JP5439873B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5439873B2
JP5439873B2 JP2009054666A JP2009054666A JP5439873B2 JP 5439873 B2 JP5439873 B2 JP 5439873B2 JP 2009054666 A JP2009054666 A JP 2009054666A JP 2009054666 A JP2009054666 A JP 2009054666A JP 5439873 B2 JP5439873 B2 JP 5439873B2
Authority
JP
Japan
Prior art keywords
region
electric field
hetero
field relaxation
hetero semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009054666A
Other languages
Japanese (ja)
Other versions
JP2010212331A (en
Inventor
秀明 田中
星  正勝
林  哲也
滋春 山上
達広 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009054666A priority Critical patent/JP5439873B2/en
Publication of JP2010212331A publication Critical patent/JP2010212331A/en
Application granted granted Critical
Publication of JP5439873B2 publication Critical patent/JP5439873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ヘテロ接合周辺に電界緩和領域を有する高耐圧な半導体装置に関する。   The present invention relates to a high breakdown voltage semiconductor device having an electric field relaxation region around a heterojunction.

従来、この種の技術としては、例えば以下に示す文献に記載されたものが知られている(特許文献1参照)。この文献には、炭化珪素半導体基体の第一主面に、基体の炭化珪素半導体と、この炭化珪素とはバンドギャップの異なる半導体材料からなるヘテロ半導体領域とでヘテロ接合を形成し、このヘテロ接合の終端部に炭化珪素からなる電界緩和領域を形成し、ヘテロ半導体領域に接するようにアノード電極が形成され、炭化珪素半導体基体の第2主面にカソード電極が形成された半導体装置の発明が記載されている。   Conventionally, as this type of technology, for example, those described in the following documents are known (see Patent Document 1). In this document, a heterojunction is formed on a first main surface of a silicon carbide semiconductor substrate by a silicon carbide semiconductor of the substrate and a hetero semiconductor region made of a semiconductor material having a different band gap from the silicon carbide. An invention of a semiconductor device is described in which an electric field relaxation region made of silicon carbide is formed at the terminal portion of the semiconductor substrate, an anode electrode is formed so as to be in contact with the hetero semiconductor region, and a cathode electrode is formed on the second main surface of the silicon carbide semiconductor substrate. Has been.

特開2003−318413号公報JP 2003-318413 A

上記文献に記載された半導体装置においては、カソード電極に高電圧が印加されたときに、電界緩和領域の特定部分が破壊されやすくなるといった不具合を招いていた。   In the semiconductor device described in the above-mentioned document, when a high voltage is applied to the cathode electrode, a specific part of the electric field relaxation region is easily broken.

そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、ヘテロ接合周辺に電界緩和領域を有する半導体装置において、高電圧印加時の電界緩和領域の破壊を防止した半導体装置を提供することにある。   Accordingly, the present invention has been made in view of the above, and an object of the present invention is to prevent a breakdown of an electric field relaxation region when a high voltage is applied in a semiconductor device having an electric field relaxation region around a heterojunction. To provide an apparatus.

上記目的を達成するために、本発明の課題を解決する手段は、絶縁破壊電界強度が他の面方位に比べて低い面方位側から電界を受ける電界緩和領域が電界を受けた際に、電界緩和領域に流れる電流の電流流路に位置するヘテロ半導体領域の抵抗値は、他のヘテロ半導体領域の抵抗値よりも大きいことを特徴とする。   In order to achieve the above object, the means for solving the problems of the present invention is that when an electric field relaxation region that receives an electric field from a plane orientation side whose dielectric breakdown field strength is lower than other plane orientations receives the electric field, The resistance value of the hetero semiconductor region located in the current flow path of the current flowing in the relaxation region is larger than the resistance value of other hetero semiconductor regions.

本発明によれば、他よりも抵抗が大きいヘテロ半導体領域によって、絶縁破壊強度が他の面方位に比べて低い面方位側から電界を受ける電界緩和領域に流れる電流が制限されるので、電界緩和領域における特定箇所の絶縁破壊を防止することができる。   According to the present invention, the current flowing to the electric field relaxation region that receives the electric field from the plane orientation side whose dielectric breakdown strength is lower than that of other plane orientations is limited by the hetero semiconductor region having higher resistance than the others. It is possible to prevent dielectric breakdown at a specific location in the region.

炭化珪素半導体基板における結晶軸と絶縁破壊強度との関係を示す断面図である。It is sectional drawing which shows the relationship between the crystal axis in a silicon carbide semiconductor substrate, and a dielectric breakdown strength. 炭化珪素半導体基板に形成された電界緩和領域が受ける電界の様子を示す断面図である。It is sectional drawing which shows the mode of the electric field which the electric field relaxation area | region formed in the silicon carbide semiconductor substrate receives. 本発明の実施例1に係る半導体装置の構成を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例2に係る半導体装置の構成を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on Example 2 of this invention. 本発明の実施例2に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Example 2 of this invention. 本発明の実施例3に係る半導体装置の構成を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on Example 3 of this invention. 本発明の実施例3に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Example 3 of this invention. 本発明の実施例4に係る半導体装置の構成を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on Example 4 of this invention. 本発明の実施例4に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Example 4 of this invention.

以下、図面を用いて本発明を実施するための実施例を説明する。   Embodiments for carrying out the present invention will be described below with reference to the drawings.

先ず、本発明の実施例を説明する前に、本発明が採用した特徴的な技術思想について、その背景から順を追って説明する。   First, before describing the embodiments of the present invention, characteristic technical ideas adopted by the present invention will be described in order from the background.

本発明の半導体装置が有するヘテロ接合を形成する一方の半導体となる、例えば六方晶の炭化珪素は、絶縁破壊電界強度に異方性を有しており、結晶軸の<0001>軸の方向(所謂、面方位がc面)の絶縁破壊電界強度と、<0001>軸に対して水平方向(所謂、面方位がa面)の絶縁破壊電界強度が大きく異なり、a面方向の絶縁破壊電界はc面方向の絶縁破壊電界よりも低いことが知られている。また、図1に示すように、半導体装置の技術分野で一般的に用いられている炭化珪素半導体基板200は、結晶軸の<0001>軸が基板の水平方向に対して数度傾いた状態、すなわちオフセット角を有した状態で各種素子が形成される。   For example, hexagonal silicon carbide, which is one of the semiconductors forming the heterojunction of the semiconductor device of the present invention, has anisotropy in breakdown field strength, and the direction of the <0001> axis of the crystal axis ( The so-called breakdown field strength in the plane direction is c-plane and the breakdown field strength in the horizontal direction (so-called plane direction is a-plane) with respect to the <0001> axis are greatly different. It is known that it is lower than the dielectric breakdown electric field in the c-plane direction. Further, as shown in FIG. 1, a silicon carbide semiconductor substrate 200 generally used in the technical field of a semiconductor device has a <0001> axis of a crystal axis inclined several degrees with respect to the horizontal direction of the substrate. That is, various elements are formed with an offset angle.

このような炭化珪素半導体基板200上に、前述した背景の技術の欄で説明した従来の半導体装置を形成し、カソード電極に高電圧を印加すると、図2に示すように電界緩和領域201の端部に電界(電気力線)202が集中する。このため、電界緩和領域201に印加される電界202の内、その一部の電界202は、図2の円内で示すように、上述した絶縁破壊電界が低いa面に対して平行に印加される。これにより、絶縁破壊電界が低いa面側から電界を受ける領域を有する電界緩和領域201では、他の領域よりも低い電圧で絶縁破壊が生じやすくなる。その結果、電界緩和領域201の特定箇所にアバランシェ降伏電流が集中し、電流が集中した特定箇所が破壊に至ることになる。   When the conventional semiconductor device described in the background section above is formed on such a silicon carbide semiconductor substrate 200 and a high voltage is applied to the cathode electrode, as shown in FIG. The electric field (electric field lines) 202 concentrates on the part. Therefore, among the electric field 202 applied to the electric field relaxation region 201, a part of the electric field 202 is applied in parallel to the above-described a-plane with a low dielectric breakdown electric field, as shown in the circle of FIG. The Thereby, in the electric field relaxation region 201 having a region receiving an electric field from the a-plane side where the dielectric breakdown electric field is low, dielectric breakdown is likely to occur at a lower voltage than other regions. As a result, the avalanche breakdown current is concentrated at a specific location in the electric field relaxation region 201, and the specific location where the current is concentrated leads to destruction.

そこで、本発明の半導体装置は、半導体基体と、半導体基体の主面に積層されて半導体基体とヘテロ接合を形成するヘテロ半導体領域と、ヘテロ接合の周縁部における半導体基体に形成された電界緩和領域とを有する半導体装置において、電界緩和領域の内、絶縁破壊電界強度が他の面方位に比べて低い面方位側から電界を受ける第1の電界緩和領域が電界を受けた際に、第1の電界緩和領域に流れる電流の電流流路に位置する第1のヘテロ半導体領域の抵抗値は、他の前記ヘテロ半導体領域の抵抗値よりも大きいことを特徴としている。   Accordingly, a semiconductor device of the present invention includes a semiconductor substrate, a hetero semiconductor region that is stacked on the main surface of the semiconductor substrate to form a heterojunction with the semiconductor substrate, and an electric field relaxation region formed in the semiconductor substrate at the periphery of the heterojunction. When the first electric field relaxation region that receives the electric field from the plane orientation side in the electric field relaxation region where the dielectric breakdown field strength is lower than the other plane orientations receives the electric field, The resistance value of the first hetero semiconductor region located in the current flow path of the current flowing in the electric field relaxation region is larger than the resistance value of the other hetero semiconductor region.

また、上記第1の電界緩和領域は、半導体基体の水平面に対して半導体基体を構成する半導体の結晶軸が傾斜してい方向に対して垂直な方向から電界を受けた際に流れる電流は、他の前記電界緩和領域に流れる電流よりも少ないことを特徴としている。   The first electric field relaxation region has a current flowing when receiving an electric field from a direction perpendicular to a direction in which a crystal axis of a semiconductor constituting the semiconductor substrate is inclined with respect to a horizontal plane of the semiconductor substrate. Less than the current flowing in the electric field relaxation region.

このような特徴的な技術思想を採用することで、カソード電極に高電圧が印加された際に、電界緩和領域の特定箇所、すなわち絶縁破壊電界が低い箇所にアバランシェ降伏電流が集中しても、絶縁破壊電界が低い面方位(a面)側から電界を受ける位置に形成された電界緩和領域に流れる電流を低減することが可能となり、電界緩和領域の破壊を防止することができる。このような本発明の技術思想を実現した実施例を以下に説明する。   By adopting such a characteristic technical idea, when a high voltage is applied to the cathode electrode, even if the avalanche breakdown current is concentrated at a specific portion of the electric field relaxation region, that is, at a location where the dielectric breakdown electric field is low, It is possible to reduce the current flowing in the electric field relaxation region formed at the position where the electric field is received from the plane orientation (a-plane) side where the dielectric breakdown electric field is low, and the electric field relaxation region can be prevented from being broken. An embodiment realizing the technical idea of the present invention will be described below.

図3は本発明の実施例1に係る半導体装置の構成を示す平面図であり、図4(a)は図3のA−A線に沿った断面図であり、同図(b)は図3のB−B線に沿った断面図である。図3、図4に示す実施例1の半導体装置は、炭化珪素半導体基体100に形成されたヘテロ接合タイプのダイオードとして機能する。炭化珪素半導体基体100は、主面の法線が結晶軸の<0001>軸に対して<11_20>方向へ8°程度傾斜した(オフセット角を有する)単結晶のポリタイプ4H−SiCからなる炭化珪素半導体基板1と、炭化珪素半導体基板1の第一主面側に化学気相成長堆積法等で堆積形成された炭化珪素エピタキシャル層2とで構成される。   3 is a plan view showing the configuration of the semiconductor device according to the first embodiment of the present invention. FIG. 4A is a cross-sectional view taken along the line AA in FIG. 3, and FIG. 3 is a sectional view taken along line BB in FIG. The semiconductor device of Example 1 shown in FIGS. 3 and 4 functions as a heterojunction type diode formed in silicon carbide semiconductor substrate 100. Silicon carbide semiconductor substrate 100 is carbonized of single-crystal polytype 4H—SiC whose principal surface normal line is inclined by about 8 ° in the <11_20> direction with respect to the <0001> axis of the crystal axis (having an offset angle). A silicon semiconductor substrate 1 and a silicon carbide epitaxial layer 2 deposited on the first main surface side of the silicon carbide semiconductor substrate 1 by a chemical vapor deposition method or the like.

炭化珪素半導体基体100の第一主面には、単結晶4H−SiCとバンドギャップの異なる半導体材料の例えば多結晶シリコンからなるヘテロ半導体領域3が形成され、炭化珪素半導体基体100との間でヘテロ接合が形成されている。炭化珪素エピタキシャル層2の第一主面にはヘテロ接合の端部を終端するように、図3に示すように環状にP型の炭化珪素からなる電界緩和領域4が形成されている。ヘテロ半導体領域3上には、ヘテロ半導体領域3に接するようにアノード電極5が形成され、炭化珪素半導体基板1には、炭化珪素半導体基板1に接するようにカソード電極6が形成されている。   On the first main surface of silicon carbide semiconductor substrate 100, hetero semiconductor region 3 made of, for example, polycrystalline silicon of a semiconductor material having a band gap different from that of single crystal 4H—SiC is formed. A junction is formed. As shown in FIG. 3, an electric field relaxation region 4 made of P-type silicon carbide is formed on the first main surface of silicon carbide epitaxial layer 2 so as to terminate the end of the heterojunction. An anode electrode 5 is formed on the hetero semiconductor region 3 so as to be in contact with the hetero semiconductor region 3, and a cathode electrode 6 is formed on the silicon carbide semiconductor substrate 1 so as to be in contact with the silicon carbide semiconductor substrate 1.

ヘテロ半導体領域3は、図4(a)に示すように、P型の不純物濃度が高いP型の多結晶シリコン層7と、多結晶シリコン層7の不純物濃度に比べてP型の不純物濃度が低いP型の多結晶シリコン層8(8A、8B)とから構成されている。すなわち、アノード電極5と電界緩和領域4A、4Bとの間に流れる電流の電流流路に配置形成されて、アノード電極5を挟んで対向する辺に配置形成された電界緩和領域4A、4Bに沿ったヘテロ半導体領域3の対向する周縁部は、不純物濃度が低いP型の多結晶シリコン層8A、8Bで構成され、上記周縁部の他のヘテロ半導体領域3は、不純物濃度が高いP型の多結晶シリコン層7で構成されている。 As shown in FIG. 4A, the hetero semiconductor region 3 includes a P + type polycrystalline silicon layer 7 having a high P type impurity concentration and a P type impurity concentration compared to the impurity concentration of the polycrystalline silicon layer 7. And a low P type polycrystalline silicon layer 8 (8A, 8B). That is, along the electric field relaxation regions 4A and 4B which are arranged and formed in the current flow path of the current flowing between the anode electrode 5 and the electric field relaxation regions 4A and 4B and arranged on opposite sides across the anode electrode 5. The opposite peripheral portions of the hetero semiconductor region 3 are constituted by P type polycrystalline silicon layers 8A and 8B having a low impurity concentration, and the other hetero semiconductor regions 3 of the peripheral portion are P + type having a high impurity concentration. The polycrystalline silicon layer 7 is formed.

このように、図4(a)に示すように、電界緩和領域4A、4Bとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端と、アノード電極5とヘテロ半導体領域3とが積層された接合領域におけるアノード電極5の周端との間に位置するへテロ半導体領域3の不純物濃度が、図4(b)に示すように、電界緩和領域4C、4Dとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の不純物濃度よりも低く設定されている。   Thus, as shown in FIG. 4A, the peripheral edge of the hetero semiconductor region 3 in the junction region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 are stacked, the anode electrode 5 and the hetero semiconductor region As shown in FIG. 4 (b), the impurity concentration of the hetero semiconductor region 3 located between the peripheral region of the anode electrode 5 in the junction region where the layer 3 is laminated and the electric field relaxation regions 4C and 4D are heterogeneous. It is set lower than the impurity concentration of the hetero semiconductor region 3 between the peripheral edge of the hetero semiconductor region 3 in the junction region where the semiconductor region 3 is laminated and the closest anode electrode 5.

図3に示すように不純物濃度が低いP型の多結晶シリコン層8は、所定の対向した電界緩和領域4とアノード電極5との間に配置されている。さらに、不純物濃度が低いP型多結晶シリコン層8と接している所定の対向した電界緩和領域4の外周部の接線は、少なくとも<11_20>方向に対して垂直方向で、かつ<0001>軸の傾斜方向に対して垂直方向となっている。 As shown in FIG. 3, the P -type polycrystalline silicon layer 8 having a low impurity concentration is disposed between a predetermined opposed electric field relaxation region 4 and the anode electrode 5. Further, the tangent of the outer peripheral portion of the predetermined opposed electric field relaxation region 4 in contact with the P type polycrystalline silicon layer 8 having a low impurity concentration is at least perpendicular to the <11_20> direction and the <0001> axis The direction is perpendicular to the inclination direction.

すなわち、炭化珪素半導体基体100の絶縁破壊電界強度が他の面方位に比べて低くなる面方位の領域に配置形成された電界緩和領域4A、4B、すなわち炭化珪素半導体基体100の結晶軸の<0001>軸が傾斜している方向となる<11_20>方向に配置形成された電界緩和領域4A、4Bと並行に位置するヘテロ半導体領域3の周端領域の不純物濃度を他の領域に配置形成されたヘテロ半導体領域3の不純物濃度よりも低く設定している。   That is, the electric field relaxation regions 4A and 4B arranged and formed in the region of the plane orientation in which the dielectric breakdown electric field strength of the silicon carbide semiconductor substrate 100 is lower than other plane orientations, that is, <0001 of the crystal axis of the silicon carbide semiconductor substrate 100 The impurity concentration of the peripheral edge region of the hetero semiconductor region 3 positioned in parallel with the electric field relaxation regions 4A and 4B arranged in the <11_20> direction, which is the direction in which the axis is inclined, is arranged and formed in another region. It is set lower than the impurity concentration of the hetero semiconductor region 3.

このような濃度の設定により、図4(a)に示す電界緩和領域4A、4Bとへテロ半導体領域3とが接する領域の少なくとも一部から、アノード電極5までの間におけるへテロ半導体領域3の抵抗は、図4(b)に示す電界緩和領域4C、4Dとへテロ半導体領域3とが接する領域の少なくとも一部から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の抵抗より高くなる。   By setting the concentration in this manner, the hetero semiconductor region 3 between the anode electrode 5 and at least a part of the region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 shown in FIG. The resistance is based on the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4C and 4D and the hetero semiconductor region 3 shown in FIG. Get higher.

これにより、先に説明したアバランシェ降伏時に破壊が生じやすい電界緩和領域4A、4Bとへテロ半導体領域3とが接する領域の少なくとも一部から、アノード電極5までの間におけるへテロ半導体領域3の抵抗は、破壊が生じ難い電界緩和領域4C、4Dとへテロ半導体領域3とが接する領域の少なくとも一部から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の抵抗より高くなっている。   As a result, the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4A and 4B that are liable to break down at the time of avalanche breakdown and the hetero semiconductor region 3 are in contact with the anode electrode 5 is described. Is higher than the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4C and 4D where the breakdown hardly occurs and the hetero semiconductor region 3 are in contact with the closest anode electrode 5 .

次に、この半導体装置の動作について説明する。   Next, the operation of this semiconductor device will be described.

例えばカソード電極6を接地してアノード電極5に正電位を印加した場合は、ダイオードの順方向特性に相当する導通特性が得られる。   For example, when the cathode electrode 6 is grounded and a positive potential is applied to the anode electrode 5, a conduction characteristic corresponding to the forward characteristic of the diode can be obtained.

一方、アノード電極5を接地してカソード電極6に高電圧を印加した場合には、図4(a)に示すように、アノード電極5と電界緩和領域4A、4Bとの間に抵抗値の高い(不純物濃度が低い)P型の多結晶シリコン層8が配置形成されているため、抵抗成分による電圧の分配が生じ、電界緩和領域4A、4Bへ印加される電圧は、図4(b)に示す電界緩和領域4C、4Dへ印加される電圧よりも低くなる。すなわち、ダイオードの逆方向特性におけるアバランシェ降伏時には、電界緩和領域4A、4Bを流れる降伏電流は電界緩和領域4C、4Dを流れる降伏電流よりも少なくなる。これにより、従来技術において生じていたアバランシェ降伏時に電流緩和領域の特定箇所が破壊することを防止することが可能となり、高いアバランシェ耐量を実現することができる。 On the other hand, when the anode electrode 5 is grounded and a high voltage is applied to the cathode electrode 6, as shown in FIG. 4A, the resistance value is high between the anode electrode 5 and the electric field relaxation regions 4A and 4B. Since the P type polycrystalline silicon layer 8 (low impurity concentration) is arranged and formed, voltage distribution due to the resistance component occurs, and the voltage applied to the electric field relaxation regions 4A and 4B is as shown in FIG. The voltage applied to the electric field relaxation regions 4C and 4D shown in FIG. That is, at the time of avalanche breakdown in the reverse characteristics of the diode, the breakdown current flowing through the electric field relaxation regions 4A and 4B is smaller than the breakdown current flowing through the electric field relaxation regions 4C and 4D. As a result, it is possible to prevent the specific portion of the current relaxation region from being destroyed at the time of avalanche breakdown that has occurred in the prior art, and a high avalanche resistance can be realized.

次に、製造工程を示す図5(図5−A、図5−B、図5ーC)を参照して、この半導体装置の製造方法について説明する。なお、図5において、同図(a1)〜(a3)は図3のA−A線に沿った断面図であり、同図(b1)〜(b3)は図3のB−B線に沿った断面図である。   Next, a method for manufacturing the semiconductor device will be described with reference to FIGS. 5A to 5C (FIGS. 5-A, 5-B, and 5-C) showing manufacturing steps. 5, (a1) to (a3) are cross-sectional views along the line AA in FIG. 3, and (b1) to (b3) are along the line BB in FIG. FIG.

図5において、先ず単結晶4H−SiCからなる炭化珪素半導体基板1の第一主面に炭化珪素エピタキシャル層2を堆積形成した炭化珪素半導体基体100を用意し、炭化珪素エピタキシャル層2の所定の領域に電界緩和領域4(4A、4B、4C、4D)を環状にに形成する(図5−A(a1)、(b1))。電界緩和領域4は、P型の炭化珪素、あるいは高抵抗(極めて不純物濃度が低い)の炭化珪素のいずれを用いてもよい。   In FIG. 5, first, a silicon carbide semiconductor substrate 100 in which a silicon carbide epitaxial layer 2 is deposited on a first main surface of a silicon carbide semiconductor substrate 1 made of single crystal 4H—SiC is prepared, and a predetermined region of the silicon carbide epitaxial layer 2 is prepared. The electric field relaxation region 4 (4A, 4B, 4C, 4D) is formed in a ring shape (FIGS. 5-A (a1), (b1)). Electric field relaxation region 4 may use either P-type silicon carbide or silicon carbide having a high resistance (very low impurity concentration).

続いて、炭化珪素エピタキシャル層2の第一主面にヘテロ半導体領域3となるP型の多結晶シリコン層8を堆積した後、フォトレジストなどをマスク材に用いて、P型の多結晶シリコン層8に選択的に例えばP型の不純物のボロンをイオン注入し、P型の多結晶シリコン層7を形成し、ヘテロ半導体領域3の内部でそれぞれ不純物濃度が異なる領域を選択的に形成する(図5−B(a2)、(b2))。これにより、抵抗の異なるヘテロ半導体領域3を容易に形成することができる。 Subsequently, after depositing a P type polycrystalline silicon layer 8 to be the hetero semiconductor region 3 on the first main surface of the silicon carbide epitaxial layer 2, using a photoresist or the like as a mask material, a P type polycrystalline silicon layer is formed. For example, boron of a P-type impurity is selectively ion-implanted into the silicon layer 8 to form a P + -type polycrystalline silicon layer 7, and regions having different impurity concentrations are selectively formed inside the hetero semiconductor region 3. (FIG. 5-B (a2), (b2)). Thereby, the hetero semiconductor region 3 having different resistance can be easily formed.

最後に、ヘテロ半導体領域3をエッチングして選択的に除去し、ヘテロ半導体領域3に接するようにアノード電極5を形成し、かつ炭化珪素半導体基板1に接するようにカソード電極6を形成し、図3、図4に示すこの実施例1の半導体装置は完成する(図5−C(a3)、(b3))。   Finally, the hetero semiconductor region 3 is selectively removed by etching, the anode electrode 5 is formed so as to contact the hetero semiconductor region 3, and the cathode electrode 6 is formed so as to contact the silicon carbide semiconductor substrate 1. 3. The semiconductor device of Example 1 shown in FIG. 4 is completed (FIGS. 5-C (a3) and (b3)).

このように、ヘテロ半導体領域3の不純物濃度を局所的に変更することで、すなわち、ヘテロ半導体領域3の不純物濃度を選択的に調整することでヘテロ半導体領域の抵抗を局所的に変更して電界緩和領域に流れる電流量を制御しているので、電界緩和領域の厚さを局所的に薄くしたり、絶縁破壊が生じやすい電界緩和領域周辺の炭化珪素エピタキシャル層の不純物濃度を低くして電流量を制御する手法に比べて、簡便に実施することが可能となり、安価な製造コストで実現することができる。   Thus, by locally changing the impurity concentration of the hetero semiconductor region 3, that is, by selectively adjusting the impurity concentration of the hetero semiconductor region 3, the resistance of the hetero semiconductor region is locally changed and the electric field is changed. Since the amount of current flowing through the relaxation region is controlled, the current amount can be reduced by locally reducing the thickness of the electric field relaxation region or lowering the impurity concentration in the silicon carbide epitaxial layer around the electric field relaxation region where breakdown is likely to occur. Compared to the method of controlling the above, it can be carried out easily and can be realized at a low manufacturing cost.

図6は本発明の実施例2に係る半導体装置の構成を示す平面図であり、図7(a)は図6のA−A線に沿った断面図であり、同図(b)は図6のB−B線に沿った断面図である。図6、図7に示すこの実施例2の半導体装置の特徴とするところは、絶縁破壊が他よりも生じやすい位置に形成された電界緩和領域4の電流を制限する手段として、先の実施例1で採用したヘテロ半導体領域3の不純物濃度を選択的に調整する手法に代えて、先の実施例1で不純物濃度を低くした領域のヘテロ半導体領域3を他の領域に比べて薄く形成し、これにより他の領域に比べて抵抗を高く設定する手法を採用したことにあり、他は先の実施例1と同様である。   6 is a plan view showing a configuration of a semiconductor device according to Embodiment 2 of the present invention. FIG. 7A is a cross-sectional view taken along the line AA in FIG. 6, and FIG. 6 is a sectional view taken along line BB in FIG. A feature of the semiconductor device of the second embodiment shown in FIGS. 6 and 7 is that the previous embodiment is used as means for limiting the current in the electric field relaxation region 4 formed at a position where dielectric breakdown is more likely to occur than others. In place of the method of selectively adjusting the impurity concentration of the hetero semiconductor region 3 employed in 1, the hetero semiconductor region 3 in the region where the impurity concentration is lowered in the first embodiment is formed thinner than other regions, As a result, a method of setting the resistance higher than that in the other regions is adopted, and the others are the same as in the first embodiment.

図6、図7に示す実施例2の半導体装置は、炭化珪素半導体基体100に形成されたヘテロ接合タイプのダイオードである。炭化珪素半導体基体100は、主面の法線が結晶軸の<0001>軸に対して<11_20>方向へ8°程度傾斜した(オフセット角を有する)単結晶のポリタイプ4H−SiCからなる炭化珪素半導体基板1と、炭化珪素半導体基板1の第一主面側に化学気相成長堆積法等で堆積形成された炭化珪素エピタキシャル層2とで構成される。   The semiconductor device of Example 2 shown in FIGS. 6 and 7 is a heterojunction type diode formed in silicon carbide semiconductor substrate 100. Silicon carbide semiconductor substrate 100 is carbonized of single-crystal polytype 4H—SiC whose principal surface normal line is inclined by about 8 ° in the <11_20> direction with respect to the <0001> axis of the crystal axis (having an offset angle). A silicon semiconductor substrate 1 and a silicon carbide epitaxial layer 2 deposited on the first main surface side of the silicon carbide semiconductor substrate 1 by a chemical vapor deposition method or the like.

炭化珪素半導体基体100の第一主面には、単結晶4H−SiCとバンドギャップの異なる半導体材料の例えばP型の多結晶シリコン層7からなるヘテロ半導体領域3が形成され、炭化珪素半導体基体100との間でヘテロ接合が形成されている。炭化珪素エピタキシャル層2の第一主面にはヘテロ接合の端部を終端するように、図6に示すように環状にP型の炭化珪素からなる電界緩和領域4が形成されている。ヘテロ半導体領域3上には、ヘテロ半導体領域3に接するようにアノード電極5が形成され、炭化珪素半導体基板1には、炭化珪素半導体基板1に接するようにカソード電極6が形成されている。 On the first main surface of silicon carbide semiconductor substrate 100, hetero semiconductor region 3 made of, for example, a P + -type polycrystalline silicon layer 7 of a semiconductor material having a band gap different from that of single crystal 4H—SiC is formed. A heterojunction is formed with 100. On the first main surface of silicon carbide epitaxial layer 2, an electric field relaxation region 4 made of P-type silicon carbide is formed in a ring shape so as to terminate the end of the heterojunction as shown in FIG. An anode electrode 5 is formed on the hetero semiconductor region 3 so as to be in contact with the hetero semiconductor region 3, and a cathode electrode 6 is formed on the silicon carbide semiconductor substrate 1 so as to be in contact with the silicon carbide semiconductor substrate 1.

アノード電極5と電界緩和領域4A、4Bとの間に流れる電流の電流流路に配置形成されて、アノード電極5を挟んで対向する辺に配置形成された電界緩和領域4A、4Bに沿って並行に配置形成されたヘテロ半導体領域3の対向する周縁部は、その厚さが他の周縁部の厚さに比べて薄く形成されている。   Along the electric field relaxation regions 4A and 4B, which are arranged and formed in the current flow path of the current flowing between the anode electrode 5 and the electric field relaxation regions 4A and 4B, and arranged on opposite sides across the anode electrode 5. The opposing peripheral edge portions of the hetero semiconductor region 3 arranged and formed in are formed thinner than the other peripheral edge portions.

このように、図7(a)に示すように、電界緩和領域4A、4Bとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端と、アノード電極5とヘテロ半導体領域3とが積層された接合領域におけるアノード電極5の周端との間に位置するへテロ半導体領域3の厚さは、図7(b)に示すように、電界緩和領域4C、4Dとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の厚さよりも薄く形成されている。   Thus, as shown in FIG. 7A, the peripheral edge of the hetero semiconductor region 3 in the junction region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 are stacked, the anode electrode 5 and the hetero semiconductor region As shown in FIG. 7 (b), the thickness of the hetero semiconductor region 3 located between the peripheral region of the anode electrode 5 in the junction region where 3 is laminated and the electric field relaxation regions 4C and 4D is heterogeneous. The hetero semiconductor region 3 is formed thinner than the thickness of the hetero semiconductor region 3 between the peripheral edge of the hetero semiconductor region 3 in the junction region where the semiconductor region 3 is stacked and the closest anode electrode 5.

また、図6に示すように厚さが薄いヘテロ半導体領域3は、所定の対向した電界緩和領域4とアノード電極5との間に配置されている。さらに、厚さが薄いヘテロ半導体領域3(P型の多結晶シリコン層7)と接している所定の対向した電界緩和領域4の外周部の接線は、少なくとも<11_20>方向に対して垂直方向で、かつ<0001>軸の傾斜方向に対して垂直方向となっている。 Further, as shown in FIG. 6, the hetero semiconductor region 3 having a small thickness is disposed between a predetermined opposed electric field relaxation region 4 and the anode electrode 5. Furthermore, the tangent of the outer peripheral portion of the predetermined electric field relaxation region 4 that is in contact with the thin hetero semiconductor region 3 (P + -type polycrystalline silicon layer 7) is perpendicular to at least the <11_20> direction. And the direction perpendicular to the inclination direction of the <0001> axis.

すなわち、炭化珪素半導体基体100の絶縁破壊強度が他の面方位に比べて低くなる面方位の領域に配置形成された電界緩和領域4A、4B、すなわち炭化珪素半導体基体100の結晶軸の<0001>軸が傾斜している方向となる<11_20>方向に配置形成された電界緩和領域4A、4Bと並行に位置するヘテロ半導体領域3の周端領域の厚さを他の領域に配置形成されたヘテロ半導体領域3の厚さよりも薄く形成している。   That is, electric field relaxation regions 4A and 4B arranged in a region having a plane orientation where the dielectric breakdown strength of silicon carbide semiconductor substrate 100 is lower than other plane orientations, that is, <0001> of the crystal axis of silicon carbide semiconductor substrate 100 The thickness of the peripheral edge region of the hetero semiconductor region 3 located in parallel with the electric field relaxation regions 4A and 4B arranged and formed in the <11_20> direction, which is the direction in which the axis is inclined, is arranged and formed in another region. It is formed thinner than the thickness of the semiconductor region 3.

このような形状により、図7(a)に示す電界緩和領域4A、4Bとへテロ半導体領域3とが接する領域の少なくとも一部から、アノード電極5までの間におけるへテロ半導体領域3の抵抗は、図7(b)に示す電界緩和領域4C、4Dとへテロ半導体領域3とが接する領域の少なくとも一部から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の抵抗より高くなる。   With such a shape, the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 shown in FIG. The resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4C and 4D and the hetero semiconductor region 3 shown in FIG. 7B are in contact with the closest anode electrode 5 is higher. .

これにより、先に説明したアバランシェ降伏時に破壊が生じやすい電界緩和領域4A、4Bとへテロ半導体領域3とが接する領域の少なくとも一部から、アノード電極5までの間におけるへテロ半導体領域3の抵抗は、破壊が生じ難い電界緩和領域4C、4Dとへテロ半導体領域3とが接する領域の少なくとも一部から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の抵抗より高くなる。   As a result, the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4A and 4B that are liable to break down at the time of avalanche breakdown and the hetero semiconductor region 3 are in contact with the anode electrode 5 is described. Is higher than the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4C and 4D where the breakdown hardly occurs and the hetero semiconductor region 3 are in contact with the closest anode electrode 5.

したがって、この実施例2では、先に説明した実施例1と同様に、ダイオードの逆方向特性におけるアバランシェ降伏時には、電界緩和領域4A、4Bを流れる降伏電流は電界緩和領域4C、4Dを流れる降伏電流よりも少なくなる。これにより、従来技術において生じていたアバランシェ降伏時に電流緩和領域の特定箇所が破壊することを防止することが可能となり、高いアバランシェ耐量を実現することができる。   Therefore, in the second embodiment, as in the first embodiment described above, the breakdown current flowing through the electric field relaxation regions 4A and 4B is the breakdown current flowing through the electric field relaxation regions 4C and 4D during the avalanche breakdown in the reverse characteristics of the diode. Less than. As a result, it is possible to prevent the specific portion of the current relaxation region from being destroyed at the time of avalanche breakdown that has occurred in the prior art, and a high avalanche resistance can be realized.

また、この実施例2では、先の実施例1に比べて単一の不純物濃度を有する多結晶シリコンを用いてヘテロ半導体領域3を形成することができるので、ヘテロ接合の障壁の高さを一定にすることが可能となり、リーク電流を低減することができる。   In the second embodiment, since the hetero semiconductor region 3 can be formed using polycrystalline silicon having a single impurity concentration as compared with the first embodiment, the height of the heterojunction barrier is constant. Thus, leakage current can be reduced.

図8は本発明の実施例3に係る半導体装置の構成を示す平面図であり、図9(a)は図8のA−A線に沿った断面図であり、同図(b)は図8のB−B線に沿った断面図である。図8、図9に示すこの実施例3の半導体装置の特徴とするところは、絶縁破壊が他よりも生じやすい位置に形成された電界緩和領域4の電流を制限する手段として、先の実施例1で採用したヘテロ半導体領域3の不純物濃度を選択的に調整する手法に代えて、先の実施例1で不純物濃度を低くした領域のヘテロ半導体領域3の幅方向(面方位<11_20>の方向に対して垂直な方向)の長さを他の領域に比べて長く形成し、これにより他の領域に比べて抵抗を高く設定する手法を採用したことにあり、他は先の実施例1と同様である。   FIG. 8 is a plan view showing a configuration of a semiconductor device according to Example 3 of the present invention, FIG. 9A is a cross-sectional view taken along the line AA in FIG. 8, and FIG. FIG. 8 is a sectional view taken along line BB in FIG. The semiconductor device of the third embodiment shown in FIGS. 8 and 9 is characterized in that the previous embodiment is used as a means for limiting the current in the electric field relaxation region 4 formed at a position where dielectric breakdown is more likely to occur. 1 instead of the method of selectively adjusting the impurity concentration of the hetero semiconductor region 3 adopted in 1 above, the width direction (plane orientation <11_20> direction of the hetero semiconductor region 3 in the region where the impurity concentration is lowered in the first embodiment The length in the direction perpendicular to the other region is formed longer than that in the other regions, thereby adopting a method of setting the resistance higher than that in the other regions. It is the same.

図8、図9に示す実施例2の半導体装置は、炭化珪素半導体基体100に形成されたヘテロ接合タイプのダイオードである。炭化珪素半導体基体100は、主面の法線が結晶軸の<0001>軸に対して<11_20>方向へ8°程度傾斜した(オフセット角を有する)単結晶のポリタイプ4H−SiCからなる炭化珪素半導体基板1と、炭化珪素半導体基板1の第一主面側に化学気相成長堆積法等で堆積形成された炭化珪素エピタキシャル層2とで構成される。   The semiconductor device of Example 2 shown in FIGS. 8 and 9 is a heterojunction type diode formed in silicon carbide semiconductor substrate 100. Silicon carbide semiconductor substrate 100 is carbonized of single-crystal polytype 4H—SiC whose principal surface normal line is inclined by about 8 ° in the <11_20> direction with respect to the <0001> axis of the crystal axis (having an offset angle). A silicon semiconductor substrate 1 and a silicon carbide epitaxial layer 2 deposited on the first main surface side of the silicon carbide semiconductor substrate 1 by a chemical vapor deposition method or the like.

炭化珪素半導体基体100の第一主面には、単結晶4H−SiCとバンドギャップの異なる半導体材料の例えばP型の多結晶シリコン層7からなるヘテロ半導体領域3が形成され、炭化珪素半導体基体100との間でヘテロ接合が形成されている。炭化珪素エピタキシャル層2の第一主面にはヘテロ接合の端部を終端するように、図6に示すように環状にP型の炭化珪素からなる電界緩和領域4が形成されている。ヘテロ半導体領域3上には、ヘテロ半導体領域3に接するようにアノード電極5が形成され、炭化珪素半導体基板1には、炭化珪素半導体基板1に接するようにカソード電極6が形成されている。 On the first main surface of silicon carbide semiconductor substrate 100, hetero semiconductor region 3 made of, for example, a P + -type polycrystalline silicon layer 7 of a semiconductor material having a band gap different from that of single crystal 4H—SiC is formed. A heterojunction is formed with 100. On the first main surface of silicon carbide epitaxial layer 2, an electric field relaxation region 4 made of P-type silicon carbide is formed in a ring shape so as to terminate the end of the heterojunction as shown in FIG. An anode electrode 5 is formed on the hetero semiconductor region 3 so as to be in contact with the hetero semiconductor region 3, and a cathode electrode 6 is formed on the silicon carbide semiconductor substrate 1 so as to be in contact with the silicon carbide semiconductor substrate 1.

また、図9(a)に示すように、電界緩和領域4A、4Bとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端と、アノード電極5とヘテロ半導体領域3とが積層された接合領域におけるアノード電極5の周端との間(アノード電極5から電界緩和領域4A、4Bに流れる電流のヘテロ半導体領域3における電流流路)に位置するへテロ半導体領域3の距離(同図にL1で示す)は、図9(b)に示すように、電界緩和領域4C、4Dとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端から、最も近接したアノード電極5までの間(アノード電極5から電界緩和領域4C、4Dに流れる電流のヘテロ半導体領域3における電流流路)におけるへテロ半導体領域3の距離(L2)よりも長く形成されている。   Further, as shown in FIG. 9A, the peripheral edge of the hetero semiconductor region 3 in the junction region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 are stacked, the anode electrode 5 and the hetero semiconductor region 3 Of the hetero semiconductor region 3 located between the peripheral edge of the anode electrode 5 in the junction region where the electrodes are stacked (current flow path in the hetero semiconductor region 3 of the current flowing from the anode electrode 5 to the electric field relaxation regions 4A and 4B) 9 (b), as shown in FIG. 9 (b), from the peripheral edge of the hetero semiconductor region 3 in the junction region where the electric field relaxation regions 4C and 4D and the hetero semiconductor region 3 are stacked, From the distance (L2) of the hetero semiconductor region 3 in the adjacent anode electrode 5 (current flow path in the hetero semiconductor region 3 of the current flowing from the anode electrode 5 to the electric field relaxation regions 4C and 4D). It has been formed long.

また、図8に示すように幅が広いヘテロ半導体領域3は、所定の対向した電界緩和領域4とアノード電極5との間に配置されている。さらに、幅が広いヘテロ半導体領域3(
型の多結晶シリコン層7)と接している所定の対向した電界緩和領域4の外周部の接線は、少なくとも<11_20>方向に対して垂直方向で、かつ<0001>軸の傾斜方向に対して垂直方向となっている。
In addition, as shown in FIG. 8, the wide hetero semiconductor region 3 is disposed between a predetermined opposed electric field relaxation region 4 and the anode electrode 5. Further, the wide hetero semiconductor region 3 (
The tangent of the outer peripheral portion of the predetermined opposed electric field relaxation region 4 in contact with the P + -type polycrystalline silicon layer 7) is at least perpendicular to the <11_20> direction and in the tilt direction of the <0001> axis On the other hand, it is perpendicular.

すなわち、炭化珪素半導体基体100の絶縁破壊強度が他の面方位に比べて低くなる面方位の領域に配置形成された電界緩和領域4A、4B、すなわち炭化珪素半導体基体100の結晶軸の<0001>軸が傾斜している方向となる<11_20>方向に配置形成された電界緩和領域4A、4Bと並行に位置するヘテロ半導体領域3の周端領域の幅を他の領域に配置形成されたヘテロ半導体領域3の幅よりも広く形成している。   That is, electric field relaxation regions 4A and 4B arranged in a region having a plane orientation where the dielectric breakdown strength of silicon carbide semiconductor substrate 100 is lower than other plane orientations, that is, <0001> of the crystal axis of silicon carbide semiconductor substrate 100 A hetero semiconductor in which the width of the peripheral end region of the hetero semiconductor region 3 located in parallel with the electric field relaxation regions 4A and 4B arranged in the <11_20> direction, which is the direction in which the axis is inclined, is arranged in another region. It is formed wider than the width of the region 3.

このような形状により、図9(a)に示す電界緩和領域4A、4Bとへテロ半導体領域3とが接する領域の少なくとも一部から、アノード電極5までの間におけるへテロ半導体領域3の抵抗は、図9(b)に示す電界緩和領域4C、4Dとへテロ半導体領域3とが接する領域の少なくとも一部から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の抵抗より高くなる。   With such a shape, the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 shown in FIG. The resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4C and 4D and the hetero semiconductor region 3 shown in FIG. 9B are in contact with the closest anode electrode 5 is higher. .

これにより、先に説明したアバランシェ降伏時に破壊が生じやすい電界緩和領域4A、4Bとへテロ半導体領域3とが接する領域の少なくとも一部から、アノード電極5までの間におけるへテロ半導体領域3の抵抗は、破壊が生じ難い電界緩和領域4C、4Dとへテロ半導体領域3とが接する領域の少なくとも一部から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の抵抗より高くなる。   As a result, the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4A and 4B that are liable to break down at the time of avalanche breakdown and the hetero semiconductor region 3 are in contact with the anode electrode 5 is described. Is higher than the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4C and 4D where the breakdown hardly occurs and the hetero semiconductor region 3 are in contact with the closest anode electrode 5.

したがって、この実施例3では、先に説明した実施例1と同様に、ダイオードの逆方向特性におけるアバランシェ降伏時には、電界緩和領域4A、4Bを流れる降伏電流は電界緩和領域4C、4Dを流れる降伏電流よりも少なくなる。これにより、従来技術において生じていたアバランシェ降伏時に電流緩和領域の特定箇所が破壊することを防止することが可能となり、高いアバランシェ耐量を実現することができる。   Therefore, in the third embodiment, as in the first embodiment described above, the breakdown current flowing through the electric field relaxation regions 4A and 4B is the breakdown current flowing through the electric field relaxation regions 4C and 4D during the avalanche breakdown in the reverse characteristics of the diode. Less than. As a result, it is possible to prevent the specific portion of the current relaxation region from being destroyed at the time of avalanche breakdown that has occurred in the prior art, and a high avalanche resistance can be realized.

また、この実施例3では、先に説明した従来技術に比べてアノード電極5の形状を変えるだけで実施可能な構造であるため、従来技術に対して工程を追加することなく低コストで高アバランシェ耐量の半導体装置を実現することができる。   In addition, since the third embodiment has a structure that can be implemented only by changing the shape of the anode electrode 5 as compared with the prior art described above, it is possible to reduce the cost and increase the avalanche without adding a process to the prior art. A tolerant semiconductor device can be realized.

図10は本発明の実施例4に係る半導体装置の構成を示す平面図であり、図11(a)は図10のA−A線に沿った断面図であり、同図(b)は図10のB−B線に沿った断面図である。図10、図11に示すこの実施例4の半導体装置の特徴とするところは、前述した本発明の技術思想をトランジスタとダイオードの双方の機能を備えた半導体装置で実現したことにあり、絶縁破壊が他よりも生じやすい位置に形成された電界緩和領域4の電流を制限する手段として、先の実施例1で採用したヘテロ半導体領域3の不純物濃度を選択的に調整する手法と、先の実施例3で採用したヘテロ半導体領域3の幅方向(面方位<11_20>の方向に対して垂直な方向)の長さを他の領域に比べて長く形成する手法の双方の手法を採用したことにある。   10 is a plan view showing a configuration of a semiconductor device according to Example 4 of the present invention, FIG. 11A is a cross-sectional view taken along the line AA of FIG. 10, and FIG. FIG. 10 is a cross-sectional view taken along line BB of FIG. A feature of the semiconductor device of the fourth embodiment shown in FIGS. 10 and 11 is that the technical idea of the present invention described above is realized by a semiconductor device having the functions of both a transistor and a diode. As a means for limiting the electric current in the electric field relaxation region 4 formed at a position where it is more likely to occur than the others, the method of selectively adjusting the impurity concentration of the hetero semiconductor region 3 employed in the previous embodiment 1 and the previous implementation To adopt both methods of forming the length of the hetero semiconductor region 3 employed in Example 3 in the width direction (direction perpendicular to the direction of the plane orientation <11_20>) longer than other regions. is there.

図10、図11に示す実施例4の半導体装置は、炭化珪素半導体基体100に形成されたヘテロ接合タイプを有するトランジスタとダイオードの双方の機能を備えている。炭化珪素半導体基体100は、主面の法線が結晶軸の<0001>軸に対して<11_20>方向へ8°程度傾斜した(オフセット角を有する)単結晶のポリタイプ4H−SiCからなる炭化珪素半導体基板1と、炭化珪素半導体基板1の第一主面側に化学気相成長堆積法等で堆積形成された炭化珪素エピタキシャル層2とで構成される。   The semiconductor device of the fourth embodiment shown in FIGS. 10 and 11 has both functions of a transistor and a diode having a heterojunction type formed on the silicon carbide semiconductor substrate 100. Silicon carbide semiconductor substrate 100 is carbonized of single-crystal polytype 4H—SiC whose principal surface normal line is inclined by about 8 ° in the <11_20> direction with respect to the <0001> axis of the crystal axis (having an offset angle). A silicon semiconductor substrate 1 and a silicon carbide epitaxial layer 2 deposited on the first main surface side of the silicon carbide semiconductor substrate 1 by a chemical vapor deposition method or the like.

炭化珪素半導体基体100の第一主面には、単結晶4H−SiCとバンドギャップの異なる半導体材料の例えば多結晶シリコンからなるヘテロ半導体領域3が形成され、炭化珪素半導体基体100との間でヘテロ接合が形成されている。炭化珪素エピタキシャル層2の第一主面にはヘテロ接合の端部を終端するように、図10に示すように環状にP型の炭化珪素からなる電界緩和領域4が形成されている。ヘテロ半導体領域3上には、ヘテロ半導体領域3に接するようにアノード電極5が形成され、炭化珪素半導体基板1には、炭化珪素半導体基板1に接するようにカソード電極6が形成されている。   On the first main surface of silicon carbide semiconductor substrate 100, hetero semiconductor region 3 made of, for example, polycrystalline silicon of a semiconductor material having a band gap different from that of single crystal 4H—SiC is formed. A junction is formed. On the first main surface of silicon carbide epitaxial layer 2, an electric field relaxation region 4 made of P-type silicon carbide is formed in a ring shape so as to terminate the end of the heterojunction as shown in FIG. An anode electrode 5 is formed on the hetero semiconductor region 3 so as to be in contact with the hetero semiconductor region 3, and a cathode electrode 6 is formed on the silicon carbide semiconductor substrate 1 so as to be in contact with the silicon carbide semiconductor substrate 1.

ヘテロ半導体領域3は、図11(a)に示すように、N型の不純物濃度が高いN型の多結晶シリコン層9と、多結晶シリコン層9の不純物濃度に比べてN型の不純物濃度が低いN型の多結晶シリコン層10(10A、10B)とから構成されている。すなわち、アノード電極5と電界緩和領域4A、4Bとの間に流れる電流の電流流路に配置形成されて、アノード電極5を挟んで対向する辺に配置形成された電界緩和領域4A、4Bに沿ったヘテロ半導体領域3の対向する周縁部は、不純物濃度が低いN型の多結晶シリコン層10A、10Bで構成され、上記周縁部の他のヘテロ半導体領域3は、不純物濃度が高いN型多結晶シリコン層9によって構成されている。 As shown in FIG. 11A, the hetero semiconductor region 3 includes an N + -type polycrystalline silicon layer 9 having a high N-type impurity concentration and an N-type impurity concentration compared to the impurity concentration of the polycrystalline silicon layer 9. And a low N type polycrystalline silicon layer 10 (10A, 10B). That is, along the electric field relaxation regions 4A and 4B which are arranged and formed in the current flow path of the current flowing between the anode electrode 5 and the electric field relaxation regions 4A and 4B and arranged on opposite sides across the anode electrode 5. The opposite peripheral portions of the hetero semiconductor region 3 are composed of N type polycrystalline silicon layers 10A and 10B having a low impurity concentration, and the other hetero semiconductor regions 3 of the peripheral portion are N + type having a high impurity concentration. The polycrystalline silicon layer 9 is used.

このように、図11(a)に示すように、電界緩和領域4A、4Bとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端と、アノード電極5とヘテロ半導体領域3とが積層された接合領域におけるアノード電極5の周端との間に位置するへテロ半導体領域3の不純物濃度が、図11(b)に示すように、電界緩和領域4C、4Dとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の不純物濃度よりも低く設定されている。   Thus, as shown in FIG. 11A, the peripheral edge of the hetero semiconductor region 3 in the junction region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 are stacked, the anode electrode 5 and the hetero semiconductor region As shown in FIG. 11 (b), the impurity concentration of the hetero semiconductor region 3 located between the peripheral region of the anode electrode 5 in the junction region where 3 is laminated and the heterogeneous regions 4C and 4D are heterogeneous. It is set lower than the impurity concentration of the hetero semiconductor region 3 between the peripheral edge of the hetero semiconductor region 3 in the junction region where the semiconductor region 3 is laminated and the closest anode electrode 5.

図10に示すように不純物濃度が低いN型の多結晶シリコン層9は、所定の対向した電界緩和領域4とアノード電極5との間に配置されている。さらに、不純物濃度が低い
型の多結晶シリコン層9と接している所定の対向した電界緩和領域4の外周部の接線は、少なくとも<11_20>方向に対して垂直方向で、かつ<0001>軸の傾斜方向に対して垂直方向となっている。
As shown in FIG. 10, the N -type polycrystalline silicon layer 9 having a low impurity concentration is disposed between a predetermined opposing electric field relaxation region 4 and the anode electrode 5. Further, the tangent of the outer peripheral portion of the predetermined opposed electric field relaxation region 4 in contact with the N type polycrystalline silicon layer 9 having a low impurity concentration is at least perpendicular to the <11_20> direction and <0001> The direction is perpendicular to the direction of inclination of the shaft.

すなわち、炭化珪素半導体基体100の絶縁破壊強度が他の面方位に比べて低くなる面方位の領域に配置形成された電界緩和領域4A、4B、すなわち炭化珪素半導体基体100の結晶軸の<0001>軸が傾斜している方向となる<11_20>方向に配置形成された電界緩和領域4A、4Bと並行に位置するヘテロ半導体領域3の周端領域の不純物濃度を他の領域に配置形成されたヘテロ半導体領域3の不純物濃度よりも低く設定している。   That is, electric field relaxation regions 4A and 4B arranged in a region having a plane orientation where the dielectric breakdown strength of silicon carbide semiconductor substrate 100 is lower than other plane orientations, that is, <0001> of the crystal axis of silicon carbide semiconductor substrate 100 The impurity concentration of the peripheral region of the hetero semiconductor region 3 located in parallel with the electric field relaxation regions 4A and 4B arranged and formed in the <11_20> direction, which is the direction in which the axis is inclined, is arranged and formed in another region. The impurity concentration is set lower than that of the semiconductor region 3.

このような濃度の設定により、図11(a)に示す電界緩和領域4A、4Bとへテロ半導体領域3とが接する領域の少なくとも一部から、アノード電極5までの間におけるへテロ半導体領域3の抵抗は、図4(b)に示す電界緩和領域4C、4Dとへテロ半導体領域3とが接する領域の少なくとも一部から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の抵抗より高くなる。   By setting the concentration, the hetero semiconductor region 3 between the anode electrode 5 and at least a part of the region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 shown in FIG. The resistance is based on the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4C and 4D and the hetero semiconductor region 3 shown in FIG. Get higher.

また、図11(a)に示すように、電界緩和領域4A、4Bとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端と、アノード電極5とヘテロ半導体領域3とが積層された接合領域におけるアノード電極5の周端との間に位置するへテロ半導体領域3の長さは、図11(b)に示すように、電界緩和領域4C、4Dとへテロ半導体領域3とが積層された接合領域におけるヘテロ半導体領域3の周端から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の長さよりも長く(幅が広く)形成されている。   11A, the peripheral edge of the hetero semiconductor region 3 in the junction region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 are stacked, the anode electrode 5, and the hetero semiconductor region 3 As shown in FIG. 11 (b), the length of the hetero semiconductor region 3 located between the peripheral region of the anode electrode 5 in the junction region where the electrode layers are stacked is equal to the electric field relaxation regions 4C and 4D and the hetero semiconductor region. 3 is formed longer (wider) than the length of the hetero semiconductor region 3 from the peripheral edge of the hetero semiconductor region 3 to the nearest anode electrode 5 in the junction region where 3 is laminated.

また、図10に示すように幅が広い(距離が長い)ヘテロ半導体領域3は、所定の対向した電界緩和領域4とアノード電極5との間に配置されている。さらに、幅が広い(距離が長い)ヘテロ半導体領域3(N型の多結晶シリコン層10A、10B)と接している所定の対向した電界緩和領域4の外周部の接線は、少なくとも<11_20>方向に対して垂直方向で、かつ<0001>軸の傾斜方向に対して垂直方向となっている。 Further, as shown in FIG. 10, the wide (long distance) hetero semiconductor region 3 is disposed between a predetermined opposed electric field relaxation region 4 and the anode electrode 5. Further, the tangent of the outer peripheral portion of the predetermined opposing electric field relaxation region 4 in contact with the wide (long distance) hetero semiconductor region 3 (N type polycrystalline silicon layers 10A and 10B) is at least <11_20>. It is perpendicular to the direction and perpendicular to the direction of inclination of the <0001> axis.

すなわち、炭化珪素半導体基体100の絶縁破壊強度が他の面方位に比べて低くなる面方位の領域に配置形成された電界緩和領域4A、4B、すなわち炭化珪素半導体基体100の結晶軸の<0001>軸が傾斜している方向となる<11_20>方向に配置形成された電界緩和領域4A、4Bと並行に位置するヘテロ半導体領域3の周端領域の幅を他の領域に配置形成されたヘテロ半導体領域3の幅よりも広く形成している。   That is, electric field relaxation regions 4A and 4B arranged in a region having a plane orientation where the dielectric breakdown strength of silicon carbide semiconductor substrate 100 is lower than other plane orientations, that is, <0001> of the crystal axis of silicon carbide semiconductor substrate 100 A hetero semiconductor in which the width of the peripheral end region of the hetero semiconductor region 3 located in parallel with the electric field relaxation regions 4A and 4B arranged in the <11_20> direction, which is the direction in which the axis is inclined, is arranged in another region. It is formed wider than the width of the region 3.

このような形状により、図11(a)に示す電界緩和領域4A、4Bとへテロ半導体領域3とが接する領域の少なくとも一部から、アノード電極5までの間におけるへテロ半導体領域3の抵抗は、図11(b)に示す電界緩和領域4C、4Dとへテロ半導体領域3とが接する領域の少なくとも一部から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の抵抗より高くなる。   Due to such a shape, the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4A and 4B and the hetero semiconductor region 3 shown in FIG. The resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4C and 4D and the hetero semiconductor region 3 are in contact with each other and the closest anode electrode 5 shown in FIG. .

これにより、先に説明したアバランシェ降伏時に破壊が生じやすい電界緩和領域4A、4Bとへテロ半導体領域3とが接する領域の少なくとも一部から、アノード電極5までの間におけるへテロ半導体領域3の抵抗は、破壊が生じ難い電界緩和領域4C、4Dとへテロ半導体領域3とが接する領域の少なくとも一部から、最も近接したアノード電極5までの間におけるへテロ半導体領域3の抵抗より高くなる。   As a result, the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4A and 4B that are liable to break down at the time of avalanche breakdown and the hetero semiconductor region 3 are in contact with the anode electrode 5 is described. Is higher than the resistance of the hetero semiconductor region 3 between at least a part of the region where the electric field relaxation regions 4C and 4D where the breakdown hardly occurs and the hetero semiconductor region 3 are in contact with the closest anode electrode 5.

また、へテロ半導体領域3を貫通し、炭化珪素エピタキシャル層2に達するようにトレンチ(溝)11が形成され、トレンチ11の内部にヘテロ接合に隣接してゲート絶縁膜12を介してゲート電極13が形成されている。ゲート電極13は、ゲート絶縁膜12および層間絶縁膜14によってアノード電極5と電気的に絶縁されている。さらに、ゲート電極13は、図10に示すようにゲートパッド15に電気的に接続されて、このゲートパッド15を介して外部からゲート電圧が印加される。   A trench (groove) 11 is formed so as to penetrate through the hetero semiconductor region 3 and reach the silicon carbide epitaxial layer 2. A gate electrode 13 is formed inside the trench 11 adjacent to the heterojunction via the gate insulating film 12. Is formed. The gate electrode 13 is electrically insulated from the anode electrode 5 by the gate insulating film 12 and the interlayer insulating film 14. Further, the gate electrode 13 is electrically connected to the gate pad 15 as shown in FIG. 10, and a gate voltage is applied from the outside through the gate pad 15.

なお、図10には示されていないが、トレンチ11とゲート絶縁膜12およびゲート電極13は、図10において縦方向にストライプ状に配置形成されている。   Although not shown in FIG. 10, the trench 11, the gate insulating film 12 and the gate electrode 13 are arranged and formed in stripes in the vertical direction in FIG.

次に、この半導体装置の動作について説明する。   Next, the operation of this semiconductor device will be described.

先ずアノード電極5とゲート電極13を接地にした状態で、カソード電極6に然るべき所定の電圧を印加すると、アノード電極5とカソード電極6との間はヘテロ接合のエネルギー障壁によって電気的に遮断された状態となる。これにより、アノード電極5とカソード電極6との間に電流は流れず、オフ状態となる。   First, when an appropriate voltage is applied to the cathode electrode 6 with the anode electrode 5 and the gate electrode 13 being grounded, the anode electrode 5 and the cathode electrode 6 are electrically cut off by a heterojunction energy barrier. It becomes a state. As a result, no current flows between the anode electrode 5 and the cathode electrode 6, and the device is turned off.

一方、アノード電極5を接地し、カソード電極6に然るべき所定の電圧を印加した状態において、ゲート電極13に然るべき所定の電圧を印加すると、ゲート絶縁膜12を介してヘテロ半導体領域3に印加されるゲート電界によってヘテロ接合のエネルギー障壁の高さが変化するとともに、ヘテロ半導体領域3の内部に形成された空乏化領域には電子が蓄積されて蓄積層が形成される。これにより、カソード電極6からの電界によりアノード電極5からカソード電極6へと電子が流れ、オン状態となる。その後、カソード電極6に然るべき所定の電圧を印加した状態で、ゲート電極13を接地してゲート電極13に印加されていたゲート電圧を取り除くと、オフ状態となる。   On the other hand, when an appropriate predetermined voltage is applied to the gate electrode 13 in a state where the anode electrode 5 is grounded and an appropriate predetermined voltage is applied to the cathode electrode 6, it is applied to the hetero semiconductor region 3 via the gate insulating film 12. The height of the energy barrier of the heterojunction is changed by the gate electric field, and electrons are accumulated in the depletion region formed inside the hetero semiconductor region 3 to form an accumulation layer. Thereby, an electron flows from the anode electrode 5 to the cathode electrode 6 by the electric field from the cathode electrode 6, and it will be in an ON state. Thereafter, when the gate electrode 13 is grounded and the gate voltage applied to the gate electrode 13 is removed in a state where an appropriate predetermined voltage is applied to the cathode electrode 6, the cathode electrode 6 is turned off.

このような動作により、この実施例4の半導体装置は、アノード電極5をソース電極、カソード電極6をドレイン電極とし、ゲート電圧によりスイッチング制御される絶縁ゲート駆動型のトランジスタとして機能することになる。   By such an operation, the semiconductor device according to the fourth embodiment functions as an insulated gate drive type transistor in which the anode electrode 5 is used as a source electrode and the cathode electrode 6 is used as a drain electrode, and the switching control is performed by a gate voltage.

次に、カソード電極6とゲート電極13を接地し、アノード電極5に然るべき所定の電圧を印加すると、先の実施例1〜実施例3で説明した半導体装置と同様に、ダイオードの順方向特性に相当する導通特性が得られ、ユニポーラ型の還流ダイオードとして機能することになる。   Next, when the cathode electrode 6 and the gate electrode 13 are grounded and an appropriate voltage is applied to the anode electrode 5, the forward characteristics of the diode are obtained as in the semiconductor device described in the first to third embodiments. Corresponding conduction characteristics are obtained, and it functions as a unipolar freewheeling diode.

したがって、この実施例4では、トランジスタとダイオードとの双方の機能を有する半導体装置において、ダイオードの逆方向特性におけるアバランシェ降伏時には、電界緩和領域4A、4Bを流れる降伏電流は電界緩和領域4C、4Dを流れる降伏電流よりも少なくなる。これにより、従来技術において生じていたアバランシェ降伏時に電流緩和領域の特定箇所が破壊することを防止することが可能となり、高いアバランシェ耐量を実現することができる。   Therefore, in the fourth embodiment, in the semiconductor device having the functions of both a transistor and a diode, the breakdown current flowing in the electric field relaxation regions 4A and 4B is applied to the electric field relaxation regions 4C and 4D at the time of avalanche breakdown in the reverse characteristics of the diode. Less than the flowing breakdown current. As a result, it is possible to prevent the specific portion of the current relaxation region from being destroyed at the time of avalanche breakdown that has occurred in the prior art, and a high avalanche resistance can be realized.

なお、上記実施例1〜実施例4においては、半導体基体を構成する材料を単結晶4H−SiCを用いて説明しているが、その他の材料、例えば窒化ガリウムなどを用いてもよい。   In the first to fourth embodiments, the material constituting the semiconductor substrate is described using single crystal 4H—SiC. However, other materials such as gallium nitride may be used.

また、ヘテロ半導体領域の材料として多結晶シリコンを用いて説明しているが、単結晶シリコンやアモルファスシリコンでもよいし、シリコン材料に限定されず、シリコンゲルマニウムなどを用いてもよい。 In addition, although polycrystalline silicon is used as the material for the hetero semiconductor region, single crystal silicon or amorphous silicon may be used, and the material is not limited to silicon material, and silicon germanium may be used.

1,200…炭化珪素半導体基板
2…炭化珪素エピタキシャル層
3…ヘテロ半導体領域
4,201…電界緩和領域
4A…電界緩和領域
4A,4B,4C,4D…電界緩和領域
5…アノード電極
6…カソード電極
7,8,8A,8B,9,10A,10B…多結晶シリコン層
11…トレンチ
12…ゲート絶縁膜
13…ゲート電極
14…層間絶縁膜
15…ゲートパッド
100…炭化珪素半導体基体
DESCRIPTION OF SYMBOLS 1,200 ... Silicon carbide semiconductor substrate 2 ... Silicon carbide epitaxial layer 3 ... Hetero semiconductor region 4,201 ... Electric field relaxation region 4A ... Electric field relaxation region 4A, 4B, 4C, 4D ... Electric field relaxation region 5 ... Anode electrode 6 ... Cathode electrode 7, 8, 8A, 8B, 9, 10A, 10B ... polycrystalline silicon layer 11 ... trench 12 ... gate insulating film 13 ... gate electrode 14 ... interlayer insulating film 15 ... gate pad 100 ... silicon carbide semiconductor substrate

Claims (7)

半導体基体と、
前記半導体基体の主面に積層されて前記半導体基体とヘテロ接合を形成するヘテロ半導体領域と、
前記ヘテロ接合の周縁部における前記半導体基体に形成された電界緩和領域と
を有する半導体装置において、
前記電界緩和領域の内、絶縁破壊電界強度が他の面方位に比べて低い面方位側から電界を受ける第1の電界緩和領域が電界を受けた際に、前記第1の電界緩和領域に流れる電流の電流流路に位置する第1のヘテロ半導体領域の抵抗値は、他の前記ヘテロ半導体領域の抵抗値よりも大きい
ことを特徴とする半導体装置。
A semiconductor substrate;
A hetero semiconductor region stacked on the main surface of the semiconductor substrate to form a heterojunction with the semiconductor substrate;
In a semiconductor device having an electric field relaxation region formed in the semiconductor substrate at the periphery of the heterojunction,
Among the electric field relaxation regions, when the first electric field relaxation region receiving an electric field from the plane orientation side where the dielectric breakdown electric field strength is lower than other plane orientations receives the electric field, the first electric field relaxation region flows into the first electric field relaxation region. A semiconductor device, wherein a resistance value of a first hetero semiconductor region located in a current flow path of current is larger than a resistance value of another hetero semiconductor region.
前記第1の電界緩和領域が前記半導体基体の水平面に対して前記半導体基体を構成する半導体の結晶軸が傾斜してい方向に対して垂直な方向から電界を受けた際に前記第1の電界緩和領域に流れる電流は、他の前記電界緩和領域に流れる電流よりも少ない
ことを特徴とする請求項1に記載の半導体装置。
Said first field when subjected to an electric field from the direction perpendicular to the first direction that has semiconductor crystal axis inclined to the electric field relaxation region constituting the semiconductor substrate with respect to a horizontal plane of said semiconductor body 2. The semiconductor device according to claim 1, wherein a current flowing through the relaxation region is smaller than a current flowing through the other electric field relaxation regions.
前記第1のヘテロ半導体領域の不純物濃度は、他の前記ヘテロ半導体領域の不純物濃度よりも低い
ことを特徴とする請求項1または2に記載の半導体装置。
The semiconductor device according to claim 1, wherein an impurity concentration of the first hetero semiconductor region is lower than an impurity concentration of other hetero semiconductor regions.
前記第1のヘテロ半導体領域の厚さは、他の前記ヘテロ半導体領域の厚さよりも薄い
ことを特徴とする請求項1または2に記載の半導体装置。
3. The semiconductor device according to claim 1, wherein a thickness of the first hetero semiconductor region is smaller than a thickness of the other hetero semiconductor region.
前記第1のヘテロ半導体領域を介して前記第1の電界緩和領域に電流が流れる際の前記第1のヘテロ半導体領域の電流路は、他の前記ヘテロ半導体領域の電流路よりも長い
ことを特徴とする請求項1または2に記載の半導体装置。
The current path of the first hetero semiconductor region when a current flows to the first electric field relaxation region through the first hetero semiconductor region is longer than the current paths of the other hetero semiconductor regions. The semiconductor device according to claim 1 or 2.
前記ヘテロ半導体領域に形成されたゲート電極を有し、
前記半導体基体をカソードとし、前記ヘテロ半導体領域をアノードとするダイオードとして機能し、かつ前記半導体基体をドレインとし、前記ヘテロ半導体領域をソースとし、前記ゲート電極に印加されるゲート電圧に基づいてスイッチング制御されるトランジスタとして機能する
ことを特徴とする請求項1〜5のいずれか1項に記載の半導体装置。
Having a gate electrode formed in the hetero semiconductor region;
Functions as a diode having the semiconductor substrate as a cathode and the hetero semiconductor region as an anode, and the semiconductor substrate as a drain, the hetero semiconductor region as a source, and switching control based on a gate voltage applied to the gate electrode 6. The semiconductor device according to claim 1, wherein the semiconductor device functions as a transistor to be operated.
前記半導体基体は、炭化珪素または窒化ガリウムで形成され、
前記ヘテロ半導体領域は、単結晶シリコン、多結晶シリコン、アモルファスシリコン、シリコンゲルマニウムのいずれかで形成されている
ことを特徴とする請求項1〜6のいずれか1項に記載の半導体装置。
The semiconductor substrate is formed of silicon carbide or gallium nitride,
The semiconductor device according to claim 1, wherein the hetero semiconductor region is formed of any one of single crystal silicon, polycrystalline silicon, amorphous silicon, and silicon germanium.
JP2009054666A 2009-03-09 2009-03-09 Semiconductor device Active JP5439873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054666A JP5439873B2 (en) 2009-03-09 2009-03-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054666A JP5439873B2 (en) 2009-03-09 2009-03-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2010212331A JP2010212331A (en) 2010-09-24
JP5439873B2 true JP5439873B2 (en) 2014-03-12

Family

ID=42972230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054666A Active JP5439873B2 (en) 2009-03-09 2009-03-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5439873B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239488A (en) 2012-05-11 2013-11-28 Rohm Co Ltd Semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914226B2 (en) * 2004-09-29 2007-05-16 株式会社東芝 High voltage semiconductor device
JP5346430B2 (en) * 2005-09-12 2013-11-20 日産自動車株式会社 Semiconductor device and manufacturing method thereof
JP5560519B2 (en) * 2006-04-11 2014-07-30 日産自動車株式会社 Semiconductor device and manufacturing method thereof
JP4921880B2 (en) * 2006-07-28 2012-04-25 株式会社東芝 High voltage semiconductor device
JP5243815B2 (en) * 2008-02-27 2013-07-24 新日本無線株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2010212331A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP7283107B2 (en) Insulated gate semiconductor device and manufacturing method thereof
KR100937276B1 (en) Semiconductor device and manufacturing method thereof
JP5449094B2 (en) Semiconductor device
EP1815523B1 (en) Semiconductor devices and method of manufacturing them
WO2012077617A1 (en) Semiconductor device and production method therefor
WO2014162969A1 (en) Semiconductor device
US20130168701A1 (en) Silicon carbide semiconductor element and method for fabricating the same
US20150249020A1 (en) Semiconductor device with metal carrier and manufacturing method
JP5810522B2 (en) Dissimilar material junction diode and method of manufacturing the same
WO2013001677A1 (en) Semiconductor device and method for manufacturing same
JP6560444B2 (en) Semiconductor device
JP2018060923A (en) Semiconductor device and semiconductor device manufacturing method
JPWO2019069416A1 (en) Semiconductor device
JP2018022852A (en) Semiconductor device and manufacturing method of the same
JP5346430B2 (en) Semiconductor device and manufacturing method thereof
JP7155641B2 (en) semiconductor equipment
JP2018152522A (en) Semiconductor device and method of manufacturing the same
WO2017010164A1 (en) Power semiconductor device
JP5439873B2 (en) Semiconductor device
JP3921816B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
WO2010024240A1 (en) Bipolar silicon carbide semiconductor device and method for manufacturing same
WO2019163075A1 (en) Semiconductor device
WO2017183375A1 (en) Semiconductor device
US10847647B2 (en) Power semiconductor devices having top-side metallization structures that include buried grain stop layers
WO2015111177A1 (en) Semiconductor device, power module, power conversion device, and railway vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5439873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150