を軸を含む面で切断して示す縦断面図である。It is a longitudinal cross-sectional view which cut | disconnects and shows the cooling device of the Example by the surface containing an axis | shaft. 他の実施例になる冷却装置を軸直角方向に切断して示す横断面図である。It is a cross-sectional view showing a cooling device according to another embodiment cut in the direction perpendicular to the axis. 他の実施例になる冷却装置を軸直角方向に切断して示す横断面図である。It is a cross-sectional view showing a cooling device according to another embodiment cut in the direction perpendicular to the axis.

符号の説明Explanation of symbols

1,2,21 水冷電動機
7 回転子
8 固定子
9 電動機ケース
13 コイル
16,26 冷却空間
17,27 蓄冷部材
36,46 冷却水路
37,47 蓄冷壁
51,61,71 空冷電動機
57,77 蓄冷部材
72 詰め替え用入口プラグ
73 詰め替え用出口プラグ
1, 2, 21 Water-cooled motor 7 Rotor 8 Stator 9 Motor case 13 Coil 16, 26 Cooling space 17, 27 Cooling member 36, 46 Cooling water channel 37, 47 Cooling wall 51, 61, 71 Air-cooled motor 57, 77 Cooling member 72 Refill inlet plug 73 Refill outlet plug

Claims (9)

電動機の外殻を構成する電動機ケースに、電動機を冷却する電動機冷却手段を設けた電動機の冷却装置において、
前記電動機ケースには、比熱が大きい材料からなる蓄冷部材を設け、
該蓄冷部材と、前記電動機の発熱部分と、前記電動機冷却手段との間で熱が移動するよう構成したことを特徴とする電動機の冷却装置。
In the motor cooling device provided with the motor cooling means for cooling the motor in the motor case constituting the outer shell of the motor,
The electric motor case is provided with a cold storage member made of a material having a large specific heat,
A cooling device for an electric motor, wherein heat is transferred between the cold storage member, a heat generating portion of the electric motor, and the electric motor cooling means.
請求項1に記載の冷却装置において、
前記電動機ケースに、冷媒が流れる冷却空間を設けて前記電動機冷却手段としたことを特徴とする電動機の冷却装置。
The cooling device according to claim 1, wherein
A cooling device for an electric motor, wherein the electric motor case is provided with a cooling space through which a refrigerant flows to serve as the electric motor cooling means.
請求項2に記載の電動機の冷却装置において、前記電動機ケースを略円筒形状に形成し、この電動機ケースの周方向の一部には前記蓄冷部材を設け、
この電動機ケースの周方向他の部分には、該蓄冷部材に近接させて前記冷却空間を設けたことを特徴とする電動機の冷却装置。
The motor cooling device according to claim 2, wherein the motor case is formed in a substantially cylindrical shape, and the cold storage member is provided in a part of a circumferential direction of the motor case,
The motor cooling device according to claim 1, wherein the cooling space is provided in the other circumferential portion of the motor case in the vicinity of the cold storage member.
車体の底面に前記電動機を取り付けた請求項3に記載の電動機の冷却装置において、
前記電動機ケースの下部に前記蓄冷部材を配設したことを特徴とする電動機の冷却装置。
The motor cooling device according to claim 3, wherein the motor is attached to a bottom surface of a vehicle body.
The motor cooling device, wherein the cold storage member is disposed in a lower part of the motor case.
請求項3または4に記載の電動機の冷却装置において、
前記冷却空間内に、前記蓄冷部材からなる壁を設けて冷却通路を形成するとともに、
該冷却通路を連続した1本の通路にして、前記電動機ケースに周方向または軸方向に往復させるよう配設したことを特徴とする電動機の冷却装置。
The motor cooling device according to claim 3 or 4,
In the cooling space, a wall made of the cold storage member is provided to form a cooling passage,
A cooling device for an electric motor, wherein the cooling passage is formed as one continuous passage and is reciprocated in a circumferential direction or an axial direction with respect to the electric motor case.
請求項3に記載の電動機の冷却装置において、前記の電動機ケースには前記蓄冷部材からなる壁を具えた連続した一本の冷却通路を、螺旋状に周方向に周回させて配設したことを特徴とする電動機の冷却装置。   The motor cooling device according to claim 3, wherein the motor case includes a continuous cooling passage having a wall made of the cold storage member and spirally arranged in a circumferential direction. An electric motor cooling device. 請求項1に記載の電動機の冷却装置において、
前記電動機ケース外周に空冷フィンを複数設けて前記電動機冷却手段としたことを特徴とする電動機の冷却装置。
The motor cooling device according to claim 1,
An electric motor cooling device comprising a plurality of air-cooling fins on the outer periphery of the electric motor case as the electric motor cooling means.
請求項7に記載の電動機の冷却装置において、
車体の凹部に前記電動機を取り付けた姿勢で、前記蓄冷部材を該車体近傍に配置したことを特徴とする電動機の冷却装置。
The motor cooling device according to claim 7,
A cooling apparatus for an electric motor, wherein the cold storage member is disposed in the vicinity of the vehicle body in a posture in which the electric motor is attached to a recess of the vehicle body.
請求項2,7,8のいずれか1項に記載の電動機の冷却装置において、
前記電動機ケースには空間を設け、該空間を比熱が大きい流動体を封入して前記蓄冷部材を構成し、
該空間には、前記流動体を詰め替えるための栓を設けたことを特徴とする電動機の冷却装置。
In the cooling device of the electric motor according to any one of claims 2, 7, and 8,
A space is provided in the electric motor case, and the cold storage member is configured by enclosing a fluid having a large specific heat in the space,
The motor cooling device according to claim 1, wherein a plug for refilling the fluid is provided in the space.
JP2005130990A 2004-12-14 2005-04-28 Cooling device of motor Withdrawn JP2006197785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130990A JP2006197785A (en) 2004-12-14 2005-04-28 Cooling device of motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004361365 2004-12-14
JP2005130990A JP2006197785A (en) 2004-12-14 2005-04-28 Cooling device of motor

Publications (1)

Publication Number Publication Date
JP2006197785A true JP2006197785A (en) 2006-07-27

Family

ID=36803391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130990A Withdrawn JP2006197785A (en) 2004-12-14 2005-04-28 Cooling device of motor

Country Status (1)

Country Link
JP (1) JP2006197785A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144742A (en) * 2006-12-13 2008-06-26 Ihi Corp Cooling structure of screw type supercharger
JP2010213402A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Motor housing structure
GB2440251B (en) * 2006-07-13 2011-06-01 Pml Flightlink Ltd Electric motors
JP2011211816A (en) * 2010-03-30 2011-10-20 Hitachi Ltd Permanent magnetic rotating electric machine, and wind power generating system
JP2012065456A (en) * 2010-09-16 2012-03-29 Aisin Seiki Co Ltd Rotary electric machine
JP2013179746A (en) * 2012-02-28 2013-09-09 Daikin Ind Ltd Rotary electric machine and electric vehicle
KR20150033550A (en) * 2013-09-23 2015-04-01 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Electrical machine for use in the automotive sector
JP2017047698A (en) * 2015-08-31 2017-03-09 Ntn株式会社 Electric automobile
DE102016215426A1 (en) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Method for operating a vehicle and vehicle
JP2018182854A (en) * 2017-04-07 2018-11-15 株式会社Subaru Cooling device of electric motor
US10923982B2 (en) 2015-05-21 2021-02-16 Mitsubishi Heavy Industries Thermal Systems, Ltd. Electric compressor motor housing, and vehicle-mounted electric compressor employing same
KR20210029511A (en) * 2019-09-06 2021-03-16 주식회사 우수티엠엠 A drive motor cooling method for electric car
US11780000B2 (en) 2020-04-29 2023-10-10 Deere & Company Method of forming parallel spiral channels in housing to be formed by casting or molding process
USD1008364S1 (en) * 2020-08-10 2023-12-19 Ninebot (Beijing) Tech Co., Ltd. Electric self balancing scooter
EP4346069A1 (en) 2022-09-29 2024-04-03 Honda Motor Co., Ltd. Drive unit and rotating electric machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2440251B (en) * 2006-07-13 2011-06-01 Pml Flightlink Ltd Electric motors
US8688346B2 (en) 2006-07-13 2014-04-01 Protean Electric Limited Electric motors
JP2008144742A (en) * 2006-12-13 2008-06-26 Ihi Corp Cooling structure of screw type supercharger
JP2010213402A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Motor housing structure
JP2011211816A (en) * 2010-03-30 2011-10-20 Hitachi Ltd Permanent magnetic rotating electric machine, and wind power generating system
JP2012065456A (en) * 2010-09-16 2012-03-29 Aisin Seiki Co Ltd Rotary electric machine
JP2013179746A (en) * 2012-02-28 2013-09-09 Daikin Ind Ltd Rotary electric machine and electric vehicle
KR101712706B1 (en) 2013-09-23 2017-03-06 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Electrical machine for use in the automotive sector
KR20150033550A (en) * 2013-09-23 2015-04-01 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Electrical machine for use in the automotive sector
US10923982B2 (en) 2015-05-21 2021-02-16 Mitsubishi Heavy Industries Thermal Systems, Ltd. Electric compressor motor housing, and vehicle-mounted electric compressor employing same
JP2017047698A (en) * 2015-08-31 2017-03-09 Ntn株式会社 Electric automobile
WO2017038596A1 (en) * 2015-08-31 2017-03-09 Ntn株式会社 Electric vehicle
DE102016215426A1 (en) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Method for operating a vehicle and vehicle
JP2018182854A (en) * 2017-04-07 2018-11-15 株式会社Subaru Cooling device of electric motor
KR20210029511A (en) * 2019-09-06 2021-03-16 주식회사 우수티엠엠 A drive motor cooling method for electric car
KR102312991B1 (en) * 2019-09-06 2021-10-13 주식회사 우수티엠엠 A drive motor cooling method for electric car
US11780000B2 (en) 2020-04-29 2023-10-10 Deere & Company Method of forming parallel spiral channels in housing to be formed by casting or molding process
USD1008364S1 (en) * 2020-08-10 2023-12-19 Ninebot (Beijing) Tech Co., Ltd. Electric self balancing scooter
EP4346069A1 (en) 2022-09-29 2024-04-03 Honda Motor Co., Ltd. Drive unit and rotating electric machine

Similar Documents

Publication Publication Date Title
JP2006197785A (en) Cooling device of motor
JP5625565B2 (en) Rotating machine and vehicle
JP5638094B2 (en) Mounting structure of power control device
JP4645602B2 (en) Vehicle drive device
US8823223B2 (en) Electric vehicle using electric motor and electric motor
JP5703698B2 (en) Rotating machine and vehicle
US6617716B2 (en) Rotary electric machine having stator coolant passage means
JP5908741B2 (en) Rotating electric machine
KR20130141502A (en) Coolant channels for electric machine stator
US20120080965A1 (en) Coolant Channels for Electric Machine Stator
JP2012170177A (en) Mounting structure of power control unit
KR20160000909A (en) Water-cooled moter
JP4816350B2 (en) Capacitor cooling structure and motor having the cooling structure
JP2011213290A (en) Cooling device of hybrid vehicle
JP2016077118A (en) Vehicle motor apparatus
JP5751065B2 (en) End plate of rotor and rotating electric machine
WO2008146902A1 (en) Driving mechanism
KR20140011449A (en) Cooling structure for motor
JPH07288949A (en) Electric motor to drive vehicle
US7948125B2 (en) System and method for cooling an electric motor
JP2020054066A (en) vehicle
JP2006253544A (en) Capacitor device
JP2006203138A (en) Semiconductor device
JP2021045988A5 (en)
US20100109455A1 (en) Automotive electric machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060612

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701