JP4923933B2 - バリヤ層の形成方法及びプラズマ成膜装置 - Google Patents

バリヤ層の形成方法及びプラズマ成膜装置 Download PDF

Info

Publication number
JP4923933B2
JP4923933B2 JP2006276463A JP2006276463A JP4923933B2 JP 4923933 B2 JP4923933 B2 JP 4923933B2 JP 2006276463 A JP2006276463 A JP 2006276463A JP 2006276463 A JP2006276463 A JP 2006276463A JP 4923933 B2 JP4923933 B2 JP 4923933B2
Authority
JP
Japan
Prior art keywords
barrier layer
film
metal
plasma
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006276463A
Other languages
English (en)
Other versions
JP2008098284A (ja
JP2008098284A5 (ja
Inventor
隆 佐久間
敦 横山
達夫 波多野
寧 水澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006276463A priority Critical patent/JP4923933B2/ja
Publication of JP2008098284A publication Critical patent/JP2008098284A/ja
Publication of JP2008098284A5 publication Critical patent/JP2008098284A5/ja
Application granted granted Critical
Publication of JP4923933B2 publication Critical patent/JP4923933B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、バリヤ層の形成方法及びプラズマ成膜装置に係り、特に半導体ウエハ等の被処理体に形成されている凹部を埋め込む時等に形成するバリヤ層の形成方法及びプラズマ成膜装置に関する。
一般に、半導体デバイスを製造するには、半導体ウエハに成膜処理やパターンエッチング処理等の各種の処理を繰り返し行って所望のデバイスを製造するが、半導体デバイスの更なる高集積化及び高微細化の要請より、線幅やホール径が益々微細化されている。そして、配線材料や埋め込み材料としては、従来は主としてアルミニウム合金が用いられていたが、最近は線幅やホール径が益々微細化されて、且つ動作速度の高速化が望まれていることからタングステン(W)や銅(Cu)等も用いられる傾向にある。
そして、上記Al、W、Cu等の金属材料を配線材料やコンタクトのためのホールの埋め込み材料として用いる場合には、例えばシリコン酸化膜(SiO )等の絶縁材料と上記金属材料との間で例えばシリコンの拡散が生ずることを防止したり、膜の密着性を向上させる目的で、或いはホールの底部でコンタクトされる下層の電極や配線層等の導電層との間の密着性等を向上する目的で、上記絶縁層や下層の導電層との間の境界部分にバリヤ層を介在させることが行われている。そして、上記バリヤ層としてはTa膜、TaN膜、Ti膜、TiN膜等が広く知られている(特許文献1〜3)。この点について図7を参照して説明する。
図7は半導体ウエハの表面の凹部の埋め込み状態を示す断面図である。図7に示すように、被処理体として例えばシリコン基板等よりなる半導体ウエハ2の表面には例えば配線層等となる導電層4が形成されており、この導電層4を覆うようにして半導体ウエハ2の表面全体に例えばSiO 膜等よりなる絶縁層6が所定の厚さで形成されている。上記導電層4がトランジスタやコンデンサ等の電極等に対応する場合もある。
そして、上記絶縁層6には、上記導電層4に対して電気的コンタクトを図るためのスルーホールやビアホール等のコンタクト用の凹部8が形成されている。尚、上記凹部8として細長いトレンチ(溝)を形成する場合もある。そして、この凹部8内の底面及び側面を含めた半導体ウエハ2の表面全体に、すなわち絶縁層6の上面全体に上述したような機能を有するバリヤ層10を所望の厚さで形成し、更に、このバリヤ層10上に配線材料や埋め込み材料として導電性の金属を堆積させて導電層12を形成し、上記凹部8内を埋め込むようにしている。
ここで上記バリヤ層10としては種々存在し、例えばTi膜及びTiN膜を順次積層してなる2層構造のバリヤ層や、TaN膜及びTa膜を順次積層してなる2層構造のバリヤ層や、更には、Ti膜、TiN膜、Ta膜及びTaN膜の内の1層のみを用いたバリヤ層も存在し、いずれにしても、このバリヤ層10の上層に形成される導電層12の種類によってバリヤ層10の材質及び構造が決定される。
そして、最近にあっては、上記したバリヤ層10の材質の中で、特にTi膜よりなる、或いはTi膜を含むバリヤ層10が注目されている。その理由は、Ti膜よりなるバリヤ層やTi膜を含むバリヤ層は金属等の拡散を特に抑制でき、電気抵抗も非常に小さく、更には体積膨張率も小さく、配線材料との密着性も良好である等の利点を有するからである。
特開2003−142425号公報 特開2006−148074号公報 特表2005−525694号公報
ところで、上記Ti膜は一般的にはプラズマ成膜装置を用いたプラズマスパッタ法により成膜される。図8は表面に凹部を有する半導体ウエハの表面にTi膜が形成される時の状態を示す断面図、図9は図8中の凹部の開口部を示す拡大図である。周知のように、プラズマスパッタ法は指向性が大きいために、図8及び図9に示すように、ウエハの上面やホール等の凹部8内の底面等のようにウエハ表面に対する法線14に直交する面には比較的厚くTi膜が成膜されるのに対して、凹部8内の側面などのように上記法線14に平行する面には比較的薄くしかTi膜が成膜されない。
そのため、上記凹部8内の側壁のステップカバレジを確保するために、上記Ti膜16を成膜した直後には、例えばArガスを用いたスパッタリングを行い(これを「リスパッタリング」と称す)、厚く堆積した部分のTi膜をスパッタリングにより削り取って、これを堆積膜厚の薄い上記凹部8内の側面等に再付着させて全体の膜厚ができるだけ均一になるようにしている。
しかしながら、上記Ti膜16は、スパッタリングにより比較的削り取られ易い物質であり、特に、図8及び図9に示すように、凹部8の肩部8A、すなわち凹部8の開口部のコーナ部は非常に削り取られ易い。ここでコーナ部の削り取られ易さを示す指標としてコーナエッチング比が知られており、このコーナエッチング比は図9に示すように、”コーナ部のエッチング量b”と”平面部のエッチング量a”との比”b/a”で表され、Tiの場合にはこのコーナエッチング比は”7.68”程度にもなってしまう。
このため、この肩部8Aでスパッタリングにより削り取られたTi金属粒子18は対向する側の面に再付着して堆積する傾向となり、この結果、図8中で一点鎖線で示すように凹部8の開口部近傍に中央部側へ凸状に突出したオーバハング部20が形成されてしまっていた。このため、この後工程で上記凹部8内を導電層で埋め込む際に、上記オーバハング部20が障害となって十分に埋め込みができずに、凹部8内にボイド(空洞)が発生する、といった問題があった。
また、特に肩部8Aにおけるスパッタリングが激し過ぎると、下層の絶縁層6の一部が露出し、これにダメージを与えてしまう、といった問題もあった。上記問題は、線幅やホール径が100nmよりも大きくて設計基準が緩かった従来の場合には、Ti膜の膜厚を厚くする等の対応により防ぐことができたが、より微細化傾向が進んで、線幅やホール径として100nm以下の設計基準が要求される現在にあっては、上記問題点の早期解決が求められている。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、Ti合金を用いることにより被処理体の表面の凹部におけるコーナエッチング耐性を向上させることができるバリヤ層の形成方法及びプラズマ成膜装置を提供することにある。
請求項1に係る発明は、真空引き可能になされた処理容器内で載置台上に被処理体を載置し、前記被処理体の表面に形成されている絶縁層上に、金属ターゲットより放出される金属粒子を堆積させてバリヤ層を形成するバリヤ層の形成方法において、前記金属ターゲットとして、Ti金属よりなる母材に、Zr(ジルコニウム)、Hf(ハフニウム)、Nb(ニオブ)、Mn(マンガン)、Ta(タンタル)よりなる群から選択された1又は2以上の金属を合混してなる金属材料を用い、前記処理容器内にプラズマを形成しつつ前記金属ターゲットに放電用電力を供給すると共に前記載置台にバイアス電力を供給してスパッタリングにより前記被処理体の表面にTi合金膜を形成する膜形成工程と、該膜形成工程の後に前記プラズマの形成用の電力の供給と前記バイアス電力の供給とを維持すると共に、前記金属ターゲットへの放電用電力の供給を遮断した状態で前記Ti合金膜をリスパッタリングするリスパッタリング工程と、を有することを特徴とするバリヤ層の形成方法である。
本発明方法により形成されるバリヤ層が堆積された被処理体の表面の凹部におけるコーナエッチング耐性を向上させることができる。
従って、例えば凹部の開口部近傍にオーバハング部が形成されることを防止することができ、このためボイドを発生させることなく凹部の埋め込みを行うことができる。
この場合、例えば請求項2に記載したように、前記バリヤ層の一部は、前記絶縁層の一部に形成された凹部の底部を介して下層の他の導電層に電気的に接続されている。
また例えば請求項3に記載したように、前記凹部は、ホール又はトレンチ(溝)である。
また例えば請求項4に記載したように、前記ホールの直径又は前記トレンチの幅は100nm以下である。
また例えば請求項5に記載したように、前記混合した金属のTi合金全体に対する割合は5〜50%の範囲内である。
また例えば前記絶縁層には凹部が形成されており、該凹部の開口部のコーナ部における前記Ti合金膜のエッチング量bと平面部のエッチング量aとの比”b/a”は1.40〜4.86の範囲内に設定されている。
請求項6に係る発明は、被処理体の表面の絶縁層上に、バリヤ層を形成するプラズマ成膜装置において、真空引き可能になされた処理容器と、被処理体を載置するための載置台と、前記処理容器内へ所定のガスを導入するガス導入手段と、前記処理容器内へプラズマを発生させるためのプラズマ発生源と、Ti(チタン)金属よりなる母材に、Zr(ジルコニウム)、Hf(ハフニウム)、Nb(ニオブ)、Mn(マンガン)、Ta(タンタル)よりなる群から選択された1又は2以上の金属を混合してなるTi合金の金属ターゲットと、前記金属ターゲットへ放電用電力を供給するターゲット用の電源と、前記載置台に対してバイアス電力を供給するバイアス電源と、請求項1乃至5のいずれか一項に記載のバリヤ層の形成方法を実行するように装置全体を制御する装置制御部と、を備えたことを特徴とするプラズマ成膜装置である。
本発明に係るバリヤ層の形成方法及びプラズマ成膜装置によれば、次のような優れた作用効果を発揮することができる。
本発明方法により形成されるバリヤ層が堆積された被処理体の表面の凹部におけるコーナエッチング耐性を向上させることができる。
従って、例えば凹部の開口部近傍にオーバハング部が形成されることを防止することができ、このためボイドを発生させることなく凹部の埋め込みを行うことができる。
以下に、本発明に係るバリヤ層の形成方法及びプラズマ成膜装置の一実施例を添付図面に基づいて詳述する。
図1は本発明に係るプラズマ成膜装置の一例を示す断面図である。ここではプラズマ成膜装置としてICP(Inductively Coupled Plasma)型プラズマスパッタ装置を例にとって説明する。図示するように、このプラズマ成膜装置22は、例えばアルミニウム等により筒体状に成形された処理容器24を有している。この処理容器24は接地され、この底部26には排気口28が設けられて、圧力調整を行うスロットルバルブ30を介して真空ポンプ32により真空引き可能になされている。

この処理容器24内には、円板状の載置台34が設けられる。この載置台34は、例えばアルミニウムよりなる載置台本体34Aと、この上面に設置される静電チャック34Bとよりなり、この静電チャック34B上に被処理体である半導体ウエハ2を吸着して保持できるようになっている。この静電チャック34Bの上面側には、熱伝導ガスを流すガス溝36が形成されており、必要に応じてArガス等の熱伝導ガスをこのガス溝36に供給してウエハ2と載置台34側との熱伝導性を向上できるようになっている。尚、この静電チャック34Bには、図示しない吸着用の直流電圧が必要に応じて印加される。この載置台34は、この下面の中心部より下方へ延びる支柱38により支持されており、この支柱38の下部は、上記容器底部26を貫通している。そして、この支柱38は、図示しない昇降機構により上下移動可能になされており、上記載置台34自体を昇降できるようにしている。
上記支柱38を囲むようにして伸縮可能になされた蛇腹状の金属ベローズ40が設けられており、この金属ベローズ40は、その上端が上記載置台34の下面に気密に接合され、また下端が上記底部26の上面に気密に接合されており、処理容器24内の気密性を維持しつつ上記載置台34の昇降移動を許容できるようになっている。この載置台34の載置台本体34Aには、ウエハ2を冷却する冷媒を流す冷媒循環路42が冷却手段として形成されており、この冷媒は支柱38内の図示しない流路を介して給排されている。
また容器底部26には、これより上方に向けて例えば3本(図示例では2本のみ記す)の支持ピン46が起立させて設けられており、また、この支持ピン46に対応させて上記載置台34にピン挿通孔48が形成されている。従って、上記載置台34を降下させた際に、上記ピン挿通孔48を貫通した支持ピン46の上端部でウエハ2を受けて、このウエハ2を外部より侵入する図示しない搬送アームとの間で移載ができるようになっている。このため、処理容器24の下部側壁には、上記搬送アームを侵入させるために開閉可能になされたゲートバルブ50が設けられている。
またこの載置台本体34A上に設けた上記静電チャック34Bには、配線52を介して例えば13.56MHzの高周波を発生する高周波電源よりなるバイアス電源54が接続されており、上記載置台34に対して所定のバイアス電力を印加できるようになっている。またこのバイアス電源54はその出力されるバイアス電力を必要に応じて可変的に制御できるようになっている。
一方、上記処理容器24の天井部には、例えば酸化アルミニウム等の誘電体よりなる高周波に対して透過性のある透過板56がOリング等のシール部材58を介して気密に設けられている。そして、この透過板56の処理容器24内の処理空間60に例えばプラズマ励起用ガスとしてのArガスをプラズマ化してプラズマを発生するためのプラズマ発生源62が設けられる。尚、このプラズマ励起用ガスとして、Arに代えて他の不活性ガス、例えばHe、Ne等を用いてもよい。具体的には、上記プラズマ発生源62は、上記透過板56に対応させて設けた誘導コイル部64を有しており、この誘導コイル部64には、プラズマ発生用の例えば13.56MHzの高周波電源66が接続されて、上記透過板56を介して処理空間60に高周波を導入できるようになっている。ここで、この高周波電源66より出力されるプラズマ電力も必要に応じて制御できるようになっている。
また上記透過板56の直下には、導入される高周波を拡散させる例えばアルミニウムよりなるバッフルプレート68が設けられる。そして、このバッフルプレート68の下部には、上記処理空間60の上部側方を囲むようにして例えば断面が内側に向けて傾斜されて環状(截頭円錐殻状)になされた金属ターゲット70が設けられており、この金属ターゲット70には放電用電力を供給するターゲット用の可変になされた直流電源72が接続されている。尚、この直流電源に代えて交流電源を用いてもよい。
従って、この可変直流電源72から出力される直流電力も必要に応じて制御できるようになっている。ここでは金属ターゲット70としてTi(チタン)合金が用いられ、このTi合金はプラズマ中のArイオンにより金属原子、或いは金属原子団としてスパッタされると共に、プラズマ中を通過する際に多くはイオン化される。上記Ti合金は、Ti(チタン)金属よりなる母材に、遷移金属群より選択された1又は2以上の金属を混合して形成される。この場合、上記混合した金属のTi合金全体に対する割合は5〜50%の範囲内である。また、上記選択された金属としては、Zr(ジルコニウム)、Hf(ハフニウム)、Nb(ニオブ)、Mn(マンガン)、Ta(タンタル)の内の1又は2以上を含ませるのが好ましい。
またこの金属ターゲット70の下部には、上記処理空間60を囲むようにして例えばアルミニウムよりなる円筒状の保護カバー74が設けられており、この保護カバー74は接地されると共に、この下部は内側へ屈曲されて上記載置台34の側部近傍に位置されている。また処理容器24の底部には、この処理容器24内へ必要とされる所定のガスを導入するガス導入手段として例えばガス導入口76が設けられる。このガス導入口76からは、プラズマ励起用ガスとして例えばArガスや他の必要なガス例えばN ガス等が、ガス流量制御器、バルブ等よりなるガス制御部78を通して供給される。
ここで成膜装置22の各構成部は、例えばコンピュータ等よりなる装置制御部80に接続されて制御される構成となっている。具体的には装置制御部80は、バイアス電源54、プラズマ発生用の高周波電源66、可変直流電源72、ガス制御部78、スロットルバルブ30、真空ポンプ32等の動作を制御し、本発明方法により薄膜を成膜する時に次のように動作する。
まず装置制御部80の支配下で、真空ポンプ32を動作させることにより真空にされた処理容器24内に、ガス制御部78を動作させつつArガスを流し、スロットルバルブ30を制御して処理容器24内を所定の真空度に維持する。その後、可変直流電源72を介して直流電力を金属ターゲット70に印加し、更に高周波電源66を介して誘導コイル部64に高周波電力(プラズマ電力)を印加する。
一方、装置制御部80はバイアス電源54にも指令を出し、載置台34に対して所定のバイアス電力を印加する。このように制御された処理容器24内においては、金属ターゲット70、誘導コイル部64に印加されたプラズマ電力によりアルゴンプラズマが形成されてアルゴンイオンが生成され、これらイオンは金属ターゲット70に衝突し、この金属ターゲット70がスパッタされて金属粒子が放出される。
また、スパッタされた金属ターゲット70からの金属粒子である金属原子、金属原子団はプラズマ中を通る際に多くはイオン化される。ここで金属粒子は、イオン化された金属イオンと電気的に中性な中性金属原子とが混在する状態となって下方向へ飛散して行く。特に、この処理容器24内の圧力は、比較的高く設定されて、例えば50mTorr以上になされており、これによりプラズマ密度を高めて、金属粒子を高効率でイオン化できるようになっている。
そして、金属イオンは、載置台34に印加されたバイアス電力により発生したウエハ面上の厚さ数mm程度のイオンシースの領域に入ると、強い指向性をもってウエハ2側に加速するように引き付けられてウエハ2に堆積する。このように、高指向性を持った金属イオンにより堆積された薄膜は、基本的には垂直形状のカバレッジを得ることが可能となる。
ここで装置各構成部の制御は、装置制御部80により、所定の条件で金属膜の成膜が行われるように作成されたプログラムに基づいて制御されるようになっている。この際、例えばフロッピーディスク(登録商標)(FD)やコンパクトディスク(登録商標)(CD)、フラッシュメモリー、ハードディスク等の記憶媒体82に、各構成部の制御を行うための命令を含むプログラムを格納しておき、このプログラムに基づいて所定の条件で処理を行うように各構成部を制御させる。
次に、以上のように構成されたプラズマ成膜装置22を用いて行われる本発明のバリヤ層の形成方法について図2及び図3も参照して説明する。
図2は本発明に係るバリヤ層の形成方法を含む凹部の埋め込み工程を示す図、図3はリスパッタ工程を説明する図である。尚、図7〜図9に記載された部分と同一構成部分については、同一符号を付してある。
本発明は、半導体ウエハ2の表面に絶縁層と導電層とを形成する際に、上記絶縁層と導電層との間に介在されるバリヤ層に関する発明である。ここで上記絶縁層としては絶縁層6が対応し、上記導電層としては埋め込み配線用の導電層12が対応している。
まず、図1において載置台34を下方へ降下させた状態で処理容器24のゲートバルブ50を介して真空引き可能になされた処理容器24内へウエハ2を搬入し、これを支持ピン46上に支持させる。そして、この状態で載置台34を上昇させると、この上面にウエハ2が受け渡され、このウエハ2が静電チャック34Bにより載置台34の上面に吸着される。
そして、載置台34上にウエハ2を載置して吸着固定したならば、成膜処理を開始する。この時、ウエハ2の上面には、図2(A)に示すように、図7において説明した構造と同じ構造の凹部8が絶縁層6の一部に予めウエハ搬入前に前工程で形成されている。この凹部8は、溝状のトレンチや穴状のホールよりなり、この底部に下層の配線層4が露出している。
まず、処理容器24内を所定の圧力に真空引きした後に、プラズマ発生源62の誘導コイル部64にプラズマ電力を印加し、且つバイアス電源54より所定のバイアス電力を載置台34の静電チャック34Bに印加する。更に金属ターゲット70には可変直流電源72より所定の直流電力を印加して成膜を行う。ここでは、Ti合金膜を形成するためにガス導入口76よりプラズマ励起用ガスである例えばArガスを処理容器24内に供給する。
これにより、プラズマ電力でもってアルゴンプラズマが形成されてアルゴンイオンが生成され、これらイオンはTi合金よりなる金属ターゲット70に衝突し、この金属ターゲットがスパッタされて金属粒子が放出される。この金属粒子は、金属原子、金属原子団等よりなり、プラズマによりイオン化され、或いはイオン化されないで中性粒子のままウエハ2の方向へ飛散し、ウエハ表面に堆積して、図2(B)に示すように凹部8内の底面及び側面を含む絶縁層6の表面全体にTi合金膜88よりなるバリヤ層10が所定の厚さで形成される。


この場合、プラズマによる自己バイアスや載置台34に引加されているバイアス電力によって金属イオンは載置台34の表面に対して直交する方向(法線)に引き込まれるように指向性を有しているので、法線14(図8参照)と直交する面、例えば絶縁層6の上面や凹部8の底面には比較的厚くTi合金膜88が堆積するが、法線14と平行な面、例えば凹部8の側面には、上記底面と比較してTi合金膜88は薄くしか堆積しない。
そこで、上記Ti合金膜88の成膜が完了したならば、プラズマ発生源62やバイアス電源84等は動作させたままで、金属ターゲット70に加えていた可変直流電源72をオフする。これにより、金属ターゲット70からはTi合金粒子が飛散しなくなり、堆積していたTi合金膜88に対してArガスによりリスパッタリングが行われることになり、図3に示すように上記絶縁層6の表面に堆積していたTi合金膜88よりなるバリヤ層10がスパッタリングされて、ここで飛散したTi合金粒子が凹部8の側壁等に再付着してこの部分に膜厚を厚くするように作用し、この結果、図2(C)に示すようにTi合金膜88よりなるバリヤ層10の膜厚全体が均一化して行くことになる。
この際、図8及び図9を参照して説明したように、従来のバリヤ層10はスパッタされ易いTi金属により形成しているので、特に、凹部8の肩部8Aの部分のTi膜は非常に削り取られて、この削り取られた金属粒子がそれに対向する面に再付着してオーバハング部20(図9参照)を形成していたが、本発明の場合には、バリヤ層10としてTi合金膜88を用いているので、凹部8の肩部8Aが特に削られることはなく、オーバハング部20が形成されるのを防止することができる。具体的には、この時のコーナエッチング比b/aは、混合する他金属の割合にもよるが、”5”以下であり、Ti金属の単独の場合の”7.68”よりも大幅に抑制することができる。
このようにして、バリヤ層10の膜厚を均一化するリスパッタリングが終了したならば、次に、図2(D)に示すように、凹部8の表面を含むバリヤ層10の表面全面に、別のプラズマ成膜装置を用いてスパッタリングにより薄い銅膜よりなるシード膜90を形成し、引き続いて、電気メッキを用いて埋め込み用及び配線材料として銅を堆積させて凹部8内を埋め込むと同時に、表面全体に銅膜よりなる導電層12を形成することになる。尚、ここで銅に代えて、例えばアルミニウム等が混合された銅合金を用いるようにしてもよい。
以後は、図示されないが、上記導電層12、シード膜90及びバリヤ層10が所定のパターンにエッチングされることになる。
このように、バリヤ層10は、Ti(チタン)金属よりなる母材に、遷移金属群より選択された1又は2以上の金属を混合してなるTi合金膜を含むように構成したので、被処理体2の表面の凹部8におけるコーナエッチング耐性を向上させることができる。
従って、例えば凹部8の開口部近傍にオーバハング部が形成されることを防止することができ、このためボイドを発生させることなく凹部8の埋め込みを行うことができる。
<コーナエッチング比の比較評価>
次に、Ti母材に各種の遷移金属を混合してなるTi合金膜をバリヤ層として用いた時のコーナエッチング比[b/a]を比較検討したので、その評価結果について説明する。
図4はTi母材に各種の遷移金属を混合してなるTi合金膜をバリヤ層として用いた時のコーナエッチング比を示すグラフである。ここでは、Ti母材に混合する遷移金属として、ウエハに対する汚染の恐れの少ないZr(ジルコニウム)、Hf(ハフニウム)、Nb(ニオブ)、Ta(タンタル)を用いた場合を示し、カッコ内にはそれぞれTi合金全体に対する混合比率を示している。また比較のためにTi単独の場合も示している。
図4から明らかなように、従来においてバリヤ層として用いていたTi層単独の場合には、コーナエッチング比は7.68にもなっていたが、本発明のバリヤ層の場合には、全てにおいてコーナエッチング比は”5”以下となって、好ましい結果を示している。コーナエッチング比に関して、具体的には、Zrを5%混合したTiZrの場合には4.86であり、Hfを10%混合したTiHfの場合には2.72であり、Nbを10%混合したTiNbの場合には2.32であり、Mnを10%混合したTiMnの場合には2.16であり、Taを50%混合したTiTaの場合には1.40である。
このように、コーナエッチング比を5以下にするには、混合した金属のTi合金全体に対する割合を5〜50%の範囲内に設定すればよいことを確認することができた。また金属の混合の割合を50%以上に多く設定すると、母材であるTiの物理的特性が失われてしまうので好ましくない。また、金属の混合の割合が5%よりも少ないと、コーナエッチング比を十分に低下させることができないので、好ましくない。
尚、前述したように、Ti金属母材に混合される金属としては、上記Zr、Hf、Nb、Mn、Taの他に、金属汚染を生じないことを条件に、他の遷移金属を用いてもよいのは勿論である。
<実施例>
次に、上記実施例の変形例について説明する。
図5は異なる材質の導電層や複数の薄膜よりなるバリヤ層の変形例を示す断面図である。上記実施例にあっては、凹部8に埋め込まれて配線される導電層12として銅を用いた場合を例にとって説明したが、これに限定されない。図5(A)に示すように、Ti合金膜88よりなるバリヤ層10上にAl金属(アルミニウム合金を含む)やW金属(タングステン合金を含む)等を導電層12として用いていもよい。
更に、上記実施例では、Ti合金膜88の一層だけでバリヤ層10を構成したが、これに限定されず、複数層でバリヤ層10を構成してもよい。例えば図5(B)に示す場合には、下層のTi合金膜88と、この上に積層形成される上層のTiN膜(チタン窒化膜)92とにより2層でバリヤ層10を構成している。このTiN膜92は、反応性スパッタリング(反応性ガスを導入する)や熱CVD(Chemical Vapor Deposition)やプラズマCVDにより形成することができる。
このように、バリヤ層10を、Ti合金膜88とTiN膜92とよりなる2層構造にすることにより、各層間、或いは膜間の密着性を一層向上させることができる。この場合にも、導電層12としてはCu、Al、或いはこれらの合金を用いることができる。
また、図6は凹部の形状の変形例を示す図である。図6(A)に示すように、ここでは絶縁層6に形成される凹部8は、細長い溝状のトレンチ8xと、このトレンチ8xの底部の一部に形成された穴状のホール8yとにより構成されており、このホール8yの底部に下層の配線層等の導電層4が露出して、この導電層4に対して電気的なコンタクトを図ることになる。このような2段構造をDual Damasceneの構造と称す。
このような構造の凹部8の場合にも、前述した本発明を適用することができる。例えば図6(B)に示すように、ホール8y内の内面及びトレンチ8xの内面全体にTi合金膜88よりなるバリヤ層10を形成し、更にこのバリヤ層10上にプラズマスパッタリングによりCu膜よりなるシード膜90を形成し、更に、このシード膜90上にメッキ処理によりCu膜よりなる導電層12を形成し、凹部8内全体を埋め込むと共に、配線層を形成することになる。尚、上記Cu膜に代えて、Cu合金膜や前述したAl膜やW膜等を用いてもよいのは勿論である。
尚、本実施例では、上層と下層の配線層間の電気的なコンタクトを図る場合を主として例にとって説明したが、これに限定されず、例えばコンデンサ等の電極を保護する場合にも、本発明に係るバリヤ層を用いることができる。
また、ここでは被処理体として半導体ウエハを例にとって説明したが、これに限定されず、ガラス基板、LCD基板、セラミック基板等にも本発明を適用することができる。
本発明に係るプラズマ成膜装置の一例を示す断面図である。 本発明に係るバリヤ層の形成方法を含む凹部の埋め込み工程を示す図である。 リスパッタ工程を説明する図である。 Ti母材に各種の遷移金属を混合してなるTi合金膜をバリヤ層として用いた時のコーナエッチング比を示すグラフである。 異なる材質の導電層や複数の薄膜よりなるバリヤ層の変形例を示す断面図である。 凹部の形状の変形例を示す図である。 半導体ウエハの表面の凹部の埋め込み状態を示す断面図である。 表面に凹部を有する半導体ウエハの表面にTi膜が形成される時の状態を示す断面図である。 図8中の凹部の開口部を示す拡大図である。
符号の説明
2 半導体ウエハ(被処理体)
4 導電層(配線層)
6 絶縁層
8 凹部
8x トレンチ
8y ホール
10 バリヤ層
12 導電層
22 プラズマ成膜装置
24 処理容器
34 載置台
54 バイアス電源
62 プラズマ発生源
70 金属ターゲット
72 可変直流電源
76 ガス導入口(ガス導入手段)
80 装置制御部
88 Ti合金膜
90 シード膜
92 TiN膜

Claims (6)

  1. 真空引き可能になされた処理容器内で載置台上に被処理体を載置し、前記被処理体の表面に形成されている絶縁層上に、金属ターゲットより放出される金属粒子を堆積させてバリヤ層を形成するバリヤ層の形成方法において、
    前記金属ターゲットとして、Ti金属よりなる母材に、Zr(ジルコニウム)、Hf(ハフニウム)、Nb(ニオブ)、Mn(マンガン)、Ta(タンタル)よりなる群から選択された1又は2以上の金属を合混してなる金属材料を用い、前記処理容器内にプラズマを形成しつつ前記金属ターゲットに放電用電力を供給すると共に前記載置台にバイアス電力を供給してスパッタリングにより前記被処理体の表面にTi合金膜を形成する膜形成工程と、
    該膜形成工程の後に前記プラズマの形成用の電力の供給と前記バイアス電力の供給とを維持すると共に、前記金属ターゲットへの放電用電力の供給を遮断した状態で前記Ti合金膜をリスパッタリングするリスパッタリング工程と、
    を有することを特徴とするバリヤ層の形成方法。
  2. 前記バリヤ層の一部は、前記絶縁層の一部に形成された凹部の底部を介して下層の他の導電層に電気的に接続されていることを特徴とする請求項1記載のバリヤ層の形成方法。
  3. 前記凹部は、ホール又はトレンチ(溝)であることを特徴とする請求項2記載のバリヤ層の形成方法。
  4. 前記ホールの直径又は前記トレンチの幅は100nm以下であることを特徴とする請求項3記載のバリヤ層の形成方法。
  5. 前記混合した金属のTi合金全体に対する割合は5〜50%の範囲内であることを特徴とする請求項1乃至4のいずれか一項に記載のバリヤ層の形成方法。
  6. 被処理体の表面の絶縁層上に、バリヤ層を形成するプラズマ成膜装置において、
    真空引き可能になされた処理容器と、
    被処理体を載置するための載置台と、
    前記処理容器内へ所定のガスを導入するガス導入手段と、
    前記処理容器内へプラズマを発生させるためのプラズマ発生源と、
    Ti(チタン)金属よりなる母材に、Zr(ジルコニウム)、Hf(ハフニウム)、Nb(ニオブ)、Mn(マンガン)、Ta(タンタル)よりなる群から選択された1又は2以上の金属を混合してなるTi合金の金属ターゲットと、
    前記金属ターゲットへ放電用電力を供給するターゲット用の電源と、
    前記載置台に対してバイアス電力を供給するバイアス電源と、
    請求項1乃至5のいずれか一項に記載のバリヤ層の形成方法を実行するように装置全体を制御する装置制御部と、
    を備えたことを特徴とするプラズマ成膜装置。
JP2006276463A 2006-10-10 2006-10-10 バリヤ層の形成方法及びプラズマ成膜装置 Expired - Fee Related JP4923933B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276463A JP4923933B2 (ja) 2006-10-10 2006-10-10 バリヤ層の形成方法及びプラズマ成膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276463A JP4923933B2 (ja) 2006-10-10 2006-10-10 バリヤ層の形成方法及びプラズマ成膜装置

Publications (3)

Publication Number Publication Date
JP2008098284A JP2008098284A (ja) 2008-04-24
JP2008098284A5 JP2008098284A5 (ja) 2009-07-09
JP4923933B2 true JP4923933B2 (ja) 2012-04-25

Family

ID=39380838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276463A Expired - Fee Related JP4923933B2 (ja) 2006-10-10 2006-10-10 バリヤ層の形成方法及びプラズマ成膜装置

Country Status (1)

Country Link
JP (1) JP4923933B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201808205QA (en) 2016-03-25 2018-10-30 Jx Nippon Mining & Metals Corp Ti-Nb ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152739B2 (ja) * 1992-05-19 2001-04-03 株式会社日立製作所 半導体集積回路装置の製造方法
KR20040077797A (ko) * 2002-01-24 2004-09-06 허니웰 인터내셔널 인코포레이티드 박막, 박막을 갖는 구조, 및 박막을 형성하는 방법

Also Published As

Publication number Publication date
JP2008098284A (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
JP5023505B2 (ja) 成膜方法、プラズマ成膜装置及び記憶媒体
JP5392215B2 (ja) 成膜方法及び成膜装置
JP4830421B2 (ja) 金属膜の成膜方法及び成膜装置
JP4967354B2 (ja) シード膜の成膜方法、プラズマ成膜装置及び記憶媒体
JP2006148075A (ja) 成膜方法及びプラズマ成膜装置
WO2012133400A1 (ja) Cu配線の形成方法
JP5969306B2 (ja) Cu配線の形成方法
JP2006148074A (ja) 成膜方法及びプラズマ成膜装置
US9362166B2 (en) Method of forming copper wiring
JP5767570B2 (ja) Cu配線の形成方法およびCu膜の成膜方法、ならびに成膜システム
JP2016111347A (ja) Cu配線の形成方法および成膜システム、記憶媒体
JP2008041700A (ja) 成膜方法、成膜装置及び記憶媒体
US10163699B2 (en) Cu wiring forming method and semiconductor device manufacturing method
US20140287163A1 (en) Method of forming copper wiring and method and system for forming copper film
KR101031677B1 (ko) 성막 방법, 성막 장치 및 기억 매체
JP4923933B2 (ja) バリヤ層の形成方法及びプラズマ成膜装置
WO2014010333A1 (ja) Cu配線の形成方法およびコンピュータ読み取り可能な記憶媒体
WO2009096095A1 (ja) 薄膜の形成方法、プラズマ成膜装置及び記憶媒体
JP2008098378A (ja) 薄膜形成方法及び薄膜の積層構造

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees