WO2017010164A1 - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
WO2017010164A1
WO2017010164A1 PCT/JP2016/064634 JP2016064634W WO2017010164A1 WO 2017010164 A1 WO2017010164 A1 WO 2017010164A1 JP 2016064634 W JP2016064634 W JP 2016064634W WO 2017010164 A1 WO2017010164 A1 WO 2017010164A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
trench
semiconductor region
electrode
semiconductor
Prior art date
Application number
PCT/JP2016/064634
Other languages
French (fr)
Japanese (ja)
Inventor
健介 田口
泰宏 香川
梨菜 田中
裕 福井
勝俊 菅原
史郎 日野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017528315A priority Critical patent/JP6400202B2/en
Publication of WO2017010164A1 publication Critical patent/WO2017010164A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a power semiconductor device, and more particularly to a power semiconductor device having a gate electrode and a gate insulating film.
  • a trench gate type MOSFET Metal-Oxide-Semiconductor Field-Effect-Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect-Transistor
  • the wide band gap semiconductor is a semiconductor having a band gap larger than that of silicon (Si), which is a typical semiconductor, and is, for example, silicon carbide (SiC), gallium nitride (GaN), or diamond.
  • the avalanche electric field strength at the pn junction between the base region where the channel is formed and the drift layer is low in the gate insulating film made of silicon oxide. Greater than breakdown field strength. Therefore, when a high voltage is applied to the MOSFET in the off state, the highest electric field is applied to the gate insulating film that separates the bottom of the trench provided in the semiconductor layer from the gate electrode provided in the trench. Join. Therefore, the place where the breakdown of the MOSFET is most concerned is the portion of the gate insulating film that covers the bottom of the trench. Therefore, in order to alleviate the electric field applied to the portion of the gate insulating film that covers the bottom of the trench, a protective diffusion region having a conductivity type opposite to the conductivity type of the drift layer is provided at a position below the trench. There is.
  • a pn diode structure When a pn diode structure is built in between a source electrode and a drain electrode in a semiconductor device provided with a MOSFET element, this structure can be used as a free-wheeling diode for a MOSFET element as a switching element.
  • a pn diode uses a bipolar current, its recovery loss is large when used as a freewheeling diode. Therefore, in order to suppress recovery loss, it has been proposed to incorporate a Schottky barrier diode, which is an element using a unipolar current, in a semiconductor device.
  • a Schottky barrier diode which is an element using a unipolar current
  • the parasitic pn diode is also turned on when the current exceeds a specific value.
  • the bipolar current when the current processed by the freewheeling diode exceeds the maximum value of the current that can flow only by the unipolar current without the bipolar current (hereinafter referred to as “maximum unipolar current”).
  • maximum unipolar current This means that an increased recovery loss occurs. Therefore, it is desirable that the maximum unipolar current is large in order to reduce recovery loss.
  • a method for increasing the maximum unipolar current in a semiconductor device having a structure in which the breakdown of the gate insulating film in the off state is prevented by having the above-described protective diffusion region has been sufficiently studied so far. There wasn't.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to prevent breakdown of the gate insulating film in the off state and to provide the maximum unipolar of the built-in Schottky barrier diode. An object of the present invention is to provide a power semiconductor device capable of increasing current.
  • the power semiconductor device of the present invention includes a first semiconductor region, a second semiconductor region, a third semiconductor region, a fourth semiconductor region, a gate insulating film, a gate electrode, and a first main region. It has an electrode, a second main electrode, and a Schottky electrode.
  • the first semiconductor region has the first conductivity type.
  • the second semiconductor region is provided on the first semiconductor region and has a second conductivity type different from the first conductivity type.
  • the third semiconductor region is provided on the second semiconductor region, is separated from the first semiconductor region by the second semiconductor region, and has the first conductivity type.
  • the fourth semiconductor region is in contact with the first semiconductor region, has a portion provided deeper than the second semiconductor region, and has the second conductivity type.
  • the gate insulating film is provided in the first trench having an inner surface facing the third semiconductor region, the second semiconductor region, and the first semiconductor region, and covers the inner surface of the first trench. .
  • the gate electrode is provided on the gate insulating film in the first trench.
  • the first main electrode is electrically connected to the first semiconductor region.
  • the second main electrode is provided apart from the first main electrode, is ohmically connected to the third semiconductor region, and has a bottom portion facing the first semiconductor region and the fourth semiconductor region. 2 and has a portion disposed in the second trench, and is ohmically connected to the fourth semiconductor region on the bottom of the second trench.
  • the Schottky electrode is short-circuited with the second main electrode and is Schottky connected to the first semiconductor region on the bottom of the second trench.
  • the depletion layer extends from the pn junction between the first semiconductor region and the fourth semiconductor region, so that the first The electric field applied to the gate insulating film is relaxed at the bottom of the trench. Thereby, the dielectric breakdown of the gate insulating film in the off state can be prevented.
  • a Schottky electrode is Schottky connected to the first semiconductor region on the bottom of the second trench.
  • the shot path is similar to the current path of the parasitic pn diode formed by the first semiconductor region and the fourth semiconductor region.
  • the current path of the key barrier diode does not have a resistance component corresponding to the depth of the second trench.
  • the maximum unipolar current of the Schottky barrier diode built in the power semiconductor device can be increased by the Schottky electrode. From the above, it is possible to prevent the dielectric breakdown of the gate insulating film in the off state and increase the maximum unipolar current of the built-in Schottky barrier diode.
  • FIG. 3 is a partial cross-sectional view schematically showing the configuration of the power semiconductor device according to the first embodiment of the present invention in a cross section taken along line II in FIG. 2;
  • FIG. 1 is a partial plan view schematically showing a configuration of a power semiconductor device according to a first embodiment of the present invention while omitting a part of a configuration on a surface side. It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention.
  • FIG. 3 is a partial plan view schematically showing a first trench in FIG. 2. It is a fragmentary top view which shows the modification of FIG. It is a fragmentary top view which shows the modification of FIG.
  • FIG. 20 is a schematic partial sectional view taken along a line XX-XX in FIG.
  • FIG. 20 is a schematic partial cross-sectional view taken along a line XXI-XXI in FIG. 19.
  • FIG. 20 is a schematic partial cross-sectional view taken along a line XXI-XXI in FIG. 19.
  • FIG. 20 is a schematic partial cross-sectional view taken along a line XXII-XXII in FIG. 19. It is a partial top view which shows the modification of FIG. It is a partial top view which shows the modification of FIG. It is a partial top view which shows the modification of FIG. It is a partial top view which shows the modification of FIG.
  • FIG. 1 and FIG. 2 are a partial cross-sectional view and a partial plan view schematically showing the configuration of MOSFET 91 (power semiconductor device) in the present embodiment, respectively.
  • the cross section of FIG. 1 is along the line II of FIG. In FIG. 2, the source electrode 32 and the interlayer insulating film 21 in FIG. 1 are not shown.
  • MOSFET 91 is provided with a MOS region RG1 and a contact region RG2 in a planar layout.
  • the MOS region RG1 functions as a MOSFET element that is a switching element.
  • Contact region RG2 has a function of ohmic connecting p protection diffusion region 14 to source electrode 32 and a function of Schottky connection of Schottky electrode 34 to n ⁇ drift region 11.
  • a specific configuration of the MOSFET 91 will be described.
  • the MOSFET 91 includes a substrate 1 (buffer layer), a semiconductor layer 10, a gate insulating film 20, an interlayer insulating film 21, a gate electrode 30, a drain electrode 31 (first main electrode), and a source electrode 32 (first electrode). 2 main electrodes) and a Schottky electrode 34.
  • the semiconductor layer 10 includes an n ⁇ drift region 11 (first semiconductor region), a p base region 12 (second semiconductor region), an n source region 13 (third semiconductor region), and a p protective diffusion region 14. (Fourth semiconductor region).
  • the semiconductor layer 10 is provided with a MOS trench TR1 (first trench).
  • the semiconductor layer 10 is provided with a composite trench TR2 (second trench) so as to include the contact region RG2.
  • MOS trench TR1 and composite trench TR2 have approximately the same depth as shown in FIG. 1, and MOS trench TR1 and composite trench TR2 are connected to each other as shown in FIG. ing.
  • the substrate 1 is a SiC single crystal substrate.
  • Substrate 1 has n-type (first conductivity type), and has an impurity concentration higher than that of n ⁇ drift region 11.
  • the semiconductor layer 10 is formed epitaxially on one surface (the upper surface in FIG. 1) of the substrate 1.
  • the n ⁇ drift region 11 of the semiconductor layer 10 is preferably made of a wide band gap semiconductor, and the entire semiconductor layer 10 may be made of a wide band gap semiconductor.
  • the semiconductor layer 10 is an epitaxial layer made of SiC.
  • the n ⁇ drift region 11 is provided on the upper surface of the substrate 1 and has n type.
  • the p base region 12 is provided on the n ⁇ drift region 11 and has a p type (second conductivity type different from the first conductivity type).
  • the n source region 13 is provided on the p base region 12, is separated from the n ⁇ drift region 11 by the p base region 12, and has n type.
  • the p protective diffusion region 14 has a p-type and is in contact with the n ⁇ drift region 11.
  • the p protective diffusion region 14 has a portion deeper than the p base region 12 in the semiconductor layer 10 (portion positioned lower in FIG. 1). In the present embodiment, the entire p protection diffusion region 14 is p. It is arranged deeper than the base region 12.
  • MOS trench TR 1 has an inner surface facing n source region 13, p base region 12 and n ⁇ drift region 11. In other words, the MOS trench TR1 passes through the n source region 13 and the p base region 12 and reaches the n ⁇ drift region 11.
  • composite trench TR 2 also has a side portion facing n source region 13, p base region 12 and n ⁇ drift region 11. In other words, the composite trench TR2 also penetrates the n source region 13 and the p base region 12 and reaches the n ⁇ drift region 11.
  • Composite trench TR2 has a bottom portion facing p protective diffusion region 14 and n ⁇ drift region 11.
  • the p protective diffusion region 14 preferably has a portion provided deeper than the bottom of the MOS trench TR1, and more preferably has a portion in contact with the bottom of the MOS trench TR1 as shown in FIG. preferable.
  • the p protective diffusion region 14 preferably has a portion overlapping the bottom of the MOS trench TR1 in the planar layout.
  • the arrangement of the p protective diffusion region 14 and the MOS in the MOS region RG1 The arrangement of the bottoms of the trench TR1 and the composite trench TR2 is the same.
  • the side portion of the composite trench TR2 is disposed in the MOS region RG1, and the portion of the composite trench TR2 in the MOS region RG1 constitutes a trench gate structure of a MOSFET element, which will be described in detail later. It is used to In this case, p protection diffusion region 14 preferably has a portion in contact with the bottom of composite trench TR2 in MOS region RG1.
  • the p protective diffusion region 14 has a shape that substantially corresponds to the lattice shape constituted by the MOS trench TR1 and the composite trench TR2 connected to each other in a planar layout. Therefore, the part in the MOS region RG1 and the part in the contact region RG2 in the p protection diffusion region 14 are continuously connected to each other so as to form the lattice shape.
  • the gate electrode 30 filling the MOS trench TR1 and the composite trench TR2 via the gate insulating film 20 also has a lattice shape.
  • the arrangement of the p protective diffusion region 14 in the MOS region RG1 is not necessarily the same as the arrangement of the bottoms of the MOS trench TR1 and the composite trench TR2, and is in the width direction (lateral direction in FIG. 1). It may be shifted.
  • the MOS region RG1 it is desirable that at least a part of the p protective diffusion region 14 is arranged immediately below the bottom of each of the MOS trench TR1 and the composite trench TR2 in the width direction. The portion may be arranged directly under the n source region 13.
  • the gate insulating film 20 has a portion provided in the MOS trench TR1, and covers the inner surface of the MOS trench TR1.
  • the gate electrode 30 is provided on the gate insulating film 20 in the MOS trench TR1.
  • Gate insulating film 20 insulates gate electrode 30 from each of n source region 13, p base region 12, and n ⁇ drift region 11 in MOS trench TR1.
  • gate insulating film 20 has, in addition to the portion in MOS trench TR1, a portion that covers the side of composite trench TR2, and a portion that partially covers the bottom of composite trench TR2. Yes.
  • gate electrode 30 also has a portion provided on gate insulating film 20 at the side of composite trench TR2 in addition to the above portion.
  • the gate insulating film 20 insulates the gate electrode 30 from the semiconductor layer 10 on the side portion of the composite trench TR2.
  • the gate insulating film 20 insulates the bottom surface of the gate electrode 30 from the semiconductor layer 10 in the composite trench TR2.
  • composite trench TR2 has a side portion facing n source region 13, p base region 12, and n ⁇ drift region 11, and gate insulating film 20 covering this side portion, thereby A gate electrode 30 insulated from the side of the composite trench TR2 is provided.
  • the present embodiment not only the MOS trench TR1 but also the side portion of the composite trench TR2 is provided with a function as a trench gate of the MOSFET element.
  • the drain electrode 31 is electrically connected to the n ⁇ drift region 11. Specifically, the drain electrode 31 is electrically connected to the n ⁇ drift region 11 through the substrate 1 by being ohmic-bonded on the other surface (the lower surface in FIG. 1) of the substrate 1.
  • the source electrode 32 is provided apart from the drain electrode 31, and is provided on one surface (the upper surface in FIG. 1) of the substrate 1 in the present embodiment. Specifically, the source electrode 32 is ohmically connected to the n source region 13 and the p base region 12 outside the MOS trench TR1 and the composite trench TR2 in the MOS region RG1.
  • the source electrode 32 has a portion disposed in the composite trench TR2, and is ohmically connected to the p protection diffusion region 14 on the bottom of the composite trench TR2. As described above, since the portion in the MOS region RG1 and the portion in the contact region RG2 of the p protection diffusion region 14 are connected to each other, the source electrode 32 is formed on the bottom of the composite trench TR2 in the p protection diffusion region 14.
  • the ohmic-connected portion and the portion of the p protection diffusion region 14 disposed near the bottom of the MOS trench TR1 are connected to each other. Therefore, a portion of the p protection diffusion region 14 included in the MOS region RG1 is ohmically connected to the source electrode 32 via a portion of the p protection diffusion region 14 included in the contact region RG2.
  • the contact region RG2 has a function of ohmic connecting the source electrode 32 and the p protective diffusion region 14 to each other.
  • the potential of the p protective diffusion region 14 is approximately the same as the potential of the source electrode 32.
  • the interlayer insulating film 21 insulates the gate electrode 30 and the source electrode 32 from each other in the opening of the MOS trench TR1.
  • Interlayer insulating film 21 is provided with a source contact hole CH1 exposing n source region 13 and p base region 12 in MOS region RG1.
  • the source electrode 32 reaches the n source region 13 and the p base region 12 through the source contact hole CH1.
  • interlayer insulating film 21 has a portion that reaches the bottom from the outside of composite trench TR2, so that gate electrode 30 and source electrode 32 are insulated from each other in composite trench TR2. Yes.
  • the interlayer insulating film 21 covers the side surface of the source electrode 32 facing the gate electrode 30 in the composite trench TR2, whereby the gate electrode 30 and the source electrode 32 are insulated from each other in the composite trench TR2.
  • Interlayer insulating film 21 is provided with in-trench contact hole CH2 exposing p protective diffusion region 14 and n ⁇ drift region 11 on the bottom of composite trench TR2 in contact region RG2. The source electrode 32 reaches the p protective diffusion region 14 through the contact hole CH2 in the trench.
  • Schottky electrode 34 is Schottky connected to n ⁇ drift region 11 in contact hole CH2 in the trench on the bottom of composite trench TR2.
  • p protective diffusion region 14 includes a first portion and a second portion that respectively cover one end and the other end (the right end and the left end in FIG. 1) of the bottom of composite trench TR2. (The right part and the left part in FIG. 1).
  • the Schottky electrode 34 is Schottky connected to the n ⁇ drift region 11 between the first and second portions.
  • the p protective diffusion region 14 is provided on the entire portion of the bottom of the composite trench TR2 that is not covered by the Schottky electrode 34. It is preferable.
  • the source electrode 32 is in contact with the Schottky electrode 34 in the composite trench TR2. As a result, the Schottky electrode 34 is short-circuited with the source electrode 32.
  • the source electrode 32 and the Schottky electrode 34 may be short-circuited by other methods.
  • the MOS region RG1 (FIG. 2) has a square shape, whereby the gate electrodes 30 are arranged in a lattice shape.
  • the p protective diffusion regions 14 are also arranged in a lattice pattern.
  • MOS region RG1 may have a polygonal shape other than a square shape, for example, a hexagonal shape.
  • the gate electrode is arranged in a honeycomb shape, and the p-type protective diffusion region can be arranged in a honeycomb shape correspondingly.
  • MOS region RG1 may have a shape other than a polygonal shape, for example, may have a comb shape.
  • semiconductor layer 10 is formed on substrate 1.
  • the entire semiconductor layer 10 has a conductivity type and an impurity concentration corresponding to the n ⁇ drift region 11 described above.
  • SiC is epitaxially grown on the (0001) plane of an n-type SiC substrate having polytype 4H while adding a donor impurity.
  • Epitaxial growth can be performed, for example, by a CVD (Chemical Vapor Deposition) method.
  • the impurity concentration of the semiconductor layer 10 is set lower than the impurity concentration of the substrate 1 and is, for example, about 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the thickness of the semiconductor layer 10 is, for example, about 5 to 100 ⁇ m.
  • the p base region 12 is formed by adding impurities to a part of the semiconductor layer 10 by selective ion implantation.
  • the portion to which no impurity is added includes a portion that finally becomes n ⁇ drift region 11 as it is.
  • an implantation mask is first formed on the surface of the semiconductor layer 10 with a photoresist or the like. Using this mask, Al, which is an acceptor impurity, is added by ion implantation.
  • the depth of ion implantation is smaller than the thickness of the semiconductor layer 10 and is, for example, about 0.5 to 3 ⁇ m.
  • the concentration of the acceptor impurity to be ion-implanted is higher than the concentration of the donor impurity in the semiconductor layer 10 and is, for example, about 1 ⁇ 10 17 cm ⁇ 3 to 5 ⁇ 10 19 cm ⁇ 3 .
  • the implantation mask is removed.
  • an impurity is added to a part of p base region 12 by selective ion implantation, thereby forming n source region 13.
  • the portion to which no impurity is added becomes the final p base region 12.
  • an implantation mask is first formed on the surface of the p base region 12 with a photoresist or the like. Using this mask, N as a donor impurity is added by ion implantation. The depth of ion implantation is made smaller than the thickness of the p base region 12.
  • the concentration of the donor impurity to be ion-implanted is higher than the concentration of the acceptor impurity in the p base region 12 and is, for example, about 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a MOS trench TR ⁇ b> 1 and a composite trench TR ⁇ b> 2 are formed in the semiconductor layer 10.
  • both can be formed together.
  • an etching mask having openings corresponding to the MOS trench TR1 and the composite trench TR2 is formed on the surface of the semiconductor layer 10.
  • Etching mask for example it may be formed by a photoresist or SiO 2.
  • the MOS trench TR1 and the composite trench TR2 are formed by etching using this etching mask. After the etching, the etching mask is removed.
  • impurities are added to n ⁇ drift region 11 on the bottom of MOS trench TR1 and a part of the bottom of composite trench TR2 by selective ion implantation.
  • the p protection diffusion region 14 is formed.
  • an implantation mask is first formed on the surface of the semiconductor layer 10 with a photoresist or the like.
  • Al which is an acceptor impurity, is added by ion implantation.
  • the concentration of the acceptor impurity to be ion-implanted is higher than the concentration of the donor impurity in the n ⁇ drift region 11 and is, for example, about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the p protective diffusion region 14 is partially formed at the bottom of the composite trench TR2 so as to be in contact with the bottom of the composite trench TR2. That is, the p protective diffusion region 14 is formed only partially at the bottom of the composite trench TR2, and a part of the bottom is kept formed by the n ⁇ drift region 11.
  • the p protective diffusion region 14 is preferably formed so as to be in contact with the bottom of the MOS trench TR1, but even if it is not in contact with the bottom of the MOS trench TR1, it may be formed under the MOS trench TR1.
  • the effect of relaxing the electric field of the bottom gate insulating film 20 (FIG. 1) can be obtained to some extent.
  • annealing is performed in an inert gas atmosphere such as argon (Ar) gas at 1300 to 1900 ° C. for 30 seconds to 1 hour by a heat treatment apparatus.
  • an inert gas atmosphere such as argon (Ar) gas at 1300 to 1900 ° C. for 30 seconds to 1 hour.
  • the surface of the semiconductor layer 10 is thermally oxidized. Thereby, a silicon oxide film as the gate insulating film 20 having a desired thickness is formed.
  • a polycrystalline silicon film having conductivity is first formed on gate insulating film 20 by a low pressure CVD method.
  • Gate electrode 30 is formed by patterning this polycrystalline silicon film.
  • an interlayer insulating film 21 is first formed by a low pressure CVD method. Subsequently, the interlayer insulating film 21 is patterned to form the source contact hole CH1 and the in-trench contact hole CH2.
  • Schottky electrode 34 is formed so as to be partially Schottky joined to n ⁇ drift region 11 on the bottom of composite trench TR2 in contact hole CH2 in the trench.
  • the material is preferably Ti, Mo, Ni, or the like.
  • source electrode 32 is formed on semiconductor layer 10 provided with interlayer insulating film 21 and Schottky electrode 34.
  • the source electrode 32 is ohmically joined to the semiconductor layer 10 in the source contact hole CH1 and the in-trench contact hole CH2.
  • drain electrode 31 is formed on the other surface (lower surface in FIG. 1) of substrate 1.
  • MOSFET 91 is obtained.
  • the source electrode 32 and the Schottky electrode 34 are individually manufactured, but they may be continuously formed of the same material.
  • the source electrode 32 and the Schottky electrode 34 may be made of different materials, and the material may continuously change at the boundary between them.
  • the order of the ion implantation steps for forming the p base region 12 and the n source region 13 may be reversed.
  • an inversion channel layer is formed in the p base region 12 (channel region) on the side surface of the gate electrode 30.
  • the inversion channel layer serves as a path for electrons as carriers to flow from the n source region 13 to the n ⁇ drift region 11. Electrons flowing from the n source region 13 to the n ⁇ drift region 11 through the inversion channel layer pass through the substrate 1 and reach the drain electrode 31 according to the electric field generated by the positive voltage of the drain electrode 31. As a result, the MOSFET 91 can flow a current from the drain electrode 31 to the source electrode 32. This state is the ON state of the MOSFET 91.
  • the MOSFET off state when a voltage lower than the threshold voltage is applied to the gate electrode 30, no inversion channel is formed in the channel region, so that no current flows between the drain electrode 31 and the source electrode 32.
  • This state is the MOSFET off state.
  • a high voltage is applied to the MOSFET 91 in the off state, a high electric field can be applied to the gate insulating film 20 at the bottom of the MOS trench TR1 and the composite trench TR2.
  • the p protective diffusion region 14 reduces the electric field applied to the gate insulating film 20 in the off state.
  • a forward electric field (forward bias) is applied to the Schottky junction by the Schottky electrode 34, whereby a unipolar current consisting of an electron current flows from the Schottky electrode 34 to the drain electrode 31.
  • forward bias is small, the return current component of the return diode is only this unipolar component.
  • the potential of the n ⁇ drift region 11 becomes lower than the potential of the p protective diffusion region 14 having substantially the same potential as that of the source electrode 32 due to the ohmic junction.
  • the forward bias applied to the pn junction between the p protective diffusion region 14 and the n ⁇ drift region 11 increases.
  • this forward bias exceeds the diffusion potential of the pn junction, holes are injected from the p protective diffusion region 14 toward the n ⁇ drift region 11. That is, minority carrier injection (bipolar operation) occurs when the parasitic pn diode is operated by the p protection diffusion region 14 and the n-type n ⁇ drift region 11. That is, not only a unipolar current but also a bipolar current is added as a current component of the freewheeling diode.
  • the threshold current at which this phenomenon occurs is the maximum unipolar current of MOSFET 91.
  • MOSFET 90 of the comparative example unlike MOSFET 91 (FIG. 1), composite trench TR ⁇ b> 2 is not provided, and Schottky electrode 34 is disposed on the outermost surface of n ⁇ drift region 11. Yes. In other words, the Schottky electrode 34 is disposed at the height of the opening of the MOS trench TR1. Accordingly, a resistance component corresponding to the depth of the MOS trench TR1 is generated in the current path of the Schottky barrier diode constituted by the Schottky electrode 34.
  • a portion SQ sandwiched between the p base regions 12 and immediately below the Schottky electrode 34 in the current path passing through the n ⁇ drift region 11 is constricted by a depletion layer extending from the p base region 12. Therefore, the increase in resistance component due to the presence of this portion is particularly large.
  • the resistance component of the current path of the Schottky barrier diode increases, the on-resistance of the Schottky barrier diode increases, and as a result, current due to the parasitic pn diode starts to flow easily. Therefore, the maximum unipolar current is reduced.
  • Schottky electrode 34 is joined to n ⁇ drift region 11 at the bottom of composite trench TR2.
  • the Schottky electrode 34 is arranged at the height of the bottom of the composite trench TR2. Therefore, the current path of the Schottky barrier diode constituted by the Schottky electrode 34 does not have a resistance component corresponding to the depth of the trench, like the current path of the parasitic pn diode by the p protection diffusion region 14. In particular, since the current path is not narrowed by the p base region 12, an increase in the resistance component can be avoided.
  • the on-resistance of the Schottky barrier diode is reduced, and as a result, the current due to the parasitic pn diode does not easily start to flow. Therefore, the maximum unipolar current is increased.
  • the MOSFET 91 of the present embodiment first, when the MOSFET 91 is in the OFF state, the depletion layer extends from the pn junction between the n ⁇ drift region 11 and the p protective diffusion region 14, so that the MOS trench TR 1 The electric field applied to the gate insulating film 20 at the bottom is relaxed. Thereby, the dielectric breakdown of the gate insulating film 20 in the off state can be prevented.
  • the Schottky electrode 34 is Schottky connected to the n ⁇ drift region 11 on the bottom of the composite trench TR2.
  • the current path of the parasitic pn diode by the n ⁇ drift region 11 and the p protective diffusion region 14 is The current path of the Schottky barrier diode does not have a resistance component corresponding to the depth of the composite trench TR2.
  • the maximum unipolar current of the Schottky barrier diode built in the MOSFET 91 can be increased by the Schottky electrode 34. From the above, the dielectric breakdown of the gate insulating film 20 in the off state can be prevented, and the maximum unipolar current of the built-in Schottky barrier diode can be increased.
  • the p protective diffusion region 14 is ohmically connected to the source electrode 32. As a result, the potential of the p protection diffusion region 14 is stabilized even during the switching operation of the MOSFET 91. Therefore, the occurrence of dielectric breakdown of the gate insulating film 20 during a switching operation such as turn-off can be suppressed.
  • the voltage of the drain electrode 31 rises rapidly, so that a displacement current flows through the p protective diffusion region 14 via the parasitic capacitance between the p protective diffusion region 14 and the n ⁇ drift region 11.
  • a voltage drop occurs due to the resistance component of the path through which the displacement current flows, such as the p protection diffusion region 14.
  • this voltage drop becomes large, a phenomenon that leads to a decrease in the reliability of the gate insulating film 20, such as dielectric breakdown of the gate insulating film 20 or generation of a leakage current, is likely to occur. In order to prevent this, it is effective to reduce the resistance value of the path through which the displacement current flows.
  • At least one of the sections (cells) defined by the grid-like gate electrode 30 is provided with a contact that connects between the source electrode 32 and the p protective diffusion region 14. Is used as a contact region RG2.
  • the contact area between the source electrode 32 and the p protective diffusion region 14 can be increased. Therefore, the resistance value between the source electrode 32 and the p protective diffusion region 14 becomes small. Therefore, the resistance value of the path of the displacement current flowing from the p protection diffusion region 14 to the source electrode 32 becomes small. Therefore, it is possible to more reliably prevent the gate insulating film 20 from being destroyed due to the displacement current.
  • the contact region 14 in the contact region RG2 is connected to all the p protection diffusion regions 14 in the surrounding MOS region RG1, at least one of the sections defined by the lattice-like gate electrode 30 is defined as the contact region.
  • the entire p protection diffusion region 14 can be ohmically connected to the source electrode 32.
  • the contact regions RG2 are preferably arranged at equal intervals so that the current paths in the MOSFET 91 are as uniform as possible.
  • the size of the MOS trench TR1 and the size of the composite trench TR2 can be individually optimized.
  • the contact area between the source electrode 32 and the p protective diffusion region 14 can be optimized by adjusting the size of the composite trench TR2.
  • the contact resistance of the source electrode 32 to the p protection diffusion region 14 can be reduced as necessary. Therefore, the resistance value of the path of the displacement current flowing from the p protection diffusion region 14 to the source electrode 32 can be sufficiently reduced. Therefore, it is possible to more reliably prevent the gate insulating film 20 from being destroyed due to the displacement current. As a result, the withstand voltage of the MOSFET 91 is increased.
  • the cell pitch (trench width) of the MOS trench TR1 can be made sufficiently small. Thereby, the density of the on-current per unit area of the MOSFET 91 can be increased. Therefore, the current capacity of the MOSFET 91 can be increased. As described above, according to the present embodiment, the withstand voltage can be increased while securing the current capacity.
  • a MOSFET structure is provided not only in the MOS trench TR1 but also in the side portion of the composite trench TR2.
  • the current capacity of the MOSFET 91 can be increased as compared with the case where the MOSFET structure is not provided in the composite trench TR2.
  • the MOS structure in the composite trench TR2 may be omitted. In this case, the structure in the composite trench TR2 can be simplified.
  • the p protective diffusion region 14 (FIG. 1) has a first portion and a second portion that respectively cover one end and the other end of the bottom of the composite trench TR2. Thereby, the electric field at both one end and the other end of the bottom of the composite trench TR2 can be effectively relaxed. Therefore, it is possible to more reliably prevent the dielectric breakdown of the gate insulating film 20 constituting the MOSFET structure provided on the side portion of the composite trench TR2.
  • the n ⁇ drift region 11 is made of a wide band gap semiconductor, since the withstand voltage of the n ⁇ drift region 11 itself is high, the n ⁇ drift region 11 is made of a non-wide band gap semiconductor such as Si. As compared to the case, a high electric field (for example, about 10 times) can be applied to the n ⁇ drift region 11 in the off state. In that case, a high electric field is applied to the gate insulating film 20 at the bottom of the MOS trench TR1. Generation of dielectric breakdown of the gate insulating film 20 due to the high electric field can be effectively suppressed by the p protective diffusion region 14.
  • n - if the drift region 11 is made of wide band gap semiconductor, n - unlike the case of the drift region 11 is made of a non-wide band gap semiconductor, such as Si, a gate insulating film 20 at the time of switching operation Reliability can be a problem.
  • this is because the resistance of the path through which the displacement current flows is large.
  • the displacement current generated during the switching operation at the same switching speed as the MOSFET using Si is large. For example, when the semiconductor material is changed from Si to SiC without changing the withstand voltage performance, the depletion capacity is increased about 10 times, and the displacement current is correspondingly increased correspondingly.
  • the reliability of the gate insulating film 20 during the high-speed switching operation can be achieved even when a wide band gap semiconductor is used. Sex can be maintained more reliably.
  • the depth of the MOS trench TR1 and the depth of the composite trench TR2 are the same, both can be formed at a time.
  • a depletion layer is formed from the p protection diffusion region 14 at the bottom of the composite trench TR2 to the gate insulating film 20 at the bottom of the neighboring MOS trench TR1. Easy to reach. Therefore, the electric field applied to the gate insulating film 20 is further relaxed at the bottom of the MOS trench TR1 adjacent to the composite trench TR2. Therefore, the dielectric breakdown of the gate insulating film 20 can be prevented more reliably.
  • the depth of the MOS trench TR1 and the depth of the composite trench TR2 may be different from each other.
  • the MOS trench TR1 and the composite trench TR2 may be formed in separate steps. Even if the depth of the composite trench TR2 is shallower than the depth of the MOS trench TR1, as long as it is formed deeper than the surface of the p base region 12, the height of the surface of the p base region 12, that is, the height of the trench opening.
  • the Schottky electrode 34 As compared with the case where the Schottky electrode 34 is formed (FIG. 13: comparative example), the effect of increasing the maximum unipolar current can be obtained.
  • the composite trench TR2 is deeper than the MOS trench TR1, an effect of increasing the maximum unipolar current can be obtained.
  • the bottom position of the composite trench TR2 that is, the Schottky connection position of the Schottky electrode 34, is preferably deeper than the bottom of the MOS trench TR1. Moreover, it is preferable that the depth is shallower than the p protective diffusion region 14 disposed at the bottom of the MOS trench TR1.
  • the MOS trench TR1 may have the same width as that of the p protection diffusion region 14 as shown in FIG. Thereby, the p protective diffusion region 14 can be easily formed.
  • the MOS trench TR1 has a grid-like arrangement (FIG. 14) in plan view.
  • the MOS trench TR1 has a plurality of patterns extending in parallel in one direction (lateral direction in the figure) and a plurality of patterns extending in parallel in a direction orthogonal to this direction (vertical direction in the figure).
  • a MOS trench TR1Z (FIG. 15) having a staggered arrangement in plan view may be used.
  • MOS trench TR1Z having a staggered arrangement extends in a zigzag manner in a plurality of patterns extending in parallel in one direction (lateral direction in the figure) and in a direction orthogonal to this direction (vertical direction in the figure).
  • a plurality of patterns for example, a MOS trench TR1S (FIG. 16) having a comb-like arrangement in plan view may be used.
  • the MOS trench TR1S having a comb-like arrangement has a plurality of comb patterns extending in parallel to each other.
  • the pattern which connects each edge part (not shown) of a comb-tooth pattern may be provided.
  • a MOS trench (not shown) having a hexagonal arrangement in plan view may be used.
  • MOSFET 92 power semiconductor device in the present embodiment has n-type n region 11A (in the region where n ⁇ drift region 11d (FIG. 1) is disposed in the first embodiment.
  • the n region 11A has an n ⁇ drift region 11e (drift region) and an n + high concentration region 11h (high concentration region).
  • the n + high concentration region 11 h is in contact with the Schottky electrode 34.
  • the effective impurity concentration of the n + high concentration region 11h is higher than the impurity concentration of the n ⁇ drift region 11e, and is, for example, about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the effective impurity concentration of the n + high concentration region 11 h is lower than the effective impurity concentration of the p protective diffusion region 14.
  • “effective impurity concentration” means the absolute value of the difference between the acceptor concentration and the donor concentration.
  • the n + high concentration region 11 h is separated from the substrate 1.
  • n ⁇ drift region 11e is a region other than the n + high concentration region 11h in the n region 11A.
  • N ⁇ drift region 11 e may have the same impurity concentration as n ⁇ drift region 11 d in the first embodiment.
  • the current path of the built-in Schottky barrier diode formed by the Schottky electrode 34 passes through the opening of the p protective diffusion region 14 provided at the bottom of the composite trench TR2.
  • an n ⁇ drift region 11 d having a low impurity concentration is disposed in this opening.
  • the depletion layer easily extends from the p protective diffusion region 14 into the opening, and as a result, the maximum unipolar current is reduced due to the current path passing through the opening being narrowed. For this reason, in order to ensure a sufficient maximum unipolar current, the opening of the p protective diffusion region 14 must be enlarged. As a result, the area of the MOSFET 91 is increased.
  • the n + high concentration region 11 h in contact with the Schottky electrode 34 is provided in the opening of the p protective diffusion region 14.
  • the resistance component of the current path of the built-in Schottky barrier diode can be reduced. Therefore, the maximum unipolar current of the built-in Schottky barrier diode can be increased while suppressing the area of the MOSFET 92.
  • MOSFET 93 of this embodiment includes a place n + high concentration region 11i to the n + high-density region 11h.
  • the n + high concentration region 11 i extends from the portion in contact with the Schottky electrode 34 to below the p protective diffusion region 14.
  • the n + high concentration region 11 i extends from a location in contact with the Schottky electrode 34 to a location separated from the bottom of the composite trench TR 2 by the p protective diffusion region 14.
  • the n + high concentration region 11 i extends from a location in contact with the Schottky electrode 34 to a location separated from the bottom of the composite trench TR 2 by the p protective diffusion region 14.
  • the electrical resistance of the current path extending from the portion in contact with the Schottky electrode 34 to the portion separated from the bottom of the composite trench TR2 by the p protective diffusion region 14 is reduced.
  • the maximum unipolar current of the built-in Schottky barrier diode can be increased without increasing the opening of the p protective diffusion region 14 provided at the bottom of the composite trench TR2.
  • FIG. 19 is a partial plan view schematically showing a configuration of MOSFET 94 (power semiconductor device) in the present embodiment.
  • 20 to 22 are schematic sectional views taken along line XX-XX, line XXI-XXI, and line XXII-XXII in FIG. In FIG. 19, the source electrode 32 and the interlayer insulating film 21 are not shown.
  • the MOSFET 94 has a contact region RG2R instead of the contact region RG2 (FIG. 1: embodiment 1).
  • a composite trench TR2R is provided instead of the composite trench TR2.
  • the shape of contact region RG2R that is, the general shape of composite trench TR2R, has a rectangular shape. Therefore, each of the contact region RG2R and the composite trench TR2R has a longitudinal direction (horizontal direction in the figure) along the long side of the rectangular shape and a width direction (vertical direction in the figure) along the short side of the rectangular shape. ).
  • the cross section of the contact region RG2R along the width direction has a different structure depending on the position of the cross section in the longitudinal direction. This will be described in detail below.
  • the source electrode 32 is ohmically connected to the p protection diffusion region 14 via the Schottky electrode 34. Therefore, the region near the line XXI-XXI also has a function of grounding the p protection diffusion region 14 to the source potential, similarly to the region near the line XX-XX.
  • the region having the ground function of the p protection diffusion region 14 and the region having the function of the built-in Schottky barrier diode are alternately arranged in the longitudinal direction.
  • the region where the source electrode 32 is ohmically connected to the p protective diffusion region 14 and the region where the Schottky electrode 34 is Schottky connected to the n ⁇ drift region 11 are alternately arranged. Has been placed.
  • the Schottky electrode 34 is entirely surrounded by the p protective diffusion region 14 as shown in FIG. Therefore, if the relative position between the mask at the time of forming the p protective diffusion layer 14 and the mask at the time of forming the Schottky electrode 34 is not managed with high accuracy, the area of the region that actually has a function as a built-in Schottky barrier diode. May change or a drain-source leak may occur.
  • the source electrode 32 is ohmically connected to the p protective diffusion region 14 and the Schottky electrode 34 is Schottky connected to the n ⁇ drift region 11.
  • the arranged areas are alternately arranged. In other words, the region for grounding the p protective diffusion layer and the region for forming the Schottky barrier diode are separated from each other. Therefore, tolerance for mask displacement in the photolithography process can be increased.
  • the number of contact regions RG2R is arbitrary.
  • a plurality of contact regions RG2R are periodically arranged in at least one of the longitudinal direction and the width direction. May be arranged.
  • n region 11 ⁇ / b> A (FIG. 17 or FIG. 18: Embodiment 2 or 3) may be provided.
  • the MOS trench TR1 is not limited to the one having the lattice arrangement (FIG. 14).
  • the MOS trench TR1 is arranged in a staggered arrangement (FIG. 15), a comb A hexagonal arrangement (FIG. 16) or a hexagonal arrangement may be used.
  • a MOSFET 94S (power semiconductor device) of a modification has a contact region RG2S.
  • the contact region RG2S is provided with a composite trench TR2S (second trench).
  • the contact region RG2S is obtained by extending the above-described contact region RG2R in the long side direction, and the MOS region RG1 does not exist at the end in the long side direction. Therefore, the shape of the contact region RG2S, that is, the general shape of the composite trench TR2S has a stripe shape. In other words, the composite trench TR2S has a striped arrangement in plan view.
  • each of contact region RG2S and composite trench TR2S has a longitudinal direction (lateral direction in the figure) along the extending direction of the stripe shape and a width direction (vertical direction in the figure) perpendicular to the longitudinal direction.
  • the MOS trench TR1 has a portion extending along the vertical direction and a portion extending along the horizontal direction, and the extending direction of the stripe shape of the composite trench TR2S is one of the directions in which the MOS trench TR1 extends.
  • the MOS trench TR1 is disposed only at a position different from the composite trench TR2S.
  • the width of the MOS region RG1 is determined from the on-resistance, the drain-source breakdown voltage, and the electric field applied to the gate insulating film 20, and the width of the contact region RG2S is determined from the area occupied by the Schottky barrier diode. Can do. For example, in order to increase the occupation area of the Schottky barrier diode, it is only necessary to simply increase the width of the contact region RG2S as shown in FIG.
  • the size of the contact region RG2S may be the same as or smaller than the size of the active region in which the MOS region RG1 and the contact region RG2S are formed.
  • MOSFET 94T power semiconductor device of a further modification has MOS region RG1S instead of MOS region RG1 (FIG. 23).
  • MOS region RG1S instead of MOS region RG1 (FIG. 23).
  • the present modification not only the contact region RG2S but also the MOS region RG1S has a striped arrangement in plan view.
  • a MOS trench TR1P and a composite trench TR2P are provided instead of the MOS trench TR1 and the composite trench TR2S (FIG. 23).
  • the MOS trench TR1P and the composite trench TR2P are combined to form a stripe-shaped trench TRC.
  • a part of the trench TRC is the MOS trench TR1P, and the other part is the composite trench TR2P.
  • the width of the contact region RG2S may be made larger than the width of the MOS region RG1S. Thereby, a large area of the region functioning as the Schottky barrier diode can be secured.
  • the so-called vertical MOSFET in which the drain electrode 31 is disposed on the lower surface of the substrate 1 has been described.
  • the drain electrode 31 is disposed on the upper surface of the n ⁇ drift region 11.
  • a so-called lateral MOSFET such as a RESURF MOSFET may be used.
  • the MOSFET has been described.
  • the power semiconductor device may be a MISFET (Metal-Insulator-Semiconductor Field-Effect-Transistor) other than the MOSFET.
  • the power semiconductor device may be a transistor other than a MISFET, for example, an IGBT (Insulated-Gate Bipolar Transistor).
  • the conductivity type of the substrate 1 in FIG. 1 may be a p-type different from the conductivity type of the n ⁇ drift region 11.
  • each of the n source region 13, the source electrode 32, and the drain electrode 31 in the MOSFET 91 corresponds to the emitter region, the emitter electrode, and the collector electrode in the IGBT.
  • SiC gallium nitride
  • other wide band gap semiconductors such as gallium nitride (GaN) -based material and diamond may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

In the present invention, a second semiconductor region (12) of a second conductive type is provided on a first semiconductor region (11) of a first conductive type, and a third semiconductor region (13) of the first conductive type is provided on the second semiconductor region (12). A fourth semiconductor region (14) of the second conductive type includes portions deeper than the second semiconductor region (12). A gate electrode (30) is provided on a gate insulating film (20) in a first trench (TR1). A first main electrode (31) is electrically connected to the first semiconductor region (11). A second main electrode (32) is ohmic-connected to the third semiconductor region (13), and is ohmic-connected, on the bottom portion of a second trench (TR2), to the fourth semiconductor region (14). A schottky electrode (34) is schottky-connected, on the bottom portion of the second trench (TR2), to the first semiconductor region (11).

Description

電力用半導体装置Power semiconductor device
 本発明は、電力用半導体装置に関し、特に、ゲート電極およびゲート絶縁膜を有する電力用半導体装置に関するものである。 The present invention relates to a power semiconductor device, and more particularly to a power semiconductor device having a gate electrode and a gate insulating film.
 スイッチング素子としての機能を有する電力用半導体装置として、トレンチゲート型のMOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor)が従来から広く用いられている。トレンチゲート型MOSFETでは高耐電圧化と低オン抵抗化とが一般にトレードオフの関係にある。これらを両立させるための半導体材料としてワイドバンドギャップ半導体が注目されており、特に数百V程度以上の高耐電圧が求められる分野においてその適用が有望視されている。ワイドバンドギャップ半導体は、代表的な半導体であるシリコン(Si)のバンドギャップよりも大きなバンドギャップを有する半導体であり、たとえば、炭化珪素(SiC)、窒化ガリウム(GaN)、またはダイヤモンドなどである。 A trench gate type MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor) has been widely used as a power semiconductor device having a function as a switching element. In the trench gate type MOSFET, there is generally a trade-off relationship between high withstand voltage and low on-resistance. Wide band gap semiconductors are attracting attention as a semiconductor material for achieving both of these, and their application is particularly promising in fields where a high withstand voltage of about several hundred volts or more is required. The wide band gap semiconductor is a semiconductor having a band gap larger than that of silicon (Si), which is a typical semiconductor, and is, for example, silicon carbide (SiC), gallium nitride (GaN), or diamond.
 トレンチゲート型MOSFETにワイドバンドギャップ半導体を適用した場合、典型的には、チャネルが形成されるベース領域と、ドリフト層との間のpn接合におけるアバランシェ電界強度が、酸化珪素からなるゲート絶縁膜の絶縁破壊電界強度よりも大きい。そのため、オフ状態にあるMOSFETに高電圧が印加されているときに、半導体層に設けられたトレンチの底部と、このトレンチ内に設けられたゲート電極とを隔てるゲート絶縁膜に、最も高い電界が加わる。よって、MOSFETの絶縁破壊が最も懸念される箇所は、ゲート絶縁膜のうちトレンチの底部を覆う部分である。そこで、ゲート絶縁膜のうちトレンチの底部を覆う部分へ印加される電界を緩和するために、ドリフト層の導電型と反対の導電型を有する保護拡散領域がトレンチの下方などの位置に設けられることがある。 When a wide band gap semiconductor is applied to the trench gate type MOSFET, typically, the avalanche electric field strength at the pn junction between the base region where the channel is formed and the drift layer is low in the gate insulating film made of silicon oxide. Greater than breakdown field strength. Therefore, when a high voltage is applied to the MOSFET in the off state, the highest electric field is applied to the gate insulating film that separates the bottom of the trench provided in the semiconductor layer from the gate electrode provided in the trench. Join. Therefore, the place where the breakdown of the MOSFET is most concerned is the portion of the gate insulating film that covers the bottom of the trench. Therefore, in order to alleviate the electric field applied to the portion of the gate insulating film that covers the bottom of the trench, a protective diffusion region having a conductivity type opposite to the conductivity type of the drift layer is provided at a position below the trench. There is.
 MOSFET素子が設けられた半導体装置において、ソース電極とドレイン電極との間にpnダイオード構造が内蔵されている場合、この構造をスイッチング素子としてのMOSFET素子の還流ダイオードとして使用することができる。しかし、pnダイオードはバイポーラ電流を用いるものであることから、還流ダイオードとして用いられる場合、そのリカバリ損失が大きい。そこでリカバリ損失を抑えるために、ユニポーラ電流を用いる素子であるショットキーバリアダイオードを半導体装置に内蔵させることが提案されている。たとえば国際公開第2014/038110号(特許文献1)によれば、ドリフト層の表面上にショットキー電極が設けられる。 When a pn diode structure is built in between a source electrode and a drain electrode in a semiconductor device provided with a MOSFET element, this structure can be used as a free-wheeling diode for a MOSFET element as a switching element. However, since a pn diode uses a bipolar current, its recovery loss is large when used as a freewheeling diode. Therefore, in order to suppress recovery loss, it has been proposed to incorporate a Schottky barrier diode, which is an element using a unipolar current, in a semiconductor device. For example, according to International Publication No. 2014/038110 (Patent Document 1), a Schottky electrode is provided on the surface of the drift layer.
国際公開第2014/038110号International Publication No. 2014/038110
 上記のようにショットキーバリアダイオードが内蔵されたMOSFETにおいて、ショットキーバリアダイオードを流れる電流を増加させていくと、この電流が特定の値を上回った時点で、寄生pnダイオードもオン状態となる。その結果、還流ダイオードの電流としてユニポーラ電流だけでなくバイポーラ電流も流れ、リカバリ損失が大きくなる。このことは、還流ダイオードによって処理される電流が、バイポーラ電流を伴わずにユニポーラ電流のみで流れることができる電流の最大値(以下、「最大ユニポーラ電流」と称する)を上回ると、バイポーラ電流に起因したリカバリ損失の増大が生じることを意味する。このためリカバリ損失を低減するためには最大ユニポーラ電流が大きいことが望ましい。しかしながら、前述した保護拡散領域を有することによってオフ状態におけるゲート絶縁膜の絶縁破壊が防止される構成を有する半導体装置において、最大ユニポーラ電流を大きくするための方法が、これまで十分に検討されてきていなかった。 As described above, when the current flowing through the Schottky barrier diode is increased in the MOSFET including the Schottky barrier diode, the parasitic pn diode is also turned on when the current exceeds a specific value. As a result, not only a unipolar current but also a bipolar current flows as the current of the freewheeling diode, and the recovery loss increases. This is due to the bipolar current when the current processed by the freewheeling diode exceeds the maximum value of the current that can flow only by the unipolar current without the bipolar current (hereinafter referred to as “maximum unipolar current”). This means that an increased recovery loss occurs. Therefore, it is desirable that the maximum unipolar current is large in order to reduce recovery loss. However, a method for increasing the maximum unipolar current in a semiconductor device having a structure in which the breakdown of the gate insulating film in the off state is prevented by having the above-described protective diffusion region has been sufficiently studied so far. There wasn't.
 本発明は以上のような課題を解決するためになされたものであり、その目的は、オフ状態におけるゲート絶縁膜の絶縁破壊を防止することができ、かつ内蔵されたショットキーバリアダイオードの最大ユニポーラ電流を大きくすることができる電力用半導体装置を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to prevent breakdown of the gate insulating film in the off state and to provide the maximum unipolar of the built-in Schottky barrier diode. An object of the present invention is to provide a power semiconductor device capable of increasing current.
 本発明の電力用半導体装置は、第1の半導体領域と、第2の半導体領域と、第3の半導体領域と、第4の半導体領域と、ゲート絶縁膜と、ゲート電極と、第1の主電極と、第2の主電極と、ショットキー電極とを有する。第1の半導体領域は第1の導電型を有する。第2の半導体領域は、第1の半導体領域上に設けられており、第1の導電型と異なる第2の導電型を有している。第3の半導体領域は、第2の半導体領域上に設けられており、第2の半導体領域によって第1の半導体領域から隔てられており、第1の導電型を有している。第4の半導体領域は、第1の半導体領域と接しており、第2の半導体領域よりも深く設けられた部分を有しており、第2の導電型を有している。ゲート絶縁膜は、第3の半導体領域と第2の半導体領域と第1の半導体領域とに面する内面を有する第1のトレンチ内に設けられており、第1のトレンチの内面を覆っている。ゲート電極は第1のトレンチ内でゲート絶縁膜上に設けられている。第1の主電極は第1の半導体領域に電気的に接続されている。第2の主電極は、第1の主電極から離れて設けられており、第3の半導体領域にオーミック接続されており、第1の半導体領域および第4の半導体領域に面する底部を有する第2のトレンチ内に配置された部分を有しており、第2のトレンチの底部上で第4の半導体領域にオーミック接続されている。ショットキー電極は、第2の主電極と短絡されており、第2のトレンチの底部上で第1の半導体領域にショットキー接続されている。 The power semiconductor device of the present invention includes a first semiconductor region, a second semiconductor region, a third semiconductor region, a fourth semiconductor region, a gate insulating film, a gate electrode, and a first main region. It has an electrode, a second main electrode, and a Schottky electrode. The first semiconductor region has the first conductivity type. The second semiconductor region is provided on the first semiconductor region and has a second conductivity type different from the first conductivity type. The third semiconductor region is provided on the second semiconductor region, is separated from the first semiconductor region by the second semiconductor region, and has the first conductivity type. The fourth semiconductor region is in contact with the first semiconductor region, has a portion provided deeper than the second semiconductor region, and has the second conductivity type. The gate insulating film is provided in the first trench having an inner surface facing the third semiconductor region, the second semiconductor region, and the first semiconductor region, and covers the inner surface of the first trench. . The gate electrode is provided on the gate insulating film in the first trench. The first main electrode is electrically connected to the first semiconductor region. The second main electrode is provided apart from the first main electrode, is ohmically connected to the third semiconductor region, and has a bottom portion facing the first semiconductor region and the fourth semiconductor region. 2 and has a portion disposed in the second trench, and is ohmically connected to the fourth semiconductor region on the bottom of the second trench. The Schottky electrode is short-circuited with the second main electrode and is Schottky connected to the first semiconductor region on the bottom of the second trench.
 本電力用半導体装置によれば、第1に、電力用半導体装置がオフ状態のとき、第1の半導体領域と第4の半導体領域との間のpn接合から空乏層が延びることにより、第1のトレンチの底部においてゲート絶縁膜に加わる電界が緩和される。これにより、オフ状態におけるゲート絶縁膜の絶縁破壊を防止することができる。第2に、ショットキー電極が第1の半導体領域に第2のトレンチの底部上でショットキー接続されている。これにより、ショットキー電極がトレンチの外部において第1の半導体領域にショットキー接続される場合と異なり、第1の半導体領域と第4の半導体領域とによる寄生pnダイオードの電流経路と同様に、ショットキーバリアダイオードの電流経路は、第2のトレンチの深さに対応した抵抗成分を有しない。これにより、ショットキー電極によって電力用半導体装置に内蔵されるショットキーバリアダイオードの最大ユニポーラ電流を大きくすることができる。以上から、オフ状態におけるゲート絶縁膜の絶縁破壊を防止することができ、かつ内蔵ショットキーバリアダイオードの最大ユニポーラ電流を大きくすることができる。 According to the power semiconductor device, first, when the power semiconductor device is in the OFF state, the depletion layer extends from the pn junction between the first semiconductor region and the fourth semiconductor region, so that the first The electric field applied to the gate insulating film is relaxed at the bottom of the trench. Thereby, the dielectric breakdown of the gate insulating film in the off state can be prevented. Second, a Schottky electrode is Schottky connected to the first semiconductor region on the bottom of the second trench. Thus, unlike the case where the Schottky electrode is Schottky connected to the first semiconductor region outside the trench, the shot path is similar to the current path of the parasitic pn diode formed by the first semiconductor region and the fourth semiconductor region. The current path of the key barrier diode does not have a resistance component corresponding to the depth of the second trench. As a result, the maximum unipolar current of the Schottky barrier diode built in the power semiconductor device can be increased by the Schottky electrode. From the above, it is possible to prevent the dielectric breakdown of the gate insulating film in the off state and increase the maximum unipolar current of the built-in Schottky barrier diode.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
本発明の実施の形態1における電力用半導体装置の構成を、図2の線I-Iの断面で概略的に示す部分断面図である。FIG. 3 is a partial cross-sectional view schematically showing the configuration of the power semiconductor device according to the first embodiment of the present invention in a cross section taken along line II in FIG. 2; 本発明の実施の形態1における電力用半導体装置の構成を、表面側の構成を一部省略しつつ概略的に示す部分平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial plan view schematically showing a configuration of a power semiconductor device according to a first embodiment of the present invention while omitting a part of a configuration on a surface side. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 本発明の実施の形態1における電力用半導体装置の製造方法の一の工程を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically one process of the manufacturing method of the semiconductor device for electric power in Embodiment 1 of this invention. 比較例の電力用半導体装置の構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the semiconductor device for electric power of a comparative example. 図2における第1のトレンチを概略的に示す部分平面図である。FIG. 3 is a partial plan view schematically showing a first trench in FIG. 2. 図14の変形例を示す部分平面図である。It is a fragmentary top view which shows the modification of FIG. 図14の変形例を示す部分平面図である。It is a fragmentary top view which shows the modification of FIG. 本発明の実施の形態2における電力用半導体装置の構成を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically the structure of the semiconductor device for electric power in Embodiment 2 of this invention. 本発明の実施の形態3における電力用半導体装置の構成を概略的に示す部分断面図である。It is a fragmentary sectional view which shows schematically the structure of the semiconductor device for electric power in Embodiment 3 of this invention. 本発明の実施の形態4における電力用半導体装置の構成を、表面側の構成を一部省略しつつ概略的に示す部分平面図である。It is a fragmentary top view which shows roughly the structure of the semiconductor device for electric power in Embodiment 4 of this invention, abbreviate | omitting some structures on the surface side. 図19の線XX-XXの断面に沿う概略部分断面図である。FIG. 20 is a schematic partial sectional view taken along a line XX-XX in FIG. 図19の線XXI-XXIの断面に沿う概略部分断面図である。FIG. 20 is a schematic partial cross-sectional view taken along a line XXI-XXI in FIG. 19. 図19の線XXII-XXIIの断面に沿う概略部分断面図である。FIG. 20 is a schematic partial cross-sectional view taken along a line XXII-XXII in FIG. 19. 図19の変形例を示す部分平面図である。It is a partial top view which shows the modification of FIG. 図23の変形例を示す部分平面図である。It is a partial top view which shows the modification of FIG. 図19の変形例を示す部分平面図である。It is a partial top view which shows the modification of FIG.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 <実施の形態1>
 (装置構成)
 図1および図2のそれぞれは、本実施の形態におけるMOSFET91(電力用半導体装置)の構成を概略的に示す部分断面図および部分平面図である。なお、図1の断面は、図2の線I-Iに沿っている。また図2においては、図1におけるソース電極32および層間絶縁膜21の図示を省略している。
<Embodiment 1>
(Device configuration)
FIG. 1 and FIG. 2 are a partial cross-sectional view and a partial plan view schematically showing the configuration of MOSFET 91 (power semiconductor device) in the present embodiment, respectively. The cross section of FIG. 1 is along the line II of FIG. In FIG. 2, the source electrode 32 and the interlayer insulating film 21 in FIG. 1 are not shown.
 MOSFET91には、平面レイアウトにおいて、MOS領域RG1と、コンタクト領域RG2とが設けられている。MOS領域RG1は、スイッチング素子であるMOSFET素子としての機能を有している。コンタクト領域RG2は、p保護拡散領域14をソース電極32にオーミックに接続する機能と、ショットキー電極34をn-ドリフト領域11にショットキー接続する機能とを有している。以下、MOSFET91の具体的な構成について説明する。 MOSFET 91 is provided with a MOS region RG1 and a contact region RG2 in a planar layout. The MOS region RG1 functions as a MOSFET element that is a switching element. Contact region RG2 has a function of ohmic connecting p protection diffusion region 14 to source electrode 32 and a function of Schottky connection of Schottky electrode 34 to n drift region 11. Hereinafter, a specific configuration of the MOSFET 91 will be described.
 MOSFET91は、基板1(バッファ層)と、半導体層10と、ゲート絶縁膜20と、層間絶縁膜21と、ゲート電極30と、ドレイン電極31(第1の主電極)と、ソース電極32(第2の主電極)と、ショットキー電極34とを有している。半導体層10は、n-ドリフト領域11(第1の半導体領域)と、pベース領域12(第2の半導体領域)と、nソース領域13(第3の半導体領域)と、p保護拡散領域14(第4の半導体領域)とを有している。MOS領域RG1において半導体層10にはMOSトレンチTR1(第1のトレンチ)が設けられている。またコンタクト領域RG2を包含するように半導体層10には複合トレンチTR2(第2のトレンチ)が設けられている。本実施の形態においては、図1に示すようにMOSトレンチTR1と複合トレンチTR2とがおおよそ同じ深さを有しており、また図2に示すようにMOSトレンチTR1と複合トレンチTR2とが互いにつながっている。 The MOSFET 91 includes a substrate 1 (buffer layer), a semiconductor layer 10, a gate insulating film 20, an interlayer insulating film 21, a gate electrode 30, a drain electrode 31 (first main electrode), and a source electrode 32 (first electrode). 2 main electrodes) and a Schottky electrode 34. The semiconductor layer 10 includes an n drift region 11 (first semiconductor region), a p base region 12 (second semiconductor region), an n source region 13 (third semiconductor region), and a p protective diffusion region 14. (Fourth semiconductor region). In the MOS region RG1, the semiconductor layer 10 is provided with a MOS trench TR1 (first trench). The semiconductor layer 10 is provided with a composite trench TR2 (second trench) so as to include the contact region RG2. In the present embodiment, MOS trench TR1 and composite trench TR2 have approximately the same depth as shown in FIG. 1, and MOS trench TR1 and composite trench TR2 are connected to each other as shown in FIG. ing.
 基板1はSiCの単結晶基板である。基板1は、n型(第1の導電型)を有しており、n-ドリフト領域11の不純物濃度よりも高い不純物濃度を有している。半導体層10は基板1の一方面(図1における上面)上にエピタキシャルに形成されている。半導体層10のn-ドリフト領域11はワイドバンドギャップ半導体から作られていることが好ましく、半導体層10全体がワイドバンドギャップ半導体から作られていてもよい。本実施の形態においては、半導体層10はSiCから作られたエピタキシャル層である。 The substrate 1 is a SiC single crystal substrate. Substrate 1 has n-type (first conductivity type), and has an impurity concentration higher than that of n drift region 11. The semiconductor layer 10 is formed epitaxially on one surface (the upper surface in FIG. 1) of the substrate 1. The n drift region 11 of the semiconductor layer 10 is preferably made of a wide band gap semiconductor, and the entire semiconductor layer 10 may be made of a wide band gap semiconductor. In the present embodiment, the semiconductor layer 10 is an epitaxial layer made of SiC.
 n-ドリフト領域11は、基板1の上面上に設けられており、n型を有している。pベース領域12は、n-ドリフト領域11上に設けられており、p型(第1の導電型と異なる第2の導電型)を有している。nソース領域13は、pベース領域12上に設けられており、pベース領域12によってn-ドリフト領域11から隔てられており、n型を有している。p保護拡散領域14は、p型を有しており、n-ドリフト領域11と接している。p保護拡散領域14は、半導体層10においてpベース領域12よりも深く設けられた部分(図1において、より下方に位置する部分)を有しており、本実施の形態においてはその全体がpベース領域12よりも深く配置されている。 The n drift region 11 is provided on the upper surface of the substrate 1 and has n type. The p base region 12 is provided on the n drift region 11 and has a p type (second conductivity type different from the first conductivity type). The n source region 13 is provided on the p base region 12, is separated from the n drift region 11 by the p base region 12, and has n type. The p protective diffusion region 14 has a p-type and is in contact with the n drift region 11. The p protective diffusion region 14 has a portion deeper than the p base region 12 in the semiconductor layer 10 (portion positioned lower in FIG. 1). In the present embodiment, the entire p protection diffusion region 14 is p. It is arranged deeper than the base region 12.
 MOSトレンチTR1は、nソース領域13とpベース領域12とn-ドリフト領域11とに面する内面を有している。言い換えれば、MOSトレンチTR1は、nソース領域13とpベース領域12とを貫通してn-ドリフト領域11に達している。また本実施の形態においては、複合トレンチTR2も、nソース領域13とpベース領域12とn-ドリフト領域11とに面する側部を有している。言い換えれば、複合トレンチTR2も、nソース領域13とpベース領域12とを貫通してn-ドリフト領域11に達している。複合トレンチTR2はp保護拡散領域14およびn-ドリフト領域11に面する底部を有している。 MOS trench TR 1 has an inner surface facing n source region 13, p base region 12 and n drift region 11. In other words, the MOS trench TR1 passes through the n source region 13 and the p base region 12 and reaches the n drift region 11. In the present embodiment, composite trench TR 2 also has a side portion facing n source region 13, p base region 12 and n drift region 11. In other words, the composite trench TR2 also penetrates the n source region 13 and the p base region 12 and reaches the n drift region 11. Composite trench TR2 has a bottom portion facing p protective diffusion region 14 and n drift region 11.
 p保護拡散領域14は、MOSトレンチTR1の底部よりも深く設けられた部分を有していることが好ましく、図1に示すようにMOSトレンチTR1の底部に接する部分を有していることがより好ましい。またp保護拡散領域14は、平面レイアウトにおいてMOSトレンチTR1の底部と重なる部分を有していることが好ましく、本実施の形態においてはMOS領域RG1内で、p保護拡散領域14の配置と、MOSトレンチTR1および複合トレンチTR2の底部の配置とが同じとされている。 The p protective diffusion region 14 preferably has a portion provided deeper than the bottom of the MOS trench TR1, and more preferably has a portion in contact with the bottom of the MOS trench TR1 as shown in FIG. preferable. The p protective diffusion region 14 preferably has a portion overlapping the bottom of the MOS trench TR1 in the planar layout. In the present embodiment, the arrangement of the p protective diffusion region 14 and the MOS in the MOS region RG1 The arrangement of the bottoms of the trench TR1 and the composite trench TR2 is the same.
 本実施の形態においては、複合トレンチTR2の側部はMOS領域RG1内に配置されており、複合トレンチTR2のうちMOS領域RG1内の部分は、詳しくは後述するがMOSFET素子のトレンチゲート構造を構成するために用いられている。この場合、p保護拡散領域14は、MOS領域RG1内において複合トレンチTR2の底部に接する部分を有していることが好ましい。 In the present embodiment, the side portion of the composite trench TR2 is disposed in the MOS region RG1, and the portion of the composite trench TR2 in the MOS region RG1 constitutes a trench gate structure of a MOSFET element, which will be described in detail later. It is used to In this case, p protection diffusion region 14 preferably has a portion in contact with the bottom of composite trench TR2 in MOS region RG1.
 また本実施の形態においては、p保護拡散領域14は、互いにつながったMOSトレンチTR1および複合トレンチTR2によって構成される格子形状にほぼ対応した形状を平面レイアウトにおいて有している。よって、p保護拡散領域14のうちMOS領域RG1内の部分とコンタクト領域RG2内の部分とは、上記格子形状を成すように互いに連続的につながっている。またゲート絶縁膜20を介してMOSトレンチTR1および複合トレンチTR2を埋めるゲート電極30も格子形状を有している。なお平面レイアウトにおいて、MOS領域RG1内でのp保護拡散領域14の配置は、必ずしもMOSトレンチTR1および複合トレンチTR2の底部の配置と同じである必要はなく、幅方向(図1における横方向)にずらされていてもよい。MOS領域RG1内では、幅方向においてp保護拡散領域14の少なくとも一部がMOSトレンチTR1および複合トレンチTR2の各々の底部の直下に配置されていることが望ましいが、p保護拡散領域14の少なくとも一部がnソース領域13の直下に配置されていてもよい。 In the present embodiment, the p protective diffusion region 14 has a shape that substantially corresponds to the lattice shape constituted by the MOS trench TR1 and the composite trench TR2 connected to each other in a planar layout. Therefore, the part in the MOS region RG1 and the part in the contact region RG2 in the p protection diffusion region 14 are continuously connected to each other so as to form the lattice shape. The gate electrode 30 filling the MOS trench TR1 and the composite trench TR2 via the gate insulating film 20 also has a lattice shape. In the planar layout, the arrangement of the p protective diffusion region 14 in the MOS region RG1 is not necessarily the same as the arrangement of the bottoms of the MOS trench TR1 and the composite trench TR2, and is in the width direction (lateral direction in FIG. 1). It may be shifted. In the MOS region RG1, it is desirable that at least a part of the p protective diffusion region 14 is arranged immediately below the bottom of each of the MOS trench TR1 and the composite trench TR2 in the width direction. The portion may be arranged directly under the n source region 13.
 ゲート絶縁膜20は、MOSトレンチTR1内に設けられている部分を有しており、MOSトレンチTR1の内面を覆っている。ゲート電極30はMOSトレンチTR1内でゲート絶縁膜20上に設けられている。ゲート絶縁膜20は、MOSトレンチTR1内においてゲート電極30をnソース領域13とpベース領域12とn-ドリフト領域11との各々から絶縁している。 The gate insulating film 20 has a portion provided in the MOS trench TR1, and covers the inner surface of the MOS trench TR1. The gate electrode 30 is provided on the gate insulating film 20 in the MOS trench TR1. Gate insulating film 20 insulates gate electrode 30 from each of n source region 13, p base region 12, and n drift region 11 in MOS trench TR1.
 本実施の形態においては、ゲート絶縁膜20は、MOSトレンチTR1内の部分に加えて、複合トレンチTR2の側部を覆う部分と、複合トレンチTR2の底部を部分的に覆う部分とを有している。また本実施の形態においては、ゲート電極30は、上記部分に加えて、複合トレンチTR2の側部においてゲート絶縁膜20上に設けられた部分も有している。ゲート絶縁膜20は複合トレンチTR2の側部上においてゲート電極30を半導体層10から絶縁している。またゲート絶縁膜20は、複合トレンチTR2内においてゲート電極30の底面を半導体層10から絶縁している。よって本実施の形態においては、複合トレンチTR2がnソース領域13とpベース領域12とn-ドリフト領域11とに面する側部を有し、この側部を覆うゲート絶縁膜20と、それによって複合トレンチTR2の側部から絶縁されたゲート電極30とが設けられている。この構造により本実施の形態においては、MOSトレンチTR1だけでなく、複合トレンチTR2の側部にも、MOSFET素子のトレンチゲートとしての機能が設けられている。 In the present embodiment, gate insulating film 20 has, in addition to the portion in MOS trench TR1, a portion that covers the side of composite trench TR2, and a portion that partially covers the bottom of composite trench TR2. Yes. In the present embodiment, gate electrode 30 also has a portion provided on gate insulating film 20 at the side of composite trench TR2 in addition to the above portion. The gate insulating film 20 insulates the gate electrode 30 from the semiconductor layer 10 on the side portion of the composite trench TR2. The gate insulating film 20 insulates the bottom surface of the gate electrode 30 from the semiconductor layer 10 in the composite trench TR2. Therefore, in the present embodiment, composite trench TR2 has a side portion facing n source region 13, p base region 12, and n drift region 11, and gate insulating film 20 covering this side portion, thereby A gate electrode 30 insulated from the side of the composite trench TR2 is provided. With this structure, in the present embodiment, not only the MOS trench TR1 but also the side portion of the composite trench TR2 is provided with a function as a trench gate of the MOSFET element.
 ドレイン電極31はn-ドリフト領域11に電気的に接続されている。具体的には、ドレイン電極31は、基板1の他方面(図1における下面)上にオーミック接合されることによって基板1を介してn-ドリフト領域11に電気的に接続されている。 The drain electrode 31 is electrically connected to the n drift region 11. Specifically, the drain electrode 31 is electrically connected to the n drift region 11 through the substrate 1 by being ohmic-bonded on the other surface (the lower surface in FIG. 1) of the substrate 1.
 ソース電極32は、ドレイン電極31から離れて設けられており、本実施の形態においては、基板1の一方面(図1における上面)上に設けられている。具体的には、ソース電極32はMOS領域RG1において、MOSトレンチTR1および複合トレンチTR2の外で、nソース領域13およびpベース領域12にオーミック接続されている。またソース電極32は、複合トレンチTR2内に配置された部分を有しており、複合トレンチTR2の底部上でp保護拡散領域14にオーミック接続されている。前述したようにp保護拡散領域14のうちMOS領域RG1内の部分とコンタクト領域RG2内の部分とは互いにつながっているので、p保護拡散領域14のうち複合トレンチTR2の底部上でソース電極32にオーミック接続された部分と、p保護拡散領域14のうちMOSトレンチTR1の底部近傍に配置された部分とは互いにつながっている。よって、p保護拡散領域14のうちMOS領域RG1に含まれる部分は、p保護拡散領域14のうちコンタクト領域RG2に含まれる部分を介して、ソース電極32にオーミック接続されている。以上のように、コンタクト領域RG2は、ソース電極32とp保護拡散領域14とを互いにオーミック接続する機能を有している。これによりp保護拡散領域14の電位はおおよそソース電極32の電位と同様とされる。 The source electrode 32 is provided apart from the drain electrode 31, and is provided on one surface (the upper surface in FIG. 1) of the substrate 1 in the present embodiment. Specifically, the source electrode 32 is ohmically connected to the n source region 13 and the p base region 12 outside the MOS trench TR1 and the composite trench TR2 in the MOS region RG1. The source electrode 32 has a portion disposed in the composite trench TR2, and is ohmically connected to the p protection diffusion region 14 on the bottom of the composite trench TR2. As described above, since the portion in the MOS region RG1 and the portion in the contact region RG2 of the p protection diffusion region 14 are connected to each other, the source electrode 32 is formed on the bottom of the composite trench TR2 in the p protection diffusion region 14. The ohmic-connected portion and the portion of the p protection diffusion region 14 disposed near the bottom of the MOS trench TR1 are connected to each other. Therefore, a portion of the p protection diffusion region 14 included in the MOS region RG1 is ohmically connected to the source electrode 32 via a portion of the p protection diffusion region 14 included in the contact region RG2. As described above, the contact region RG2 has a function of ohmic connecting the source electrode 32 and the p protective diffusion region 14 to each other. As a result, the potential of the p protective diffusion region 14 is approximately the same as the potential of the source electrode 32.
 層間絶縁膜21は、MOSトレンチTR1の開口においてゲート電極30とソース電極32とを互いに絶縁している。層間絶縁膜21には、MOS領域RG1においてnソース領域13およびpベース領域12を露出するソースコンタクトホールCH1が設けられている。ソースコンタクトホールCH1を通ってソース電極32はnソース領域13およびpベース領域12に達している。 The interlayer insulating film 21 insulates the gate electrode 30 and the source electrode 32 from each other in the opening of the MOS trench TR1. Interlayer insulating film 21 is provided with a source contact hole CH1 exposing n source region 13 and p base region 12 in MOS region RG1. The source electrode 32 reaches the n source region 13 and the p base region 12 through the source contact hole CH1.
 また本実施の形態においては、層間絶縁膜21は複合トレンチTR2の外からその底部に達する部分を有しており、これにより複合トレンチTR2内においてゲート電極30とソース電極32とが互いに絶縁されている。言い換えると、複合トレンチTR2内において層間絶縁膜21がソース電極32のゲート電極30に面する側面を覆っており、これにより複合トレンチTR2内においてゲート電極30とソース電極32とが互いに絶縁されている。また層間絶縁膜21には、コンタクト領域RG2において複合トレンチTR2の底部上でp保護拡散領域14およびn-ドリフト領域11を露出するトレンチ内コンタクトホールCH2が設けられている。トレンチ内コンタクトホールCH2を通ってソース電極32はp保護拡散領域14に達している。 In the present embodiment, interlayer insulating film 21 has a portion that reaches the bottom from the outside of composite trench TR2, so that gate electrode 30 and source electrode 32 are insulated from each other in composite trench TR2. Yes. In other words, the interlayer insulating film 21 covers the side surface of the source electrode 32 facing the gate electrode 30 in the composite trench TR2, whereby the gate electrode 30 and the source electrode 32 are insulated from each other in the composite trench TR2. . Interlayer insulating film 21 is provided with in-trench contact hole CH2 exposing p protective diffusion region 14 and n drift region 11 on the bottom of composite trench TR2 in contact region RG2. The source electrode 32 reaches the p protective diffusion region 14 through the contact hole CH2 in the trench.
 ショットキー電極34は複合トレンチTR2の底部上でトレンチ内コンタクトホールCH2内においてn-ドリフト領域11にショットキー接続されている。本実施の形態においては断面視(図1)でp保護拡散領域14は、複合トレンチTR2の底部の一方端および他方端(図1における右端および左端)のそれぞれを覆う第1の部分および第2の部分(図1における右部および左部)を有している。これら第1および第2の部分の間でショットキー電極34はn-ドリフト領域11にショットキー接続されている。ソース電極32とp保護拡散領域14との間のオーミック抵抗を低減するためには、複合トレンチTR2の底部のうちショットキー電極34によって覆われていない部分の全体にp保護拡散領域14が設けられていることが好ましい。 Schottky electrode 34 is Schottky connected to n drift region 11 in contact hole CH2 in the trench on the bottom of composite trench TR2. In the present embodiment, in the cross-sectional view (FIG. 1), p protective diffusion region 14 includes a first portion and a second portion that respectively cover one end and the other end (the right end and the left end in FIG. 1) of the bottom of composite trench TR2. (The right part and the left part in FIG. 1). The Schottky electrode 34 is Schottky connected to the n drift region 11 between the first and second portions. In order to reduce the ohmic resistance between the source electrode 32 and the p protective diffusion region 14, the p protective diffusion region 14 is provided on the entire portion of the bottom of the composite trench TR2 that is not covered by the Schottky electrode 34. It is preferable.
 ソース電極32は複合トレンチTR2内においてショットキー電極34に接している。これによりショットキー電極34はソース電極32と短絡されている。なおソース電極32とショットキー電極34とは、他の方法によって短絡されていてもよい。 The source electrode 32 is in contact with the Schottky electrode 34 in the composite trench TR2. As a result, the Schottky electrode 34 is short-circuited with the source electrode 32. The source electrode 32 and the Schottky electrode 34 may be short-circuited by other methods.
 なお本実施の形態においては、MOS領域RG1(図2)が四角形状を有しており、これによりゲート電極30が格子状に配置されている。これに対応してp保護拡散領域14も格子状に配置されている。しかしながら、MOS領域RG1は四角形状以外の多角形状を有していてもよく、たとえば六角形状を有していてもよい。この場合、ゲート電極はハニカム状に配置され、それに対応してp型保護拡散領域もハニカム状に配置され得る。またMOS領域RG1は多角形状以外の形状を有していてもよく、たとえば櫛型形状を有していてもよい。 In the present embodiment, the MOS region RG1 (FIG. 2) has a square shape, whereby the gate electrodes 30 are arranged in a lattice shape. Correspondingly, the p protective diffusion regions 14 are also arranged in a lattice pattern. However, MOS region RG1 may have a polygonal shape other than a square shape, for example, a hexagonal shape. In this case, the gate electrode is arranged in a honeycomb shape, and the p-type protective diffusion region can be arranged in a honeycomb shape correspondingly. MOS region RG1 may have a shape other than a polygonal shape, for example, may have a comb shape.
 (製造方法)
 次に、MOSFET91の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing MOSFET 91 will be described below.
 図3を参照して、まず基板1上に半導体層10が形成される。この時点では、半導体層10の全体が、上述したn-ドリフト領域11に対応する導電型および不純物濃度を有する。具体的には、ポリタイプ4Hを有するn型SiC基板の(0001)面上において、ドナー不純物が添加されながらSiCのエピタキシャル成長が行われる。エピタキシャル成長は、たとえばCVD(化学気相堆積:Chemical Vapor Deposition)法により行い得る。半導体層10の不純物濃度は、基板1の不純物濃度よりも低くされ、たとえば1×1015cm-3~1×1017cm-3程度とされる。半導体層10の厚さは、たとえば5~100μm程度とされる。 Referring to FIG. 3, first, semiconductor layer 10 is formed on substrate 1. At this time, the entire semiconductor layer 10 has a conductivity type and an impurity concentration corresponding to the n drift region 11 described above. Specifically, SiC is epitaxially grown on the (0001) plane of an n-type SiC substrate having polytype 4H while adding a donor impurity. Epitaxial growth can be performed, for example, by a CVD (Chemical Vapor Deposition) method. The impurity concentration of the semiconductor layer 10 is set lower than the impurity concentration of the substrate 1 and is, for example, about 1 × 10 15 cm −3 to 1 × 10 17 cm −3 . The thickness of the semiconductor layer 10 is, for example, about 5 to 100 μm.
 図4を参照して、次に選択的なイオン注入により半導体層10の一部へ不純物が添加されることで、pベース領域12が形成される。不純物が添加されなかった部分は、そのまま最終的にn-ドリフト領域11となる部分を含む。具体的には、まず半導体層10の表面にフォトレジストなどにより注入マスクが形成される。このマスクを用いて、アクセプタ不純物であるAlがイオン注入により添加される。イオン注入の深さは、半導体層10の厚さよりも小さく、たとえば0.5~3μm程度である。また、イオン注入されるアクセプタ不純物の濃度は、半導体層10中のドナー不純物の濃度よりも高く、たとえば1×1017cm-3~5×1019cm-3程度である。イオン注入後、注入マスクは除去される。 Referring to FIG. 4, the p base region 12 is formed by adding impurities to a part of the semiconductor layer 10 by selective ion implantation. The portion to which no impurity is added includes a portion that finally becomes n drift region 11 as it is. Specifically, an implantation mask is first formed on the surface of the semiconductor layer 10 with a photoresist or the like. Using this mask, Al, which is an acceptor impurity, is added by ion implantation. The depth of ion implantation is smaller than the thickness of the semiconductor layer 10 and is, for example, about 0.5 to 3 μm. The concentration of the acceptor impurity to be ion-implanted is higher than the concentration of the donor impurity in the semiconductor layer 10 and is, for example, about 1 × 10 17 cm −3 to 5 × 10 19 cm −3 . After the ion implantation, the implantation mask is removed.
 図5を参照して、次に選択的なイオン注入によりpベース領域12の一部へ不純物が添加されることで、nソース領域13が形成される。不純物が添加されなかった部分が、最終的なpベース領域12となる。具体的には、まずpベース領域12の表面にフォトレジストなどにより注入マスクが形成される。このマスクを用いて、ドナー不純物であるNがイオン注入により添加される。イオン注入の深さは、pベース領域12の厚さよりも小さくされる。また、イオン注入されるドナー不純物の濃度は、pベース領域12中のアクセプタ不純物の濃度よりも高く、たとえば1×1018cm-3~1×1021cm-3程度である。イオン注入後、注入マスクは除去される。 Referring to FIG. 5, an impurity is added to a part of p base region 12 by selective ion implantation, thereby forming n source region 13. The portion to which no impurity is added becomes the final p base region 12. Specifically, an implantation mask is first formed on the surface of the p base region 12 with a photoresist or the like. Using this mask, N as a donor impurity is added by ion implantation. The depth of ion implantation is made smaller than the thickness of the p base region 12. Further, the concentration of the donor impurity to be ion-implanted is higher than the concentration of the acceptor impurity in the p base region 12 and is, for example, about 1 × 10 18 cm −3 to 1 × 10 21 cm −3 . After the ion implantation, the implantation mask is removed.
 図6を参照して、次に半導体層10にMOSトレンチTR1および複合トレンチTR2が形成される。本実施の形態においては両者が同じ深さを有するので、両者を一括して形成し得る。具体的には、まず半導体層10の表面上に、MOSトレンチTR1および複合トレンチTR2に対応する開口を有するエッチングマスクが形成される。エッチングマスクは、たとえばフォトレジストまたはSiOにより形成し得る。このエッチングマスクを用いたエッチングによりMOSトレンチTR1および複合トレンチTR2が形成される。エッチング後、エッチングマスクは除去される。 Referring to FIG. 6, next, a MOS trench TR <b> 1 and a composite trench TR <b> 2 are formed in the semiconductor layer 10. In the present embodiment, since both have the same depth, both can be formed together. Specifically, first, an etching mask having openings corresponding to the MOS trench TR1 and the composite trench TR2 is formed on the surface of the semiconductor layer 10. Etching mask, for example it may be formed by a photoresist or SiO 2. The MOS trench TR1 and the composite trench TR2 are formed by etching using this etching mask. After the etching, the etching mask is removed.
 図7を参照して、次に選択的なイオン注入により、MOSトレンチTR1の底部と、複合トレンチTR2の底部の一部との上で、n-ドリフト領域11へ不純物が添加される。これによりp保護拡散領域14が形成される。具体的には、まず半導体層10の表面にフォトレジストなどにより注入マスクが形成される。このマスクを用いて、アクセプタ不純物であるAlがイオン注入により添加される。イオン注入されるアクセプタ不純物の濃度は、n-ドリフト領域11中のドナー不純物の濃度よりも高く、たとえば1×1017cm-3~1×1019cm-3程度である。 Referring to FIG. 7, impurities are added to n drift region 11 on the bottom of MOS trench TR1 and a part of the bottom of composite trench TR2 by selective ion implantation. Thereby, the p protection diffusion region 14 is formed. Specifically, an implantation mask is first formed on the surface of the semiconductor layer 10 with a photoresist or the like. Using this mask, Al, which is an acceptor impurity, is added by ion implantation. The concentration of the acceptor impurity to be ion-implanted is higher than the concentration of the donor impurity in the n drift region 11 and is, for example, about 1 × 10 17 cm −3 to 1 × 10 19 cm −3 .
 p保護拡散領域14は、複合トレンチTR2の底部に接するように複合トレンチTR2の底部に部分的に形成される。すなわちp保護拡散領域14は、複合トレンチTR2の底部に部分的にのみ形成され、底部の一部はn-ドリフト領域11によって形成されたまま保たれる。p保護拡散領域14はMOSトレンチTR1の底部にも接するように形成されることが好ましいが、MOSトレンチTR1の底部に接していなくてもMOSトレンチTR1の下方に形成されていればMOSトレンチTR1の底部のゲート絶縁膜20(図1)の電界を緩和する効果は、ある程度得られる。 The p protective diffusion region 14 is partially formed at the bottom of the composite trench TR2 so as to be in contact with the bottom of the composite trench TR2. That is, the p protective diffusion region 14 is formed only partially at the bottom of the composite trench TR2, and a part of the bottom is kept formed by the n drift region 11. The p protective diffusion region 14 is preferably formed so as to be in contact with the bottom of the MOS trench TR1, but even if it is not in contact with the bottom of the MOS trench TR1, it may be formed under the MOS trench TR1. The effect of relaxing the electric field of the bottom gate insulating film 20 (FIG. 1) can be obtained to some extent.
 次に、熱処理装置によって、アルゴン(Ar)ガスなどの不活性ガス雰囲気中で、1300~1900℃で、30秒~1時間にわたって、アニールが行われる。このアニールにより、イオン注入された不純物が電気的に活性化される。 Next, annealing is performed in an inert gas atmosphere such as argon (Ar) gas at 1300 to 1900 ° C. for 30 seconds to 1 hour by a heat treatment apparatus. By this annealing, the ion-implanted impurity is electrically activated.
 図8を参照して、次に、半導体層10の表面が熱酸化される。これにより、所望の厚さのゲート絶縁膜20としての酸化珪素膜が形成される。 Referring to FIG. 8, next, the surface of the semiconductor layer 10 is thermally oxidized. Thereby, a silicon oxide film as the gate insulating film 20 having a desired thickness is formed.
 図9を参照して、次に、まずゲート絶縁膜20の上に、導電性を有する多結晶珪素膜が減圧CVD法により形成される。この多結晶珪素膜をパターニングすることによりゲート電極30が形成される。 Referring to FIG. 9, next, a polycrystalline silicon film having conductivity is first formed on gate insulating film 20 by a low pressure CVD method. Gate electrode 30 is formed by patterning this polycrystalline silicon film.
 図10を参照して、次に、まず層間絶縁膜21が減圧CVD法により成膜される。続いて、層間絶縁膜21がパターニングされることにより、ソースコンタクトホールCH1およびトレンチ内コンタクトホールCH2が形成される。 Referring to FIG. 10, next, an interlayer insulating film 21 is first formed by a low pressure CVD method. Subsequently, the interlayer insulating film 21 is patterned to form the source contact hole CH1 and the in-trench contact hole CH2.
 図11を参照して、次に、トレンチ内コンタクトホールCH2内で複合トレンチTR2の底部上に部分的にショットキー電極34が、n-ドリフト領域11にショットキー接合されるように形成される。本実施の形態のようにn型を有するn-ドリフト領域11上にショットキー電極が形成される場合、その材料としては、Ti、MoまたはNiなどが好ましい。 Referring to FIG. 11, next, Schottky electrode 34 is formed so as to be partially Schottky joined to n drift region 11 on the bottom of composite trench TR2 in contact hole CH2 in the trench. When a Schottky electrode is formed on n drift region 11 having n type as in the present embodiment, the material is preferably Ti, Mo, Ni, or the like.
 図12を参照して、次に、層間絶縁膜21およびショットキー電極34が設けられた半導体層10上にソース電極32が形成される。ソース電極32は、ソースコンタクトホールCH1およびトレンチ内コンタクトホールCH2において半導体層10にオーミック接合される。 Referring to FIG. 12, next, source electrode 32 is formed on semiconductor layer 10 provided with interlayer insulating film 21 and Schottky electrode 34. The source electrode 32 is ohmically joined to the semiconductor layer 10 in the source contact hole CH1 and the in-trench contact hole CH2.
 再び図1を参照して、次に、基板1の他方面(図1における下面)上にドレイン電極31が形成される。以上により、MOSFET91が得られる。 Referring to FIG. 1 again, next, drain electrode 31 is formed on the other surface (lower surface in FIG. 1) of substrate 1. Thus, MOSFET 91 is obtained.
 なお上記方法においてはソース電極32とショットキー電極34とが個別に作製されるが、これらが同一材料で連続して形成されてもよい。あるいは、ソース電極32とショットキー電極34とが別材料から作られつつ、それらの境界において材料が連続的に変化してもよい。 In the above method, the source electrode 32 and the Schottky electrode 34 are individually manufactured, but they may be continuously formed of the same material. Alternatively, the source electrode 32 and the Schottky electrode 34 may be made of different materials, and the material may continuously change at the boundary between them.
 またpベース領域12およびnソース領域13を形成するためのイオン注入工程の順番は逆にされてもよい。 Further, the order of the ion implantation steps for forming the p base region 12 and the n source region 13 may be reversed.
 (動作)
 次にMOSFET91の動作について、以下に説明する。
(Operation)
Next, the operation of the MOSFET 91 will be described below.
 ゲート電極30にしきい値電圧以上の正電圧が印加されると、ゲート電極30の側面のpベース領域12(チャネル領域)に反転チャネル層が形成される。この反転チャネル層は、nソース領域13からn-ドリフト領域11へとキャリアとしての電子が流れる経路となる。反転チャネル層を通ってnソース領域13からn-ドリフト領域11へ流れ込んだ電子は、ドレイン電極31の正電圧により生じた電界に従い、基板1を通過してドレイン電極31に到達する。その結果、MOSFET91は、ドレイン電極31からソース電極32へと電流を流すことができるようになる。この状態がMOSFET91のオン状態である。 When a positive voltage higher than the threshold voltage is applied to the gate electrode 30, an inversion channel layer is formed in the p base region 12 (channel region) on the side surface of the gate electrode 30. The inversion channel layer serves as a path for electrons as carriers to flow from the n source region 13 to the n drift region 11. Electrons flowing from the n source region 13 to the n drift region 11 through the inversion channel layer pass through the substrate 1 and reach the drain electrode 31 according to the electric field generated by the positive voltage of the drain electrode 31. As a result, the MOSFET 91 can flow a current from the drain electrode 31 to the source electrode 32. This state is the ON state of the MOSFET 91.
 一方、ゲート電極30にしきい値電圧よりも低い電圧が印加されているときは、チャネル領域に反転チャネルが形成されないため、ドレイン電極31とソース電極32との間には電流が流れない。この状態がMOSFETのオフ状態である。オフ状態にあるMOSFET91に高電圧が印加されると、MOSトレンチTR1および複合トレンチTR2の底部においてゲート絶縁膜20に高電界が印加され得る。本実施の形態ではp保護拡散領域14によりオフ状態においてゲート絶縁膜20に印加される電界が緩和される。 On the other hand, when a voltage lower than the threshold voltage is applied to the gate electrode 30, no inversion channel is formed in the channel region, so that no current flows between the drain electrode 31 and the source electrode 32. This state is the MOSFET off state. When a high voltage is applied to the MOSFET 91 in the off state, a high electric field can be applied to the gate insulating film 20 at the bottom of the MOS trench TR1 and the composite trench TR2. In the present embodiment, the p protective diffusion region 14 reduces the electric field applied to the gate insulating film 20 in the off state.
 さらに、ソース電極32の電位よりも低い電位がドレイン電極31にMOSFET91の外部から印加されると、言い換えればMOSFET91に逆起電圧が印加されると、ソース電極32からドレイン電極31に向かって還流電流が流れる還流状態が生じる。還流状態においては、ドレイン電極31に高電圧が印加され、それによりMOSトレンチTR1および複合トレンチTR2の底部においてゲート絶縁膜20に高電界が印加され得る。本実施の形態ではp保護拡散領域14により、ゲート絶縁膜20に印加される電界が還流状態においても緩和される。 Furthermore, when a potential lower than the potential of the source electrode 32 is applied to the drain electrode 31 from the outside of the MOSFET 91, in other words, when a counter electromotive voltage is applied to the MOSFET 91, the return current from the source electrode 32 toward the drain electrode 31. A reflux condition occurs. In the reflux state, a high voltage is applied to the drain electrode 31, whereby a high electric field can be applied to the gate insulating film 20 at the bottom of the MOS trench TR1 and the composite trench TR2. In the present embodiment, the p protective diffusion region 14 relieves the electric field applied to the gate insulating film 20 even in the reflux state.
 還流状態においては、ショットキー電極34によるショットキー接合に順方向の電界(順バイアス)が印加されることで、ショットキー電極34からドレイン電極31へ、電子電流からなるユニポーラ電流が流れる。順バイアスが小さいときは、還流ダイオードの還流電流成分はこのユニポーラ成分のみである。ショットキー電極34を通って流れる電子電流の密度が大きくなると、ユニポーラ電流が流れるショットキー電極34下方のn-ドリフト領域11における電圧降下が大きくなる。よってn-ドリフト領域11の電位は、オーミック接合によってソース電極32の電位とほぼ同じ電位を有するp保護拡散領域14の電位に対して低くなる。この結果、p保護拡散領域14とn-ドリフト領域11との間のpn接合に印加される順バイアスが大きくなる。この順バイアスがpn接合の拡散電位を超えたときに、p保護拡散領域14からn-ドリフト領域11に向かって正孔(ホール)の注入が生じる。すなわち、p保護拡散領域14とn型のn-ドリフト領域11とによる寄生pnダイオードが動作することで、少数キャリアの注入(バイポーラ動作)が生じる。つまり、還流ダイオードの電流成分として、ユニポーラ電流だけでなくバイポーラ電流が加わる。この現象が生じるしきい値電流がMOSFET91の最大ユニポーラ電流である。 In the reflux state, a forward electric field (forward bias) is applied to the Schottky junction by the Schottky electrode 34, whereby a unipolar current consisting of an electron current flows from the Schottky electrode 34 to the drain electrode 31. When the forward bias is small, the return current component of the return diode is only this unipolar component. As the density of the electron current flowing through the Schottky electrode 34 increases, the voltage drop in the n drift region 11 below the Schottky electrode 34 through which the unipolar current flows increases. Therefore, the potential of the n drift region 11 becomes lower than the potential of the p protective diffusion region 14 having substantially the same potential as that of the source electrode 32 due to the ohmic junction. As a result, the forward bias applied to the pn junction between the p protective diffusion region 14 and the n drift region 11 increases. When this forward bias exceeds the diffusion potential of the pn junction, holes are injected from the p protective diffusion region 14 toward the n drift region 11. That is, minority carrier injection (bipolar operation) occurs when the parasitic pn diode is operated by the p protection diffusion region 14 and the n-type n drift region 11. That is, not only a unipolar current but also a bipolar current is added as a current component of the freewheeling diode. The threshold current at which this phenomenon occurs is the maximum unipolar current of MOSFET 91.
 (比較例)
 図13を参照して、比較例のMOSFET90においては、MOSFET91(図1)と異なり、複合トレンチTR2が設けられておらず、ショットキー電極34はn-ドリフト領域11の最表面上に配置されている。言い換えれば、ショットキー電極34が、MOSトレンチTR1の開口部の高さに配置されている。これに伴って、ショットキー電極34によって構成されるショットキーバリアダイオードの電流経路には、MOSトレンチTR1の深さに応じた抵抗成分が発生する。特に、n-ドリフト領域11中を通る電流経路のうちショットキー電極34のすぐ下方の、pベース領域12によって挟まれた部分SQは、pベース領域12から延びる空乏層による狭窄を受ける。よってこの部分の存在による抵抗成分の増大は特に大きい。ショットキーバリアダイオードの電流経路の抵抗成分が大きくなるほど、ショットキーバリアダイオードのオン抵抗が増大し、その結果、寄生pnダイオードによる電流が流れ始めやすくなる。よって最大ユニポーラ電流が小さくなる。
(Comparative example)
Referring to FIG. 13, in MOSFET 90 of the comparative example, unlike MOSFET 91 (FIG. 1), composite trench TR <b> 2 is not provided, and Schottky electrode 34 is disposed on the outermost surface of n drift region 11. Yes. In other words, the Schottky electrode 34 is disposed at the height of the opening of the MOS trench TR1. Accordingly, a resistance component corresponding to the depth of the MOS trench TR1 is generated in the current path of the Schottky barrier diode constituted by the Schottky electrode 34. In particular, a portion SQ sandwiched between the p base regions 12 and immediately below the Schottky electrode 34 in the current path passing through the n drift region 11 is constricted by a depletion layer extending from the p base region 12. Therefore, the increase in resistance component due to the presence of this portion is particularly large. As the resistance component of the current path of the Schottky barrier diode increases, the on-resistance of the Schottky barrier diode increases, and as a result, current due to the parasitic pn diode starts to flow easily. Therefore, the maximum unipolar current is reduced.
 これに対して本実施の形態のMOSFET91(図1)においては、ショットキー電極34がn-ドリフト領域11に複合トレンチTR2の底部で接合されている。言い換えれば、ショットキー電極34が、複合トレンチTR2の底部の高さに配置されている。よって、ショットキー電極34によって構成されるショットキーバリアダイオードの電流経路は、p保護拡散領域14による寄生pnダイオードの電流経路と同様に、トレンチの深さに応じた抵抗成分を有しない。特に、電流経路がpベース領域12によって狭窄されないことで、抵抗成分の増大が避けられる。ショットキーバリアダイオードの電流経路の抵抗成分が抑えられるほど、ショットキーバリアダイオードのオン抵抗が減少し、その結果、寄生pnダイオードによる電流が流れ始めにくくなる。よって、最大ユニポーラ電流が大きくなる。 In contrast, in MOSFET 91 (FIG. 1) of the present embodiment, Schottky electrode 34 is joined to n drift region 11 at the bottom of composite trench TR2. In other words, the Schottky electrode 34 is arranged at the height of the bottom of the composite trench TR2. Therefore, the current path of the Schottky barrier diode constituted by the Schottky electrode 34 does not have a resistance component corresponding to the depth of the trench, like the current path of the parasitic pn diode by the p protection diffusion region 14. In particular, since the current path is not narrowed by the p base region 12, an increase in the resistance component can be avoided. As the resistance component of the current path of the Schottky barrier diode is suppressed, the on-resistance of the Schottky barrier diode is reduced, and as a result, the current due to the parasitic pn diode does not easily start to flow. Therefore, the maximum unipolar current is increased.
 (効果のまとめ)
 本実施の形態のMOSFET91によれば、第1に、MOSFET91がオフ状態のとき、n-ドリフト領域11とp保護拡散領域14との間のpn接合から空乏層が延びることにより、MOSトレンチTR1の底部においてゲート絶縁膜20に加わる電界が緩和される。これにより、オフ状態におけるゲート絶縁膜20の絶縁破壊を防止することができる。第2に、ショットキー電極34がn-ドリフト領域11に複合トレンチTR2の底部上でショットキー接続されている。これにより、ショットキー電極34がトレンチの外部においてn-ドリフト領域11にショットキー接続される場合と異なり、n-ドリフト領域11とp保護拡散領域14とによる寄生pnダイオードの電流経路と同様に、ショットキーバリアダイオードの電流経路は、複合トレンチTR2の深さに対応した抵抗成分を有しない。これにより、ショットキー電極34によってMOSFET91に内蔵されるショットキーバリアダイオードの最大ユニポーラ電流を大きくすることができる。以上から、オフ状態におけるゲート絶縁膜20の絶縁破壊を防止することができ、かつ内蔵ショットキーバリアダイオードの最大ユニポーラ電流を大きくすることができる。
(Summary of effects)
According to the MOSFET 91 of the present embodiment, first, when the MOSFET 91 is in the OFF state, the depletion layer extends from the pn junction between the n drift region 11 and the p protective diffusion region 14, so that the MOS trench TR 1 The electric field applied to the gate insulating film 20 at the bottom is relaxed. Thereby, the dielectric breakdown of the gate insulating film 20 in the off state can be prevented. Second, the Schottky electrode 34 is Schottky connected to the n drift region 11 on the bottom of the composite trench TR2. As a result, unlike the case where the Schottky electrode 34 is Schottky connected to the n drift region 11 outside the trench, the current path of the parasitic pn diode by the n drift region 11 and the p protective diffusion region 14 is The current path of the Schottky barrier diode does not have a resistance component corresponding to the depth of the composite trench TR2. Thereby, the maximum unipolar current of the Schottky barrier diode built in the MOSFET 91 can be increased by the Schottky electrode 34. From the above, the dielectric breakdown of the gate insulating film 20 in the off state can be prevented, and the maximum unipolar current of the built-in Schottky barrier diode can be increased.
 最大ユニポーラ電流が大きいことにより、ユニポーラ電流のみからなる還流電流の電流容量を大きくすることができる。これにより、大きな還流電流が流れても、バイポーラ電流が流れないか、またはその大きさが抑制される。これよりリカバリ損失が抑えられる。よってMOSFET91における電力損失を抑えることができる。 大 き い Since the maximum unipolar current is large, it is possible to increase the current capacity of the return current consisting only of the unipolar current. Thereby, even if a large return current flows, the bipolar current does not flow or its magnitude is suppressed. This reduces recovery loss. Therefore, power loss in MOSFET 91 can be suppressed.
 p保護拡散領域14はソース電極32とオーミックに接続されている。これにより、MOSFET91のスイッチング動作時においてもp保護拡散領域14の電位が安定化される。よってターンオフなどのスイッチング動作時におけるゲート絶縁膜20の絶縁破壊の発生を抑制することができる。 The p protective diffusion region 14 is ohmically connected to the source electrode 32. As a result, the potential of the p protection diffusion region 14 is stabilized even during the switching operation of the MOSFET 91. Therefore, the occurrence of dielectric breakdown of the gate insulating film 20 during a switching operation such as turn-off can be suppressed.
 スイッチング動作時には、ドレイン電極31の電圧が急激に上昇するため、p保護拡散領域14とn-ドリフト領域11との間の寄生容量を介して変位電流がp保護拡散領域14を流れる。このときp保護拡散領域14など変位電流が流れる経路の抵抗成分によって電圧降下が生じる。この電圧降下が大きくなると、ゲート絶縁膜20の絶縁破壊またはリーク電流の発生など、ゲート絶縁膜20の信頼性の低下につながる現象が生じやすくなる。これを防止するためには、変位電流が流れる経路の抵抗値を小さくすることが有効である。 During the switching operation, the voltage of the drain electrode 31 rises rapidly, so that a displacement current flows through the p protective diffusion region 14 via the parasitic capacitance between the p protective diffusion region 14 and the n drift region 11. At this time, a voltage drop occurs due to the resistance component of the path through which the displacement current flows, such as the p protection diffusion region 14. When this voltage drop becomes large, a phenomenon that leads to a decrease in the reliability of the gate insulating film 20, such as dielectric breakdown of the gate insulating film 20 or generation of a leakage current, is likely to occur. In order to prevent this, it is effective to reduce the resistance value of the path through which the displacement current flows.
 図1および図2に示された構成においては、格子状のゲート電極30により規定される区画(セル)の少なくとも1つが、ソース電極32とp保護拡散領域14との間を接続するコンタクトを設けるためのコンタクト領域RG2として用いられている。これによりソース電極32とp保護拡散領域14との間の接触面積を大きくとることができる。よってソース電極32とp保護拡散領域14との間の抵抗値が小さくなる。よってp保護拡散領域14からソース電極32へと流れる変位電流の経路の抵抗値が小さくなる。よって、変位電流に起因するゲート絶縁膜20の破壊をより確実に防止することができる。 In the configuration shown in FIGS. 1 and 2, at least one of the sections (cells) defined by the grid-like gate electrode 30 is provided with a contact that connects between the source electrode 32 and the p protective diffusion region 14. Is used as a contact region RG2. As a result, the contact area between the source electrode 32 and the p protective diffusion region 14 can be increased. Therefore, the resistance value between the source electrode 32 and the p protective diffusion region 14 becomes small. Therefore, the resistance value of the path of the displacement current flowing from the p protection diffusion region 14 to the source electrode 32 becomes small. Therefore, it is possible to more reliably prevent the gate insulating film 20 from being destroyed due to the displacement current.
 コンタクト領域RG2内のp保護拡散領域14がその周囲のMOS領域RG1内のすべてのp保護拡散領域14とつながっているので、格子状のゲート電極30で規定される区画の少なくとも1つをコンタクト領域RG2のために用いれば、p保護拡散領域14全体をソース電極32にオーミック接続することができる。ただし、多くのMOSFETセルを有する装置においては、各MOSFETセルからコンタクト領域RG2までの距離が過度に長くならないように、単数ではなく複数のコンタクト領域RG2が設けられることが好ましい。その場合、MOSFET91における電流の経路がなるべく均一になるように、コンタクト領域RG2は等間隔に配置されることが好ましい。 Since the p protection diffusion region 14 in the contact region RG2 is connected to all the p protection diffusion regions 14 in the surrounding MOS region RG1, at least one of the sections defined by the lattice-like gate electrode 30 is defined as the contact region. When used for RG2, the entire p protection diffusion region 14 can be ohmically connected to the source electrode 32. However, in a device having many MOSFET cells, it is preferable to provide a plurality of contact regions RG2 instead of a single one so that the distance from each MOSFET cell to contact region RG2 does not become excessively long. In that case, the contact regions RG2 are preferably arranged at equal intervals so that the current paths in the MOSFET 91 are as uniform as possible.
 また本実施の形態によれば、MOSトレンチTR1の大きさと、複合トレンチTR2の大きさとを個別に最適化することができる。第1に、複合トレンチTR2の大きさの調整によってソース電極32とp保護拡散領域14との間の接触面積を最適化することができる。これにより、p保護拡散領域14へのソース電極32のコンタクト抵抗を、必要に応じて小さくすることができる。よってp保護拡散領域14からソース電極32へと流れる変位電流の経路の抵抗値を十分に小さくすることができる。よって、変位電流に起因するゲート絶縁膜20の破壊をより確実に防止することができる。これによりMOSFET91の耐電圧が高められる。第2に、MOSトレンチTR1の大きさの最適化によってMOSトレンチTR1のセルピッチ(トレンチの幅)を十分に小さくすることができる。これにより、MOSFET91の単位面積当たりのオン電流の密度を高めることができる。よって、MOSFET91の電流容量を大きくすることができる。以上のように本実施の形態によれば、電流容量を確保しつつ、耐電圧を高めることができる。 Further, according to the present embodiment, the size of the MOS trench TR1 and the size of the composite trench TR2 can be individually optimized. First, the contact area between the source electrode 32 and the p protective diffusion region 14 can be optimized by adjusting the size of the composite trench TR2. Thereby, the contact resistance of the source electrode 32 to the p protection diffusion region 14 can be reduced as necessary. Therefore, the resistance value of the path of the displacement current flowing from the p protection diffusion region 14 to the source electrode 32 can be sufficiently reduced. Therefore, it is possible to more reliably prevent the gate insulating film 20 from being destroyed due to the displacement current. As a result, the withstand voltage of the MOSFET 91 is increased. Second, by optimizing the size of the MOS trench TR1, the cell pitch (trench width) of the MOS trench TR1 can be made sufficiently small. Thereby, the density of the on-current per unit area of the MOSFET 91 can be increased. Therefore, the current capacity of the MOSFET 91 can be increased. As described above, according to the present embodiment, the withstand voltage can be increased while securing the current capacity.
 また、図1に示すように、MOSトレンチTR1だけでなく、複合トレンチTR2の側部にもMOSFET構造が設けられる。これにより、複合トレンチTR2にMOSFET構造が設けられない場合に比して、MOSFET91の電流容量を大きくすることができる。なお、複合トレンチTR2内のMOS構造は省略されてもよく、この場合、複合トレンチTR2中の構造を簡素化することができる。 Further, as shown in FIG. 1, a MOSFET structure is provided not only in the MOS trench TR1 but also in the side portion of the composite trench TR2. Thereby, the current capacity of the MOSFET 91 can be increased as compared with the case where the MOSFET structure is not provided in the composite trench TR2. Note that the MOS structure in the composite trench TR2 may be omitted. In this case, the structure in the composite trench TR2 can be simplified.
 またp保護拡散領域14(図1)は、複合トレンチTR2の底部の一方端および他方端のそれぞれを覆う第1の部分および第2の部分を有している。これにより、複合トレンチTR2の底部の一方端および他方端の両方での電界を効果的に緩和することができる。よって、複合トレンチTR2の側部に設けられたMOSFET構造を構成するゲート絶縁膜20の絶縁破壊を、より確実に防止することができる。 The p protective diffusion region 14 (FIG. 1) has a first portion and a second portion that respectively cover one end and the other end of the bottom of the composite trench TR2. Thereby, the electric field at both one end and the other end of the bottom of the composite trench TR2 can be effectively relaxed. Therefore, it is possible to more reliably prevent the dielectric breakdown of the gate insulating film 20 constituting the MOSFET structure provided on the side portion of the composite trench TR2.
 n-ドリフト領域11がワイドバンドギャップ半導体から作られている場合、n-ドリフト領域11自体の耐電圧が高いことから、n-ドリフト領域11がSiなどの非ワイドバンドギャップ半導体から作られている場合に比して、オフ状態においてn-ドリフト領域11に高い電界(たとえば約10倍)が印加され得る。その場合、MOSトレンチTR1の底部においてゲート絶縁膜20に高い電界が印加される。この高電界に起因したゲート絶縁膜20の絶縁破壊の発生をp保護拡散領域14によって効果的に抑制することができる。 When the n drift region 11 is made of a wide band gap semiconductor, since the withstand voltage of the n drift region 11 itself is high, the n drift region 11 is made of a non-wide band gap semiconductor such as Si. As compared to the case, a high electric field (for example, about 10 times) can be applied to the n drift region 11 in the off state. In that case, a high electric field is applied to the gate insulating film 20 at the bottom of the MOS trench TR1. Generation of dielectric breakdown of the gate insulating film 20 due to the high electric field can be effectively suppressed by the p protective diffusion region 14.
 またn-ドリフト領域11がワイドバンドギャップ半導体から作られている場合は、n-ドリフト領域11がSiなどの非ワイドバンドギャップ半導体から作られている場合と異なり、スイッチング動作時におけるゲート絶縁膜20の信頼性が問題となり得る。これは、第1に、変位電流が流れる経路の抵抗が大きいことによる。第2に、Siを用いたMOSFETと同じスイッチング速度でのスイッチング動作時に生じる変位電流が大きいことによる。たとえば、耐電圧の性能を変えずに半導体材料をSiからSiCに変更した場合、空乏容量が約10倍大きくなるため、それに対応して変位電流も大幅に大きくなる。本実施の形態によれば、前述したように変位電流が流れる経路の抵抗値を小さくすることができるので、ワイドバンドギャップ半導体を用いた場合においても、高速スイッチング動作時におけるゲート絶縁膜20の信頼性をより確実に保つことができる。 The n - if the drift region 11 is made of wide band gap semiconductor, n - unlike the case of the drift region 11 is made of a non-wide band gap semiconductor, such as Si, a gate insulating film 20 at the time of switching operation Reliability can be a problem. First, this is because the resistance of the path through which the displacement current flows is large. Second, the displacement current generated during the switching operation at the same switching speed as the MOSFET using Si is large. For example, when the semiconductor material is changed from Si to SiC without changing the withstand voltage performance, the depletion capacity is increased about 10 times, and the displacement current is correspondingly increased correspondingly. According to the present embodiment, since the resistance value of the path through which the displacement current flows can be reduced as described above, the reliability of the gate insulating film 20 during the high-speed switching operation can be achieved even when a wide band gap semiconductor is used. Sex can be maintained more reliably.
 またMOSトレンチTR1の深さと複合トレンチTR2の深さとが同じであることにより、両者を一括して形成することができる。またMOSトレンチTR1の深さと複合トレンチTR2の深さとが同程度の場合、複合トレンチTR2の底部のp保護拡散領域14から、近傍のMOSトレンチTR1の底部のゲート絶縁膜20へと、空乏層が到達しやすい。よって、複合トレンチTR2と隣り合うMOSトレンチTR1の底部において、ゲート絶縁膜20に印加される電界がさらに緩和される。よってゲート絶縁膜20の絶縁破壊をより確実に防止することができる。 Further, since the depth of the MOS trench TR1 and the depth of the composite trench TR2 are the same, both can be formed at a time. When the depth of the MOS trench TR1 and the depth of the composite trench TR2 are approximately the same, a depletion layer is formed from the p protection diffusion region 14 at the bottom of the composite trench TR2 to the gate insulating film 20 at the bottom of the neighboring MOS trench TR1. Easy to reach. Therefore, the electric field applied to the gate insulating film 20 is further relaxed at the bottom of the MOS trench TR1 adjacent to the composite trench TR2. Therefore, the dielectric breakdown of the gate insulating film 20 can be prevented more reliably.
 ただし、MOSトレンチTR1の深さと複合トレンチTR2の深さとは互いに異なっていてもよく、この場合、MOSトレンチTR1と複合トレンチTR2とが個別の工程で形成されればよい。複合トレンチTR2の深さがMOSトレンチTR1の深さより浅くても、pベース領域12の表面より深く形成されさえしていれば、pベース領域12の表面の高さ、すなわちトレンチ開口部の高さにショットキー電極34が形成される場合(図13:比較例)と比較して最大ユニポーラ電流を増大する効果が得られる。複合トレンチTR2がMOSトレンチTR1よりも深い場合には、最大ユニポーラ電流をより大きくする効果が得られる。ただしショットキー電極34の位置が深過ぎると、ショットキー電極34がドレイン電極31に近くなるので、ショットキー電極34の耐電圧あるいはMOSFETの耐電圧の低下につながる。最大ユニポーラ電流を十分に大きくしつつ耐電圧を確保するためには、複合トレンチTR2の底部の位置、すなわちショットキー電極34のショットキー接続の位置、は、MOSトレンチTR1の底部より深いことが好ましく、またMOSトレンチTR1の底部に配置されたp保護拡散領域14よりも浅いことが好ましい。 However, the depth of the MOS trench TR1 and the depth of the composite trench TR2 may be different from each other. In this case, the MOS trench TR1 and the composite trench TR2 may be formed in separate steps. Even if the depth of the composite trench TR2 is shallower than the depth of the MOS trench TR1, as long as it is formed deeper than the surface of the p base region 12, the height of the surface of the p base region 12, that is, the height of the trench opening. As compared with the case where the Schottky electrode 34 is formed (FIG. 13: comparative example), the effect of increasing the maximum unipolar current can be obtained. When the composite trench TR2 is deeper than the MOS trench TR1, an effect of increasing the maximum unipolar current can be obtained. However, if the position of the Schottky electrode 34 is too deep, the Schottky electrode 34 is close to the drain electrode 31, leading to a decrease in the withstand voltage of the Schottky electrode 34 or the withstand voltage of the MOSFET. In order to ensure a withstand voltage while sufficiently increasing the maximum unipolar current, the bottom position of the composite trench TR2, that is, the Schottky connection position of the Schottky electrode 34, is preferably deeper than the bottom of the MOS trench TR1. Moreover, it is preferable that the depth is shallower than the p protective diffusion region 14 disposed at the bottom of the MOS trench TR1.
 MOSトレンチTR1は、図1に示すように、p保護拡散領域14の幅と同じ幅を有していてよい。これにより、p保護拡散領域14を容易に形成することができる。 The MOS trench TR1 may have the same width as that of the p protection diffusion region 14 as shown in FIG. Thereby, the p protective diffusion region 14 can be easily formed.
 なお上記においては、MOSトレンチTR1が平面視で格子状(図14)の配置を有する場合について説明した。言い換えれば、MOSトレンチTR1が、一の方向(図中、横方向)において平行に延びる複数のパターンと、この方向に直交する方向(図中、縦方向)において平行に延びる複数のパターンとを有する場合について説明した。しかしながら、他の配置が用いられてもよい。たとえば、平面視で千鳥格子状の配置を有するMOSトレンチTR1Z(図15)が用いられてもよい。千鳥格子状の配置を有するMOSトレンチTR1Zは、一の方向(図中、横方向)において平行に延びる複数のパターンと、この方向に直交する方向(図中、縦方向)において千鳥状に延びる複数のパターンとを有している。また、たとえば、平面視で櫛状の配置を有するMOSトレンチTR1S(図16)が用いられてもよい。櫛状の配置を有するMOSトレンチTR1Sは、互いに平行に延びる複数の櫛歯パターンを有している。なお、櫛歯パターンの各々の端部(図示せず)をつなぐパターンが設けられていてもよい。また、たとえば、平面視で六角形状の配置を有するMOSトレンチ(図示せず)が用いられてもよい。 In the above description, the case where the MOS trench TR1 has a grid-like arrangement (FIG. 14) in plan view has been described. In other words, the MOS trench TR1 has a plurality of patterns extending in parallel in one direction (lateral direction in the figure) and a plurality of patterns extending in parallel in a direction orthogonal to this direction (vertical direction in the figure). Explained the case. However, other arrangements may be used. For example, a MOS trench TR1Z (FIG. 15) having a staggered arrangement in plan view may be used. MOS trench TR1Z having a staggered arrangement extends in a zigzag manner in a plurality of patterns extending in parallel in one direction (lateral direction in the figure) and in a direction orthogonal to this direction (vertical direction in the figure). A plurality of patterns. Further, for example, a MOS trench TR1S (FIG. 16) having a comb-like arrangement in plan view may be used. The MOS trench TR1S having a comb-like arrangement has a plurality of comb patterns extending in parallel to each other. In addition, the pattern which connects each edge part (not shown) of a comb-tooth pattern may be provided. Further, for example, a MOS trench (not shown) having a hexagonal arrangement in plan view may be used.
 <実施の形態2>
 図17を参照して、本実施の形態におけるMOSFET92(電力用半導体装置)は、実施の形態1においてn-ドリフト領域11d(図1)が配置されていた領域に、n型のn領域11A(第1の半導体領域)を有している。n領域11Aは、n-ドリフト領域11e(ドリフト領域)と、n+高濃度領域11h(高濃度領域)とを有している。
<Embodiment 2>
Referring to FIG. 17, MOSFET 92 (power semiconductor device) in the present embodiment has n-type n region 11A (in the region where n drift region 11d (FIG. 1) is disposed in the first embodiment. A first semiconductor region). The n region 11A has an n drift region 11e (drift region) and an n + high concentration region 11h (high concentration region).
 n+高濃度領域11hは、ショットキー電極34に接している。n+高濃度領域11hの実効的な不純物濃度は、n-ドリフト領域11eの不純物濃度よりも高く、たとえば1×1017cm-3~1×1019cm-3程度である。好ましくは、n+高濃度領域11hの実効的な不純物濃度は、p保護拡散領域14の実効的な不純物濃度よりも低い。ここで「実効的な不純物濃度」とは、アクセプタ濃度とドナー濃度との差分の絶対値を意味する。好ましくは、n+高濃度領域11hは、基板1から離れている。 The n + high concentration region 11 h is in contact with the Schottky electrode 34. The effective impurity concentration of the n + high concentration region 11h is higher than the impurity concentration of the n drift region 11e, and is, for example, about 1 × 10 17 cm −3 to 1 × 10 19 cm −3 . Preferably, the effective impurity concentration of the n + high concentration region 11 h is lower than the effective impurity concentration of the p protective diffusion region 14. Here, “effective impurity concentration” means the absolute value of the difference between the acceptor concentration and the donor concentration. Preferably, the n + high concentration region 11 h is separated from the substrate 1.
 n-ドリフト領域11eは、n領域11Aのうちn+高濃度領域11h以外の領域である。n-ドリフト領域11eは、実施の形態1におけるn-ドリフト領域11dと同様の不純物濃度を有していてよい。 The n drift region 11e is a region other than the n + high concentration region 11h in the n region 11A. N drift region 11 e may have the same impurity concentration as n drift region 11 d in the first embodiment.
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the first embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
 ショットキー電極34によって構成された内蔵ショットキーバリアダイオードの電流経路は、複合トレンチTR2の底部に設けられたp保護拡散領域14の開口部を通る。前述したMOSFET91(図1:実施の形態1)においては、この開口部に、低い不純物濃度を有するn-ドリフト領域11dが配置されている。この場合、還流状態において、p保護拡散領域14から開口部内へ空乏層が延びやすく、その結果、開口部を通る電流経路が狭窄されることに起因して最大ユニポーラ電流が小さくなる。このため、十分な最大ユニポーラ電流を確保するためには、p保護拡散領域14の開口部を大きくしなければならない。この結果、MOSFET91の面積が大きくなる。 The current path of the built-in Schottky barrier diode formed by the Schottky electrode 34 passes through the opening of the p protective diffusion region 14 provided at the bottom of the composite trench TR2. In the above-described MOSFET 91 (FIG. 1: Embodiment 1), an n drift region 11 d having a low impurity concentration is disposed in this opening. In this case, in the reflux state, the depletion layer easily extends from the p protective diffusion region 14 into the opening, and as a result, the maximum unipolar current is reduced due to the current path passing through the opening being narrowed. For this reason, in order to ensure a sufficient maximum unipolar current, the opening of the p protective diffusion region 14 must be enlarged. As a result, the area of the MOSFET 91 is increased.
 これに対して本実施の形態によれば、p保護拡散領域14の開口部内に、ショットキー電極34に接するn+高濃度領域11hが設けられる。これにより、内蔵ショットキーバリアダイオードの電流経路の抵抗成分を低減することができる。よって、MOSFET92の面積を抑えつつ、内蔵ショットキーバリアダイオードの最大ユニポーラ電流をより大きくすることができる。 On the other hand, according to the present embodiment, the n + high concentration region 11 h in contact with the Schottky electrode 34 is provided in the opening of the p protective diffusion region 14. Thereby, the resistance component of the current path of the built-in Schottky barrier diode can be reduced. Therefore, the maximum unipolar current of the built-in Schottky barrier diode can be increased while suppressing the area of the MOSFET 92.
 n+高濃度領域11hの不純物濃度がp保護拡散領域14の不純物濃度よりも低い場合、ショットキー電極34近傍に過度に高い電界が加わることが避けられる。これにより、MOSFET92の信頼性を高めることができる。 When the impurity concentration of the n + high concentration region 11 h is lower than the impurity concentration of the p protective diffusion region 14, an excessively high electric field is avoided from being applied in the vicinity of the Schottky electrode 34. Thereby, the reliability of MOSFET92 can be improved.
 <実施の形態3>
 図18を参照して、本実施の形態におけるMOSFET93(電力用半導体装置)は、n+高濃度領域11hに代わりn+高濃度領域11iを有している。n+高濃度領域11iは、ショットキー電極34に接する箇所から、p保護拡散領域14の下方へと延びている。言い換えれば、n+高濃度領域11iは、ショットキー電極34に接する箇所から、p保護拡散領域14によって複合トレンチTR2の底部と隔てられた箇所へと延びている。
<Embodiment 3>
Referring to FIG. 18, MOSFET 93 of this embodiment (power semiconductor device) includes a place n + high concentration region 11i to the n + high-density region 11h. The n + high concentration region 11 i extends from the portion in contact with the Schottky electrode 34 to below the p protective diffusion region 14. In other words, the n + high concentration region 11 i extends from a location in contact with the Schottky electrode 34 to a location separated from the bottom of the composite trench TR 2 by the p protective diffusion region 14.
 なお、上記以外の構成については、上述した実施の形態2の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the second embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
 本実施の形態によれば、n+高濃度領域11iは、ショットキー電極34に接する箇所から、p保護拡散領域14によって複合トレンチTR2の底部と隔てられた箇所へと延びている。これにより、ショットキー電極34に接する箇所から、p保護拡散領域14によって複合トレンチTR2の底部と隔てられた箇所へと拡がる電流経路の電気抵抗が小さくなる。これにより、複合トレンチTR2の底部に設けられたp保護拡散領域14の開口部を大きくすることなく、内蔵ショットキーバリアダイオードの最大ユニポーラ電流を大きくすることができる。 According to the present embodiment, the n + high concentration region 11 i extends from a location in contact with the Schottky electrode 34 to a location separated from the bottom of the composite trench TR 2 by the p protective diffusion region 14. As a result, the electrical resistance of the current path extending from the portion in contact with the Schottky electrode 34 to the portion separated from the bottom of the composite trench TR2 by the p protective diffusion region 14 is reduced. Thus, the maximum unipolar current of the built-in Schottky barrier diode can be increased without increasing the opening of the p protective diffusion region 14 provided at the bottom of the composite trench TR2.
 <実施の形態4>
 図19は、本実施の形態におけるMOSFET94(電力用半導体装置)の構成を概略的に示す部分平面図である。図20~図22のそれぞれは、図19の線XX-XX、線XXI-XXIおよび線XXII-XXIIに沿う概略断面図である。なお、図19においては、ソース電極32および層間絶縁膜21の図示を省略している。
<Embodiment 4>
FIG. 19 is a partial plan view schematically showing a configuration of MOSFET 94 (power semiconductor device) in the present embodiment. 20 to 22 are schematic sectional views taken along line XX-XX, line XXI-XXI, and line XXII-XXII in FIG. In FIG. 19, the source electrode 32 and the interlayer insulating film 21 are not shown.
 MOSFET94は、コンタクト領域RG2(図1:実施の形態1)に代わりコンタクト領域RG2Rを有している。コンタクト領域RG2Rには、複合トレンチTR2に代わり複合トレンチTR2Rが設けられている。コンタクト領域RG2Rの形状、すなわち複合トレンチTR2Rの概形、は、長方形状を有している。よって、コンタクト領域RG2Rおよび複合トレンチTR2Rの各々は、この長方形状の長辺に沿った長手方向(図中、横方向)と、この長方形状の短辺に沿った幅方向(図中、縦方向)とを有している。 The MOSFET 94 has a contact region RG2R instead of the contact region RG2 (FIG. 1: embodiment 1). In the contact region RG2R, a composite trench TR2R is provided instead of the composite trench TR2. The shape of contact region RG2R, that is, the general shape of composite trench TR2R, has a rectangular shape. Therefore, each of the contact region RG2R and the composite trench TR2R has a longitudinal direction (horizontal direction in the figure) along the long side of the rectangular shape and a width direction (vertical direction in the figure) along the short side of the rectangular shape. ).
 コンタクト領域RG2Rの、幅方向に沿った断面は、長手方向における断面位置に依存して、異なる構造を有している。このことについて、以下に詳しく説明する。 The cross section of the contact region RG2R along the width direction has a different structure depending on the position of the cross section in the longitudinal direction. This will be described in detail below.
 線XX-XX(図19)に沿う断面(図20)には、トレンチ内コンタクトホールCH2を介してソース電極32がp保護拡散領域14にオーミック接続された領域が存在している。よってこの領域は、p保護拡散領域14をソース電位に接地する機能を有している。線XXI-XXI(図19)に沿う断面(図21)には、トレンチ内コンタクトホールCH2を介してショットキー電極34がp保護拡散領域14に接続された領域が存在している。ここで、ショットキー電極34は、n型半導体に対するショットキー接合を形成する一方、p型半導体に対してはオーミック接合を形成するものである。このため、ソース電極32は、ショットキー電極34を介してp保護拡散領域14にオーミック接続されている。よって線XXI-XXI近傍の領域も、線XX-XX近傍の領域と同様、p保護拡散領域14をソース電位に接地する機能を有している。 In the cross section (FIG. 20) along the line XX-XX (FIG. 19), there is a region in which the source electrode 32 is ohmically connected to the p protective diffusion region 14 via the contact hole CH2 in the trench. Therefore, this region has a function of grounding the p protection diffusion region 14 to the source potential. In the cross section (FIG. 21) along the line XXI-XXI (FIG. 19), there is a region where the Schottky electrode 34 is connected to the p protection diffusion region 14 via the contact hole CH2 in the trench. Here, the Schottky electrode 34 forms a Schottky junction with respect to the n-type semiconductor, and forms an ohmic junction with respect to the p-type semiconductor. Therefore, the source electrode 32 is ohmically connected to the p protection diffusion region 14 via the Schottky electrode 34. Therefore, the region near the line XXI-XXI also has a function of grounding the p protection diffusion region 14 to the source potential, similarly to the region near the line XX-XX.
 一方で、線XXII-XXII(図19)に沿う断面(図22)には、p保護拡散領域14の開口部においてn-ドリフト領域11にショットキー電極34がショットキー接続された領域が存在している。よってこの領域は、内蔵ショットキーバリアダイオードとしての機能を有している。 On the other hand, in the cross section (FIG. 22) along the line XXII-XXII (FIG. 19), there is a region where the Schottky electrode 34 is Schottky connected to the n drift region 11 in the opening of the p protective diffusion region 14. ing. Therefore, this region has a function as a built-in Schottky barrier diode.
 以上のように、p保護拡散領域14の接地機能を有する領域と、内蔵ショットキーバリアダイオードの機能を有する領域とが、長手方向において交互に配置されている。言い換えれば、複合トレンチTR2Rには長手方向において、ソース電極32がp保護拡散領域14にオーミック接続された領域と、ショットキー電極34がn-ドリフト領域11にショットキー接続された領域とが交互に配置されている。 As described above, the region having the ground function of the p protection diffusion region 14 and the region having the function of the built-in Schottky barrier diode are alternately arranged in the longitudinal direction. In other words, in the longitudinal direction of the composite trench TR2R, the region where the source electrode 32 is ohmically connected to the p protective diffusion region 14 and the region where the Schottky electrode 34 is Schottky connected to the n drift region 11 are alternately arranged. Has been placed.
 なお上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the first embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof will not be repeated.
 前述した実施の形態1によれば、トレンチ内コンタクトホールCH2(図1)において、図2に示すように、ショットキー電極34はその周囲全てをp保護拡散領域14に囲まれている。このため、p保護拡散層14形成時のマスクとショットキー電極34形成時のマスクとの相対的な位置が高精度に管理されないと、内蔵ショットキーバリアダイオードとしての機能を実際に有する領域の面積が変化したり、ドレイン-ソース間のリークが生じたりする恐れがある。 According to the first embodiment described above, in the contact hole CH2 in the trench (FIG. 1), the Schottky electrode 34 is entirely surrounded by the p protective diffusion region 14 as shown in FIG. Therefore, if the relative position between the mask at the time of forming the p protective diffusion layer 14 and the mask at the time of forming the Schottky electrode 34 is not managed with high accuracy, the area of the region that actually has a function as a built-in Schottky barrier diode. May change or a drain-source leak may occur.
 これに対して本実施の形態の構造によれば、上述したように、ソース電極32がp保護拡散領域14にオーミック接続された領域と、ショットキー電極34がn-ドリフト領域11にショットキー接続された領域とが交互に配置されている。言い換えれば、p保護拡散層を接地するための領域と、ショットキーバリアダイオードを形成するための領域とが、互いに区分されている。よって、フォトリソグラフィ工程におけるマスクずれに対する許容度を大きくすることができる。 On the other hand, according to the structure of the present embodiment, as described above, the source electrode 32 is ohmically connected to the p protective diffusion region 14 and the Schottky electrode 34 is Schottky connected to the n drift region 11. The arranged areas are alternately arranged. In other words, the region for grounding the p protective diffusion layer and the region for forming the Schottky barrier diode are separated from each other. Therefore, tolerance for mask displacement in the photolithography process can be increased.
 なお、図19においてはコンタクト領域RG2Rが1つだけ示されているが、コンタクト領域RG2Rの数は任意であり、たとえば、複数のコンタクト領域RG2Rが、長手方向および幅方向の少なくともいずれかにおいて周期的に配置されてもよい。また、n-ドリフト領域11に代わり、n領域11A(図17または図18:実施の形態2または3)が設けられてもよい。また、実施の形態1の場合と同様に、MOSトレンチTR1は、格子状の配置(図14)を有するものに限定されるわけではなく、たとえば、千鳥格子状の配置(図15)、櫛状の配置(図16)、または六角形状の配置が用いられてもよい。 Although only one contact region RG2R is shown in FIG. 19, the number of contact regions RG2R is arbitrary. For example, a plurality of contact regions RG2R are periodically arranged in at least one of the longitudinal direction and the width direction. May be arranged. Instead of n drift region 11, n region 11 </ b> A (FIG. 17 or FIG. 18: Embodiment 2 or 3) may be provided. Further, as in the case of the first embodiment, the MOS trench TR1 is not limited to the one having the lattice arrangement (FIG. 14). For example, the MOS trench TR1 is arranged in a staggered arrangement (FIG. 15), a comb A hexagonal arrangement (FIG. 16) or a hexagonal arrangement may be used.
 (変形例)
 図23を参照して、変形例のMOSFET94S(電力用半導体装置)は、コンタクト領域RG2Sを有している。コンタクト領域RG2Sには複合トレンチTR2S(第2のトレンチ)が設けられている。コンタクト領域RG2Sは、前述したコンタクト領域RG2Rを、その長辺方向において延長したものであり、長辺方向の端にMOS領域RG1が存在していない。よって、コンタクト領域RG2Sの形状、すなわち複合トレンチTR2Sの概形、は、ストライプ形状を有している。言い換えれば、複合トレンチTR2Sは、平面視でストライプ状の配置を有している。よって、コンタクト領域RG2Sおよび複合トレンチTR2Sの各々は、このストライプ形状の延在方向に沿った長手方向(図中、横方向)と、それに垂直な幅方向(図中、縦方向)とを有している。図中、MOSトレンチTR1は、縦方向に沿って延びる部分と横方向に沿って延びる部分とを有しており、複合トレンチTR2Sのストライプ形状の延在方向は、MOSトレンチTR1が延びる方向のひとつである横方向に沿っている。幅方向(図中、縦方向)において、MOSトレンチTR1は、複合トレンチTR2Sと異なる位置にのみ配置されている。
(Modification)
Referring to FIG. 23, a MOSFET 94S (power semiconductor device) of a modification has a contact region RG2S. The contact region RG2S is provided with a composite trench TR2S (second trench). The contact region RG2S is obtained by extending the above-described contact region RG2R in the long side direction, and the MOS region RG1 does not exist at the end in the long side direction. Therefore, the shape of the contact region RG2S, that is, the general shape of the composite trench TR2S has a stripe shape. In other words, the composite trench TR2S has a striped arrangement in plan view. Therefore, each of contact region RG2S and composite trench TR2S has a longitudinal direction (lateral direction in the figure) along the extending direction of the stripe shape and a width direction (vertical direction in the figure) perpendicular to the longitudinal direction. ing. In the figure, the MOS trench TR1 has a portion extending along the vertical direction and a portion extending along the horizontal direction, and the extending direction of the stripe shape of the composite trench TR2S is one of the directions in which the MOS trench TR1 extends. Along the lateral direction. In the width direction (vertical direction in the figure), the MOS trench TR1 is disposed only at a position different from the composite trench TR2S.
 前述したMOSFET94(図19)においては、MOS領域RG1の周期構造を乱さないようにするためには、コンタクト領域RG2Rの幅を、この周期構造に合わせて定める必要が生じる。具体的には、コンタクト領域RG2Rの幅を、この周期の整数倍に合わせる必要が生じる。この点で設計上の自由度が制限される。これに対して本変形例によれば、MOS領域RG1の幅とコンタクト領域RG2Sの幅とを独立に決めることができる。このため、設計上の自由度が大きくなる。具体的には、MOS領域RG1の幅を、オン抵抗、ドレイン-ソース間耐圧、ゲート絶縁膜20にかかる電界から決定し、コンタクト領域RG2Sの幅を、ショットキーバリアダイオードの占有面積から決定することができる。たとえば、ショットキーバリアダイオードの占有面積をより大きくするためには、図24に示されているように、単純にコンタクト領域RG2Sの幅を大きくするだけでよい。 In the above-described MOSFET 94 (FIG. 19), in order not to disturb the periodic structure of the MOS region RG1, it is necessary to determine the width of the contact region RG2R according to this periodic structure. Specifically, it is necessary to adjust the width of the contact region RG2R to an integral multiple of this period. This limits the degree of freedom in design. On the other hand, according to this modification, the width of the MOS region RG1 and the width of the contact region RG2S can be determined independently. This increases the degree of freedom in design. Specifically, the width of the MOS region RG1 is determined from the on-resistance, the drain-source breakdown voltage, and the electric field applied to the gate insulating film 20, and the width of the contact region RG2S is determined from the area occupied by the Schottky barrier diode. Can do. For example, in order to increase the occupation area of the Schottky barrier diode, it is only necessary to simply increase the width of the contact region RG2S as shown in FIG.
 なお長手方向において、コンタクト領域RG2Sの寸法は、MOS領域RG1およびコンタクト領域RG2Sが形成される活性領域の寸法と同じであってもよいし、それより小さくともよい。 In the longitudinal direction, the size of the contact region RG2S may be the same as or smaller than the size of the active region in which the MOS region RG1 and the contact region RG2S are formed.
 図25を参照して、さらなる変形例のMOSFET94T(電力用半導体装置)は、MOS領域RG1(図23)に代わり、MOS領域RG1Sを有している。本変形例においては、コンタクト領域RG2Sだけでなく、MOS領域RG1Sも、平面視でストライプ状の配置を有している。 Referring to FIG. 25, MOSFET 94T (power semiconductor device) of a further modification has MOS region RG1S instead of MOS region RG1 (FIG. 23). In the present modification, not only the contact region RG2S but also the MOS region RG1S has a striped arrangement in plan view.
 本変形例においては、MOSトレンチTR1および複合トレンチTR2S(図23)に代わり、MOSトレンチTR1Pおよび複合トレンチTR2Pが設けられている。MOSトレンチTR1Pおよび複合トレンチTR2Pは、それらが一体となることで、ストライプ状のトレンチTRCを構成している。言い換えれば、トレンチTRCの一部がMOSトレンチTR1Pであり、他部が複合トレンチTR2Pである。 In this modification, a MOS trench TR1P and a composite trench TR2P are provided instead of the MOS trench TR1 and the composite trench TR2S (FIG. 23). The MOS trench TR1P and the composite trench TR2P are combined to form a stripe-shaped trench TRC. In other words, a part of the trench TRC is the MOS trench TR1P, and the other part is the composite trench TR2P.
 本変形例によれば、MOS領域RG1Sの幅を小さくしやすい。なお、図示されているように、MOS領域RG1Sの幅に比して、コンタクト領域RG2Sの幅が大きくされてもよい。これにより、ショットキーバリアダイオードとして機能する領域の面積を大きく確保することができる。 According to this modification, it is easy to reduce the width of the MOS region RG1S. As shown in the drawing, the width of the contact region RG2S may be made larger than the width of the MOS region RG1S. Thereby, a large area of the region functioning as the Schottky barrier diode can be secured.
 なお上記各実施の形態では、ドレイン電極31が基板1の下面に配置される、いわゆる縦型MOSFETについて説明したが、電力用半導体装置は、ドレイン電極31がn-ドリフト領域11の上面に配置されるRESURF型MOSFETなど、いわゆる横型MOSFETであってもよい。また上記各実施の形態ではMOSFETについて説明したが、電力用半導体装置はMOSFET以外のMISFET(Metal-Insulator-Semiconductor Field-Effect-Transistor)であってもよい。また電力用半導体装置はMISFET以外のトランジスタであってもよく、たとえばIGBT(Insulated-Gate Bipolar Transistor)であってもよい。IGBTを構成するためには、たとえば、図1における基板1の導電型を、n-ドリフト領域11の導電型と異なるものであるp型とすればよい。その場合、MOSFET91におけるnソース領域13、ソース電極32およびドレイン電極31のそれぞれは、IGBTにおけるエミッタ領域、エミッタ電極およびコレクタ電極に対応する。また上記各実施の形態では、ワイドバンドギャップ半導体としてSiCを用いる場合について説明したが、窒化ガリウム(GaN)系材料、ダイヤモンドなど、他のワイドバンドギャップ半導体が用いられてもよい。 In each of the above embodiments, the so-called vertical MOSFET in which the drain electrode 31 is disposed on the lower surface of the substrate 1 has been described. However, in the power semiconductor device, the drain electrode 31 is disposed on the upper surface of the n drift region 11. A so-called lateral MOSFET such as a RESURF MOSFET may be used. In each of the above embodiments, the MOSFET has been described. However, the power semiconductor device may be a MISFET (Metal-Insulator-Semiconductor Field-Effect-Transistor) other than the MOSFET. The power semiconductor device may be a transistor other than a MISFET, for example, an IGBT (Insulated-Gate Bipolar Transistor). In order to configure the IGBT, for example, the conductivity type of the substrate 1 in FIG. 1 may be a p-type different from the conductivity type of the n drift region 11. In that case, each of the n source region 13, the source electrode 32, and the drain electrode 31 in the MOSFET 91 corresponds to the emitter region, the emitter electrode, and the collector electrode in the IGBT. In each of the above embodiments, the case where SiC is used as the wide band gap semiconductor has been described. However, other wide band gap semiconductors such as gallium nitride (GaN) -based material and diamond may be used.
 本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments. Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 CH1 ソースコンタクトホール、CH2 トレンチ内コンタクトホール、RG1,RG1S MOS領域、RG2,RG2S コンタクト領域、TR1,TR1P,TR1S,TR1Z MOSトレンチ(第1のトレンチ)、TR2,TR2P 複合トレンチ(第2のトレンチ)、1 基板、10 半導体層、11 n-ドリフト領域(第1の半導体領域)、11A n領域(第1の半導体領域)、11d,11e n-ドリフト領域(ドリフト領域)、11h,11i n+高濃度領域(高濃度領域)、12 pベース領域(第2の半導体領域)、13 nソース領域(第3の半導体領域)、14 p保護拡散領域(第4の半導体領域)、20 ゲート絶縁膜、21 層間絶縁膜、30 ゲート電極、31 ドレイン電極(第1の主電極)、32 ソース電極(第2の主電極)、34 ショットキー電極、91~94,94S,94T MOSFET(電力用半導体装置)。 CH1 source contact hole, CH2 contact hole in trench, RG1, RG1S MOS region, RG2, RG2S contact region, TR1, TR1P, TR1S, TR1Z MOS trench (first trench), TR2, TR2P compound trench (second trench) 1 substrate, 10 semiconductor layer, 11 n - drift region (first semiconductor region), 11A n region (first semiconductor region), 11d, 11e n - drift region (drift region), 11h, 11i n + high Concentration region (high concentration region), 12 p base region (second semiconductor region), 13 n source region (third semiconductor region), 14 p protective diffusion region (fourth semiconductor region), 20 gate insulating film, 21 interlayer insulating film, 30 gate electrode, 31 drain electrode (first main electrode), 32 source electrode (second Electrode), 34 Schottky electrode, 91 ~ 94,94S, semiconductor device 94T MOSFET (power).

Claims (13)

  1.  第1の導電型を有する第1の半導体領域(11,11A)と、
     前記第1の半導体領域(11,11A)上に設けられ、前記第1の導電型と異なる第2の導電型を有する第2の半導体領域(12)と、
     前記第2の半導体領域(12)上に設けられ、前記第2の半導体領域(12)によって前記第1の半導体領域(11,11A)から隔てられ、前記第1の導電型を有する第3の半導体領域(13)と、
     前記第1の半導体領域(11,11A)と接し、前記第2の半導体領域(12)よりも深く設けられた部分を有し、前記第2の導電型を有する第4の半導体領域(14)と、
     前記第3の半導体領域(13)と前記第2の半導体領域(12)と前記第1の半導体領域(11,11A)とに面する内面を有する第1のトレンチ(TR1,TR1Z,TR1S,TR1P)内に設けられ、前記第1のトレンチ(TR1,TR1Z,TR1S,TR1P)の前記内面を覆うゲート絶縁膜(20)と、
     前記第1のトレンチ(TR1,TR1Z,TR1S,TR1P)内で前記ゲート絶縁膜(20)上に設けられたゲート電極(30)と、
     前記第1の半導体領域(11,11A)に電気的に接続された第1の主電極(31)と、
     前記第1の主電極(31)から離れて設けられ、前記第3の半導体領域(13)にオーミック接続され、前記第1の半導体領域(11,11A)および前記第4の半導体領域(14)に面する底部を有する第2のトレンチ(TR2,TR2R,TR2S,TR2P)内に配置された部分を有し、前記第2のトレンチ(TR2,TR2R,TR2S,TR2P)の前記底部上で前記第4の半導体領域(14)にオーミック接続された第2の主電極(32)と、
     前記第2の主電極(32)と短絡され、前記第2のトレンチ(TR2,TR2R,TR2S,TR2P)の前記底部上で前記第1の半導体領域(11,11A)にショットキー接続されたショットキー電極(34)と、
    を備える、電力用半導体装置(91~94,94S,94T)。
    A first semiconductor region (11, 11A) having a first conductivity type;
    A second semiconductor region (12) provided on the first semiconductor region (11, 11A) and having a second conductivity type different from the first conductivity type;
    A third semiconductor region provided on the second semiconductor region (12), separated from the first semiconductor region (11, 11A) by the second semiconductor region (12), and having the first conductivity type; A semiconductor region (13);
    A fourth semiconductor region (14) having a portion in contact with the first semiconductor region (11, 11A) and deeper than the second semiconductor region (12) and having the second conductivity type. When,
    First trenches (TR1, TR1Z, TR1S, TR1P) having inner surfaces facing the third semiconductor region (13), the second semiconductor region (12), and the first semiconductor region (11, 11A). ) And a gate insulating film (20) covering the inner surface of the first trench (TR1, TR1Z, TR1S, TR1P),
    A gate electrode (30) provided on the gate insulating film (20) in the first trench (TR1, TR1Z, TR1S, TR1P);
    A first main electrode (31) electrically connected to the first semiconductor region (11, 11A);
    The first semiconductor region (11) and the fourth semiconductor region (14) are provided apart from the first main electrode (31) and are ohmically connected to the third semiconductor region (13). Having a portion disposed in a second trench (TR2, TR2R, TR2S, TR2P) having a bottom facing the first, and on the bottom of the second trench (TR2, TR2R, TR2S, TR2P) A second main electrode (32) ohmically connected to four semiconductor regions (14);
    Shot short-circuited with the second main electrode (32) and Schottky connected to the first semiconductor region (11, 11A) on the bottom of the second trench (TR2, TR2R, TR2S, TR2P) A key electrode (34);
    A power semiconductor device (91 to 94, 94S, 94T).
  2.  前記第1のトレンチ(TR1,TR1Z,TR1S)は、前記第4の半導体領域(14)の幅と同じ幅を有する、請求項1に記載の電力用半導体装置(91~94,94S)。 The power semiconductor device (91 to 94, 94S) according to claim 1, wherein the first trench (TR1, TR1Z, TR1S) has the same width as the width of the fourth semiconductor region (14).
  3.  前記第2のトレンチ(TR2,TR2R,TR2S)は、前記第3の半導体領域(13)と前記第2の半導体領域(12)と前記第1の半導体領域(11,11A)とに面する側部を有し、前記ゲート絶縁膜(20)は、前記第2のトレンチ(TR2,TR2R,TR2S)の前記側部を覆う部分を有し、前記ゲート電極(30)は、前記第2のトレンチ(TR2,TR2R,TR2S)内で前記ゲート絶縁膜(20)上に設けられた部分を有する、請求項1または2に記載の電力用半導体装置(91~94,94S)。 The second trench (TR2, TR2R, TR2S) faces the third semiconductor region (13), the second semiconductor region (12), and the first semiconductor region (11, 11A). The gate insulating film (20) has a portion covering the side portion of the second trench (TR2, TR2R, TR2S), and the gate electrode (30) is formed of the second trench. The power semiconductor device (91 to 94, 94S) according to claim 1 or 2, comprising a portion provided on the gate insulating film (20) in (TR2, TR2R, TR2S).
  4.  断面視において、前記第4の半導体領域(14)は、前記第2のトレンチ(TR2,TR2R,TR2S,TR2P)の前記底部の一方端および他方端のそれぞれを覆う第1の部分および第2の部分を有しており、前記ショットキー電極(34)は前記第1の半導体領域(11,11A)に前記第1の部分と前記第2の部分との間でショットキー接続されている、請求項3に記載の電力用半導体装置(91~94,94S)。 In a cross-sectional view, the fourth semiconductor region (14) includes a first portion and a second portion that respectively cover one end and the other end of the bottom of the second trench (TR2, TR2R, TR2S, TR2P). The Schottky electrode (34) is Schottky connected to the first semiconductor region (11, 11A) between the first portion and the second portion. Item 4. The power semiconductor device according to Item 3 (91 to 94, 94S).
  5.  前記第1の半導体領域(11A)は、
     ドリフト領域(11e)と、
     前記ショットキー電極(34)に接し、前記ドリフト領域の不純物濃度よりも高い不純物濃度を有する高濃度領域(11h,11i)と、
    を含む、請求項1から4のいずれか1項に記載の電力用半導体装置(92,93)。
    The first semiconductor region (11A)
    A drift region (11e);
    A high concentration region (11h, 11i) in contact with the Schottky electrode (34) and having an impurity concentration higher than that of the drift region;
    5. The power semiconductor device (92, 93) according to claim 1, comprising:
  6.  前記高濃度領域(11h,11i)の不純物濃度は、前記第4の半導体領域(14)の不純物濃度よりも低い、請求項5に記載の電力用半導体装置(92,93)。 The power semiconductor device (92, 93) according to claim 5, wherein an impurity concentration of the high concentration region (11h, 11i) is lower than an impurity concentration of the fourth semiconductor region (14).
  7.  前記高濃度領域(11i)は、前記ショットキー電極(34)に接する箇所から、前記第4の半導体領域(14)によって前記第2のトレンチ(TR2,TR2R,TR2S)の前記底部と隔てられた箇所へと延びている、請求項5または6に記載の電力用半導体装置(93)。 The high concentration region (11i) is separated from the bottom of the second trench (TR2, TR2R, TR2S) by the fourth semiconductor region (14) from a position in contact with the Schottky electrode (34). The power semiconductor device (93) according to claim 5 or 6, which extends to a location.
  8.  前記第1のトレンチ(TR1)は、平面視で格子状の配置を有する、請求項1から7のいずれか1項に記載の電力用半導体装置(91~94,94S)。 The power semiconductor device (91 to 94, 94S) according to any one of claims 1 to 7, wherein the first trench (TR1) has a grid-like arrangement in plan view.
  9.  前記第1のトレンチ(TR1Z)は、平面視で千鳥格子状の配置を有する、請求項1から7のいずれか1項に記載の電力用半導体装置(91~94,94S)。 The power semiconductor device (91 to 94, 94S) according to any one of claims 1 to 7, wherein the first trench (TR1Z) has a staggered arrangement in a plan view.
  10.  前記第1のトレンチ(TR1S)は、平面視で櫛状の配置を有する、請求項1から7のいずれか1項に記載の電力用半導体装置(91~94,94S,94T)。 The power semiconductor device (91 to 94, 94S, 94T) according to any one of claims 1 to 7, wherein the first trench (TR1S) has a comb-like arrangement in a plan view.
  11.  前記第2のトレンチ(TR2S,TR2P)は、平面視でストライプ状の配置を有する、請求項1から10のいずれか1項に記載の電力用半導体装置(94S,94T)。 The power semiconductor device (94S, 94T) according to any one of claims 1 to 10, wherein the second trenches (TR2S, TR2P) have a stripe arrangement in a plan view.
  12.  前記第2のトレンチ(TR2R,TR2S,TR2P)は長手方向を有し、
     前記第2のトレンチ(TR2R,TR2S,TR2P)には前記長手方向において、前記第2の主電極が前記第4の半導体領域にオーミック接続された領域と、前記ショットキー電極が前記第1の半導体領域にショットキー接続された領域とが交互に配置されている、請求項1から11のいずれか1項に記載の電力用半導体装置(94,94S,94T)。
    The second trench (TR2R, TR2S, TR2P) has a longitudinal direction,
    The second trench (TR2R, TR2S, TR2P) has a region in which the second main electrode is ohmically connected to the fourth semiconductor region in the longitudinal direction, and the Schottky electrode is the first semiconductor. The power semiconductor device (94, 94S, 94T) according to any one of claims 1 to 11, wherein the regions Schottky-connected to the regions are alternately arranged.
  13.  前記第1の半導体領域(11,11A)はワイドバンドギャップ半導体から作られている、請求項1から12のいずれか1項に記載の電力用半導体装置(91~94,94S,94T)。 The power semiconductor device (91 to 94, 94S, 94T) according to any one of claims 1 to 12, wherein the first semiconductor region (11, 11A) is made of a wide band gap semiconductor.
PCT/JP2016/064634 2015-07-15 2016-05-17 Power semiconductor device WO2017010164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017528315A JP6400202B2 (en) 2015-07-15 2016-05-17 Power semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-141006 2015-07-15
JP2015141006 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017010164A1 true WO2017010164A1 (en) 2017-01-19

Family

ID=57756924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064634 WO2017010164A1 (en) 2015-07-15 2016-05-17 Power semiconductor device

Country Status (2)

Country Link
JP (1) JP6400202B2 (en)
WO (1) WO2017010164A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004819A (en) * 2018-06-27 2020-01-09 日産自動車株式会社 Semiconductor device and manufacturing method thereof
US11489046B2 (en) 2018-09-15 2022-11-01 Kabushiki Kaisha Toshiba Semiconductor device
WO2023165242A1 (en) * 2022-03-02 2023-09-07 华为数字能源技术有限公司 Sic mosfet and preparation method therefor, and integrated circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060138533A1 (en) * 2004-11-21 2006-06-29 Infineon Technologies Ag Vertical trench transistor
JP2009043966A (en) * 2007-08-09 2009-02-26 Toshiba Corp Semiconductor apparatus and method of manufacturing the same
JP2011114027A (en) * 2009-11-24 2011-06-09 Toshiba Corp Power semiconductor device
WO2012077617A1 (en) * 2010-12-10 2012-06-14 三菱電機株式会社 Semiconductor device and production method therefor
WO2012105609A1 (en) * 2011-02-02 2012-08-09 ローム株式会社 Semiconductor device
WO2014178262A1 (en) * 2013-04-30 2014-11-06 日産自動車株式会社 Semiconductor device and method for manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682272B2 (en) * 1991-06-27 1997-11-26 三菱電機株式会社 Insulated gate transistor
US6621107B2 (en) * 2001-08-23 2003-09-16 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
US7751215B2 (en) * 2005-07-08 2010-07-06 Panasonic Corporation Semiconductor device and electric apparatus having a semiconductor layer divided into a plurality of square subregions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060138533A1 (en) * 2004-11-21 2006-06-29 Infineon Technologies Ag Vertical trench transistor
JP2009043966A (en) * 2007-08-09 2009-02-26 Toshiba Corp Semiconductor apparatus and method of manufacturing the same
JP2011114027A (en) * 2009-11-24 2011-06-09 Toshiba Corp Power semiconductor device
WO2012077617A1 (en) * 2010-12-10 2012-06-14 三菱電機株式会社 Semiconductor device and production method therefor
WO2012105609A1 (en) * 2011-02-02 2012-08-09 ローム株式会社 Semiconductor device
WO2014178262A1 (en) * 2013-04-30 2014-11-06 日産自動車株式会社 Semiconductor device and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004819A (en) * 2018-06-27 2020-01-09 日産自動車株式会社 Semiconductor device and manufacturing method thereof
JP7112898B2 (en) 2018-06-27 2022-08-04 日産自動車株式会社 Semiconductor device and its manufacturing method
US11489046B2 (en) 2018-09-15 2022-11-01 Kabushiki Kaisha Toshiba Semiconductor device
WO2023165242A1 (en) * 2022-03-02 2023-09-07 华为数字能源技术有限公司 Sic mosfet and preparation method therefor, and integrated circuit

Also Published As

Publication number Publication date
JP6400202B2 (en) 2018-10-03
JPWO2017010164A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6926869B2 (en) Semiconductor device
JP6049784B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP7190144B2 (en) Super-junction silicon carbide semiconductor device and method for manufacturing super-junction silicon carbide semiconductor device
JP7471267B2 (en) Semiconductor Device
JP5002148B2 (en) Semiconductor device
JP7059555B2 (en) Semiconductor device
JP6996082B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP4621708B2 (en) Semiconductor device and manufacturing method thereof
JP5449094B2 (en) Semiconductor device
JP6369173B2 (en) Vertical semiconductor device and manufacturing method thereof
JP4843843B2 (en) Super junction semiconductor device
JP7243094B2 (en) semiconductor equipment
JP2006269720A (en) Semiconductor device and its fabrication process
JP6109444B1 (en) Semiconductor device
JP6725055B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP5646044B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP7293750B2 (en) Super-junction silicon carbide semiconductor device and method for manufacturing super-junction silicon carbide semiconductor device
JPWO2018029951A1 (en) Semiconductor device
JP7290973B2 (en) semiconductor equipment
JP6400202B2 (en) Power semiconductor device
US10707301B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6984347B2 (en) Semiconductor device
JP4997715B2 (en) Semiconductor device and manufacturing method thereof
WO2015107614A1 (en) Power semiconductor device
JP2019003966A (en) Silicon carbide semiconductor device, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824144

Country of ref document: EP

Kind code of ref document: A1