JP4921880B2 - High voltage semiconductor device - Google Patents

High voltage semiconductor device Download PDF

Info

Publication number
JP4921880B2
JP4921880B2 JP2006206786A JP2006206786A JP4921880B2 JP 4921880 B2 JP4921880 B2 JP 4921880B2 JP 2006206786 A JP2006206786 A JP 2006206786A JP 2006206786 A JP2006206786 A JP 2006206786A JP 4921880 B2 JP4921880 B2 JP 4921880B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor region
layer
region
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006206786A
Other languages
Japanese (ja)
Other versions
JP2008034646A (en
Inventor
哲夫 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006206786A priority Critical patent/JP4921880B2/en
Publication of JP2008034646A publication Critical patent/JP2008034646A/en
Application granted granted Critical
Publication of JP4921880B2 publication Critical patent/JP4921880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本発明は、ショットキーバリアダイオード、PNダイオード、MOSFET、IGBT等の高耐圧半導体装置に関する。   The present invention relates to a high voltage semiconductor device such as a Schottky barrier diode, a PN diode, a MOSFET, or an IGBT.

半導体パワーデバイスにおいてはオン抵抗を最小化し、耐圧を最大化するようなデバイス構造及びデバイス材料が求められる。従来はシリコンを半導体材料として半導体パワーデバイスを作成し、デバイス終端部で電界集中が生じる箇所はJTE(Junction Termination Extension)と呼ばれる表面に形成したPN接合や、n型半導体基板表面にp型層のリング構造を作成し電界緩和するように設計して高耐圧化を行ってきた。   In semiconductor power devices, device structures and device materials that minimize on-resistance and maximize breakdown voltage are required. Conventionally, a semiconductor power device is made using silicon as a semiconductor material, and the location where electric field concentration occurs at the device termination is a PN junction formed on the surface called JTE (Junction Termination Extension) or a p-type layer on the surface of an n-type semiconductor substrate. A ring structure has been created and designed to relieve the electric field, thereby increasing the breakdown voltage.

従来、例えばショットキーダイオードにおいては、ショットキー電極部分から外側に連続してJTEとしてのp- 層(所謂RESURF層)を形成することにより、逆バイアス印加時にp- 層が空乏化させ、ショットキー電極端の電界を緩和して高耐圧を得ている。耐圧は、p- 層の濃度を深さ方向に積分した量、つまりp- 層形成のためのイオン注入のドーズ量に主に依存する。理想耐圧が得られるためにはそのドーズ量は破壊電界強度をEc、誘電率をε電荷素量をqとしてεEc/qに近い値である必要がある(非特許文献1参照)。 Conventionally, for example, in a Schottky diode, a p layer (so-called RESURF layer) as a JTE is formed continuously from the Schottky electrode portion to deplete the p layer when a reverse bias is applied. A high breakdown voltage is obtained by relaxing the electric field at the electrode end. The breakdown voltage mainly depends on the amount obtained by integrating the concentration of the p layer in the depth direction, that is, the dose of ion implantation for forming the p layer. In order to obtain an ideal withstand voltage, the dose amount needs to be a value close to εEc / q where the breakdown electric field strength is Ec, the dielectric constant is ε, and the elementary charge amount is q (see Non-Patent Document 1).

最近、シリコンを材料としたパワーデバイスの性能を飛躍的に凌駕する、炭化珪素(SiC)を材料としたパワーデバイスが開発されている。炭化珪素はワイドバンドギャップ半導体であり、破壊電界強度がシリコンの10倍近い大きさなのでパワー半導体の耐圧とオン抵抗のトレードオフを改善できる(非特許文献2参照)。炭化珪素を材料とする高耐圧半導体デバイスにおいてもシリコンと同様、表面にJTE構造を形成して高耐圧化を行ってきた。   Recently, power devices made of silicon carbide (SiC) have been developed that dramatically surpass the performance of power devices made of silicon. Silicon carbide is a wide band gap semiconductor, and since the breakdown electric field strength is nearly 10 times as large as that of silicon, the trade-off between the breakdown voltage and on-resistance of the power semiconductor can be improved (see Non-Patent Document 2). In a high voltage semiconductor device made of silicon carbide, a high voltage resistance has been achieved by forming a JTE structure on the surface like silicon.

しかしながら、炭化珪素においては破壊電界強度に異方性があるため、JTE構造の端部での電界が、最も破壊電界強度が最も大きいC軸方向から斜めにずれるため、耐圧が顕著に低下するという問題があった。C軸(<0001>方向)とこれに直交するA軸(<11−20>方向、但し、符号「−」は結晶学において数字の上に付ける「−」(バー)を表わしている)における破壊電界強度を、それぞれEc1、Ec2とし、SiC基板中のドナー濃度をNdとすると、Ec1、Ec2は以下の式で表わされることが報告されている(非特許文献3参照)。   However, since the breakdown electric field strength is anisotropic in silicon carbide, the electric field at the end of the JTE structure is obliquely shifted from the C-axis direction where the breakdown electric field strength is the highest, and the breakdown voltage is significantly reduced. There was a problem. In the C-axis (<0001> direction) and the A-axis (<11-20> direction orthogonal thereto, where the symbol “-” represents “-” (bar) added on the number in crystallography) It has been reported that Ec1 and Ec2 are expressed by the following equations, assuming that the breakdown electric field strength is Ec1 and Ec2, respectively, and the donor concentration in the SiC substrate is Nd (see Non-Patent Document 3).

Ec1=2.70×106(Nd/10160.1[V/cm]…(1)
Ec2=2.12×106(Nd/10160.1[V/cm]…(2)
耐圧の異方性により、A軸方向では耐圧がC軸の理想耐圧より1割以上低下することが分かる。
“power semiconductor devices”, B. Jayant Baliga, PWS publishing SiC素子の基礎と応用、荒井和雄編、オーム社、165〜168頁 “Physical modeling and scaling properties of 4H-SiC power devices”, T. Hatakeyama, C. Ohta, J. Nishio, T. Shinohe, Proc. of 2005 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) P.171-17 (2005)
Ec1 = 2.70 × 10 6 (Nd / 10 16 ) 0.1 [V / cm] (1)
Ec2 = 2.12 × 10 6 (Nd / 10 16 ) 0.1 [V / cm] (2)
From the anisotropy of the breakdown voltage, it can be seen that the breakdown voltage is 10% lower than the ideal breakdown voltage of the C axis in the A axis direction.
“Power semiconductor devices”, B. Jayant Baliga, PWS publishing Basics and applications of SiC devices, Kazuo Arai, Ohmsha, pp.165-168 “Physical modeling and scaling properties of 4H-SiC power devices”, T. Hatakeyama, C. Ohta, J. Nishio, T. Shinohe, Proc. Of 2005 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) P.171- 17 (2005)

本発明は、このような問題点に鑑みて成されたものであり、その目的は耐圧の異方性による耐圧低下を防止した高耐圧半導体装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a high voltage semiconductor device in which a decrease in breakdown voltage due to anisotropy of breakdown voltage is prevented.

上記課題を解決するために、本発明の半導体装置の第1は、炭化珪素よりなり、表面の法線ベクトルが<0001>方向若しくは<000−1>方向であるか、または前記いずれかの方向に対して8度以下のズレがある半導体基板と、前記半導体基板の上面に形成された炭化珪素からなる第1導電型の半導体層と、前記半導体層の中央部の活性層を取り囲むように、前記半導体層の表面に形成された炭化珪素からなる第2導電型の第1の半導体領域と、前記半導体層の表面で、前記第1の半導体領域の外側に接して形成され、前記第1の半導体領域の不純物濃度より低い濃度を有する炭化珪素からなる第2導電型の第2の半導体領域と、前記半導体層の前記活性層上に設けられた第1の電極と、前記半導体基板の裏面に設けられた第2の電極とを具備し、前記炭化珪素の比誘電率をε、前記炭化珪素の<0001>方向、<11−20>方向の破壊電界強度を夫々Ec1、Ec2、電荷素量をq、前記半導体層中のドナー濃度をNdとするとき、前記第1の半導体領域の不純物濃度と深さの積が0.8εEc1/q以上で1.2εEc1/q以下であり、前記第2の半導体領域の不純物濃度と深さの積が0.4εEc2/q以上で1.1εEc2/q以下であり、前記第1の半導体領域の幅はεEc1/qNd−εEc2/qNd以上であり、前記第2の半導体領域の幅は0.4εEc2/qNd以上εEc2/qNd以下であることを特徴とする。 In order to solve the above-described problem, a first semiconductor device of the present invention is made of silicon carbide, and a surface normal vector is a <0001> direction or a <000-1> direction, or any one of the above directions. to surround the semiconductor substrate Ru 8 degrees or less Zuregaa a first conductivity type semiconductor layer made of silicon carbide formed on the upper surface of the semiconductor substrate, an active layer of the central portion in the semiconductor layer with respect to And a second conductive type first semiconductor region made of silicon carbide formed on the surface of the semiconductor layer, and a surface of the semiconductor layer in contact with the outside of the first semiconductor region. A second semiconductor region of a second conductivity type made of silicon carbide having a lower concentration than the impurity concentration of one semiconductor region, a first electrode provided on the active layer of the semiconductor layer, and the semiconductor substrate Second electrode provided on the back surface The dielectric constant of the silicon carbide is ε, the breakdown electric field strength of the silicon carbide in the <0001> direction and the <11-20> direction is Ec1, Ec2, the elementary charge is q, When the donor concentration is Nd, the product of the impurity concentration and the depth of the first semiconductor region is 0.8εEc1 / q to 1.2εEc1 / q, and the impurity concentration and depth of the second semiconductor region are Ri der 1.1εEc2 / q or less the product is 0.4εEc2 / q or more is, the width of the first semiconductor region is a εEc1 / qNd-εEc2 / qNd above, the width of the second semiconductor region 0.4εEc2 / characterized by der Rukoto following εEc2 / qNd more qNd.

また、本発明の半導体装置の第2は、炭化珪素よりなり、表面の法線ベクトルが<0001>方向若しくは<000−1>方向であるか、または前記いずれかの方向に対して8度以下のズレがある半導体基板と、前記半導体基板の上面に形成された炭化珪素からなる第1導電型の半導体層と、前記半導体層の中央部の活性層を取り囲むように、前記半導体層の表面に形成された炭化珪素からなる第2導電型の第1の半導体領域と、前記半導体層の表面で、前記第1の半導体領域の外側に接して形成され、前記第1の半導体領域の不純物濃度より低い濃度を有する炭化珪素からなる第2導電型の第2の半導体領域と、前記第2の半導体領域中で、前記第1の半導体領域の外側に形成され、前記第1の半導体領域のドナー濃度と同じ濃度を有する炭化珪素からなる複数の第3の半導体領域と、前記半導体層の前記活性層上に設けられた第1の電極と、前記半導体基板の裏面に設けられた第2の電極とを具備し、前記炭化珪素の比誘電率をε、前記炭化珪素の<0001>方向、<11−20>方向の破壊電界強度を夫々Ec1、Ec2、電荷素量をq、前記半導体層中のドナー濃度をNdとするとき、前記第1の半導体領域の不純物濃度と深さの積が0.8εEc1/q以上で8εEc1/q以下であり、前記第2の半導体領域の不純物濃度と深さの積が0.4εEc2/q以上で1.1εEc2/q以下であり、前記第1の半導体領域の幅はεEc1/qNd−εEc2/qNd以上であり、前記第2の半導体領域の幅は0.4εEc2/qNd以上εEc2/qNd以下であることを特徴とする。 The second semiconductor device of the present invention, Ri Na from silicon carbide, the surface normal is <0001> direction or <000-1> either direction, or 8 degrees with respect to the one direction to surround the semiconductor substrate Ru following Zuregaa a first conductivity type semiconductor layer made of silicon carbide formed on the upper surface of the semiconductor substrate, an active layer of the central portion in said semiconductor layer, said semiconductor layer A first semiconductor region of a second conductivity type made of silicon carbide formed on the surface of the semiconductor layer, and on the surface of the semiconductor layer, in contact with the outside of the first semiconductor region, A second conductivity type second semiconductor region made of silicon carbide having a concentration lower than an impurity concentration, and the first semiconductor region formed outside the first semiconductor region in the second semiconductor region; It has a donor concentration and the same concentration A plurality of third semiconductor regions made of silicon nitride, a first electrode provided on the active layer of the semiconductor layer, and a second electrode provided on the back surface of the semiconductor substrate, The dielectric constant of silicon carbide is ε, the breakdown electric field strengths of the silicon carbide in the <0001> direction and the <11-20> direction are Ec1 and Ec2, the elementary charge is q, and the donor concentration in the semiconductor layer is Nd. In this case, the product of the impurity concentration and the depth of the first semiconductor region is 0.8εEc1 / q to 8εEc1 / q, and the product of the impurity concentration and the depth of the second semiconductor region is 0.4εEc2. / der 1.1IpushironEc2 / q or less than q is, the width of the first semiconductor region is a εEc1 / qNd-εEc2 / qNd above, the width of the second semiconductor region 0.4IpushironEc2 / qNd more IpushironEc2 / qNd the following der Rukoto and features.

本発明によれば、破壊電界強度に異方性のある半導体において破壊電界強度の異方性による耐圧低下を防止することができる。本発明により耐圧を最大化できるので半導体本来の性能を引き出すことができ、面積あたりのオン抵抗が最小にして、最高の耐圧を示す高耐圧半導体装置を提供することができる。これにより、素子の高耐圧化、高電流密度化が達成できる。   According to the present invention, it is possible to prevent a decrease in breakdown voltage due to anisotropy of breakdown electric field strength in a semiconductor having anisotropy of breakdown electric field strength. Since the withstand voltage can be maximized according to the present invention, the inherent performance of the semiconductor can be derived, and the on-resistance per area can be minimized to provide a high withstand voltage semiconductor device exhibiting the highest withstand voltage. Thereby, it is possible to achieve high breakdown voltage and high current density of the element.

以下、本発明の実施形態について図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
図1及び図2は、本発明の第1の実施形態にかかる高耐圧半導体装置の模式的な断面図及び上面図であり、図1は図2のA−A´線に沿った断面に相当する。ここでは高耐圧半導体装置の一つとして、ショットキーバリアダイオードを用いて説明する。
(First embodiment)
1 and 2 are a schematic cross-sectional view and a top view of the high voltage semiconductor device according to the first embodiment of the present invention, and FIG. 1 corresponds to a cross section taken along the line AA ′ of FIG. To do. Here, a Schottky barrier diode will be described as one of high voltage semiconductor devices.

図1に示すように、第1の実施形態のショットキーバリアダイオードは、n+ 型SiC半導体基板1上にエピタキシャル成長されたn型SiC半導体層2に形成されている。n型半導体層2の表面には、JTE構造としての低不純物濃度の第1のp-型領域6が形成されている。第1のp-型領域6は、ショットキー電極3と一部重なり接続しており、電極3の周囲に広がっている。さらに第1のp-型領域6の外側に、これに接してこれより低濃度の第2のp-型領域7が形成されている。第2のp-型領域7の不純物濃度は、第1のp-型領域6の不純物濃度よりも低く設定されている。さらに、n型半導体層2の表面端部にはn+ 型チャネルストッパ領域8が形成されている。また、第2のp-型領域7の外側端部と、n+ 型チャネルストッパ領域8の内側端部は離隔している。 As shown in FIG. 1, the Schottky barrier diode of the first embodiment is formed in an n type SiC semiconductor layer 2 epitaxially grown on an n + type SiC semiconductor substrate 1. On the surface of the n type semiconductor layer 2, a first p type region 6 having a low impurity concentration as a JTE structure is formed. The first p -type region 6 is partially connected to the Schottky electrode 3 and extends around the electrode 3. Further, a second p type region 7 having a lower concentration than that of the first p type region 6 is formed outside the first p type region 6. The impurity concentration of the second p type region 7 is set lower than the impurity concentration of the first p type region 6. Further, an n + type channel stopper region 8 is formed at the surface end portion of the n type semiconductor layer 2. The outer end portion of the second p type region 7 and the inner end portion of the n + type channel stopper region 8 are separated from each other.

型半導体層2の上面は、シリコン酸化膜9で覆われ、例えばTiにより形成されたショットキー電極3の上部を開口した後、例えばAlからなる第1の電極(アノード電極)4を形成されている。さらにポリイミド等の保護膜10で全面が覆われ、第1の電極4の上部が開口されている。n+ 型SiC半導体基板1の裏面には、例えばNiからなる第2の電極(カソード電極)5が形成されている。 The upper surface of the n type semiconductor layer 2 is covered with a silicon oxide film 9, and after opening the upper part of the Schottky electrode 3 made of, for example, Ti, a first electrode (anode electrode) 4 made of, for example, Al is formed. Has been. Further, the entire surface is covered with a protective film 10 such as polyimide, and the upper portion of the first electrode 4 is opened. On the back surface of the n + -type SiC semiconductor substrate 1, a second electrode (cathode electrode) 5 made of, for example, Ni is formed.

平面的には図3に示すように、中心部にショットキー電極3が形成され、その周りにJTEとしての第1のp-型領域6、第2のp-型領域7が形成されている。但し、図2の平面図は、半導体層2に第1のp-型領域6、第2のp-型領域7、ショットキー電極3が形成された直後の上面であることを注記する。第1のp-型領域6、第2のp-型領域7の幅w1 、w2 は、後述のように、ショットキーダイオードのドリフト層(n型半導体層)2のドナー濃度(Nd)によって決定される。 In plan view, as shown in FIG. 3, a Schottky electrode 3 is formed at the center, and a first p -type region 6 and a second p -type region 7 as JTE are formed around it. . 2 is a top view immediately after the first p type region 6, the second p type region 7, and the Schottky electrode 3 are formed in the semiconductor layer 2. As will be described later, the widths w1 and w2 of the first p type region 6 and the second p type region 7 depend on the donor concentration (Nd) of the drift layer (n type semiconductor layer) 2 of the Schottky diode. It is determined.

ここで、第1のp-型領域6より外側の領域を終端領域11と称し、第1のp-型領域6と第2のp-型領域7を併せた領域を接合終端構造(JTE)と称する。第1のp-型領域6に囲まれた中心領域がショットキーダイオードとしての活性領域である。 Here, a region outside the first p type region 6 is referred to as a termination region 11, and a region combining the first p type region 6 and the second p type region 7 is a junction termination structure (JTE). Called. A central region surrounded by the first p type region 6 is an active region as a Schottky diode.

本実施形態で使用するSiC半導体基板は、前述のように耐圧に異方性を有している。<0001>方向の破壊電界強度をEc1、<11−20>方向の破壊電圧強度をEc2とすると、図3に示すように、Ec1>Ec2となる。また、夫々の数値は、前述の式(1)、(2)によって計算できる。   The SiC semiconductor substrate used in this embodiment has anisotropy in breakdown voltage as described above. Assuming that the breakdown electric field strength in the <0001> direction is Ec1, and the breakdown voltage strength in the <11-20> direction is Ec2, as shown in FIG. 3, Ec1> Ec2. Each numerical value can be calculated by the above-described equations (1) and (2).

また、SiC基板の製造には、SiC結晶の品質の点から、SiCのエピタキシャル成長が必要である。SiCのエピタキシャル成長膜は、結晶角度のC軸と呼ばれる<0001>方向から僅かに傾けたSiC面上に形成される。通常、SiC基板の主面は、<0001>方向に対して、8度以下傾いた(オフした)法線を備えている。   In addition, the production of a SiC substrate requires the epitaxial growth of SiC from the viewpoint of the quality of the SiC crystal. The SiC epitaxial growth film is formed on a SiC surface slightly inclined from the <0001> direction called the C-axis of the crystal angle. Usually, the main surface of the SiC substrate has a normal line inclined (turned off) by 8 degrees or less with respect to the <0001> direction.

前述の式(1)、(2)による破壊電圧強度は、オフ角度が0度の場合のものであるが、8度オフにおける、基板に垂直方向の破壊電圧強度Ec1´、基板に平行方向の破壊電圧強度Ec2´は夫々以下の式により与えられる。   The breakdown voltage intensity according to the above formulas (1) and (2) is for the case where the off angle is 0 degree, but the breakdown voltage intensity Ec1 ′ in the direction perpendicular to the substrate and the direction parallel to the substrate at 8 degrees off. The breakdown voltage intensity Ec2 ′ is given by the following equations, respectively.

Ec1´=2.68×106(Nd/10160.1[V/cm]…(3)
Ec2´=2.14×106(Nd/10160.1[V/cm]…(4)
即ち(1)式と(3)式の違い、及び(2)式と(4)式の違いは1%に満たないので、8度オフであっても0度オフとほぼ同一視できる。
Ec1 ′ = 2.68 × 10 6 (Nd / 10 16 ) 0.1 [V / cm] (3)
Ec2 ′ = 2.14 × 10 6 (Nd / 10 16 ) 0.1 [V / cm] (4)
That is, the difference between the formula (1) and the formula (3) and the difference between the formula (2) and the formula (4) are less than 1%.

図4は、従来のショットキバリアダイオード(通常のRESURF層を1つ備える)における破壊電界強度の異方性による耐圧の劣化を示すシミュレーション結果である。半導体層として、4H−SiC(シリコンカーバイド)を用いている。横軸はp-半導体領域(RESURF)の不純物濃度であり、縦軸は絶縁破壊耐圧を示す。一般に、絶縁破壊耐圧は半導体領域の濃度と深さの積の関数であり、この計算では半導体領域の深さは0.6μmにしている。破壊電界強度の等方性を仮定し、その絶対値を<0001>方向の値に設定したシミュレーション結果を○印のデータで示す。この結果によれば第1の半導体領域の濃度を最適化すれば耐圧は<0001>方向の理想耐圧(<0001>限界として示す)にほぼ等しい値が得られる。 FIG. 4 is a simulation result showing deterioration of breakdown voltage due to anisotropy of the breakdown electric field strength in a conventional Schottky barrier diode (equipped with one normal RESURF layer). As the semiconductor layer, 4H—SiC (silicon carbide) is used. The horizontal axis represents the impurity concentration of the p semiconductor region (RESURF), and the vertical axis represents the breakdown voltage. In general, the breakdown voltage is a function of the product of the concentration and depth of a semiconductor region. In this calculation, the depth of the semiconductor region is set to 0.6 μm. Assuming that the breakdown field strength is isotropic, the simulation result in which the absolute value is set to the value in the <0001> direction is indicated by the data with a circle. According to this result, if the concentration of the first semiconductor region is optimized, the breakdown voltage can be almost equal to the ideal breakdown voltage in the <0001> direction (shown as the <0001> limit).

一方、現実にあわせて破壊電界強度の異方的を導入し、<0001>方向と<1120>方向の破壊電界強度を実験による値に設定して絶縁破壊耐圧を計算した結果を、×印のデータで示す。計算結果によれば、絶縁破壊耐圧が<0001>方向の理想耐圧と比べて10%程度低下し、またp-領域(RESURF)の最適濃度も理想耐圧の場合と異なる。p-層(RESURF)の設計濃度を、従来の設計手法(等方性シミュレーション)による最適値に設定すると、耐圧が50%以上低下する。 On the other hand, actually introducing anisotropic in breakdown field strength together, <0001> direction - a <11 20> direction results of calculating the dielectric breakdown voltage is set to a value of breakdown electric field strength by experiment, × This is indicated by the mark data. According to the calculation results, the dielectric breakdown voltage is reduced by about 10% compared to the ideal breakdown voltage in the <0001> direction, and the optimum concentration in the p region (RESURF) is also different from that in the ideal breakdown voltage. When the design concentration of the p layer (RESURF) is set to an optimum value by a conventional design method (isotropic simulation), the breakdown voltage is reduced by 50% or more.

図5は、従来の技術による素子の耐圧低下が、破壊電界強度の異方性にあることを示す図である。p-層の設計濃度を従来の設計の最適値に設定すると、終端構造の端で電界の方向がC軸に垂直方向にずれるため耐圧が低下する。矢印で示したものが電界の大きさと方向である、RESURFの端部では、矢印が基板面に平行な方向に大きく伸びているのがわかる。この方向の破壊強度は図3で説明したように、基板面に垂直方向よりも小さいので、耐圧が低下するのである。なお、電界強度の分布が等電線で示されている。 FIG. 5 is a diagram showing that the breakdown voltage reduction of the element according to the conventional technique is in the anisotropy of the breakdown electric field strength. When the design concentration of the p layer is set to the optimum value of the conventional design, the direction of the electric field is shifted in the direction perpendicular to the C axis at the end of the termination structure, so that the breakdown voltage decreases. It can be seen that at the end of RESURF, where the arrow indicates the magnitude and direction of the electric field, the arrow extends greatly in the direction parallel to the substrate surface. Since the breaking strength in this direction is smaller than the direction perpendicular to the substrate surface as described with reference to FIG. 3, the breakdown voltage is reduced. The electric field strength distribution is shown by an equal wire.

図6は、図1に示す高耐圧半導体装置(×印のデータで示す)と、従来の高耐圧半導体装置(本発明の第1のp-型層に相当するRESURFのみ備える、菱形印のデータで示す)の耐圧を、シミュレーションにより比較した図である。横軸は、従来の技術ではp- 型層(RESURF)のドーズ量(濃度を深さ方向に積分したもの)であり、本実施形態では内側の第1のp- 型層6におけるドーズ量である。本実施形態により、耐圧を<0001>方向の限界値まで向上せしめることが可能となる。第1のp- 型層6の不純物濃度と深さの積に関しては、図6よりεEc1/qで最大の効果が得られ、0.8εEc1/q以上1.2εEc1/q以下まで効果が認められる。 FIG. 6 shows a diamond-shaped data including only the high-voltage semiconductor device shown in FIG. 1 (indicated by data indicated by x) and the conventional high-voltage semiconductor device (only RESURF corresponding to the first p -type layer of the present invention). It is the figure which compared the pressure | voltage resistance of (shown by) by simulation. The horizontal axis represents the dose of the p -type layer (RESURF) (concentration integrated in the depth direction) in the conventional technique, and in this embodiment, the dose of the first p -type layer 6 on the inside. is there. According to the present embodiment, the breakdown voltage can be improved to the limit value in the <0001> direction. With respect to the product of the impurity concentration and the depth of the first p -type layer 6, the maximum effect is obtained at εEc1 / q from FIG. 6, and the effect is observed from 0.8εEc1 / q to 1.2εEc1 / q. .

より詳細には、ドーズ量が規定の量より多い場合はRESURF層端で電界集中が起こり、一方ドーズ量が少ない場合はRESURF層が完全に空乏化してしまい、RESURF層の電界遮蔽効果が不足するので、電極端で電界集中が発生する。従って、第1のp-型層のドーズ量はεEc1/qとするのが好ましく、余裕を考えて0.8εEc1/q以上1.2εEc1/q以下が認められるということである。 More specifically, when the dose amount is larger than the prescribed amount, electric field concentration occurs at the end of the RESURF layer, whereas when the dose amount is small, the RESURF layer is completely depleted, and the electric field shielding effect of the RESURF layer is insufficient. Therefore, electric field concentration occurs at the electrode ends. Accordingly, the dose amount of the first p -type layer is preferably εEc1 / q, and 0.8εEc1 / q or more and 1.2εEc1 / q or less are recognized in consideration of a margin.

図7、8は第1の実施形態の効果を説明する図面である。図7は素子中の最大電界部(第1のp- 型領域6の端部)の拡大図である。本実施形態では、最大電界の方向は<0001>方向(基板面に垂直方向)に揃っている。即ち、破壊強度の弱い横側からの電界を第2のp-型領域で7で抑制し、破壊強度の強い縦方向で電界を受ける構造となっている。 7 and 8 are drawings for explaining the effect of the first embodiment. FIG. 7 is an enlarged view of the maximum electric field portion (end portion of the first p -type region 6) in the element. In the present embodiment, the direction of the maximum electric field is aligned in the <0001> direction (direction perpendicular to the substrate surface). That is, the structure is such that the electric field from the lateral side where the breaking strength is weak is suppressed by 7 in the second p -type region, and the electric field is received in the vertical direction where the breaking strength is strong.

図8は第2のp- 型領域7の終端での電界の方向と分布を示す図である。第2のp- 型領域終端部の電界は<1120>方向の最大電界以下に抑えられている。本実施形態では外側の終端構造(第2のp- 型領域7)は<1120>方向の電界緩和を目的とし、内側の終端構造(第1のp- 型領域6)は<0001>方向の電界緩和構造に寄与することがこの図により示されている。 FIG. 8 is a diagram showing the direction and distribution of the electric field at the end of the second p -type region 7. The second p - field type area end portion <11 - 20> are kept below the direction of the maximum electric field. Outboard terminal structure in the present embodiment (second p - type region 7) is <11 - 20> direction of the electric field relaxation for the purpose of the inner termination structure (first p - type region 6) is <0001> This figure shows that it contributes to the directional field relaxation structure.

図9は第2のp- 型領域7の最適濃度範囲をシミュレーションにより求めた図である。第2のp- 型領域7のドーズ量が1.1εEc2/qを超えると、この領域の端部で電界集中が起こり耐圧が急落する。一方下限に関しては効果は0.4εEc2/qまで効果が認められる。 FIG. 9 is a diagram in which the optimum concentration range of the second p -type region 7 is obtained by simulation. When the dose amount of the second p -type region 7 exceeds 1.1εEc2 / q, electric field concentration occurs at the end of this region, and the breakdown voltage drops sharply. On the other hand, the effect is recognized up to 0.4εEc2 / q for the lower limit.

図10は、第2のp- 型領域7のドーズ量が最適値より小さくなると、第1のp- 型領域6の耐圧のマージンが小さくなることを示しているが、ピーク値がシングルJTE耐圧限界値を上回っているので、横方向電界緩和の効果は持続していることがわかる。なお、シングルJTE耐圧限界値とは、JTE(RESURF)が1つの場合に、これ以上耐圧を上げられない限界値のことである。 FIG. 10 shows that when the dose amount of the second p -type region 7 becomes smaller than the optimum value, the breakdown voltage margin of the first p -type region 6 becomes smaller. Since it exceeds the limit value, it can be seen that the effect of the transverse electric field relaxation is sustained. The single JTE withstand voltage limit value is a limit value at which the withstand voltage cannot be increased any more when there is one JTE (RESURF).

JTE領域の長さは、電極周辺部の空乏層の横方向と同じ程度以上に設定し、この領域の空乏層からの電気力線を終端する。この空乏層の横方向の広がりは、縦方向の空乏層の長さと同じでεEc/qNdで表わされる。本実施形態の場合、JTEは第1のp- 型層6とこれに隣接した第2のp- 型層7からなるので、この2つでεEc/qNdを満足すればよい。第2のp- 型層7で40%程度を負担すればよいので、第2のp- 型層7が完全空乏化するためには、その幅w2 は0.4εEc2/qNd以上εEc2/qNd以下となる。また、第1のp- 型層6が完全空乏化しないようにするために、その幅w1はεEc1/qNd−εEc2/qNd以上、好ましくはεEc1/qNd−0.4εEc2/qNd以上とすればよい。但し、上式に於いて、SiCの比誘電率をε、SiCの<0001>方向、<11−20>方向の破壊電界強度を夫々Ec1、Ec2、電荷素量をq、SiC層中のドナー濃度をNdとする。 The length of the JTE region is set to be equal to or greater than the lateral direction of the depletion layer around the electrode, and the electric lines of force from the depletion layer in this region are terminated. The spread of the depletion layer in the horizontal direction is the same as the length of the depletion layer in the vertical direction and is expressed by εEc / qNd. In the present embodiment, the JTE is composed of the first p -type layer 6 and the second p -type layer 7 adjacent to the first p -type layer 6, and it is sufficient that these two satisfy εEc / qNd. Since the second p type layer 7 has only to bear about 40%, in order for the second p type layer 7 to be fully depleted, its width w 2 is 0.4εEc 2 / qNd or more and εEc 2 / qNd or less. It becomes. Further, in order to prevent the first p -type layer 6 from being completely depleted, the width w1 may be εEc1 / qNd−εEc2 / qNd or more, preferably εEc1 / qNd−0.4εEc2 / qNd or more. . However, in the above equation, the dielectric constant of SiC is ε, the breakdown electric field strength of SiC in the <0001> direction and the <11-20> direction is Ec1, Ec2, the elementary charge is q, and the donor in the SiC layer The density is Nd.

以上のように、第1の実施形態によれば、低濃度の第1のp- 型層の外側に、これよりさらに低濃度の第2のp- 型層をこれに接して設けることにより、破壊電界強度に異方性のある半導体において耐圧を最大化できるので、半導体本来の性能を引き出すことができる。 As described above, according to the first embodiment, the second p type layer having a lower concentration than the low concentration first p type layer is provided on the outside of the first p type layer. Since the breakdown voltage can be maximized in a semiconductor having an anisotropy in breakdown electric field strength, the original performance of the semiconductor can be extracted.

(第2の実施形態)
図11は、本発明の第2の実施形態に係る半導体装置の断面図である。第1の実施形態と同一箇所には同一番号を付して、重複する説明を省略する。
(Second Embodiment)
FIG. 11 is a cross-sectional view of a semiconductor device according to the second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

第2の実施形態が第1の実施形態と異なる点は、第2のp- 型層7の中に第1のp- 型層6と同程度の濃度を有する複数のリング6´を有することである。 The second embodiment is different from the first embodiment in that the second p -type layer 7 has a plurality of rings 6 ′ having the same concentration as the first p -type layer 6. It is.

第1のp- 型層6の周辺に、これと同程度の濃度を有するリング6´を配置することにより、第1のp- 型層への電界集中が緩和され、第1のp- 型層のドーズのマージンを7倍以上広げることが可能となる。より詳細には、第1のp- 型層6のドーズ(不純物濃度と深さの積)が0.8εEc1/q以上で8εEc1/q以下であれば良い。また、第1の実施形態と同様に、第2のp- 型層7のドーズは0.4εEc2/q以上で1.1εEc2/q以下とすることができる。幅についても、第2のp- 型層7の幅w2 は0.4εEc2/qNd以上εEc2/qNd以下とし、第1のp- 型層6の幅w1はεEc1/qNd−εEc2/qNd以上、好ましくはεEc1/qNd−0.4εEc2/qNd以上とすればよい。 By arranging a ring 6 ′ having a concentration similar to this around the first p -type layer 6, the electric field concentration on the first p -type layer is alleviated, and the first p -type is reduced. It becomes possible to widen the margin of the layer dose by 7 times or more. More specifically, the dose (product of impurity concentration and depth) of the first p -type layer 6 may be 0.8εEc1 / q or more and 8εEc1 / q or less. Similarly to the first embodiment, the dose of the second p -type layer 7 can be 0.4εEc2 / q or more and 1.1εEc2 / q or less. Regarding the width, the width w2 of the second p - type layer 7 is 0.4εEc2 / qNd to εEc2 / qNd and the width w1 of the first p - type layer 6 is preferably εEc1 / qNd−εEc2 / qNd, preferably May be εEc1 / qNd−0.4εEc2 / qNd or more.

(第3の実施形態)
図12は、本発明の第3の実施形態に係る半導体装置の断面図である。第1の実施形態と同一箇所には同一番号を付して、重複する説明を省略する。
(Third embodiment)
FIG. 12 is a cross-sectional view of a semiconductor device according to the third embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

第3の実施形態が第1の実施形態と異なる点は、第2のp- 型層7の深さを第1のp- 型層6よりも深くしたことである。 The third embodiment is different from the first embodiment in that the depth of the second p -type layer 7 is made deeper than that of the first p -type layer 6.

第2のp- 型層7の深さを深くすることにより、横方向電界の遮断効果を高めることが可能となる。 By increasing the depth of the second p -type layer 7, it is possible to enhance the effect of blocking the horizontal electric field.

(第4の実施形態)
図13は、本発明の第4の実施形態に係る半導体装置の断面図である。第3の実施形態と同一箇所には同一番号を付して、重複する説明を省略する。
(Fourth embodiment)
FIG. 13 is a cross-sectional view of a semiconductor device according to the fourth embodiment of the present invention. The same parts as those in the third embodiment are denoted by the same reference numerals, and redundant description is omitted.

第4の実施形態が第3の実施形態と異なる点は、第2のp- 型層7の深さを第1のp- 型層6よりも深くし、かつ第1のp- 型層6を下及び横から包み込むようにしたことである。 The fourth embodiment is the third embodiment differs from the second p - the depth of the mold layer 7 first p - deeper than -type layer 6, and the first p - type layer 6 Is wrapped from below and from the side.

第2のp- 型層7の深さを深くすることにより、横方向電界の遮断効果を高めることが可能となる上,包み込むことによりJTE外側の角における電界集中を緩和することができる。 By increasing the depth of the second p -type layer 7, it is possible to enhance the blocking effect of the lateral electric field, and it is possible to reduce the electric field concentration at the corner outside the JTE by enveloping.

(第5の実施形態)
図14は、本発明の第5の実施形態に係る半導体装置の断面図である。第4の実施形態と同一箇所には同一番号を付して、重複する説明を省略する。
(Fifth embodiment)
FIG. 14 is a cross-sectional view of a semiconductor device according to the fifth embodiment of the present invention. The same parts as those in the fourth embodiment are denoted by the same reference numerals, and redundant description is omitted.

第5の実施形態が第4の実施形態と異なる点は、第2のp- 型層7の深さを第1のp- 型層6よりも深くし、第1のp- 型層6を下及び横から包み込むようにし、かつ第2のp- 型層7の中に第1のp- 型層6と同程度の濃度を有する複数のリング6´を有するようにしじたことである。 The fifth embodiment differs from the fourth embodiment, the second p - the depth of the mold layer 7 first p - deeper than -type layer 6, first p - -type layer 6 That is, the second p -type layer 7 is surrounded by a plurality of rings 6 ′ having the same concentration as that of the first p -type layer 6.

第2のp- 型層7の深さを深くすることにより、横方向電界の遮断効果を高めることが可能となる上,JTE外側の角における電界集中を緩和することができ、かつドーズのマージンを広げることが可能となる。 By increasing the depth of the second p -type layer 7, it becomes possible to enhance the effect of blocking the lateral electric field, and also to reduce the electric field concentration at the corner outside the JTE, and the dose margin. Can be expanded.

(第6の実施形態)
図15は、本発明の第6の実施形態に係る半導体装置の断面図である。第1の実施形態と同一箇所には同一番号を付して、重複する説明を省略する。
(Sixth embodiment)
FIG. 15 is a sectional view of a semiconductor device according to the sixth embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

第6の実施形態が第1の実施形態と異なる点は、半導体装置をショットキーダイオードからpnダイオードに変更したことである。即ち、第1のp- 型層6に囲まれた活性領域の表面に、p+ アノード領域11を設け、その上にアノード電極4を設けたことである。 The sixth embodiment differs from the first embodiment in that the semiconductor device is changed from a Schottky diode to a pn diode. That is, the p + anode region 11 is provided on the surface of the active region surrounded by the first p type layer 6, and the anode electrode 4 is provided thereon.

このように構成しても、第1の実施形態と同様な効果を奏することができる。なお、JTE構造に関し、第2〜第5の実施形態と同様にできることは言うまでもない。   Even if comprised in this way, there can exist an effect similar to 1st Embodiment. In addition, it cannot be overemphasized that it can carry out similarly to the 2nd-5th embodiment regarding a JTE structure.

(第7の実施形態)
図16は、本発明の第7の実施形態に係る半導体装置の断面図である。第1の実施形態と同一箇所には同一番号を付して、重複する説明を省略する。
(Seventh embodiment)
FIG. 16 is a cross-sectional view of a semiconductor device according to the seventh embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

第7の実施形態が第1の実施形態と異なる点は、半導体装置をショットキーダイオードから縦型MOSFETに変更したことである。図において、参照番号12は、p型領域である。p型領域12と第2のp- 型層7の間に、第1のp- 型層6が形成されている。参照番号15がn型ソース領域、16が絶縁膜、17がゲート電極、18がソース電極(第1の電極)である。 The seventh embodiment is different from the first embodiment in that the semiconductor device is changed from a Schottky diode to a vertical MOSFET. In the figure, reference numeral 12 is a p-type region. A first p -type layer 6 is formed between the p-type region 12 and the second p -type layer 7. Reference numeral 15 is an n-type source region, 16 is an insulating film, 17 is a gate electrode, and 18 is a source electrode (first electrode).

n+ 型半導体基板1がドレイン領域になるが、これをp型に変えればIGBTとすることができる。   The n + -type semiconductor substrate 1 becomes a drain region, but if this is changed to p-type, an IGBT can be formed.

このように構成しても、第1の実施形態と同様な効果を奏することができる。なお、JTE構造に関し、第2〜第5の実施形態と同様にできることは言うまでもない。   Even if comprised in this way, there can exist an effect similar to 1st Embodiment. In addition, it cannot be overemphasized that it can carry out similarly to the 2nd-5th embodiment regarding a JTE structure.

以上、本発明を実施形態を通じ説明したが、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   As mentioned above, although this invention was demonstrated through embodiment, this invention is not limited to the said embodiment as it is, A component can be deform | transformed and embodied in the range which does not deviate from the summary in an implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明の第1の実施形態に係る半導体装置の断面図。1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. 第1の実施形態に係る半導体装置の上面図。1 is a top view of a semiconductor device according to a first embodiment. 炭化珪素の耐圧の面方位依存性を説明する図。The figure explaining the surface orientation dependence of the proof pressure of silicon carbide. 耐圧のリサーフ層(JTE)ドーピング濃度依存性を、耐圧の等方性、異方性に関し、夫々シミュレーションした結果を示す図。The figure which shows the result of having simulated the resurf layer (JTE) doping density | concentration dependence of a proof pressure regarding the isotropy and anisotropy of a proof pressure, respectively. シングルリサーフ層(JTE)における電界分布と、電界強度の方向、大きさをシミュレーションした結果を示す図。The figure which shows the result of having simulated the electric field distribution in the single resurf layer (JTE), the direction of electric field strength, and a magnitude | size. 第1の実施形態における、第1のp- 型層のドーズ量と耐圧の関係を示す図。The figure which shows the relationship between the dosage of a 1st p < - > type | mold layer, and a proof pressure in 1st Embodiment. 第1の実施形態における、第1のp- 型層と第2のp- 型層の境界付近の電界分布を示す図。The figure which shows the electric field distribution near the boundary of the 1st p < - > type layer and the 2nd p < - > type layer in 1st Embodiment. 第1の実施形態における、第2のp- 型層の終端部付近の電界分布を示す図。The figure which shows electric field distribution near the termination | terminus part of the 2nd p < - > type layer in 1st Embodiment. 第1の実施形態における、第2のp- 型層のドーズ量と耐圧の関係を示す図。The figure which shows the relationship between the dose amount of a 2nd p < - > type layer, and a proof pressure in 1st Embodiment. 第1の実施形態における、第1のp- 型層のドーズ量と耐圧の関係を、第2のp- 型層のドーズ量との関連で示す図。The figure which shows the relationship between the dose amount of a 1st p < - > type layer, and a proof pressure in 1st Embodiment in relation to the dose amount of a 2nd p < - > type layer. 本発明の第2の実施形態に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on the 7th Embodiment of this invention.

符号の説明Explanation of symbols

1…炭化珪素(SiC)基板
2…炭化珪素(SiC)層
3…ショットキー電極
4…第1の電極
5…第2の電極
6…第1のp- 型層
7…第2のp- 型層
8…チャネルストッパ層
9…シリコン酸化膜
10…保護膜
11…p型領域
12…p型領域
15…ソース領域
16…ゲート絶縁膜
17…ゲート電極
18…ソース電極(第1の電極)
DESCRIPTION OF SYMBOLS 1 ... Silicon carbide (SiC) substrate 2 ... Silicon carbide (SiC) layer 3 ... Schottky electrode 4 ... 1st electrode 5 ... 2nd electrode 6 ... 1st p < - > type layer 7 ... 2nd p < - > type Layer 8 ... Channel stopper layer 9 ... Silicon oxide film 10 ... Protective film 11 ... p-type region 12 ... p-type region 15 ... Source region 16 ... Gate insulating film 17 ... Gate electrode 18 ... Source electrode (first electrode)

Claims (11)

炭化珪素よりなり、表面の法線ベクトルが<0001>方向若しくは<000−1>方向であるか、または前記いずれかの方向に対して8度以下のズレがある半導体基板と、
前記半導体基板の面方位を引き継いで、その上面に形成された炭化珪素からなる第1導電型の半導体層と、
前記半導体層の中央部の活性層を取り囲むように、前記半導体層の表面に形成された炭化珪素からなる第2導電型の第1の半導体領域と、
前記半導体層の表面で、前記第1の半導体領域の外側に接して形成され、前記第1の半導体領域の不純物濃度より低い濃度を有する炭化珪素からなる第2導電型の第2の半導体領域と、
前記半導体層の前記活性層上に設けられた第1の電極と、
前記半導体基板の裏面に設けられた第2の電極と、
を具備し、前記炭化珪素の比誘電率をε、前記炭化珪素の<0001>方向、<11−20>方向の破壊電界強度を夫々Ec1、Ec2、電荷素量をq、前記半導体層中のドナー濃度をNdとするとき、
前記第1の半導体領域の不純物濃度と深さの積が0.8εEc1/q以上で1.2εEc1/q以下であり、前記第2の半導体領域の不純物濃度と深さの積が0.4εEc2/q以上で1.1εEc2/q以下であり、
前記第1の半導体領域の幅はεEc1/qNd−εEc2/qNd以上であり、前記第2の半導体領域の幅は0.4εEc2/qNd以上εEc2/qNd以下であることを特徴とする半導体装置。
A semiconductor substrate made of silicon carbide and having a surface normal vector in the <0001> direction or the <000-1> direction, or a deviation of 8 degrees or less with respect to any one of the directions;
Taking over the plane orientation of the semiconductor substrate, and a first conductivity type semiconductor layer made of silicon carbide formed on the upper surface thereof;
A second conductivity type first semiconductor region made of silicon carbide formed on the surface of the semiconductor layer so as to surround the active layer in the center of the semiconductor layer;
A second semiconductor region of a second conductivity type formed of silicon carbide on the surface of the semiconductor layer and in contact with the outside of the first semiconductor region and having a lower concentration than the impurity concentration of the first semiconductor region; ,
A first electrode provided on the active layer of the semiconductor layer;
A second electrode provided on the back surface of the semiconductor substrate;
The dielectric constant of the silicon carbide is ε, the breakdown electric field strength of the silicon carbide in the <0001> direction and the <11-20> direction is Ec1, Ec2, the elementary charge is q, When the donor concentration is Nd,
The product of the impurity concentration and the depth of the first semiconductor region is 0.8εEc1 / q to 1.2εEc1 / q, and the product of the impurity concentration and the depth of the second semiconductor region is 0.4εEc2 / q to 1.1εEc2 / q,
The width of the first semiconductor region is εEc1 / qNd−εEc2 / qNd or more, and the width of the second semiconductor region is 0.4εEc2 / qNd or more and εEc2 / qNd or less.
前記第2の半導体領域の深さは、前記第1の半導体領域の深さよりも深いことを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein a depth of the second semiconductor region is deeper than a depth of the first semiconductor region. 炭化珪素よりなり、表面の法線ベクトルが<0001>方向若しくは<000−1>方向であるか、または前記いずれかの方向に対して8度以下のズレがある半導体基板と、
前記半導体基板の面方位を引き継いで、その上面に形成された炭化珪素からなる第1導電型の半導体層と、
前記半導体層の中央部の活性層を取り囲むように、前記半導体層の表面に形成された炭化珪素からなる第2導電型の第1の半導体領域と、
前記半導体層の表面で、前記第1の半導体領域の外側に接して形成され、前記第1の半導体領域の不純物濃度より低い濃度を有する炭化珪素からなる第2導電型の第2の半導体領域と、
前記第2の半導体領域中で、前記第1の半導体領域の外側に形成され、前記第1の半導体領域のドナー濃度と同じ濃度を有する炭化珪素からなる複数の第3の半導体領域と、
前記半導体層の前記活性層上に設けられた第1の電極と、
前記半導体基板の裏面に設けられた第2の電極と、
を具備し、前記炭化珪素の比誘電率をε、前記炭化珪素の<0001>方向、<11−20>方向の破壊電界強度を夫々Ec1、Ec2、電荷素量をq、前記半導体層中のドナー濃度をNdとするとき、
前記第1の半導体領域の不純物濃度と深さの積が0.8εEc1/q以上で8εEc1/q以下であり、前記第2の半導体領域の不純物濃度と深さの積が0.4εEc2/q以上で1.1εEc2/q以下であり、
前記第1の半導体領域の幅はεEc1/qNd−εEc2/qNd以上であり、前記第2の半導体領域の幅は0.4εEc2/qNd以上εEc2/qNd以下であることを特徴とする半導体装置。
A semiconductor substrate made of silicon carbide and having a surface normal vector in the <0001> direction or the <000-1> direction, or a deviation of 8 degrees or less with respect to any one of the directions;
Taking over the plane orientation of the semiconductor substrate, and a first conductivity type semiconductor layer made of silicon carbide formed on the upper surface thereof;
A second conductivity type first semiconductor region made of silicon carbide formed on the surface of the semiconductor layer so as to surround the active layer in the center of the semiconductor layer;
A second semiconductor region of a second conductivity type formed of silicon carbide on the surface of the semiconductor layer and in contact with the outside of the first semiconductor region and having a lower concentration than the impurity concentration of the first semiconductor region; ,
A plurality of third semiconductor regions made of silicon carbide formed outside the first semiconductor region and having the same concentration as the donor concentration of the first semiconductor region in the second semiconductor region;
A first electrode provided on the active layer of the semiconductor layer;
A second electrode provided on the back surface of the semiconductor substrate;
The dielectric constant of the silicon carbide is ε, the breakdown electric field strength of the silicon carbide in the <0001> direction and the <11-20> direction is Ec1, Ec2, the elementary charge is q, When the donor concentration is Nd,
The product of the impurity concentration and the depth of the first semiconductor region is not less than 0.8εEc1 / q and not more than 8εEc1 / q, and the product of the impurity concentration and the depth of the second semiconductor region is not less than 0.4εEc2 / q. Or less than 1.1εEc2 / q,
The width of the first semiconductor region is εEc1 / qNd−εEc2 / qNd or more, and the width of the second semiconductor region is 0.4 εEc2 / qNd or more and εEc2 / qNd or less.
前記複数の第3の半導体領域は、前記第1の半導体領域を取り囲むリング状であることを特徴とする請求項3に記載の半導体装置。   The semiconductor device according to claim 3, wherein the plurality of third semiconductor regions have a ring shape surrounding the first semiconductor region. 前記第2の半導体領域の深さは、前記第1の半導体領域の深さよりも深く、前記第2の半導体領域は、前記第1の半導体領域をその前記底部および側部より取り囲んでいることを特徴とする請求1または3に記載の半導体装置。   The depth of the second semiconductor region is deeper than the depth of the first semiconductor region, and the second semiconductor region surrounds the first semiconductor region from the bottom and sides thereof. The semiconductor device according to claim 1 or 3, characterized in that: 前記半導体層の表面端部に形成された第1導電型の第4の半導体領域をさらに具備し、前記第2の半導体領域は、前記第4の半導体領域の内側端部と離隔していることを特徴とする請求項1〜5のいずれかに記載の半導体装置。   A fourth semiconductor region of a first conductivity type formed at a surface end portion of the semiconductor layer; and the second semiconductor region is separated from an inner end portion of the fourth semiconductor region. The semiconductor device according to claim 1, wherein: 前記第1の半導体領域は、前記第1の電極と接続していることを特徴とする請求項1〜6のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the first semiconductor region is connected to the first electrode. 前記半導体基板は第1導電型であり、前記第1の電極は、前記半導体層とショットキー接触をなし、前記活性層にショットキーバリアーダイオード構造が形成されている請求項1〜7のいずれかに記載の半導体装置。   8. The semiconductor substrate according to claim 1, wherein the semiconductor substrate is of a first conductivity type, the first electrode is in Schottky contact with the semiconductor layer, and a Schottky barrier diode structure is formed in the active layer. A semiconductor device according to 1. 前記第1の半導体領域に囲まれた前記活性層の上面に、第2導電型の第5の半導体領域をさらに具備し、
前記半導体基板は第1導電型であり、前記活性層にpnダイオード構造が形成されている請求項1〜7のいずれかに記載の半導体装置。
A second conductivity type fifth semiconductor region on the upper surface of the active layer surrounded by the first semiconductor region;
The semiconductor device according to claim 1, wherein the semiconductor substrate is of a first conductivity type, and a pn diode structure is formed in the active layer.
前記半導体基板は第1導電型であり、前記活性層にMOSFET構造が形成されている請求項1〜6のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor substrate is of a first conductivity type, and a MOSFET structure is formed in the active layer. 前記半導体基板は第2導電型であり、前記活性層にIGBT構造が形成されている請求項1〜6のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor substrate is of a second conductivity type, and an IGBT structure is formed in the active layer.
JP2006206786A 2006-07-28 2006-07-28 High voltage semiconductor device Expired - Fee Related JP4921880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206786A JP4921880B2 (en) 2006-07-28 2006-07-28 High voltage semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206786A JP4921880B2 (en) 2006-07-28 2006-07-28 High voltage semiconductor device

Publications (2)

Publication Number Publication Date
JP2008034646A JP2008034646A (en) 2008-02-14
JP4921880B2 true JP4921880B2 (en) 2012-04-25

Family

ID=39123758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206786A Expired - Fee Related JP4921880B2 (en) 2006-07-28 2006-07-28 High voltage semiconductor device

Country Status (1)

Country Link
JP (1) JP4921880B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5243815B2 (en) * 2008-02-27 2013-07-24 新日本無線株式会社 Semiconductor device
JP5415018B2 (en) * 2008-05-13 2014-02-12 新電元工業株式会社 Semiconductor device
JP5439873B2 (en) * 2009-03-09 2014-03-12 日産自動車株式会社 Semiconductor device
JP5244002B2 (en) * 2009-03-18 2013-07-24 新日本無線株式会社 Semiconductor device and manufacturing method thereof
DE102009018971A1 (en) * 2009-04-25 2010-11-04 Secos Halbleitertechnologie Gmbh Construction of a Schottky diode with improved high-current behavior and method for its production
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
JP5072991B2 (en) * 2010-03-10 2012-11-14 株式会社東芝 Semiconductor device
JP2012174895A (en) * 2011-02-22 2012-09-10 Shindengen Electric Mfg Co Ltd High breakdown voltage semiconductor device
JP5558393B2 (en) * 2011-03-10 2014-07-23 株式会社東芝 Semiconductor device
JP2012195519A (en) * 2011-03-18 2012-10-11 Kyoto Univ Semiconductor element and manufacturing method therefor
JP5455973B2 (en) 2011-05-27 2014-03-26 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device
US8664665B2 (en) * 2011-09-11 2014-03-04 Cree, Inc. Schottky diode employing recesses for elements of junction barrier array
US8680587B2 (en) * 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
US8618582B2 (en) * 2011-09-11 2013-12-31 Cree, Inc. Edge termination structure employing recesses for edge termination elements
JP2013232564A (en) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology Semiconductor device and semiconductor device manufacturing method
JP2013239488A (en) 2012-05-11 2013-11-28 Rohm Co Ltd Semiconductor device
JP6384944B2 (en) 2012-05-31 2018-09-05 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP6206862B2 (en) 2012-05-31 2017-10-04 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
US9318624B2 (en) * 2012-11-27 2016-04-19 Cree, Inc. Schottky structure employing central implants between junction barrier elements
CN106256024B (en) * 2014-04-30 2019-11-26 三菱电机株式会社 Manufacturing silicon carbide semiconductor device
JP6265274B2 (en) 2014-09-17 2018-01-24 富士電機株式会社 Semiconductor device
JP2016063107A (en) * 2014-09-19 2016-04-25 トヨタ自動車株式会社 Semiconductor device
CN106463547B (en) 2014-12-25 2019-10-18 富士电机株式会社 Semiconductor device
DE102015101966B4 (en) 2015-02-11 2021-07-08 Infineon Technologies Austria Ag Method for producing a semiconductor component with Schottky contact and semiconductor component
JP6363540B2 (en) 2015-03-16 2018-07-25 株式会社東芝 Semiconductor device
JP6523886B2 (en) * 2015-09-11 2019-06-05 株式会社東芝 Semiconductor device
JP2017152732A (en) * 2017-05-01 2017-08-31 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708057B2 (en) * 2001-07-17 2005-10-19 株式会社東芝 High voltage semiconductor device
JP3873798B2 (en) * 2002-04-11 2007-01-24 富士電機デバイステクノロジー株式会社 Silicon carbide semiconductor device and method for manufacturing the same
JP4473625B2 (en) * 2004-04-06 2010-06-02 株式会社東芝 Semiconductor device withstand voltage evaluation apparatus and withstand voltage simulation method
JP3914226B2 (en) * 2004-09-29 2007-05-16 株式会社東芝 High voltage semiconductor device
JP4186919B2 (en) * 2004-12-07 2008-11-26 三菱電機株式会社 Semiconductor device
JP5068009B2 (en) * 2005-09-14 2012-11-07 三菱電機株式会社 Silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP2008034646A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4921880B2 (en) High voltage semiconductor device
JP5072991B2 (en) Semiconductor device
JP3914226B2 (en) High voltage semiconductor device
JP2022010335A (en) Insulated gate type silicon carbide semiconductor device
US10930773B2 (en) Semiconductor device
US8841741B2 (en) High breakdown voltage semiconductor rectifier
WO2015037348A1 (en) Silicon carbide semiconductor device
JP2016009712A (en) Silicon carbide semiconductor device
US10872974B2 (en) Semiconductor device
WO2015037347A1 (en) Silicon carbide semiconductor device
CN105474402A (en) Silicon carbide semiconductor device and manufacturing method for same
JP6067133B2 (en) Silicon carbide semiconductor device
CN108292680B (en) Silicon carbide semiconductor device
JP6160216B2 (en) Semiconductor device
JP5463725B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP5556863B2 (en) Wide bandgap semiconductor vertical MOSFET
JP4844125B2 (en) Semiconductor device and manufacturing method thereof
JP2014036115A (en) Semiconductor device
JP5377548B2 (en) Semiconductor rectifier
JP5558393B2 (en) Semiconductor device
JP2017174961A (en) Method of manufacturing switching element
JP6293380B1 (en) Semiconductor device
JP6651801B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2015220437A (en) Silicon carbide semiconductor device
WO2018003064A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees