JP4932717B2 - ピペリジン環を有するインドール誘導体の製造方法 - Google Patents

ピペリジン環を有するインドール誘導体の製造方法 Download PDF

Info

Publication number
JP4932717B2
JP4932717B2 JP2007528313A JP2007528313A JP4932717B2 JP 4932717 B2 JP4932717 B2 JP 4932717B2 JP 2007528313 A JP2007528313 A JP 2007528313A JP 2007528313 A JP2007528313 A JP 2007528313A JP 4932717 B2 JP4932717 B2 JP 4932717B2
Authority
JP
Japan
Prior art keywords
following formula
compound
reaction
added
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007528313A
Other languages
English (en)
Other versions
JPWO2006121106A1 (ja
Inventor
直之 下村
厚 鎌田
守 宮澤
康一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai R&D Management Co Ltd
Original Assignee
Eisai R&D Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2005/008632 external-priority patent/WO2005108389A1/ja
Application filed by Eisai R&D Management Co Ltd filed Critical Eisai R&D Management Co Ltd
Priority to JP2007528313A priority Critical patent/JP4932717B2/ja
Priority claimed from PCT/JP2006/309461 external-priority patent/WO2006121106A1/ja
Publication of JPWO2006121106A1 publication Critical patent/JPWO2006121106A1/ja
Application granted granted Critical
Publication of JP4932717B2 publication Critical patent/JP4932717B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4

Description

本発明は、5HT−1A拮抗作用及び結合作用を有する、下部尿路症状、特に蓄尿症状の予防剤または治療剤として有用な1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−N−メチル−1H−インドール−6−カルボキサミドの製造方法に関する。
セロニン受容体の一つとして、5HT−1A受容体があり、5HT−1A拮抗作用や結合作用を有する化合物は、うつ病、不安症、認知障害、排尿障害などの予防もしくは治療剤として期待されている。このような化合物として、ピペリジン環を有する各種化合物が既に報告されている(特許文献1、特許文献2、特許文献3参照)。
国際公開第WO99/06384号パンフレット 特開2002−114684号公報 国際公開第WO98/43956号パンフレット
本発明者らは、5HT−1A拮抗作用および結合作用を有する、新たなピペリジン環含有インドール誘導体として、下記一般式(I)
Figure 0004932717

[式中、RおよびRは、隣接する置換基であって、これら置換基とその各々が結合する2つの炭素原子とが一緒になって、下記置換基群B1から選択される、1ないし4個の置換基で置換されてもよい、
(1)5ないし7員環式非芳香族炭化水素環基、
(2)5ないし7員環式非芳香族複素環基、
(3)6員環式芳香族炭化水素環基または
(4)5もしくは6員環式芳香族複素環基を形成し、
は、水素原子またはメチル基を示し、
は、下記置換基群A1から選択される置換基を示す。
置換基群A1:(1)水素原子、(2)ハロゲン原子、(3)シアノ基、(4)水酸基、(5)ニトロ基、(6)カルボキシル基、(7)C3−8シクロアルキル基、(8)C2−6アルケニル基、(9)C2−6アルキニル基、(10)C1−6アルキルチオ基、(11)C1−6アルコキシカルボニル基、(12)C1−6アルキルスルホニル基、(13)C1−6アルキル基(該C1−6アルキル基は、ハロゲン原子、水酸基およびC1−6アルコキシ基からなる群から選択される1ないし3個の置換基で置換されてもよい)、(14)C1−6アルコキシ基(該C1−6アルコキシ基は、1ないし3個のハロゲン原子で置換されてもよい)、(15)アミノ基(該アミノ基は、C1−6アルキル基、ホルミル基、C1−6アルカノイル基およびC1−6アルキルスルホニル基からなる群から選択される置換基で置換されてもよい)および(16)カルバモイル基(該カルバモイル基は1または2個のC1−6アルキル基で置換されてもよい)。
置換基群B1:(1)水素原子、(2)ハロゲン原子、(3)シアノ基、(4)水酸基、(5)ニトロ基、(6)オキソ基、(7)カルボキシル基、(8)C3−8シクロアルキル基、(9)C2−6アルケニル基、(10)C2−6アルキニル基、(11)C1−6アルキルチオ基、(12)C1−6アルコキシカルボニル基、(13)C1−6アルキルスルホニル基、(14)C1−6アルキル基(該C1−6アルキル基は、ハロゲン原子、水酸基およびC1−6アルコキシ基で置換されてもよい)、(15)C1−6アルコキシ基(該C1−6アルコキシ基は、1ないし3個のハロゲン原子で置換されてもよい)、(16)アミノ基(該アミノ基は、C1−6アルキル基、ホルミル基、C1−6アルカノイル基およびC1−6アルキルスルホニル基からなる群から選択される置換基で置換されてもよい)、(17)カルバモイル基(該カルバモイル基は、1または2個のC1−6アルキル基で置換されてもよい)、(18)C1−6アルコキシイミノ基、(19)同一炭素原子に結合する2個のC1−3アルキル基が一緒になって形成するC5−6シクロアルキル基および(20)同一炭素原子に結合する2個のC1−3アルキル基が酸素原子と共に当該炭素原子と一緒になって形成するテトラヒドロピラニル基。]で表される化合物を見出し、既に特許出願している(国際出願第PCT/JP2005/008632号および米国特許出願第11/126209号)。この化合物は、5HT−1A拮抗作用および結合作用を示し、下部尿路症状、特に蓄尿症状の予防剤または治療剤として有用である。
特に、前記一般式(I)に含まれる、下記式(i)
Figure 0004932717

で示される化合物1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−N−メチル−1H−インドール−6−カルボキサミドが優れた作用を有するものとして期待される。
そこで、本発明は、化合物(i)の製造方法およびその中間体化合物を提供することを目的とする。
本発明者らは、精力的に研究を重ねた結果、化合物(i)の製造方法を見出し、本発明を完成した。
すなわち、本発明は、
(1)下記式(a−6)
Figure 0004932717

で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンを酸化することにより得られる下記式(a)
Figure 0004932717

で表される(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)アセトアルデヒドと下記式(b)
Figure 0004932717

で表されるN−メチル−1−(ピペリジン−4−イル)−1H−インドール−6−カルボキサミドとをカップリングすることを含む、
下記式(i)
Figure 0004932717

で表される1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−N−メチル−1H−インドール−6−カルボキサミドの製造方法、
(2)下記式(a−6)
Figure 0004932717

で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンは、下記式(a−5)
Figure 0004932717

で表される化合物[式中、Xは水酸基の保護基を示す。]の保護基を除去することにより得られる、上記(1)記載の製造方法、
(3)下記式(a−6)
Figure 0004932717

で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンは、下記式(a−4)
Figure 0004932717

で表される化合物[式中、Xは水酸基の保護基を示す。]とメチルクロトン酸とを反応させて、下記式(a−5)
Figure 0004932717

で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去することにより得られる、上記(1)または(2)記載の製造方法、
(4)下記式(a−6)
Figure 0004932717

で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンは、下記式(a−3)
Figure 0004932717

で表される化合物[式中、Xは水酸基の保護基を示す。]と酸とを反応させて、下記式(a−4)
Figure 0004932717

で表される化合物[式中、Xは前記定義と同義である。]を得、該化合物(a−4)とメチルクロトン酸とを反応させて、下記式(a−5)
Figure 0004932717

で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去することにより得られる、上記(1)から(3)のいずれかに記載の製造方法、
(5)下記式(a−6)
Figure 0004932717

で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンは、下記式(a−2)
Figure 0004932717

で表される2−[2−(1−エトキシエトキシ)−6−メトキシフェニル]エタノールの水酸基を保護して、下記式(a−3)
Figure 0004932717

で表される化合物[式中、Xは水酸基の保護基を示す。]を得、該化合物(a−3)と酸とを反応させて、下記式(a−4)
Figure 0004932717

で表される化合物[式中、Xは前記定義と同義である。]を得、該化合物(a−4)とメチルクロトン酸とを反応させて、下記式(a−5)
Figure 0004932717

で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去することにより得られる、上記(1)から(4)のいずれかに記載の製造方法、
(6)下記式(a−6)
Figure 0004932717

で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンは、下記式(a−1)
Figure 0004932717

で表される[2−(1−エトキシエトキシ)−6−メトキシフェニル]酢酸エチルを還元して、下記式(a−2)
Figure 0004932717

で表される2−[2−(1−エトキシエトキシ)−6−メトキシフェニル]エタノールを得、該化合物の水酸基を保護して、下記式(a−3)
Figure 0004932717

で表される化合物[式中、Xは水酸基の保護基を示す。]を得、該化合物(a−3)と酸とを反応させて、下記式(a−4)
Figure 0004932717

で表される化合物[式中、Xは前記定義と同義である。]を得、該化合物(a−4)とメチルクロトン酸とを反応させて、下記式(a−5)
Figure 0004932717

で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去することにより得られる、上記(1)から(5)のいずれかに記載の製造方法、
(7)下記式(a−6)
Figure 0004932717

で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンは、下記式
Figure 0004932717

で表される1−(1−エトキシエトキシ)−3−メトキシベンゼンとブロモ酢酸エチルとを反応させて、下記式(a−1)
Figure 0004932717

で表される[2−(1−エトキシエトキシ)−6−メトキシフェニル]酢酸エチルを得、該化合物(a−1)を還元して、下記式(a−2)
Figure 0004932717

で表される2−[2−(1−エトキシエトキシ)−6−メトキシフェニル]エタノールを得、該化合物(a−2)の水酸基を保護して、下記式(a−3)
Figure 0004932717

で表される化合物[式中、Xは水酸基の保護基を示す。]を得、該化合物(a−3)と酸とを反応させて、下記式(a−4)
Figure 0004932717

で表される化合物[式中、Xは前記定義と同義である。]を得、該化合物(a−4)とメチルクロトン酸とを反応させて、下記式(a−5)
Figure 0004932717

で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去することにより得られる、上記(1)から(6)のいずれかに記載の製造方法。
(8)Xがベンゾイル基である、上記(2)から(7)のいずれかに記載の製造方法、
(9)下記式(II)
Figure 0004932717

で表される化合物[式中、Xは水素原子または水酸基の保護基を示す。]、
(10)水酸基の保護基がベンゾイル基である、上記(9)記載の化合物、
(11)安息香酸 2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチルまたは8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オン、
(12)下記式(c−3)
Figure 0004932717

で表される化合物とメチルアミンとを反応させることを含む、下記式(i)
Figure 0004932717

で表される1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−N−メチル−1H−インドール−6−カルボキサミドの製造方法、
(13)下記式(c−3)
Figure 0004932717

で表される化合物は、下記式(c−2)
Figure 0004932717

で表される化合物を加水分解することにより得られる、上記(12)記載の製造方法、
(14)下記式(c−3)
Figure 0004932717

で表される化合物は、下記式(a)
Figure 0004932717

で表される化合物と、下記式(c−1)
Figure 0004932717

で表される化合物またはその塩とを反応させて、下記式(c−2)
Figure 0004932717

で表される化合物を得、次いで、該化合物を加水分解することにより得られる、上記(12)記載の製造方法、
(15)下記式(c−3)
Figure 0004932717

で表される化合物は、下記式(a)
Figure 0004932717

で表される化合物と、下記式(b´−4)
Figure 0004932717

で表される化合物[式中、Yは2級アミンの保護基を示す。]の保護基を除去して得られる下記式(c−1)
Figure 0004932717

で表される化合物またはその塩とを反応させて、下記式(c−2)
Figure 0004932717

で表される化合物を得、次いで、該化合物(c−2)を加水分解することにより得られる、上記(12)記載の製造方法、および
(16)Yがベンジルオキシカルボニルである、上記(15)記載の製造方法
に関する。
本発明により、1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−N−メチル−1H−インドール−6−カルボキサミドを工業的に有利に製造することができる。また、本発明により、かかる製造に有利に使用される製造中間体が提供される。
本発明に係る、下記式(i)で表される化合物の製造方法を以下に示す。
工程(1)
工程(1)は下記式(a)で表される化合物と下記式(b)で表される化合物をカップリング反応に付することにより下記式(i)で表される化合物を得る工程である。
Figure 0004932717
工程(1)におけるカップリング反応は、好ましくは還元的アミノ化反応条件下、すなわちカルボニル化合物とアミン化合物との還元的アミノ化反応に通常用いられている条件と同様の条件で行うことができる。本工程の還元反応は特に限定されないが、例えばボラン、水素化ホウ素錯体化合物等の還元剤による還元的アミノ化反応、金属触媒を用いた水素雰囲気下での接触還元反応等が挙げられる。
水素化ホウ素錯体化合物を用いた還元的アミノ化反応の例として、例えばW.S.Emerson,Organic Reactions,4.174(1948)、C.F.Lane,Synthesis,135(1975)、J.C.Ctowell and S.J.Pedegimas,Synthesis,127(1974)およびA.F.Abdel−Magid, K.G.Carson, B.D.Harris, C.A.Marryanoff and R.D.Shah, Journal of Organic Chemistry,61,3849(1996)等の文献記載の方法を挙げることができる。水素化ホウ素錯体化合物として、例えば水素化ホウ素ナトリウム、シアン化水素ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウム等を用いることができる。還元剤として水素化ホウ素錯体化合物を用いる場合、溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、具体的に例えば、メタノール、エタノール、テトラヒドロフラン、N,N−ジメチルホルムアミド、塩化メチレン、1,2−ジクロロエタン等が挙げられる。
化合物(b)は、化合物(a)に対して、0.8から2.5当量、好ましくは1から1.5当量である。水素化ホウ素錯体化合物は化合物(a)に対して、1から3当量、好ましくは、1から1.5当量使用する。反応時間は、特に限定されないが、通常、0.5から48時間であり、好ましくは0.5から12時間である。反応温度は特に限定されないが、通常、−78℃から溶媒の還流温度であり、好ましくは氷冷から室温である。
水素雰囲気下での接触還元反応を用いる際に使用される溶媒は、溶媒は反応を阻害しないものであれば特に限定されないが、例えばメタノール、エタノール、テトラヒドロフラン、1,4−ジオキサン等が挙げられる。反応に用いる金属触媒としては、例えばパラジウム、酸化白金、ラネーニッケル等を挙げることができる。反応時間は、特に限定されないが、通常1から48時間であり、好ましくは1から24時間である。反応条件は、特に限定されないが、室温から溶媒の還流温度、常圧から15MPa、好ましくは室温から60℃、常圧から0.5MPaで行うことができる。
化合物(a)は以下の工程(A−1)ないし工程(A−6)および工程(A)を経て得られる。
工程(A−1)
Figure 0004932717
工程(A−1)は1−(1−エトキシエトキシ)−3−メトキシベンゼンとブロモ酢酸エチルとを反応させることにより式(a−1)で表される化合物を得る工程である。
本工程は、必要ならばn−ブチルリチウム等の強塩基の存在下で行うことができる。反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、具体的に例えば、テトラヒドロフラン、ヘプタン、ヘキサン、トルエン、1,2−ジメトキシエタン、ジエチルエーテル、1,2−ジクロロエタン等が挙げられる。反応温度は、通常、−78℃から溶媒の還流温度であり、好ましくは−78から0℃である。反応時間は、特に限定されないが、通常1から48時間であり、好ましくは1から24時間である。
工程(A−2)
Figure 0004932717
工程(A−2)は、前記式(a−1)で表される化合物を還元することにより、前記式(a−2)で表される化合物を得る工程である。
工程(A−2)におけるエステルの還元反応は、例えば第4版実験化学講座26(159〜266ページ)等に記載された還元反応として一般に用いられている条件または条件に準じて反応を行うことができる。反応に用いられる還元剤としては、例えば水素化リチウムアルミニウム、水素化ホウ素リチウム、水素化ジイソブチルアルミニウム、水素化ビス(2−メトキシエトキシ)アルミニウムナトリウム等が挙げられる。反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、具体的に例えば、好ましくはテトラヒドロフラン、ジエチルエーテル、ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒または塩化メチレン等が挙げられる。反応温度は特に限定されないが、通常、−78℃から溶媒の還流温度であり、好ましくは−78℃から室温である。還元剤は化合物(a−1)に対して、1から3当量、好ましくは1から1.5当量使用する。
工程(A−3)
Figure 0004932717

[式中、Xは水酸基の保護基を示す。]
工程(A−3)は、前記式(a−2)で表される化合物の水酸基に保護基を導入して、前記式(a−3)で表される化合物を得る工程である。
Xで表される水酸基の保護基としては、例えば、アセチル基またはベンゾイル基等公知の水酸基の保護基が挙げられるが、好ましくは、ベンゾイル基である。本工程は、例えばベンゾイル基で保護する場合、塩化ベンゾイルを、トリエチルアミン等の塩基存在下、例えばトルエン、キシレン等の芳香族炭化水素系溶媒、酢酸エチル等のエステル系溶媒、ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒中反応させることにより目的物を得ることができる。塩化ベンゾイルは、化合物(a−2)に対して1当量から大過剰を用いることができる。本反応に、例えばN,N,N´,N´−テトラメチルエチレンジアミン、ジイソプロピルエチルアミン、N,N−ジメチルアニリン等を共存させると収率の向上や反応時間の短縮等の好ましい結果を得ることがある。反応温度は、0から100℃であり、好ましくは0℃から室温である。反応時間は、特に限定されないが、通常0.5から48時間であり、好ましくは0.5から4時間である。
工程(A−4)
Figure 0004932717

[式中、Xは前記定義と同義である。]
工程(A−4)は、前記式(a−3)で表される化合物と酸とを反応させて、前記式(a−4)で表される化合物を得る工程である。
本工程で用いられる酸としては、通常用いられる酸であれば何でもよいが、好ましくは、塩酸である。酸の量は、化合物(a−3)に対し1当量から大過剰用いる。反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、具体的に例えば、トルエン、ジメトキシエタン、テトラヒドロフラン、水またはそれらの混合溶媒等が挙げられる。反応温度は0から100℃であり、好ましくは0℃から室温である。反応時間は、通常0.5から48時間であり、好ましくは1から4時間である。
工程(A−5)
Figure 0004932717

[式中、Xは前記定義と同義である。]
工程(A−5)は、前記式(a−4)で表される化合物とメチルクロトン酸とを反応させて前記式(a−5)で表される化合物を得る工程である。
本工程は、例えば、T.Timarら、”Synthesis of 2,2−Dimethyl4−Chromanones”,J.Heterocyclic Chem. , 37,1389(2000);J.C.Jaszberenyiら、”On the Synthesis of Substituted 2,2−Dimethyl−4−Chromanones and Related Compounds”Tetrahedron Letters, 33(20),2791−2794,1992;J.C.Jaszberenyiら、Heterocycles, 38(9),2099,1994等に記載された条件と同等の条件で反応を行うことができる。他にも、化合物(a−4)とメチルクロトン酸をメシル酸存在下で反応させることにより、化合物(a−5)を得ることができる。メチルクロトン酸は化合物(a−4)に対し1当量から大過剰用いる。本反応は、必要ならば五酸化二リン等の脱水剤を添加してもよい。反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、具体的に例えば、メタンスルホン酸等を挙げることができる。反応温度は室温から100℃であり、好ましくは40から60℃である。反応時間は、特に限定されないが、通常、0.5から48時間であり、好ましくは1から4時間である。
工程(A−6)
Figure 0004932717

[式中、Xは前記定義と同義である。]
工程(A−6)は、前記式(a−5)で表される化合物の水酸基の保護基を脱保護することにより、前記式(a−6)で表される化合物を得る工程である。
アルコール性水酸基の保護基の脱保護の方法として一般に用いられる条件、たとえばT.W.Greene, P.G.M.Wuts,”Protective Groups in Organic Synthesis, Second Edition”,John Wiley&Sons,Inc.の文献記載の条件と同様の条件で反応を行うことができる。例えば、ベンゾイル基等で保護されたアルコール性水酸基は、例えばテトラヒドロフラン、メタノール、エタノール等の有機溶媒またはこれらの混合溶媒中、水酸化ナトリウム水等とを反応させることにより目的物を得ることができる。水酸化ナトリウムは、化合物(a−5)に対して1当量から大過剰を用いる。反応温度は0から100℃であり、好ましくは室温から50℃である。反応時間は、特に限定されないが、通常、0.5から48時間であり、好ましくは1から5時間である。
工程(A)
Figure 0004932717
工程(A)は、前記式(a−6)で表される化合物を酸化することにより、前記式(a)で表される化合物を得る工程である。
当業者に公知の方法により、アルコール化合物からアルデヒド化合物を得ることができる。公知の酸化方法としては、例えばスワン酸化(Swern酸化)、コーリー−キム酸化(Corey−Kim酸化)、モファット酸化(Moffatt酸化)、PCC酸化、PDC酸化、デス−マーチン酸化(Dess−Martin酸化)、SO−Pyridine酸化、TEMPO酸化などを挙げることができる。反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、例えば、ジメチルスルホキシド、テトラヒドロフラン、トルエン、塩化メチレン、クロロホルム、酢酸エチル、水またはそれらの混合溶媒等が挙げられる。酸化剤は、化合物(a−6)に対して、触媒量から大過剰を用いる。反応温度は特に限定されないが、通常−78℃から溶媒の還流温度であり、好ましくは−5℃から室温である。反応時間は、特に限定されないが、通常、1から10時間であり、好ましくは1から5時間である。例えばTEMPO酸化の場合は、第4版実験化学講座23 有機合成V 酸化反応、丸善株式会社(369−403ページ)記載の方法に準じて行うことができる。反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、例えば、ジメチルスルホキシド、テトラヒドロフラン、トルエン、塩化メチレン、クロロホルム、酢酸エチル、水またはそれらの混合溶媒等が挙げられる。2,2,6,6−テトラメチルピペリジンオキシド−臭化ナトリウム存在下、酸化剤、例えば炭酸水素ナトリウム水溶液中の次亜塩素酸ナトリウム等を、化合物(a−6)に対して当量以上用いる。反応温度は特に限定されないが、通常−20℃から室温であり、好ましくは−5℃から室温である。反応時間は、特に限定されないが、通常、1から10時間であり、好ましくは1から5時間である。
例えばスワン酸化の場合は、第4版実験化学講座23 有機合成V 酸化反応、丸善株式会社(298−346ページ)記載の方法に準じて行うことができる。反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、例えば、ジメチルスルホキシド、テトラヒドロフラン、トルエン、塩化メチレン、クロロホルム、酢酸エチル、水またはそれらの混合溶媒等が挙げられる。酸化剤としては、ジメチルスルホキシドの活性化剤として、例えば塩化オキサリル、無水トリフルオロ酢酸、無水酢酸、シクロヘキシルイミドまたは五酸化二リンなどを、化合物(a−6)に対して、2倍モル量から大過剰用いる。反応温度は特に限定されないが、通常−70℃から室温である。反応時間は、特に限定されないが、通常、3から10時間であり、好ましくは3から5時間である。なお、アルデヒド化合物は、D.P.Kjellら、“A Nobel,Nonaqueous Method for Regeneration of Aldehydes from Bisulfite Adducts” J.Organic.Chemistry.64,5722−5724(1999)記載の方法に従い、亜硫酸水素ナトリウム付加物に変換することにより簡便に精製することができ、また容易にアルデヒドを再生することができる。アルデヒド化合物を、例えばエタノール、酢酸エチル、メタノールなどの有機溶媒またはそれらの混合溶媒中、例えば亜硫酸水素ナトリウム水溶液とを反応させることにより亜硫酸水素ナトリウム付加物を得ることができる。使用する亜硫酸水素ナトリウムはアルデヒド化合物に対して1当量から大過剰用いる。反応温度は特に限定されないが、通常10から40℃であり、好ましくは室温である。
反応時間は、特に限定されないが、通常、1から48時間であり、好ましくは12から24時間である。
このようにして得られた亜硫酸水素ナトリウム付加物を、例えばエタノール、酢酸エチル、メタノール等の有機溶媒またはそれらの混合溶媒中、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム等の塩基(水溶液)で処理することによりアルデヒド化合物を得ることができる。使用する塩基は、亜硫酸水素ナトリウム付加物に対し1当量から大過剰用いる。反応温度は特に限定されないが、通常10から40℃であり、好ましくは室温である。
反応時間は、特に限定されないが、通常、1から48時間であり、好ましくは12から24時間である。なお、化合物(a)は、精製または精製することなく、化合物(i)を製造するために使用することができる。
一方、工程(1)において使用される化合物(b)は例えば下記の工程(B−1)ないし(B−6)により得られる。
工程(B−1)
Figure 0004932717
工程(B−1)は、3−ニトロ−4−メチル安息香酸とメチルアミンを縮合反応させることにより、前記式(b−1)で表される化合物を得る工程である。
本反応は、以下の文献に記載された通常用いられている条件と同様の条件で行うことができる。公知の方法として、例えば、Rosowsky, A. ; Forsch, R. A. ; Moran, R. G. ;Freisheim, J. H. ; J. Med. Chem.,34(1), 227−234(1991), Brzostwska, M. ;Brossi, A.; Flippen−Anderson, J.L. ;Heterocycles, 32(10),1969−1972(1991), Romero, D.L,; Morge, R.A.;Biles, C.;Berrios−Pena,N.;May,P.D.;Palmer,J.R.;Johnson, P.D.;Smith, H.W.;Busso, M.;Tan,C.−K.;Vorman,R.L.;Reusser,F.;ALthaus,I.W.;Downey,K.M; So, A.G.;Resnick,L; Tarpley,W.G.,Aristoff,P.A.;J.Med.Chem.,37(7),999−1014(1994)等が挙げられる。
縮合剤は、CDI(N,N´−カルボニルジイミダゾール)、Bop(1H−1,2,3−ベンゾトリアゾール−1−イルオキシ(トリ(ジメチルアミノ))ホスホニウム ヘキサフルオロホスフェート)、WSC(1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド・塩酸塩)、DCC(N,N−ジシクロヘキシルカルボジイミド)、ジエチルホスホリルシアニド等が挙げられる。また必要に応じて、3−ニトロ−4−メチル安息香酸に対して1当量から大過剰の有機塩基、例えばトリエチルアミン等を加えてもよい。反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、具体的に例えば、テトラヒドロフラン、1,4−ジオキサン、酢酸エチル、酢酸メチル、ジクロロメタン、クロロホルム、N,N−ジメチルホルムアミド、トルエン、キシレン等が挙げられる。反応温度は、使用する原料、溶媒等により異なり特に限定されないが、好ましくは氷温から溶媒の還流温度である。反応時間は、特に限定されないが、通常、0.5から48時間であり、好ましくは0.5から24時間である。得られた(b−1)の化合物は常法により精製または精製することなく次工程に使用することができる。
工程(B−2)
Figure 0004932717
工程(B−2)は、前記式(b−1)で表される化合物とジメチルホルムアルデヒドジメチルアセタールとを反応させることにより、化合物(b−2)を得る工程である。
本工程は、当業者に公知の合成法である、例えばCoe,J.W.;Vetelino,M.G.;Bradlee,M.J.;Tetrahedron Lett.,37(34), 6045−6048(1996)等に記載された条件と同様の条件で反応を行うことができる。反応溶媒は、本反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、例えばメタノール、エタノール、テトラヒドロフラン、N,N−ジメチルホルムアミド、塩化メチレン、1,2−ジクロロエタン等を用いることができる。反応温度は、通常室温から溶媒の還流温度であり、好ましくは室温から100℃である。反応時間は、特に限定されないが、通常、1から72時間であり、好ましくは1から48時間である。得られた(b−2)の化合物は常法により精製または精製することなく次工程に使用することができる。
工程(B−3)
Figure 0004932717
工程(B−3)は前記式(b−2)で表される化合物をアセタール化することにより、前記式(b−3)で表される化合物を得る工程である。
本工程のアセタール化は、当業者に公知の方法が挙げられるが、例えば、Coe,J.W.Vetelino、M.G.;Bradlee,M.J.;Tetrahedron Lett.,37(34), 6045−6048(1996)などに記載された条件と同様の条件で行うことができる。反応温度は、通常室温から溶媒の還流温度であり、好ましくは室温から100℃である。反応時間は、特に限定されないが、通常、1から72時間であり、好ましくは1から48時間である。得られた(b−3)の化合物は常法により精製または精製することなく次工程に使用することができる。
工程(B−4)
Figure 0004932717
工程(B−4)は、前記式(b−3)で表される化合物を還元することにより、前記式(b−4)で表される化合物を得る工程である。
本工程における還元反応は、公知の方法が挙げられるが、例えばラネーニッケル、パラジウム、ルテニウム、ロジウムまたは白金等の貴金属触媒を使用する接触水素化による還元が挙げられる。この場合に好ましいのは、例えばパラジウムまたは水酸化パラジウム等を使用する方法が挙げられる。あるいは塩化アンモニウムを用いる中性条件下での鉄による還元反応等が挙げられる。溶媒は反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、例えばメタノール、エタノール、テトラヒドロフラン、N,N,−ジメチルホルムアミド、塩化メチレン、1,2−ジクロロエタン等を用いることができる。反応条件は、特に限定されないが、室温から溶媒の還流温度、常圧から15MPa、好ましくは室温から60℃、常圧から0.5MPaである。反応時間は、特に限定されないが、通常、1から48時間であり、好ましくは1から24時間である。得られた(b−4)の化合物は常法により精製または精製することなく次工程に使用することができる。
工程(B−5)
Figure 0004932717

[式中、Yは2級アミンの保護基を示す。]
工程(B−5)は、前記式(b−4)で表される化合物と前記式(b−4´)で表される化合物を還元的アミノ化反応させた後、閉環反応を行うことにより、前記式(b−5)で表される化合物を得る工程である。
Yで表される2級アミンの保護基としては、公知のものが挙げられるが、例えば、ベンジルオキシカルボニル基、tert−ブチルオキシカルボニル基等が挙げられる。還元的アミノ化反応は通常用いられる条件と同様の条件で行うことができるが、例えば、ボラン、水素化ホウ素錯体化合物等の還元剤による還元的アミノ化反応、金属触媒を用いた水素雰囲気下での接触還元反応等が挙げられる。水素化ホウ素錯体化合物を用いた還元的アミノ化反応の例として、例えばW.S.Emerson,Organic Reactions,4、174(1948)、C.F.Lane,Syntheisis,127(1974)、A.F.Abdel−Magid,K.G.Carson,B.D.Harris,C.A.Maryanoff and R.D.Shah,Journal of Organic Chemistry,61,3849(1996)等の文献記載の方法を挙げることができる。
水素化ホウ素錯体化合物として、例えば水素化ホウ素ナトリウム、シアン化水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウム等を用いることができる。還元剤として水素化ホウ素錯体化合物を用いる場合、溶媒は反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないが、例えばメタノール、エタノール、テトラヒドロフラン、N,N−ジメチルホルムアミド、塩化メチレン、1,2−ジクロロエタン等を用いることができる。本反応は、酸の共存下に行うことで収率向上等のより好ましい結果を得ることができる。かかる酸としては特に限定されないが、好適には、例えば、塩酸等の鉱酸、酢酸等の有機酸、例えば塩化亜鉛、三フッ化ホウ素ジエチルエーテル錯体、チタニウム(IV)テトライソプロポキシド等のルイス酸等が挙げられる。また、酸は溶媒としても用いることができる。
化合物(b−4´)は化合物(b−4)に対し0.8から2.5当量、好ましくは1から1.5当量である。水素化ホウ素錯体化合物は化合物(b−4)に対し、1から3当量、好ましくは1から1.5当量使用する。反応温度は、使用する原料、溶媒等により異なり特に限定されないが、通常、−78℃から溶媒の還流温度であり、好ましくは氷温から室温である。反応時間は、特に限定されないが、通常、0.5から48時間であり、好ましくは0.5から12時間である。
水素雰囲気下での接触還元反応を用いる際に使用される溶媒は、反応を阻害しないものであれば、特に限定はされないが、例えばメタノール、エタノール、テトラヒドロフラン、1,4−ジオキサン等が挙げられる。金属触媒としては、例えばパラジウム、酸化白金、ラネーニッケル等を挙げることができる。反応条件は、特に限定されないが、室温から溶媒の還流温度、常圧から15MPa、好ましくは室温から60℃、常圧から0.5MPaである。反応時間は、特に限定されないが、通常、1から48時間であり、好ましくは1から24時間である。
閉環反応は、例えば、Coe,J.W.;Vetelino,M.G.;Bradlee,M.J.;Tetrahedron Lett.,37(34),6045−6048(1996)、Arai,E.;Tokuyama、H.;Linsell,M.S.;Fukuyama,T.;Tetrahedron Lett.,39(1),71−74(1998)、Tishler,A.N,Lanza,T.J.;Tetrahedron Lett.,27(15),1653(1986)、Sakamoto Takao,Kondo Yoshinori,Yamanaka Hiroshi,Chem. Pharm. Bull.,Vol.34,2362(1986)などに記載の条件と同様の条件で反応を行うことができる。
反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、具体的に例えば、水、水と例えばメタノール、エタノール、テトラヒドロフラン、1,4−ジオキサン、ベンゼン、トルエン等の有機溶媒中で、適当な酸を1当量から大過剰用いて行うことができる。酸としては、例えば酢酸、塩化水素、塩酸、臭化水素酸、硫酸、硝酸、トリフルオロ酢酸、p−トルエンスルホン酸、p−トルエンスルホン酸・ピリジニウム塩、カンファースルホン酸等が挙げられる。反応時間は、特に限定されないが、通常、1から24時間であり、好ましくは1から24時間である。得られた(b−5)の化合物は常法により精製または精製することなく次工程に使用することができる。
工程(B−6)
Figure 0004932717

[式中、Yは前記定義と同義である。]
工程(B−6)は、前記式(b−5)で表される化合物の2級アミンの保護基を脱保護することにより、前記式(b)で表される化合物を得る工程である。
アミノ化合物の保護基の脱理に一般に用いられる条件、例えば、T.W.Green and P.G.M.Wuts, “Protective Groups in Organic Chemistry, Second Edition”, John Wiley&Sons(1991),309−405等の文献記載の条件と同様の条件で反応を行うことができる。例えばYがベンジルオキシカルボニル基で保護されている際は、例えばアルコール、テトラヒドロフラン等の溶媒中でパラジウム−炭素を触媒として水素添加することで脱保護し、化合物(b)を得ることができる。
得られた(b)の化合物は常法により精製または精製することなく次工程に使用することができる。
化合物(b)は前記の製造方法の他、下記工程(B´−1)ないし工程(B´−6)及び前記工程(B−6)によっても得ることができる。
Figure 0004932717

Figure 0004932717

Figure 0004932717
工程(B´−1)
工程(B´−1)は、3−ニトロ−4−メチル安息香酸とジメチルホルムアルデヒドジメチルアセタールとを反応させることにより、化合物(b´−1)を得る工程である。本工程は、前記工程(B−2)と同様の条件により行うことができる。
工程(B´−2)
工程(B´−2)は、化合物(b´−1)をアセタール化することにより、化合物(b´−2)を得る工程である。本工程は、前記工程(B−3)と同様の条件により行うことができる。
工程(B´−3)
工程(B´−3)は、化合物(b´−2)を還元することにより化合物(b´−3)を得る工程である。本工程は、前記工程(B−4)と同様の条件により行うことができる。
工程(B´−4)
工程(B´−4)は、化合物(b´−3)と化合物(b−4´)とを反応させることにより、化合物(b´−4)を得る工程である。本工程は、前記工程(B−5)と同様の条件により行うことができる。
工程(B´−5)
工程(B´−5)は、化合物(b´−4)を加水分解させることにより、化合物(b´−5)を得る工程である。
本工程は、例えばMattasa.V.G.;Brown,F.J.;Bernstein,P.R.;Shapiro,H.S.;Maduskuie,T.P.J.;Cronk,L.A.;Vacek,E.P.;Yee,Y.K.;Snyder,D.W.;Krell,R.D.;Lerman,C.L.;Maloney,J.J.;J.Med.Chem.,33(9),2621−2629(1990)に記載の反応条件と同様の条件で反応を行うことができる。具体的には例えば、化合物(b´−4)の溶液に例えば水酸化ナトリウム等の塩基(水溶液)を加え、数時間から1日攪拌後、例えばクエン酸溶液等の酸で処理することにより、化合物(b´−5)を得ることができる。反応溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定されないが、例えばメタノール、エタノール、2−プロパノール、テトラヒドロフラン、1,4−ジオキサン、水等を挙げることができる。塩基としては、特に限定されないが、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が好ましい。塩基の使用量は、化合物(b´−4)に対し1当量から大過剰であり、好ましくは1から20当量である。反応時間は、特に限定されないが、通常、1から24時間であり、好ましくは1から6時間である。反応温度は、使用する原料、溶媒等により異なり特に限定されないが、通常、−78℃から溶媒の還流温度であり、好ましくは氷温から室温である。
得られた(b´−5)の化合物は常法により精製または精製することなく次工程に使用することができる。
工程(B´−6)
工程(B´−6)は、化合物(b´−5)とメチルアミンを縮合反応させることにより、化合物(b−5)を得る工程である。本工程は、前記工程(B−1)と同様の条件により行うことができる。
一方、化合物(i)は下記の工程(C−1)ないし(C−4)によっても得ることができる。
Figure 0004932717

Figure 0004932717
工程(C−1)
工程(C−1)は、前記式(b´−4)で表される化合物[式中、Yは2級アミンの保護基を示す。]の2級アミンの保護基を脱保護することにより、前記式(c−1)で表される化合物またはその塩を得る工程である。塩は、公知の薬理学的に許容できる塩であれば、何でもよいが、好ましくは塩酸塩である。
本工程は、前記工程(B−6)と同様の条件により行うことができる。
工程(C−2)
工程(C−2)は、前記式(c−1)で表される化合物と前記式(a)で表される化合物をカップリングすることにより、前記式(c−2)で表される化合物を得る工程である。
本工程は、前記工程(1)と同様の条件により行うことができる。
工程(C−3)
工程(C−3)は、前記式(c−2)で表される化合物を加水分解することにより、前記式(c−3)で表される化合物を得る工程である。
本工程は、前記工程(B´−5)と同様の条件により行うことができる。
工程(C−4)
工程(C−4)は、前記式(c−3)で表される化合物とメチルアミンを縮合させることにより、前記式(i)で表される化合物を得る工程である。
本工程は、前記工程(B−1)と同様の条件により行うことができる。
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に制限されるものではない。本明細書において、「室温」とは、20から30℃の範囲で、好ましくは25℃を意味する。
製造例1
4−(2−ジメチルアミノ)ビニル−3−ニトロ安息香酸メチルの合成
Figure 0004932717

窒素雰囲気下の10L四頚フラスコに4−メチル−3−ニトロ安息香酸570.0g(3.15mol)、ジメチルホルムアミド(以下「DMF」と称す)3420mLを加え、攪拌した。次いで、反応液にN,N−ジメチルホルムアミドジメチルアセタール1334mL(1197g、9.44mol)を3回に分けて加えた。反応液を室温で約1時間攪拌した後に、反応容器を油浴(83℃)で加熱した。約15時間後、HPLCにて反応の進行を確認した後、加熱を止め、氷水浴にて内温28℃まで冷却した。
15L四頚フラスコに水9120mLを投入し、フラスコとを氷水浴上で冷却攪拌して、冷水を準備した。ここへ前記の反応液を6分間で注いだ。残った反応液をDMF100mLで洗い出した後、氷水浴を外し、室温で76分攪拌した。析出した固体を濾取し、残った固体は水1.5Lで洗い出し、さらに、水1.5Lで固体を洗浄した。得られた粗結晶を20L ステンレス製容器へ投入し、メタノール6840mLを加え、反応液をメカニカルスターラーで室温下65分間攪拌した。結晶を濾取し、メタノール1140mLで洗浄した。得られた結晶は40℃で減圧乾燥し、赤色固体として標記化合物668.7gを得た。
収率84.9%
H−NMR(400MHz,CDCl)δ(ppm):2.99(s,6H),3.90(s,3H),5.92(d,J=13.3Hz,1H),7.16(d,J=13.3Hz,1H),7.47(d,J=8.6Hz,1H),7.90(dd,J=8.6, 1.8Hz,1H),8.49(d,J=1.8Hz,1H).
製造例2
4−(2,2−ジメトキシエチル)−3−ニトロ安息香酸メチルの合成
Figure 0004932717

窒素雰囲気下の10L四頚フラスコに、4−(2−ジメチルアミノ)ビニル−3−ニトロ安息香酸メチル522g(2.09mol)を投入し、メタノール3500mLを加えた。この溶液に硫酸/メタノール混液(濃硫酸:266g、メタノール:676mL)を室温下13分かけて加えた。反応容器を55℃の油浴で加熱し、内温40℃を超えてから反応液を約4時間加熱攪拌した後、反応容器を氷水浴にて冷却した。反応液にトリエチルアミン193.5mLを投入した後、この溶液を減圧濃縮し、濃縮残渣にトルエン6000mLおよび水2620mLを加えた。反応液をハイフロスーパーセル(Hyflo Super−Cel)を敷いたブフナーロートで濾過し、トルエン525mLでブフナーローを洗って、不溶物を除去した。この濾液を20L分液装置に移し、水層を分液廃棄した。有機層は水1305mLで洗浄した後、減圧濃縮(浴温40℃)し、標記化合物を含有する褐色油状物625.7gを得た。
H−NMR(CDCl)δ(ppm):3.28(d,J=5.3Hz,2H),3.45(s,6H),3.96(s,3H),4.57(t,J=5.3Hz,1H),7.51(d,J=8.1Hz,1H),8.16(dd,J=8.1,1.8Hz,1H),8.53(d,J=1.8Hz,1H).
製造例3
3−アミノ−4−(2,2−ジメトキシエチル)安息香酸メチルの合成
Figure 0004932717

7Lオートクレーブに、4−(2,2−ジメトキシエチル)−3−ニトロ安息香酸メチル(前工程の収率を100%と仮定した場合の含量=562g、2.09mol)を、メタノール3000mLで洗いこんだ。この溶液にパラジウム−炭素56.2g(10%(50%含水))を加えて、更にメタノール2055mLを追加した。反応缶ジャケットに冷水を循環し、反応を開始し水素圧を0.1〜0.3MPaで制御し(内温14〜23℃)、反応液を2.5時間攪拌した。反応液を反応缶から抜き出し、メタノール320mLで洗い出した。ハイフロスーパーセルで触媒を濾去し、触媒をメタノール1080mLで洗浄した。濾液を濃縮したところ(浴温40℃)、結晶化した標記化合物が析出した。この結晶に1,2−ジメトキシエタン(以下、「DME」と称す。)265mLを加え、40℃に加温して溶解した後、再度濃縮し、標記化合物を含有する褐色油状物を得た。
収量572.4g
H−NMR(CDCl)δ(ppm):2.91(d,J=5.3Hz,2H),3.38(s,6H),3.88(s,3H),4.17(br,2H),4.50(t,J=5.3Hz,1H),7.11(d,J=7.6Hz,1H),7.3−7.45(m,2H).
製造例4
1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−1H−インドール−6−カルボン酸メチルの合成
Figure 0004932717

窒素雰囲気下の15L四頚丸底フラスコに、3−アミノ−4−(2,2−ジメトキシエチル)安息香酸メチル475g(1.99mol)を投入し、酢酸3000mLで洗いこんだ。この溶液に攪拌下、4−オキソ−1−ピペリジンカルボン酸ベンジル695g(2.98mol)を投入し、酢酸800mLで洗いこんだ。反応液を室温で1時間攪拌した後に、氷水浴上で冷却攪拌した。反応液にトリアセトキシ水素化ホウ素ナトリウム631.1g(2.98mol)を、内温15℃以下を保ちながら8分割して投入後、氷水浴を水浴に変更し、反応液を約3時間攪拌した。再度氷水浴で冷却し、反応液に水3800mLを投入した。予め100℃に加温しておいた油浴で、反応液を加温し、内温が80℃に到達した時点から6時間後に加熱を止めた。
反応液を20L分液装置へ移し、トルエン5938mLおよび水2969mLを加え、攪拌後、水層を廃棄した。有機層を0.5N水酸化ナトリウム水溶液4453mL及び2969mL、5%食塩水2969mLで2回並びに水2969mLで順次洗浄した。
有機層を濃縮し(浴温40℃)、標記化合物を含有する褐色油状物1025.1gを得た。
この油状物1017.1gにメタノール1017mLを加え溶解し、室温下標記化合物の種結晶800mgを投入した。約17時間攪拌した後、結晶を濾取し、メタノール500mLで洗いこんだ。結晶を約2.5時間40℃で減圧乾燥し、微黄色結晶として標記化合物622.2g得た。
収率79.3%
H−NMR(CDCl)δ(ppm):1.80−2.05(m,2H),2.05−2.23(m,2H),2.92−3.15(m,2H),3.96(s,3H),4.30−4.60(m,3H),5.18(s,2H),6.58(dd,J=0.4,2.8Hz,1H),7.30−7.45(m,6H),7.64(dd,J=0.4,8.4Hz,1H),7.80(dd,J=1.6,8.4Hz,1H),8.14(s,1H).
製造例5
1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−1H−インドール−6−カルボン酸の合成
Figure 0004932717

20L四頚丸底フラスコに1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−1H−インドール−6−カルボン酸メチル617.0g(1.57mol)、DME2036mL、ジメチルスルホキシド4072mLを順次投入し、氷水浴で冷却攪拌した。内温が10℃になったところで、8%水酸化ナトリウム水溶液864.7g(1.10モル当量;水酸化ナトリウム74.4gを水道水790mLに溶解したもの)を前記溶液に7分かけて滴下した。滴下終了後は、氷水浴を水浴(24.5℃〜22.3℃)に切り替え、反応液を内温20℃〜22℃の範囲で4時間10分撹拌を続けた。
反応液を均等に二分割し(3.62L×2)、それぞれを同様に後処理した。反応液3.62Lを氷水浴で冷却し、水道水2314mLを17分で加え、次いで酢酸エチル1543mLを加えた。内温が10℃以下になったところで、反応液に2N塩酸420mLを加え、水層のpHを7とした。この溶液を20L分液装置に移し、水道水2314mLおよび酢酸エチル1543mLを加え、水層を廃棄した。
二分割して処理した有機層を合わせ、5%食塩水3085gおよび水道水3085mLで順次洗浄した。有機層を減圧濃縮し始めると結晶が析出してきたので、濃縮を中止し、テトラヒドロフラン200mLを加えて溶液とし、この溶液をHPLCで定量することにより収量を算出した。有機層を減圧濃縮し、トルエン2468mL(2回の共沸のトータル使用量)を用いて減圧下で2回共沸操作を実施し、黄白色固体と液体の混合物1333.6gを得た。
標記化合物含有量566.1g、収率95.2%
H−NMR(CDCCl)δ(ppm):1.80−2.04(m,2H),2.06−2.21(m,2H),2.94−3.16(m,2H),4.30−4.58(m,3H),5.19(s,2H),6.60(dd,J=0.8,3.6 Hz,1H),7.30−7.44(m,6H),7.68(dd,J=0.8,8.4Hz,1H),7.88(dd,J=1.6,8.4Hz,1H),8.22(s,1H).
製造例6
1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−N−メチル−1H−インドール−6−カルボキサミドの合成
Figure 0004932717

15L四頚丸底フラスコに窒素気流下、1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−1H−インドール−6−カルボン酸1333.6g(含有量566.1g、1.50mmol)、テトラヒドロフラン5950mLを投入し、室温で撹拌した。この溶液にN,N´−カルボニルジイミダゾール(以下、「CDI」と称す。)339.5gを投入し、約1時間後にCDI17.4gを追加投入した。約1時間後に反応液を氷水浴で冷却し、内温10℃以下になった時点で40%メチルアミン水溶液407mLを12分で滴下し、同温度で反応液を約1.5時間撹拌した。
反応液を均等に2分割し(有機層=3740mL×2、水層=92mL×2)、それぞれを同様に後処理した。一方の反応液(有機層=3740mL、水層=92mL)を20L分液装置に移し、酢酸エチル5950mL、水道水2975mLを順次加え、分液した。有機層に2N塩酸540mLを加え、水層のpHを3に調整し、分液した。有機層は10%食塩水2975g、5%食塩水2975g、水道水1488mLで順次洗浄した。
二分割して処理した有機層を合わせ、有機層14921.6g中の標記化合物量を定量した。
HPLC定量時の含有量561.2g、収率95.9%
H−NMR(CDCl)δ(ppm):1.93(brs,2H),2.04−2.18(m,2H),3.02(brs,2H),4.26−4.60(m,3H),5.18(s,2H),6.58(dd,J=0.8,3.2 Hz,1H),7.28−7.44(m,7H),7.65(dd,J=0.4,8.4Hz,1H),8.10(s,1H).
この有機層の内、12774.0gにトルエン1270mLを加え、減圧濃縮(浴温40℃)し、濃縮物に再度トルエン1270mLを加えて濃縮し、黄褐色油状物986.5gを得た。これを以下の製造例7で用いた。
製造例7
N−メチル−1−(ピペリジン−4−イル)−1H−インドール−6−カルボキサミドの合成
Figure 0004932717

1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−N−メチル−1H−インドール−6−カルボキサミドのトルエン溶液985.5g(含有量489.3g、1.25 mmol)にテトラヒドロフラン2447mLを加えて溶解し、7Lオートクレーブに入れた。次に、反応容器にメタノール2447mLおよび10%パラジウム−炭素49g(50%含水)を順次投入した。反応容器内を窒素で2回置換し、次いで水素で2回置換した。水素圧を0.1MPaから0.2MPaに制御しながら、反応液を約2時間撹拌した。加圧を解除し、窒素置換してオートクレーブを開け、反応液を缶底から排出した。オートクレーブ内をメタノール/テトラヒドロフラン(1/1)の混液で洗い出し、反応液と洗液を合わせて触媒を濾別し、濾宰をメタノール/テトラヒドロフラン(1/1)で洗いこんだ。濾液を減圧濃縮し、褐色溶液を830.5g得た。
含有量345.6g、収率98.0%(1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−1H−インドール−6−カルボン酸メチルからの通算収率)
褐色溶液799.7g(含有量332.8g)にDME1468mLを加え、濃縮し(水浴40℃)、再度DME1468mLを加え、濃縮し、淡黄色固体と褐色溶液の混合物677.0gを得た。
H−NMR(CDCl)δ(ppm):1.88−2.02(m,2H),2.06−2.16(m,2H),2.80−2.92(m,2H),3.22−3.32(m,2H),4.46(tt,J=4.0,12.0Hz,1H),6.58(dd,J=0.8,3.2Hz,1H),7.36−7.44(m,2H),7.65(d,J=8.4Hz,1H),8.11(s,1H).
製造例8
N−メチル−4−メチル−3ニトロベンズアミドの合成
Figure 0004932717

3−ニトロ−4−メチル安息香酸1.83g(10mmol)をテトラヒドロフラン18.3mLに溶解し、窒素雰囲気下、室温で、この溶液にCDI2.43g(15mmol)を投入した。反応液を室温で1.5時間攪拌した後、氷水浴で冷却し、反応液に40%メチルアミン水溶液2.33g(30mmol)を滴下した。反応液を氷水浴冷却で15分間、室温で2.5時間撹拌した。
反応液を酢酸エチルで希釈した後、5%NaHCO水溶液に注ぎ、酢酸エチルで抽出した。有機層を0.1N塩酸、5%炭酸水素ナトリウム水溶液、5%塩化ナトリウム水溶液及び水で順次洗浄した後、無水硫酸マグネシウムで乾燥し、濾別後、減圧濃縮し、標記化合物1.75gを白色結晶として得た。
収率:90.1%
H−NMR(400MHz、CDCl)δ(ppm):2.66(s,3H),3.05(d,J=4.8Hz,3H),6.20(brs,1H),7.44(d,J=8.4Hz,1H),7.95(dd,J=2.0,8.4Hz,1H),8.34(d,J=2.0Hz,1H)
ESI−MS: m/z 217(M+Na)
製造例9
4−(2−ジメチルアミノビニル)−N−メチル−3−ニトロベンズアミドの合成
Figure 0004932717

N−メチル−4−メチル−3−ニトロベンズアミド1.65g(8.49mmol)をDMF9.9mLに溶解し、窒素雰囲気下、室温で、この溶液にN,N−ジメチルホルムアミドジメチルアセタール6.49g(50.90mmol)を滴下し、反応液を80℃で46時間加熱攪拌した。
反応液を減圧濃縮した後、残渣をフラッシュカラムクロマトグラフィーにより精製(Merck, Silica Gel 60, 230−400 mesh;酢酸エチル−ヘプタン,1:1→2:1)した。目的物を含有するフラクションを集め、減圧濃縮した後、残渣をフラッシュカラムクロマトグラフィーにより精製(Fuji silysia, NH−Silica Gel;酢酸エチル−ヘプタン=1:1)した。目的物を含有するフラクションを集め、減圧濃縮し、暗赤色結晶として標記化合物800.2mgを得た。
収率:37.8%
H−NMR(400MHz、CDCl)δ(ppm):2.97(s,6H),3.01(d,J=4.8Hz,3H),5.94(d,J=13.2Hz,1H),6.18(brs,1H),7.12(d,J=13.2Hz,1H),7.49(d,J=8.4Hz, 1H),7.78(dd,J=2.0,8.4Hz,1H),8.22(d,J=2.0Hz,1H)
ESI−MS: m/z 272(M+Na)
製造例10
4−(2,2−ジメトキシエチル)−N−メチル−3−ニトロベンズアミドの合成
Figure 0004932717

製造例9で得られた4−(2−ジメチルアミノビニル)−N−メチル−3−ニトロベンズアミド100.0mg(0.40mmol)をメタノール0.5mLに溶解し、室温でこの溶液に硫酸53.8mg/メタノール0.5mLを加え、55℃にて5時間加熱攪拌した。
反応液を氷水浴で冷却してトリエチルアミン243mg(2.40mmol)を加えた後、減圧濃縮した。残渣に水とトルエンを加え、トルエンで抽出した。有機層を無水硫酸ナトリウムで乾燥、し濾別後、減圧濃縮して標記化合物93.5mgを燈赤色油状物として得た。
収率:86.9%
H−NMR(400MHz、CDCl)δ(ppm):3.04(d,J=4.8Hz,3H),3.27(d,J=5.2Hz,2H),3.35(s,6H),4.56(t,J=5.2Hz,1H),6.26(brs,1H),7.50(d,J=8.0Hz,1H),7.93(dd,J=2.0,8.0Hz,1H),8.26(d,J=2.0Hz,1H)
ESI−MS: m/z 291(M+Na)
製造例11
3−アミノ−4−(2,2−ジメトキシエチル)−N−メチルベンズアミドの合成
Figure 0004932717

製造例10で得られた、4−(2,2−ジメトキシエチル)−N−メチル−3−ニトロベンズアミド93.5mg(0.35mmol)のメタノール2mL溶液に10%パラジウム−炭素10mgを加え、常温常圧で水素添加した。
反応終了後、ハイフロスーパーセルを用いて触媒を濾別、濾液を減圧濃縮して淡褐色油状物として標記化合物83.4mgを得た。
収率:100%
H−NMR(400MHz、CDCl)δ(ppm):2.88(d,J=5.2Hz,2H),2.98(d,J=4.8Hz,3H),3.37(s,6H),4.18(brs,2H),4.49(t,J=5.2Hz,1H),6.09(brs,1H),7.00(dd,J=1.6,8.0Hz,1H),7.08(d,J=8.0Hz,1H),7.14(d,J=1.6Hz,1H)
ESI−MS: m/z 261(M+Na)
製造例12
1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−N−メチル−1H−インドール−6−カルボキサミドの合成
Figure 0004932717

製造例11で得られた、3−アミノ−4−(2,2−ジメトキシエチル)−N−メチルベンズアミド83.4mg(0.35mmol)を酢酸1.7mLに溶解し、室温で、この溶液に4−オキソ−1−ピペリジンカルボン酸ベンジル123mg(0.52mmol)を加え、窒素雰囲気下、反応液を室温で攪拌した。1時間後、反応液を冷水浴で冷却し、反応液にSTAB(トリアセトキシ水素化ホウ素ナトリウム)117mg(0.52mmol)を投入し、反応液を室温で1時間20分攪拌した。次いで、反応液を冷水浴で冷却し、反応液に水1.7mLを滴下した後、100℃で反応液を5時間加熱攪拌した。
反応液にトルエンを加え、抽出した。ここで、1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−N−メチル−1H−インドール−6−カルボキサミドが析出したため、水層に酢酸エチルを加えて1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−N−メチル−1H−インドール−6−カルボキサミドを溶解させ、次いで、5N水酸化ナトリウム溶液で中和した後、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、濾別後、減圧濃縮し、残渣をフラッシュカラムクロマトグラフィーにより精製(Merck, Silica Gel 60, 230−400 mesh;酢酸エチル:ヘプタン=2:1)して、無色油状物として1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−N−メチル−1H−インドール−6−カルボキサミド114.9mgを得た。
得られた油状物をトルエン0.12mLに溶解し、室温攪拌下、この溶液にシクロペンチルメチルエーテル0.96mL)を滴下した。この溶液を50℃にて加熱攪拌し、1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−N−メチル−1H−インドール−6−カルボキサミドの種結晶を加えた。次いで、反応液に50℃加熱攪拌下、ヘプタン0.24mLを滴下し、50℃で10分間反応液を加熱攪拌した。これを10℃/15分のペースで室温まで徐冷した後、10℃にて1時間攪拌した。析出した結晶を濾取して白色結晶として1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−N−メチル−1H−インドール−6−カルボキサミド99.3mgを得た。
収率:72.7%
H−NMR(400MHz、CDCl)δ(ppm):1.83−2.02(br,2H),2.04−2.16(br,2H),2.94−3.10(br,2H),3.06(d,J=4.8Hz,3H),4.30−4.58(m,3H),5.17(s,2H),6.24(brs,1H),6.56(d,J=3.2Hz,1H),7.28(d,J=3.2Hz,1H),7.31−7.41(m,6H),7.62(d,J=8.4Hz,1H),8.05(s,1H)
ESI−MS: m/z 414(M+Na)
製造例13
1−(1−エトキシエトキシ)−3−メトキシベンゼンの合成
Figure 0004932717

窒素雰囲気下の15L四頚丸底フラスコにテトラヒドロフラン2600mLおよび3−メトキシフェノール650.4g(5.24mol)を加えた。次いで、このテトラヒドロフラン溶液にピリジニウム p−トルエンスルホナート65.8g(0.26mol)を加え、攪拌を開始した。この混合物を8℃に設定した恒温槽で冷却し、反応液にエチルビニルエーテル760.1g(10.54mol)を約1.5時間かけて滴下した。同温度で2.7時間反応液を攪拌した後に、恒温槽の温度を15℃に設定した。内温が14℃を越えた時点から、更に約2時間攪拌した。恒温槽の温度を8℃に設定し、内温がおおよそ10℃になった時点で、反応液に8%炭酸水素ナトリウム水溶液715.2g[炭酸水素ナトリウム57.2gを水道水658mLに溶解して調製したもの]を10分間で滴下した。反応液を20L分液ロートに移し、水道水1040mLを追加し、トルエン4550mLを加えて抽出し、有機層を水道水1300mLおよび650mLで2回洗浄した。得られた有機層を浴温40℃で減圧濃縮し、標記化合物を含有する淡黄色油状物を得た。
収量1213.5g、含量1019.3g、収率99.1%
H−NMR(400MHz,CDCl)δ(ppm):1.21(t,J=6.8Hz,3H),1.50(d,J=5.2Hz,3H),3.50−3.60(m,2H),3.79(s,3H),5.38(q,J=5.2Hz,1H),6.50−6.66(m,3H),7.13−7.20(m,1H).
実施例1
[2−(1−エトキシエトキシ)−6−メトキシフェニル]酢酸エチルの合成
Figure 0004932717

窒素雰囲気下で20L反応装置に、1−(1−エトキシエトキシ)−3−メトキシベンゼン854.0g、含量717.4g(3.66mol)を投入し、テトラヒドロフラン7174mLで洗い込み攪拌した。反応装置のジャケットに4℃に設定した冷却液を循環し、反応液にn−ブチルリチウム1156g(4.41mol)[2.71M、n−ヘキサン溶液]を41分で滴下し、さらに同温度で反応液を約1.5時間攪拌した。冷却液温を−20℃に設定し、内温が−10℃以下になったことを確認後、反応液にヨウ化銅(I)417.8g(2.19mol)を3回に分けて加え、反応液を同温度で約14時間攪拌した。冷却液設定温を−90℃に変更し、反応液にブロモ酢酸エチル702.1g(4.20mol)を26分かけて滴下し、テトラヒドロフラン10mLで洗いこんだ。滴下終了後44分間攪拌し、冷却液温設定を−35℃に変更し、更に約1.8時間攪拌した。冷却液温設定を−20℃に変更し、内温が−20℃を超えてから反応液を1時間攪拌し、HPLCにて反応の進行を確認した。同温度で反応液に28%アンモニア水1435mLを約30分間で加え、冷却液温を25℃に変更した。トルエン7174mLを加え抽出し、有機層を28%アンモニア水1440mL、水道水1435mL×3で順次洗浄した。得られた有機層に、N,N−ジイソプロピルエチルアミン127mL(0.73mol)を加えた後、減圧濃縮し、標記化合物を含有する淡オレンジ色油状物を得た。
収量1122.3g、含量990.7g、収率96.0%
H−NMR(400MHz,CDCl)δ(ppm):1.19(t,J=7.2Hz,3H),1.24(d,J=7.2Hz,3H),1.47(d,J=5.2Hz,3H),3.46−3.56(m,1H),3.66−3.82(m,3H),3.80(s,3H),4.14(q,J=7.2Hz,2H),5.39(q,J=5.2Hz,1H),6.57(d,J=8.4Hz,1H),6.70(d,J=8.8Hz,1H),7.17(dd,J=8.8,8.4Hz,1H).
実施例2
2−[1−エトキシエトキシ]−6−メトキシフェニル]エタノールの合成
Figure 0004932717

窒素雰囲気下、15L四頚丸底フラスコに、[2−(1−エトキシエトキシ)−6−メトキシフェニル]酢酸エチル248.8g(含量213.0g、0.754mol)および同化合物561.6g(含量495.7g、1.756mol)、トルエン(8504mL)、DME(2126mL)を順次加え、攪拌を開始し、反応容器を氷冷した。この溶液に、水素化ビス(2−メトキシエトキシ)アルミニウムナトリウム1403.7g(65%トルエン溶液、1.8モル当量)を50分かけて滴下した。滴下終了後直ちに、氷水浴を水浴に変更し反応液を2.5時間攪拌した。水浴を氷水浴に変更し、反応液に8%(w/w)水酸化ナトリウム水溶液[93.0%水酸化ナトリウム430gに水4570mLを加えて調製した。]約1.5Lを47分かけて滴下した。反応液を20L分液ロートに移し、調製した水酸化ナトリウム水溶液の残りを全量加え、水層を廃棄した。有機層を水道水(1417mL×2、709mL×1)で3回洗浄した後、40℃で減圧濃縮し、濃縮残渣に含まれる標記化合物を定量した。
濃縮残渣重量1042.0g、含量563.3g
H−NMR(400MHz,CDCl)δ(ppm):1.20(t,J=7.2Hz, 3H),1.50(d,J=5.6Hz,3H),3.00(t,J=6.8Hz,2H),3.48−3.58(m,1H),3.68−3.90(m,3H),3.82(s,3H),5.42(q,J=5.6Hz,1H),6.58(d,J=8.0Hz,1H),6.70(d,J=8.4Hz,1H),7.13(dd,J=8.4,8.0Hz,1H).
実施例3
安息香酸 2−[2−(1−エトキシエトキシ)−6−メトキシフェニル]エチルの合成
Figure 0004932717

実施例2で得られた有機層残渣1042.0gを窒素雰囲気下の15L四頚丸底フラスコに移し、トルエン8102mL、DME2025mL,トリエチルアミン304.8g,N,N,N,N−テトラメチルエチレンジアミン29.2gを順次加えた。氷冷下に攪拌しながら、この溶液に塩化ベンゾイル388.1g(2.761mol)を40分かけて滴下した。同温度で反応液を10分間攪拌した後に、氷浴を水浴に切り替え、さらに2.8時間攪拌した。反応液を20L分液ロートに移し、水道水3544mLおよび709mLで洗浄した。得られた有機層10.84L中の標記化合物を定量した。
含量745.0g
H−NMR(400MHz,CDCl)δ(ppm):1.18(t,J=7.2Hz,3H),1.48(d,J=5.2Hz,3H),3.17(t,J=7.2Hz,2H),3.45−3.56(m,1H),3.66−3.80(m,1H),3.76(s,3H),4.45(t,J=7.2Hz,2H),5.41(q,J=5.2Hz,1H),6.55(d,J=8.4Hz,1H),6.71(d,J=8.0Hz,1H),7.13(dd,J=8.4,8.0Hz,1H),7.36−7.44(m,2H),7.50−7.56(m,1H),7.98−8.06(m,2H)
実施例4
安息香酸 2−(2−ヒドロキシ−6−メトキシフェニル)エチルの合成
Figure 0004932717

実施例3で得られた有機層を15L四頚丸底フラスコに移し、テトラヒドロフラン2126mLを加え、氷水浴で冷却し攪拌した。反応液に5N塩酸1417mLを23分間で滴下し、反応液を同温度で約1時間攪拌した後、浴槽の冷水を抜き、2.5時間攪拌を続けた。反応液を20L分液ロートへ移し、水層を廃棄した。有機層を8%炭酸水素ナトリウム水溶液[炭酸水素ナトリウム170gに水1956mLを加えて調整した。]および水道水(709mL×2)で2回洗浄した。得られた有機層を浴温40℃で減圧濃縮し、スラリー1463.0gを得た。
得られたスラリーを10L四頚丸底フラスコへテトラヒドロフラン709mLで洗い込んだ。攪拌しながら、反応液にトルエン−ヘプタン混合液(1:8)5670mLを約2.5時間かけて滴下し、さらに室温で反応液を約14時間攪拌した。析出した結晶を濾取し、トルエン−ヘプタン混合液(1:8)708mLで結晶を洗浄した。減圧下浴温40℃で約4.5時間乾燥し、標記化合物を白色結晶として得た。
収量535.9g、収率78.4%
H−NMR(400MHz,CDCl)δ(ppm):3.15(t,J=7.2Hz,2H),3.79(s,3H),4.45(t,J=7.2Hz,2H),5.86(s,1H),6.48(d,J=8.4Hz,1H),6.53(d,J=8.4Hz,1H),7.09(dd,J=8.4,8.4Hz,1H),7.44(dd,J=7.6,7.6Hz,2H),7.56(dd,J=7.6,7.6Hz,1H),8.04(d,J=7.6Hz,1H).
実施例5
安息香酸 2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチルの合成
Figure 0004932717

10L四頚丸底フラスコに、3−メチルクロトン酸202.2g(2.020mol)およびメタンスルホン酸2Lを加え、窒素気流下、50℃水浴上で攪拌した。この溶液に実施例4で得られた安息香酸 2−(2−ヒドロキシ−6−メトキシフェニル)エチル500.0g(1.836mol)を投入した。反応混合物を同温度で1.8時間攪拌し、氷冷した。トルエン2.5Lを反応液に注入し、次いで、水道水5Lを約1時間かけて滴下した。内容物を20L分液装置に移し、分液し水層を廃棄した。有機層を水道水(5L×3)にて3回洗浄し、40℃浴で減圧濃縮し、標題化合物846.1gを得た。
H−NMR(400MHz,CDCl)δ(ppm):1.39(s,6H),2.62(s,2H),3.13(t,J=6.8Hz,2H),3.82(s,3H),4.45(t,J=6.8Hz,2H),6.57(d,J=8.8Hz,1H),7.38−7.45(m,2H),7.51−7.57(m,1H),7.82(d,J=8.8Hz,1H),7.98−8.04(m,2H).
実施例6
8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンの合成
Figure 0004932717

前記実施例5で得られた油状物844.9gをテトラヒドロフラン2.5Lに溶かして、20L四頚丸底フラスコへ移した。このテトラヒドロフラン溶液にメタノール2.5Lを加え水冷し(水温22℃)、攪拌下8%(w/w)水酸化ナトリウム水溶液[水酸化ナトリウム(93.0%)158gに水1678mLを加えて調製した。]を18分かけて滴下した。滴下終了後、水浴をはずし、反応液を室温で約3.5時間攪拌した。反応液に水道水10Lを約1時間かけて滴下した。反応容器を氷冷し、内温10℃以下で反応液を約1時間攪拌した。析出した結晶を濾取し、水道水2Lおよびメタノール−水道水混合物(1:4、400mL/1600mL)にて順次洗浄した。得られた結晶は恒量になるまで40℃で減圧乾燥し、標記化合物の粗体374.7gを淡黄白色固体として得た。
収量374.7g、含量305.8g、収率66.6%
15L四頚丸底フラスコに、標記化合物の粗体374.7g(含量305.8g)および酢酸エチル2Lを投入し、80℃に加熱した水浴で加熱攪拌を開始した。この懸濁液にさらに酢酸エチル4.116Lを追加し、浴温設定を75℃に変更した。結晶の溶解を確認した後、水浴の温度を徐々に下げ、内温45.3℃で種結晶を投入した。種結晶投入から6分後に結晶の析出を確認した。さらに水浴の温度を下げ、内温30℃以下で、懸濁液にヘプタン6.116Lを約1時間で加え、同温度で約13時間攪拌した。懸濁液を氷冷し、約4時間攪拌後、結晶をブフナーロートで濾取し、酢酸エチル−ヘプタン混合液(1:2)918mLで結晶を洗浄した。得られた結晶を40℃水浴上で約3時間減圧乾燥、室温で約14時間減圧乾燥を行い、標記化合物を灰白色固体として得た。
収量294.5g、含量275.4g、収率90.1%
H−NMR(400MHz,CDCl)δ(ppm):1.45(s,6H),2.68(s,2H),2.96(t,J=6.8Hz,2H),3.73−3.80(m,2H)3.89(s,3H),6.59(d,J=8.8Hz,1H),7.81(d,J=8.8Hz,1H).
実施例7
8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンの合成(再結晶)
100mL四頚丸底フラスコに、標記化合物の粗体3.71g(含量3.0g)およびメチルイソブチルケトン45mLを投入し、82℃に加熱した油浴で加熱攪拌し、溶液とした。この溶液を徐冷し、内温59℃で種結晶を投入した。30分ごとに油浴の温度設定を5℃ずつ下げて徐冷し、内温26.7℃でヘプタン30mLを約1時間かけて滴下した。18分経過後、懸濁液を冷水で冷却し、1時間50分後に結晶を濾取した。得られた結晶は、メチルイソブチルケトン−ヘプタン混合液(3:2)3mLで洗浄し、40℃水浴上で約1時間減圧乾燥し、標記化合物を白色固体として得た。
収量2.72g、含量2.64g、収率87.8%
実施例8
(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)アセトアルデヒドの合成
Figure 0004932717

15L四頚丸底フラスコに8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オン248.3g(含量232.7g、0.930mol)および同化合物294.0g(含量274.9g、1.098mol)、酢酸エチル7614mLを投入し攪拌した。この懸濁液を−4℃設定の冷浴にて冷却を開始し、臭化ナトリウム161.9g(1.574mol)、水道水508mL、2,2,6,6−テトラメチルピペリジンオキシド3.17g(20.28mmol)を順次投入した。内温が0℃になってから、フラスコ内に次亜塩素酸ナトリウム溶液5.536molと7%(w/w)炭酸水素ナトリウム水溶液2538gの混合液を約2時間かけて滴下した。滴下終了後、冷却バスの温度を0℃に変更し45分間攪拌を続けた。反応液を20L分液ロートへ移し、水層を廃棄した。有機層を10%塩化ナトリウム水溶液2030g、水道水2030mLで順次洗浄した。得られた有機層を減圧濃縮(40℃)し、スラリー743.7gを得た。得られたスラリーに、DME500mLを加え、溶液とし、再び減圧濃縮(40℃)し、析出した結晶に再度DME500mLを加えて溶解した。この溶液を5L四頚丸底フラスコへ移し、40℃の水浴で加温した。さらにDME515mLを加え183rpmで攪拌し、水道水約500mLを投入し、4分後に氷水浴で冷却を始めた。種結晶を加え、約1時間攪拌後、さらに水道水約515mLを約30分で加えた。更に1.3時間攪拌後、ヘプタン1523mLを約1時間で投入し、同温度で約1時間以上攪拌した。析出した結晶を濾取し、DME/水道水/ヘプタンの混液[約600mL,DME/水道水/ヘプタン=1/1/1.5の割合で混ぜたものを使用]にて洗浄し、減圧乾燥(浴温40℃)をほぼ恒量になるまで続け、標記化合物を黄白色固体として得た。
収量478.0g、含量413.9g、収率82.2%
H−NMR(600MHz,DMSO−d)δ(ppm):1.34(s,6H),2.70(s,2H),3.63(s,2H),3.83(s,3H),6.80(d,J=9.0Hz,1H),7.72(d,J=9.0Hz,1H),9.58(s,1H).
実施例9
(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)アセトアルデヒドの合成
Figure 0004932717

200mL四頚丸底フラスコに(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)アセトアルデヒド6.54g(含量6.0g)、エタノール54mLおよび酢酸エチル6mLを加え反応液を室温で攪拌した。ここに、亜硫酸水素ナトリウム水溶液(2.51gを水6mLに溶解したもの)20分間で滴下した。次いで酢酸エチル60mLを1.5時間で滴下し、室温のまま反応液を終夜攪拌した。析出した結晶を濾取し、結晶はエタノール/酢酸エチル(1/1)混液(12mL)で洗浄し、標記化合物の亜硫酸水素ナトリウム付加体8.14gを得た。
標記化合物の亜硫酸水素ナトリウム付加体
H−NMR(600MHz,DMSO−d)δ(ppm):1.35(s,3H),1.36(s,3H),2.66(s,2H),2.88(dd,J=13.0,3.0Hz,1H),3.00(dd,J=13.0,11.0Hz,1H),3.81(s,3H),4.18(ddd,J=11.0,6.0,3.0Hz,1H),4.35(d,J=6.0Hz,1H),6.69(d,J=9.0Hz,1H),7.60(d,J=9.0Hz,1H)
300mL四頚丸底フラスコに標記化合物の亜硫酸水素ナトリウム付加体6.0gおよび酢酸エチル120mLを加え攪拌した。この懸濁液に10%炭酸カリウム水溶液30gを加え、2時間以上室温で反応液を攪拌した。有機層を分取し、有機層を10%食塩水、水道水(2回)で順次洗浄した。有機層にトルエン12mLを加えて減圧濃縮後、減圧乾燥し、淡黄色固体として標記化合物3.49gを得た。
実施例10
1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−N−メチル−1H−インドール−6−カルボキサミドの合成
Figure 0004932717

15L四頚丸底フラスコに窒素気流下、製造例7で合成したN−メチル−1−(ピペリジン−4−イル)−1H−インドール−6−カルボキサミド677.0g(含有量332.8g、1.293mmol)およびテトラヒドロフラン2000mLを加えた。さらに、この懸濁液に実施例8で得られた(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)アセトアルデヒド426.4g(含有量369.2g、1.15当量)、テトラヒドロフラン1328mLおよび酢酸148mL(2.0モル当量)を順次投入し、室温で原料の溶解を確認した時点から反応液を1時間撹拌した。次いで、氷水浴で反応液を10℃以下に冷却し、反応液にトリアセトキシ水素化ホウ素ナトリウム(356.3g、1.3モル当量)を4分割して投入した。全量投入終了から約10分後に、氷水浴から水浴(21.9℃)に切り替えて温度制御し撹拌した。約1時間後、反応液をサンプリングしてHPLC分析し反応の終了を確認した。反応容器を氷水浴で冷却し、約10℃で反応液に酢酸エチル4500mLを加えた。次に、反応液に1N水酸化ナトリウム水溶液5200mLを36分間で投入した。
反応液を20L分液装置に移し、酢酸エチル2156mLで洗いこみ、有機層を分取した。有機層を7%炭酸水素ナトリウム水溶液1000g、5%食塩水(3328g、1000g:2回)、水道水3328mLで順次洗浄した。
有機層を減圧濃縮し、エタノール1664mLを加えて、濃縮し、得られた溶液1902.6gの定量を行った。標記化合物の含有量は581.1g、収率91.8%、HPLC純度92.5%であった。
濃縮物にエタノール1664mLを加えて溶解し、活性炭57.0gを投入後約1時間攪拌した。活性炭はハイフロスーパーセルを用いて濾去し、エタノール400mLで洗いこんだ。濾液を減圧濃縮し(浴温40℃)、褐色油状物として標記化合物を1461.8g得た。含有量552.5g、HPLC純度92.5%
実施例11
1−ピペリジン−4−イル−1H−インドール−6−カルボン酸メチル 塩酸塩の合成
Figure 0004932717

1−(1−ベンジルオキシカルボニルピペリジン−4−イル)−1H−インドール−6−カルボン酸メチル27.5gをメタノール68.75mLおよびテトラヒドロフラン68.75mLに溶解し、10%パラジウム−炭素(約50%含水品)1.1g存在下、0.3MPa水素雰囲気下で約7.5時間攪拌した。触媒を濾去し、溶媒を留去し、混合物16.69gを得た。このうち6.96gを使用し、2−プロパノール77mLに溶解し、氷冷下濃塩酸2.73mLを徐々に加えた。析出した結晶を濾取し、結晶は2−プロパノールで洗浄した。減圧乾燥後、標記化合物5.89gを得た。
H−NMR(400MHz,DMSO―d)δ(ppm):2.00−2.30(m,4H),3.05−3.25(m,2H),3.30−3.50(m,2H),3.85(s,3H),4.80−5.00(m,1H),6.61(d,J=3.1Hz,1H),7.61(d,J=3.1Hz,1H),7.60−7.70(m,2H),8.26(s,1H).
実施例12
1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−1H−インドール−6−カルボン酸メチルの合成
Figure 0004932717

1−ピペリジン−4−イル−1H−インドール−6−カルボン酸メチル 塩酸塩2.92gおよび(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)アセトアルデヒド2.92gにテトラヒドロフラン58.4mLおよび酢酸14.6mLを加え40℃に加温し、反応液を約3時間攪拌した。反応液を氷水浴で冷却し、トリアセトキシ水素化ホウ素ナトリウム2.52gを3回に分けて加えた。反応液を室温に戻し、30分後に、反応の進行を確認した。再度、反応液を氷水浴で冷却し、トルエン87mLおよび水29mLを加え、水層を廃棄した。有機層は、1N水酸化ナトリウム水溶液49mL、69mL、30mLで順次洗浄後、5%食塩水29mL、14mL、さらに水14mLで洗浄した。溶媒を留去し、標題化合物の粗体4.80gを得た。
H−NMR(400MHz,CDCl)δ(ppm):1.47(s,6H),2.10−2.20(m,4H),2.25−2.40(m,2H),2.50−2.60(m,2H),2.69(s,2H),2.85−2.95(m,2H),3.20−3.35(m,2H),3.90(s,3H),3.96(s,3H),4.30−4.45(m,1H),6.50−6.60(m,1H),6.59(d,J=8.8Hz,1H),7.42(d,J=3.1Hz,1H),7.64(d,J=8.4Hz,1H),7.79(dd,J=8.40,1.50Hz,1H),7.80(d,J=8.8Hz,1H),8.16(s,1H).
実施例13
1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−1H−インドール−6−カルボン酸の合成
Figure 0004932717

1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−1H−インドール−6−カルボン酸メチルの前記粗体3.5gをテトラヒドロフラン28.0mLに溶解し、1N水酸化ナトリウム水溶液14mLを加えた。メタノール14mLを加え、40℃に加熱し30分攪拌した。テトラヒドロフラン7mLおよびメタノール3.5mLを追加し、2時間攪拌し、さらに、同温度で約16時間攪拌した。反応液を氷水浴で冷却し、1N塩酸12.2mLおよび1N−水酸化ナトリウム0.5mLを加えてpH7に調整したところ、結晶が析出した。さらにこのスラリーに水10mLを加え、結晶を濾取し、結晶は2−プロパノールと水の混合液(5:1)21mLで洗浄した。結晶を減圧乾燥し、標記化合物2.45gを得た。
H−NMR(400MHz,DMSO−d)δ(ppm):1.39(s,6H),1.90−2.10(m,4H),2.20−2.35(m,2H),2.40−2.50(m,2H),2.70(s,2H),2.70−2.80(m,2H),3.05−3.15(m,2H),3.85(s,3H),4.40−4.55(m,1H),6.53(dJ=3.4Hz,1H),6.73(d,J=8.8Hz,1H),7.57(d,J=8.0Hz,1H),7.61(dd,J=8.0,1.2Hz,1H),7.63(d,J=8.8Hz,1H),7.72(d,J=3.4Hz,1H),8.15(s,1H).
実施例14
1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−1H−インドール−6−カルボン酸メチルの合成
Figure 0004932717

1−ピペリジン−4−イル−1H−インドール−6−カルボン酸メチル2.80gおよび(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)アセトアルデヒド3.16gにDME28mL、テトラヒドロフラン14mLおよび酢酸1.24mLを加えた。結晶が析出したが、反応液をそのまま1時間攪拌した。反応液を氷水浴で冷却し、反応液にトリアセトキシ水素化ホウ素ナトリウム2.75gを3回に分けて加えた。反応液を室温に戻し、テトラヒドロフラン3mLを追加し、約1.5時間後に、反応の進行を確認した。再度、反応液を氷水浴で冷却し、トルエン68mLおよび水29mLを加え、清澄濾過後、トルエン30mLを加え、水層を廃棄した。有機層は、1N水酸化ナトリウム水溶液29mL、5%食塩水29mL×2及び水29mLで洗浄した。溶媒を留去し、標題化合物の粗体5.62gを得た。
実施例15
1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−1H−インドール−6−カルボン酸の合成
Figure 0004932717

1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−1H−インドール−6−カルボン酸メチルの前記粗体4.0gをテトラヒドロフラン40.0mLに溶解し、1N水酸化ナトリウム水溶液16mLを加えた。メタノール20mLを加えて反応液の分層を解消し、反応液40℃で約20.5時間攪拌した。反応液を氷水浴で冷却し、1N塩酸15mLを加えてpH7に調整したところ、結晶が析出した。さらにこのスラリーに水10mLを加え、結晶を濾取し、結晶は2−プロパノール/水(1/5、24mL)で洗浄した。結晶を減圧乾燥し、標記化合物3.34gを得た。
実施例16
1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}―N−メチル−1H−インドール−6−カルボキサミドの合成
Figure 0004932717

1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−1H−インドール−6−カルボン酸1.0gをエタノール25mLに溶解し、1,1´−カルボニルジイミダゾール851mgを加えた後、反応液を40℃で2時間攪拌した。反応液を氷水浴で冷却し、反応液に40%メチルアミン水溶液1.81mLを加え、50分攪拌した。反応液に酢酸エチル40mLおよび水20mLを加え有機層を分取した。有機層に10%食塩水20mLを加え、1N塩酸水8.5mLを加え、pH7として水層を廃棄し、有機層は水10mLで洗浄した。有機層を減圧濃縮後、1−プロパノール3mLを加えて再濃縮して、標記化合物を得た。
実施例6の化合物は、以下の参考例によっても製造することができる。
参考例1
2,6−ジアセトキシトルエンの合成
Figure 0004932717

氷水浴上で撹拌している 2,6−ジヒドロキシトルエン6.2g(50mmol)および炭酸カリウム27.6g(200mmol)のアセトニトリル62mL懸濁液へ、無水酢酸15.0mL(16.3g、160mmol)を3分間で滴下した。27分後に撹拌を止め室温下にて一夜放置し反応液を濾過、濾液にトルエン100mLおよび水50mLを加えて分液ロート中で撹拌・静置した。水層を廃棄し、有機層を水25mLで二度洗浄したのちに溶媒を留去し標記化合物10.3gを得た。
H−NMR(400MHz,CDCl)δ(ppm):2.00(s,3H),2.33(s,6H),6.95(d,J=8.1Hz,2H),7.24(t,J=8.3Hz,1H)
参考例2
2−アセトキシ−6−ヒドロキシトルエンの合成
Figure 0004932717

2,6−ジアセトキシトルエン8.22g(39.5mmol)をエチレングリコールジメチルエーテル82mLに溶解し、水素化ホウ素ナトリウム14.9g(395mmol)を加え、60℃の水浴上で9時間44分加熱撹拌した。室温下にて一夜放置した反応液を、氷水浴上で撹拌しているトルエン100mL、水100mLの混合液に投入し5分間撹拌後、分液ロート中へ移動、静置した。分液した水層よりトルエン50mLで抽出し、合わせた有機層を水50mLで二度洗浄したのちに溶媒を留去し標記化合物5.01gを得た。
H−NMR(400MHz,CDCl)δ(ppm):2.04(s,3H),2.34(s,3H),6.63(d,J=8.8Hz,1H),6.65(d,J=8.3Hz,1H),7.05(t,J=8.3Hz,1H).
参考例3
2−アセトキシ−6−メトキシトルエンの合成
Figure 0004932717

2−アセトキシ−6−ヒドロキシトルエン5.01g(30.0mmol)のアセトニトリル50mL溶液に炭酸カリウム12.44g(90.0mmol)およびヨウ化メチル12.77g(90.0mmol)を加え、90℃の油浴上で96分間加熱撹拌した。室温下にて約3時間放置した反応液を、氷水浴上で撹拌しているトルエン100mL、水100mLの混合液に投入し2分間撹拌後、分液ロート中へ移動、静置した。水層を分液廃棄し、有機層を1規定の水酸化カリウム水溶液20mL、ついで水20mLで三度洗浄した後に溶媒を留去し標記化合物4.69gを得た。
H−NMR(400MHz,CDCl)δ(ppm):2.03(s,3H),2.32(s,3H),3.84(s,3H),6.65(d,J=8.0Hz,1H),6.74(d,J=8.1Hz,1H),7.16(t,J=8.3Hz,1H).
参考例4
2−ヒドロキシ−6−メトキシトルエンの合成
Figure 0004932717

2−アセトキシ−6−メトキシトルエン4.69g(26.0mmol)のエタノール360mL溶液に濃硫酸18.0mLの水90mL溶液を加え、120℃の油浴上で36分間加熱撹拌した。室温下にて一夜放置した反応液を分液ロートへ移しトルエン50mLおよび20mLで抽出、合わせた有機層を水30mL、5%炭酸水素ナトリウム水溶液30mL、ついで水30mLで二度洗浄したのちに溶媒を留去し標記化合物3.15gを得た。
H−NMR(400MHz,CDCl)δ(ppm):2.12(s,3H),3.82(s,3H),4.71(s,1H),6.45(d,J=8.3Hz,1H),6.48(d,J=8.8Hz,1H),7.03(t,J=8.3Hz,1H).
参考例5
2−(N,N−ジエチルカルバモイルオキシ)−6−メトキシトルエンの合成
Figure 0004932717

2−ヒドロキシ−6−メトキシトルエン3.15g(22.8mmol)のアセトニトリル16mL溶液に炭酸カリウム3.50g(25.1mmol)、ジエチルカルバモイルクロリド3.4g(25.1mmol)を加え、100℃の油浴上で59分間加熱撹拌した。ジエチルカルバモイルクロリド0.6g(4.4mmol)を追加しさらに38分間加熱した反応液へ、氷水浴上で撹拌しながらトルエン30mLおよび水30mLを投入し20分間撹拌後、分液ロート中へ移動、静置した。水層を分液廃棄し、有機層を2規定水酸化カリウム水溶液10mL、ついで水10mLで二度洗浄したのちに溶媒を留去し標記化合物の粗体5.58gを得た。固化したので一部を種晶として得た。
標記化合物の粗体5.58gをエタノール14.5mLおよび水8.9mL中50℃の水浴上で加熱撹拌溶解し、室温下で自然冷却を開始した。溶液の温度が35℃となったときに種晶を投入し、析出開始を確認して水浴および氷水浴で冷却した。氷水浴上で約1時間撹拌し結晶化液温が2.2℃のときに結晶を濾取し50%含水エタノール8mLで洗浄した。結晶を減圧乾燥(30℃、90分)し、標記化合物3.89gを得た。
H−NMR(400MHz,CDCl)δ(ppm):1.24(m,6H),2.05(s,3H),3.43(m,4H),3.85(s,3H),6.71(d,J=8.3Hz,1H),6.71(d,J=8.1Hz,1H),7.13(t,J=8.3Hz,1H).
参考例6
N,N−ジエチル−(2−ヒドロキシ−6−メトキシフェニル)アセトアミドの合成
Figure 0004932717

リチウム ジイソプロピルアミド5.0mL(2M/テトラヒドロフラン・エチルベンゼン、10mmol)をドライアイス−エタノール冷媒上で撹拌冷却し、2−(N,N−ジエチルカルバモイルオキシ)−6−メトキシトルエン0.95g(4.0mmol)のテトラヒドロフラン8.0mL溶液を16分間で滴下した。1分後に室温下で加温を開始し、47分間撹拌後に一夜静置した。トルエン10mLと水10mLを加え4分間撹拌後、分液ロート中へ移動、静置した。水層を分液採取し有機層より2規定水酸化カリウム水溶液にて二回(各5.0mL)抽出した水層とあわせた。この水層をトルエン10mLで洗浄したのちにトルエン10mLを投入し撹拌下に2規定塩酸水溶液20mLを加え分液ロート中へ移動、静置した。有機層を分液採取し水層よりトルエン5mLにて抽出した有機層とあわせた。この有機層を水5mLで二回洗浄、減圧濃縮することで標記化合物0.81gを得た。
H−NMR(400MHz,CDCl)δ(ppm):1.29(m,6H),3.49(m,4H),3.80(s,2H),3.82(s,3H),6.43(d,J=8.3Hz,1H),6.64(d,J=8.3Hz,1H),7.11(t,J=8.3Hz,1H).
参考例7
4−メトキシ−3H−ベンゾフラン−2−オンの合成
Figure 0004932717

N,N−ジエチル−(2−ヒドロキシ−6−メトキシフェニル)アセトアミド0.47g(2.0mmol)のトルエン5.0mL溶液にトリフルオロ酢酸0.92mL(1.36g、12mmol)を加え、125℃の油浴上で71分間加熱撹拌した。室温下で冷却後、撹拌しながら0.5規定の水酸化ナトリウム水溶液24mLを加え、分液ロート中へ移動、静置した。水層を分液廃棄し、有機層を水5mLで二度洗浄したのちに溶媒を留去し標記化合物0.27gを得た。
H−NMR(400MHz,CDCl)δ(ppm):3.66(s,2H),3.86(s,3H),6.67(d,J=8.3Hz,1H),6.75(d,J=8.0Hz,1H),7.26(t,J=8.3Hz,1H).
参考例8
2−(2−ヒドロキシ−6−メトキシフェニル)エタノールの合成
Figure 0004932717

4−メトキシ−3H−ベンゾフラン−2−オン10.76g(65.5mmol)のエチレングリコールジメチルエーテル150mL溶液に水素化ホウ素ナトリウム7.18g(189mmol)を加え撹拌し、氷水浴上で冷却しながら濃硫酸5.25mL(9.66g,94.5mmol)のエチレングリコールジメチルエーテル21mL溶液を30分間で滴下した。この混合液を50℃の水浴上で49分間加熱撹拌した後に氷水浴上で撹拌しながらメタノール32mL(25.3g、790mmol)を6分間で滴下した。この混合液を50℃の水浴上で53分間加熱撹拌し室温下に一夜放置後、酢酸イソプロピル300mLおよび水200mLを投入し5分間撹拌、分液ロート中へ移動、静置した。水層を分液廃棄し、有機層を水100mLで二度洗浄したのちに溶媒を留去した。残渣から酢酸エチル−ヘキサンで結晶化し、得られた結晶を30℃で減圧乾燥して標記化合物3.12gを得た。
H−NMR(400MHz,CDCl)δ(ppm):2.98(t,J=5.1Hz,2H),3.79(s,3H),3.93(t,J=5.1Hz,2H),6.48(d,J=8.1Hz,1H),6.59(d,J=8.0Hz,1H),7.09(t,J=8.0Hz,1H).
参考例9
酢酸 2−(2−ヒドロキシ−6−メトキシフェニル)エチルの合成
Figure 0004932717

2−(2−ヒドロキシ−6−メトキシフェニル)エタノール0.27g(1.6mmol)の酢酸5.0mL溶液へ、氷水浴上で冷却しながら濃硫酸1.0mL(1.8g、18mmol)を滴下した。この混合液を室温下で5分間撹拌し、エタノール6.0mL(4.7g、102mmol)を滴下した。この混合液にトルエン20mLおよび水20mLを投入し5分間撹拌後、分液ロート中へ移動、静置した。水層を分液廃棄し、有機層を水10mLで二度洗浄したのちに溶媒を留去して標記化合物0.16gを得た。
H−NMR(400MHz,CDCl)δ(ppm):2.09(s,3H),3.02(t,J=7.1Hz,2H),3.81(s,3H),4.21(t,J=7.1Hz,2H),6.48(d,J=8.3Hz,1H),6.53(d,J=7.8Hz,1H),7.10(t,J=8.3Hz,1H).
参考例10
8−(2−アセトキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンの合成
Figure 0004932717

酢酸 2−(2−ヒドロキシ−6−メトキシフェニル)エチル5.79g(27.5mmol)、2−メチルクロトン酸3.03g(30.3mmol)および五酸化二リン3.26g(16.9mmol)のメタンスルホン酸29.0mL溶液を70℃で75分間加熱撹拌した。室温下でトルエン50mLおよび水50mLを投入し5分間撹拌、分液ロート中へ移動、静置した。水層を分液廃棄し、有機層を5%炭酸水素ナトリウム水溶液25mL水25mLで順次洗浄したのちに、溶媒を留去して標記化合物粗体7.85gを得た。これをシリカゲルクロマトグラフィにて精製し(展開液組成:10%酢酸エチル−ヘキサン(体積比)、Rf値:0.4)、標記化合物2.96gを得た。
H−NMR(400MHz,CDCl)δ(ppm):1.46(s,6H),2.04(s,3H),2.67(s,2H),2.99(t,J=7.3Hz,2H),3.88(s,3H),4.18(t,J=7.3Hz,2H),6.58(d,J=9.0Hz,1H),7.82(d,J=8.8Hz,1H).
参考例11
8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンの合成
Figure 0004932717

8−(2−アセトキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オン2.80g(9.58mmol)のエタノール18.0mL溶液に室温撹拌下、濃硫酸1.80mL(3.31g,32.4mmol)の水9.0mL溶液を投入し、100℃の油浴上で43分間加熱撹拌した。室温下で冷却後、トルエン90mLおよび水18mLを投入すると白色の結晶が析出したためこれを濾取(結晶1)し、さらに濾液を氷冷して析出した結晶を濾取(結晶2)した。ここで得た濾液を分液ロート中へ移動・静置した。水層を分液廃棄し、有機層を1規定の水酸化カリウム水溶液40mL、さらに水20mLで二度洗浄したのちに、溶媒を留去して得た濃縮物にDME2mLおよび水5mLを加えて析出させた結晶を濾取した(結晶3)。結晶1〜3を合わせて水10mLで洗浄し、40℃で1時間減圧乾燥することで標記化合物2.44gを得た。
H−NMR(400MHz,CDCl)δ(ppm):1.45(s,6H),2.68(s,2H),2.96(t,J=6.8Hz,2H),3.77(t,J=6.8Hz,2H),3.89(s,3H),6.59(d,J=9.0Hz,1H),7.81(d,J=8.8Hz,1H).
本発明により、1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−N−メチル−1H−インドール−6−カルボキサミドを工業的に製造することが可能となった。

Claims (16)

  1. 下記式(a−6)
    Figure 0004932717
    で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンを酸化して、下記式(a)
    Figure 0004932717
    で表される(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)アセトアルデヒドを調製し、前記式(a)の化合物と下記式(b)
    Figure 0004932717
    で表されるN−メチル−1−(ピペリジン−4−イル)−1H−インドール−6−カルボキサミドとをカップリングすることを含む、下記式(i)
    Figure 0004932717
    で表される1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−N−メチル−1H−インドール−6−カルボキサミドの製造方法。
  2. 下記式(a−5)
    Figure 0004932717
    で表される化合物[式中、Xは水酸基の保護基を示す。]の保護基を除去して、下記式(a−6)
    Figure 0004932717
    で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンを得ることを含む、請求項1記載の製造方法。
  3. 下記式(a−4)
    Figure 0004932717
    で表される化合物[式中、Xは水酸基の保護基を示す。]とメチルクロトン酸とを反応させて、下記式(a−5)
    Figure 0004932717
    で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去して、下記式(a−6)
    Figure 0004932717
    で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンを得ることを含む、請求項1または2記載の製造方法。
  4. 下記式(a−3)
    Figure 0004932717
    で表される化合物[式中、Xは水酸基の保護基を示す。]と酸とを反応させて、下記式(a−4)
    Figure 0004932717
    で表される化合物[式中、Xは前記定義と同義である。]を得、該化合物(a−4)とメチルクロトン酸とを反応させて、下記式(a−5)
    Figure 0004932717
    で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去して、下記式(a−6)
    Figure 0004932717
    で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンを得ることを含む、請求項1から3のいずれか1項記載の製造方法。
  5. 下記式(a−2)
    Figure 0004932717
    で表される2−[2−(1−エトキシエトキシ)−6−メトキシフェニル]エタノールの水酸基を保護して、下記式(a−3)
    Figure 0004932717
    で表される化合物[式中、Xは水酸基の保護基を示す。]を得、該化合物(a−3)と酸とを反応させて、下記式(a−4)
    Figure 0004932717
    で表される化合物[式中、Xは前記定義と同義である。]を得、該化合物(a−4)とメチルクロトン酸とを反応させて、下記式(a−5)
    Figure 0004932717
    で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去して、下記式(a−6)
    Figure 0004932717
    で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンを得ることを含む、請求項1から4のいずれか1項記載の製造方法。
  6. 下記式(a−1)
    Figure 0004932717
    で表される[2−(1−エトキシエトキシ)−6−メトキシフェニル]酢酸エチルを還元して、下記式(a−2)
    Figure 0004932717
    で表される2−[2−(1−エトキシエトキシ)−6−メトキシフェニル]エタノールを得、該化合物の水酸基を保護して、下記式(a−3)
    Figure 0004932717
    で表される化合物[式中、Xは水酸基の保護基を示す。]を得、該化合物(a−3)と酸とを反応させて、下記式(a−4)
    Figure 0004932717
    で表される化合物[式中、Xは前記定義と同義である。]を得、該化合物(a−4)とメチルクロトン酸とを反応させて、下記式(a−5)
    Figure 0004932717
    で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去して、下記式(a−6)
    Figure 0004932717
    で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンを得ることを含む、請求項1から5のいずれか1項記載の製造方法。
  7. 下記式
    Figure 0004932717
    で表される1−(1−エトキシエトキシ)−3−メトキシベンゼンとブロモ酢酸エチルとを反応させて、下記式(a−1)
    Figure 0004932717
    で表される[2−(1−エトキシエトキシ)−6−メトキシフェニル]酢酸エチルを得、該化合物(a−1)を還元して、下記式(a−2)
    Figure 0004932717
    で表される2−[2−(1−エトキシエトキシ)−6−メトキシフェニル]エタノールを得、該化合物(a−2)の水酸基を保護して、下記式(a−3)
    Figure 0004932717
    で表される化合物[式中、Xは水酸基の保護基を示す。]を得、該化合物(a−3)と酸とを反応させて、下記式(a−4)
    Figure 0004932717
    で表される化合物[式中、Xは前記定義と同義である。]を得、該化合物(a−4)とメチルクロトン酸とを反応させて、下記式(a−5)
    Figure 0004932717
    で表される化合物[式中、Xは前記定義と同義である。]を得、次いで、該化合物(a−5)の保護基を除去して、下記式(a−6)
    Figure 0004932717
    で表される8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オンを得ることを含む、請求項1から6のいずれか1項記載の製造方法。
  8. Xがベンゾイル基である、請求項2から7のいずれか1項記載の製造方法。
  9. 下記式(II)
    Figure 0004932717
    で表される化合物[式中、X1は水素原子または水酸基の保護基を示す。]。
  10. 水酸基の保護基がベンゾイル基である、請求項9記載の化合物。
  11. 安息香酸 2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチルまたは8−(2−ヒドロキシエチル)−7−メトキシ−2,2−ジメチルクロマン−4−オン。
  12. 下記式(c−3)
    Figure 0004932717
    で表される化合物とメチルアミンとを反応させることを含む、下記式(i)
    Figure 0004932717
    で表される1−{1−[2−(7−メトキシ−2,2−ジメチル−4−オキソクロマン−8−イル)エチル]ピペリジン−4−イル}−N−メチル−1H−インドール−6−カルボキサミドの製造方法。
  13. 下記式(c−2)
    Figure 0004932717
    で表される化合物を加水分解して、下記式(c−3)
    Figure 0004932717
    で表される化合物を得ることを含む、請求項12記載の製造方法。
  14. 下記式(a)
    Figure 0004932717
    で表される化合物と、下記式(c−1)
    Figure 0004932717
    で表される化合物またはその塩とを反応させて、下記式(c−2)
    Figure 0004932717
    で表される化合物を得、次いで、該化合物を加水分解して、下記式(c−3)
    Figure 0004932717
    で表される化合物を得ることを含む、請求項12記載の製造方法。
  15. 下記式(a)
    Figure 0004932717
    で表される化合物と、下記式(b´−4)
    Figure 0004932717
    で表される化合物[式中、Yは2級アミンの保護基を示す。]の保護基を除去して、下記式(c−1)
    Figure 0004932717
    で表される化合物を調製し、前記式(c−1)の化合物またはその塩とを反応させて、下記式(c−2)
    Figure 0004932717
    で表される化合物を得、次いで、該化合物(c−2)を加水分解して、下記式(c−3)
    Figure 0004932717
    で表される化合物を得ることを含む、請求項12記載の製造方法。
  16. Yがベンジルオキシカルボニルである、請求項15記載の製造方法。
JP2007528313A 2005-05-11 2006-05-11 ピペリジン環を有するインドール誘導体の製造方法 Expired - Fee Related JP4932717B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528313A JP4932717B2 (ja) 2005-05-11 2006-05-11 ピペリジン環を有するインドール誘導体の製造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
PCT/JP2005/008632 WO2005108389A1 (ja) 2004-05-12 2005-05-11 ピペリジン環を有するインドール誘導体
US11/126,209 2005-05-11
US11/126,209 US20050256103A1 (en) 2004-05-12 2005-05-11 Indole derivative having piperidine ring
JPPCT/JP2005/008632 2005-05-11
JP2005325713 2005-11-10
JP2005325713 2005-11-10
JP2007528313A JP4932717B2 (ja) 2005-05-11 2006-05-11 ピペリジン環を有するインドール誘導体の製造方法
PCT/JP2006/309461 WO2006121106A1 (ja) 2005-05-11 2006-05-11 ピペリジン環を有するインドール誘導体の製造方法

Publications (2)

Publication Number Publication Date
JPWO2006121106A1 JPWO2006121106A1 (ja) 2008-12-18
JP4932717B2 true JP4932717B2 (ja) 2012-05-16

Family

ID=42334469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007528313A Expired - Fee Related JP4932717B2 (ja) 2005-05-11 2006-05-11 ピペリジン環を有するインドール誘導体の製造方法

Country Status (3)

Country Link
US (1) US8110688B2 (ja)
JP (1) JP4932717B2 (ja)
IL (1) IL187282A0 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043956A1 (fr) * 1997-03-31 1998-10-08 Eisai Co., Ltd. Derives amines cycliques 1,4-substitues
WO1999006384A1 (en) * 1997-08-01 1999-02-11 Recordati S.A., Chemical And Pharmaceutical Company 1-(n-phenylaminoalkyl)-piperazine derivatives substituted at position 2 of the phenyl ring
JP2002114684A (ja) * 2000-10-03 2002-04-16 Eisai Co Ltd 尿路疾患治療剤
JP2002530405A (ja) * 1998-11-19 2002-09-17 イーライ・リリー・アンド・カンパニー・リミテッド インドール誘導体及びセロトニン受容体リガンドとしてのそれらの使用
WO2003059351A1 (en) * 2001-12-21 2003-07-24 Eisai Co., Ltd. Hydroxylated indole derivatives and uses thereof
JP2003533523A (ja) * 2000-05-18 2003-11-11 イーライ・リリー・アンド・カンパニー セロトニンレセプターリガンドとしてのピペリジルインドール群
WO2004009548A1 (en) * 2002-07-18 2004-01-29 Wyeth 1-heterocyclylalkyl-3-sulfonylindole or -indazole derivatives as 5-hydroxytryptamine-6 ligands
WO2004045509A2 (en) * 2002-11-18 2004-06-03 Pharmacia Corporation Method of using a cox-2 inhibitor and a 5-ht1a receptor modulator as a combination therapy

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545644A (en) 1990-10-15 1996-08-13 Pfizer Inc. Indole derivatives
GB9417135D0 (en) 1994-08-23 1994-10-12 Medinnova S F Method
US5521197A (en) 1994-12-01 1996-05-28 Eli Lilly And Company 3-<1-alkylenearyl>-4-<1,2,3,6-tetrahydropyridinyl>-and 3-<1-alkylenearyl>-4-piperidinyl-1h-indoles: new 5-HT1F agonists
US5990114A (en) 1996-02-28 1999-11-23 Recordati, S.A., Chemical And Pharmaceutical Company Use of 5-HT1A receptor antagonists for the treatment of urinary incontinence
IT1282705B1 (it) 1996-02-28 1998-03-31 Recordati Chem Pharm Uso di antagonisti del recettore serotoninergico 5-ht|a per il trattamento dell'incontinenza urinaria
US20020193383A1 (en) 1997-08-01 2002-12-19 Recordati S.A., Chemical And Pharmaceutical Comoany 1-(N-phenylalkylaminoalkyl)piperazine derivatives substituted at position 2 of the phenyl ring
DE10000739A1 (de) 2000-01-11 2001-07-12 Merck Patent Gmbh Piperidin- und Piperazinderivate
US6844338B2 (en) 2000-05-18 2005-01-18 Eli Lilly And Company Piperidyindoles as serotonin receptor ligands
US6801947B1 (en) * 2000-08-01 2004-10-05 Nortel Networks Ltd Method and apparatus for broadcasting media objects with guaranteed quality of service
JP2004005269A (ja) * 2002-05-31 2004-01-08 Toshiba Corp データ取得方法、電子機器およびデータ取得プログラム
US20040024823A1 (en) * 2002-08-01 2004-02-05 Del Monte Michael George Email authentication system
GB0306604D0 (en) 2003-03-21 2003-04-30 Curidium Ltd Second medical use
TWI391387B (zh) 2004-05-12 2013-04-01 Eisai R&D Man Co Ltd 具有哌啶環之吲哚衍生物
WO2006082872A1 (ja) 2005-02-04 2006-08-10 Eisai R & D Management Co., Ltd. 1-(ピペリジン-4-イル)-1h-インドール誘導体
DE202005005762U1 (de) 2005-04-11 2005-06-09 Igus Gmbh Lagerbuchse
WO2006121104A1 (ja) 2005-05-11 2006-11-16 Eisai R & D Management Co., Ltd. ピペリジン環を有するインドール誘導体の結晶およびその製法
CA2607907C (en) 2005-05-11 2012-09-18 Eisai R & D Management Co., Ltd. Method for producing indole derivative having piperidine ring
US7541371B2 (en) 2006-02-20 2009-06-02 Eisai R&D Management Co., Ltd. Method for treating a motor neuron disease

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043956A1 (fr) * 1997-03-31 1998-10-08 Eisai Co., Ltd. Derives amines cycliques 1,4-substitues
WO1999006384A1 (en) * 1997-08-01 1999-02-11 Recordati S.A., Chemical And Pharmaceutical Company 1-(n-phenylaminoalkyl)-piperazine derivatives substituted at position 2 of the phenyl ring
JP2002530405A (ja) * 1998-11-19 2002-09-17 イーライ・リリー・アンド・カンパニー・リミテッド インドール誘導体及びセロトニン受容体リガンドとしてのそれらの使用
JP2003533523A (ja) * 2000-05-18 2003-11-11 イーライ・リリー・アンド・カンパニー セロトニンレセプターリガンドとしてのピペリジルインドール群
JP2002114684A (ja) * 2000-10-03 2002-04-16 Eisai Co Ltd 尿路疾患治療剤
WO2003059351A1 (en) * 2001-12-21 2003-07-24 Eisai Co., Ltd. Hydroxylated indole derivatives and uses thereof
WO2004009548A1 (en) * 2002-07-18 2004-01-29 Wyeth 1-heterocyclylalkyl-3-sulfonylindole or -indazole derivatives as 5-hydroxytryptamine-6 ligands
WO2004045509A2 (en) * 2002-11-18 2004-06-03 Pharmacia Corporation Method of using a cox-2 inhibitor and a 5-ht1a receptor modulator as a combination therapy

Also Published As

Publication number Publication date
US8110688B2 (en) 2012-02-07
JPWO2006121106A1 (ja) 2008-12-18
IL187282A0 (en) 2008-02-09
US20100197926A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP3902221B2 (ja) ピペリジン環を有するインドール誘導体
FI95246C (fi) Menetelmä terapeuttisesti käyttökelpoisten, substituoitujen aminometyylibentsodihydropyraanien ja aminometyyli(di- ja tetra)hydronaftaleenien valmistamiseksi
WO2005118573A1 (en) Novel diazepine compounds as ligands of the melanocortin 1 and/or 4 receptors
AU2015226679B2 (en) Piperidine derivatives as orexin receptor antagonist
CA2671770C (en) Novel intermediate and process useful in the preparation of {2-[1-(3,5-bis-trifluoromethyl-benzyl)-5-pyridin-4-yl-1h-[1,2,3]triazol-4-yl]-pyridin-3-yl}-(2-chlorophenyl)-methanone
JP4982886B2 (ja) 新規なアゼチジン化合物
EP3334721B1 (en) Cgrp receptor antagonists
AU2002357619A1 (en) Piperazine derivative
EP1626720B1 (en) 4-(2-phenylsulfanyl-phenyl)-piperidine derivatives as serotonin reuptake inhibitors
DK2599774T3 (en) DEHYDRATED pyridine AS CB2 cannabinoid receptor ligands
WO2007032019A2 (en) Process for preparing valsartan
WO2007096352A1 (en) 5-amino-6-bromo-n-{ [1- (tetrahydr0-2h-pyran-4-ylmethyl) -4-piperidinyl] methyl}-3, 4 -dihydro-2h-chromene-8-carboxamide as 5-ht4 receptor agonist
WO2006082872A1 (ja) 1-(ピペリジン-4-イル)-1h-インドール誘導体
CA2607907C (en) Method for producing indole derivative having piperidine ring
WO2009081222A1 (en) Substituted tricyclic pyridine or pyrimidine vanilloid receptor ligands
JP4932717B2 (ja) ピペリジン環を有するインドール誘導体の製造方法
WO2015018289A1 (zh) 一种合成阿哌沙班重要中间体的新方法
KR20080006001A (ko) 피페리딘환을 가지는 인돌 유도체의 제조 방법
WO2007048643A1 (en) Novel compound
JP2003504364A (ja) ベンゾフラン誘導体
EP1975166A1 (en) Synthesis of anthranilamides
WO2017089458A1 (en) Hexahydropyrazinobenz- or -pyrido-oxazepines carrying an oxygen-containing substituent and use thereof in the treatment of 5-ht2c-dependent disorders
JP3468589B2 (ja) 5−アミノフラボン誘導体
CN113493449A (zh) No供体香豆素呋咱偶联物及其制药用途
FR2789077A1 (fr) Derives de perazole, leur preparation et leur application en therapeutique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees