JP4921345B2 - Solid-state imaging device and camera - Google Patents

Solid-state imaging device and camera Download PDF

Info

Publication number
JP4921345B2
JP4921345B2 JP2007340116A JP2007340116A JP4921345B2 JP 4921345 B2 JP4921345 B2 JP 4921345B2 JP 2007340116 A JP2007340116 A JP 2007340116A JP 2007340116 A JP2007340116 A JP 2007340116A JP 4921345 B2 JP4921345 B2 JP 4921345B2
Authority
JP
Japan
Prior art keywords
mos transistor
region
semiconductor region
source
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007340116A
Other languages
Japanese (ja)
Other versions
JP2008153677A (en
Inventor
真人 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007340116A priority Critical patent/JP4921345B2/en
Publication of JP2008153677A publication Critical patent/JP2008153677A/en
Application granted granted Critical
Publication of JP4921345B2 publication Critical patent/JP4921345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は固体撮像装置及び固体撮像装置を備えるカメラに関するものである。   The present invention relates to a solid-state imaging device and a camera including the solid-state imaging device.

従来から、固体撮像装置としてはそのSN比の良さからCCDが多く使われてきた。しかし一方では消費電力の少なさや使い勝手の良さを長所とするいわゆる増幅型固体撮像装置の開発も行われてきた。増幅型固体撮像装置とは、フォトダイオードに蓄積された信号電荷を画素に備わったトランジスタの制御電極に導き、信号電荷量に応じた出力を前記トランジスタの主電極から増幅して出力するものである。特にトランジスタとしてMOSトランジスタを使ったいわゆるCMOSセンサはCMOSプロセスとのマッチングが良く、駆動回路、信号処理回路をオンチップ化できることから、開発に力が注がれている。   Conventionally, a CCD is often used as a solid-state imaging device because of its good SN ratio. However, on the other hand, so-called amplification type solid-state imaging devices have been developed which have the advantages of low power consumption and ease of use. An amplification type solid-state imaging device is a device that guides signal charges accumulated in a photodiode to a control electrode of a transistor provided in a pixel, amplifies an output corresponding to the amount of signal charge from the main electrode of the transistor, and outputs the amplified signal. . In particular, a so-called CMOS sensor using a MOS transistor as a transistor has a good matching with the CMOS process, and the drive circuit and the signal processing circuit can be made on-chip, and therefore, development is focused on.

図5はCMOSセンサ画素の典型的な例を示す回路図であり、同図において1は単位画素、2は入射光によって発生した信号電荷を蓄積するためのフォトダイオード、3は信号電荷量に応じた増幅信号出力を出す増幅用MOSトランジスタ、4は信号電荷を受けMOSトランジスタ3のゲート電極に接続するフローティングディフュージョン(以下FDと記す)領域、5はフォトダイオード2に蓄積した信号電荷をFD領域4に転送するためのMOSトランジスタ、6はFD領域4をリセットするためのMOSトランジスタ、7は出力画素を選択するためのMOSトランジスタ、8はMOSトランジスタ5のゲートにパルスを印加し、電荷転送動作を制御するための制御線、9はMOSトランジスタ6のゲートにパルスを印加しリセット動作を制御するための制御線、10はMOSトランジスタ7のゲートにパルスを印加し選択動作を制御するための制御線、11は電源配線であって、増幅用MOSトランジスタ3のドレインおよびリセット用MOSトランジスタ6のドレインに接続され、それらに電源電位を供給している。12は選択された画素の増幅信号が出力される出力線、13は定電流源として動作し、増幅用MOSトランジスタ3と協働してソースフォロワを形成するMOSトランジスタ、14はMOSトランジスタ13が定電流動作するような電位をMOSトランジスタ13のゲート電極に供給する配線である。上記の画素1を2次元的マトリックス状に配列したものは2次元固体撮像装置の画素領域を形成するが、そのマトリックス構成において出力線12は各列の画素の共通線、制御線8、9、10はそれぞれ各行の画素の共通線となっており、制御線10によって選択された行の画素のみが出力線12に信号出力される。   FIG. 5 is a circuit diagram showing a typical example of a CMOS sensor pixel, in which 1 is a unit pixel, 2 is a photodiode for storing signal charges generated by incident light, and 3 is a signal charge amount. Amplifying MOS transistor that outputs the amplified signal output, 4 is a floating diffusion (hereinafter referred to as FD) region that receives the signal charge and is connected to the gate electrode of the MOS transistor 3, and 5 is a signal charge accumulated in the photodiode 2 in the FD region 4. Is a MOS transistor for resetting the FD region 4, 7 is a MOS transistor for selecting an output pixel, and 8 is a pulse applied to the gate of the MOS transistor 5 to perform a charge transfer operation. Control line 9 for controlling, reset operation by applying a pulse to the gate of MOS transistor 6 A control line 10 for controlling, a control line for applying a pulse to the gate of the MOS transistor 7 to control the selection operation, and 11 a power supply wiring, the drain of the amplifying MOS transistor 3 and the reset MOS transistor 6 The power source potential is supplied to them. Reference numeral 12 denotes an output line for outputting an amplification signal of the selected pixel, 13 denotes a MOS transistor that operates as a constant current source and forms a source follower in cooperation with the amplification MOS transistor 3, and 14 denotes a MOS transistor 13 constant. This is a wiring for supplying a potential for current operation to the gate electrode of the MOS transistor 13. The pixels 1 arranged in a two-dimensional matrix form a pixel region of a two-dimensional solid-state imaging device. In the matrix configuration, the output line 12 is a common line of pixels in each column, control lines 8, 9, Reference numeral 10 denotes a common line for pixels in each row, and only the pixels in the row selected by the control line 10 are signal-outputted to the output line 12.

次に画素の動作を簡単に説明する。制御線10によって選択用MOSトランジスタがON状態となる行の画素について、まず制御線9にパルスが印加され、FD領域4がリセットされる。増幅用MOSトランジスタ3と定電流用MOSトランジスタ13とでソースフォロワが形成されるから、リセット電位に応じた出力電位が出力線12にあらわれる。次に制御線8にパルスを印加することによってフォトダイオードに蓄積された信号電荷がFD領域4に転送されると、この信号電荷量に応じた電圧分だけFD領域4の電位が変化し、その電位変化分が出力線12にもあらわれる。出力線12にあらわれるリセット電位は、増幅用MOSトランジスタ3のしきい電圧値ばらつきおよびFD領域4をリセットするときのリセット雑音などの雑音がのっているので、信号電荷量に対応した電位変化分が雑音をふくまない信号である。2次元CMOSセンサでは、この雑音を取り除き、信号のみを取り出すための読み出し回路が、出力線12に接続している。この読み出し回路には、クランプ回路によって上記雑音を除くもの、雑音と雑音+純粋信号とを別々に保持してそれぞれ水平走査の読み出し時に最終段の差動アンプに導くことによって雑音を除くもの、などいくつかの構成が提案されているが、本発明とは直接の関係がないので詳しい説明は省略する。   Next, the operation of the pixel will be briefly described. For the pixels in the row where the selection MOS transistor is turned on by the control line 10, a pulse is first applied to the control line 9, and the FD region 4 is reset. Since the amplifying MOS transistor 3 and the constant current MOS transistor 13 form a source follower, an output potential corresponding to the reset potential appears on the output line 12. Next, when the signal charge accumulated in the photodiode is transferred to the FD region 4 by applying a pulse to the control line 8, the potential of the FD region 4 changes by a voltage corresponding to the amount of signal charge. The potential change appears on the output line 12 as well. Since the reset potential appearing on the output line 12 includes noise such as variations in threshold voltage values of the amplifying MOS transistor 3 and reset noise when the FD region 4 is reset, the potential change corresponding to the signal charge amount is included. Is a signal that does not contain noise. In the two-dimensional CMOS sensor, a readout circuit for removing this noise and extracting only a signal is connected to the output line 12. In this readout circuit, the above-mentioned noise is removed by a clamp circuit, and the noise and noise + pure signal are held separately, and the noise is eliminated by guiding them to the differential amplifier at the final stage during horizontal scanning readout, etc. Several configurations have been proposed, but they are not directly related to the present invention and will not be described in detail.

次に画素のフォトダイオード、増幅用MOSトランジスタの部分の断面構造を図6に示す。同図において15はN型の半導体基板、16はP型のウエル、17はウエル16中に形成されたN型の半導体領域であり、16と17とでフォトダイオードが形成され、領域17には入射光によって発生した信号電子が蓄積される。18および19はそれぞれウエル16中に形成され、増幅用MOSトランジスタ3のドレイン、ソースとなるN型の半導体領域、20は増幅用MOSトランジスタ3のゲート電極、21は通称LOCOSといわれる素子分離のための厚い酸化膜、22はLOCOS21の直下にあってウエル16と同じ導電性のP型半導体層のチャンネルストッパー、11はドレイン18に接続するドレイン配線、23はソース19に接続するソース配線である。領域17に蓄積される信号電子は転送動作時にはFD4に転送され、転送直後には領域17は空乏化するよう、領域17におけるN型の不純物濃度が設定されている。   Next, FIG. 6 shows a cross-sectional structure of a pixel photodiode and an amplification MOS transistor. In the figure, 15 is an N-type semiconductor substrate, 16 is a P-type well, 17 is an N-type semiconductor region formed in the well 16, and a photodiode is formed by 16 and 17. Signal electrons generated by the incident light are accumulated. Reference numerals 18 and 19 are formed in the well 16, respectively, N-type semiconductor regions serving as the drain and source of the amplifying MOS transistor 3, 20 the gate electrode of the amplifying MOS transistor 3, and 21 for element isolation commonly referred to as LOCOS. A thick oxide film 22, a channel stopper of a P-type semiconductor layer that is directly under the LOCOS 21 and has the same conductivity as the well 16, 11 is a drain wiring connected to the drain 18, and 23 is a source wiring connected to the source 19. The signal electrons stored in the region 17 are transferred to the FD 4 during the transfer operation, and the N-type impurity concentration in the region 17 is set so that the region 17 is depleted immediately after the transfer.

また、特許文献1の図7には、n型基板から所定の深さにp型埋め込み層を形成し、その上側のn型基板に光電変換部を形成した固体撮像装置が開示されている。
特開2000−150848号公報
FIG. 7 of Patent Document 1 discloses a solid-state imaging device in which a p-type buried layer is formed at a predetermined depth from an n-type substrate, and a photoelectric conversion unit is formed on the upper n-type substrate.
JP 2000-150848 A

しかしながら上記従来のCMOSセンサにおいては、増幅用MOSトランジスタ3からいわゆる1/f雑音が発生し、センサのノイズが大きくなるという問題があった。また、増幅用MOSトランジスタ3はソースフォロワとして動作させるのが一般的であるが、ウエル16の電位は一定値に固定されているため、バックゲートバイアス効果によってソースフォロワ動作時のゲインが低下し、信号が小さくなるという問題があった。さらに、フォトダイオードよりも下方で発生した信号電子は必ずしもフォトダイオードに吸収されるとは限らず、FD部4や画素内におけるMOSトランジスタ3,6,7のN型ソースドレインにもある確率をもって吸収される。このように、信号電子がフォトダイオード以外に吸収されて感度が低下するという問題があった。   However, the conventional CMOS sensor has a problem that so-called 1 / f noise is generated from the amplifying MOS transistor 3 and the noise of the sensor increases. The amplifying MOS transistor 3 is generally operated as a source follower. However, since the potential of the well 16 is fixed to a constant value, the gain during the source follower operation is reduced due to the back gate bias effect. There was a problem that the signal became small. Furthermore, the signal electrons generated below the photodiode are not necessarily absorbed by the photodiode, but are also absorbed by the FD section 4 and the N-type source / drains of the MOS transistors 3, 6 and 7 in the pixel. Is done. As described above, there is a problem that the signal electrons are absorbed by other than the photodiode and the sensitivity is lowered.

また、特許文献1に開示された画素構造では、画素内に設けられた増幅用MOSトランジスタが、増幅用MOSトランジスタのソース、ドレインと逆導電型のウエル内に形成されているため、基板バイアス効果を十分に小さくできない。したがって、ソースフォロア動作のゲインを高くすることができない。   Further, in the pixel structure disclosed in Patent Document 1, since the amplification MOS transistor provided in the pixel is formed in a well having a conductivity type opposite to the source and drain of the amplification MOS transistor, the substrate bias effect is achieved. Cannot be made small enough. Therefore, the gain of the source follower operation cannot be increased.

そこで本発明は、従来の増幅型固体撮像装置に比べて、高ゲインでかつ、高感度の増幅型固体撮像装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an amplification type solid-state imaging device having a higher gain and higher sensitivity than conventional amplification type solid-state imaging devices.

本発明の第1の側面は、フォトダイオードと、前記フォトダイオードで発生した信号電荷をゲートに受けて増幅して出力する第1導電型の増幅用MOSトランジスタとを含む単位画素が半導体基板に配列された固体撮像装置において、前記フォトダイオードは、第1導電型の第1の半導体領域と、前記フォトダイオードの受光面を基準として前記第1の半導体領域の下方から前記増幅用MOSトランジスタの下方まで延在する第2導電型の第2の半導体領域と、を含んで構成され、前記増幅用MOSトランジスタのソース及びドレイン領域は、前記ソース及びドレイン領域と同一導電型で前記ソース及びドレイン領域に比べて不純物濃度の低い第3の半導体領域内に配されており、前記増幅用MOSトランジスタの前記ソース及びドレイン領域と前記増幅用MOSトランジスタの下方における前記第2の半導体領域との間であって、少なくとも前記ソース及びドレイン領域の一部の下方及び前記増幅用MOSトランジスタのゲートの下方の領域に、第2導電型の第4の半導体領域が配され、少なくとも前記増幅用MOSトランジスタの増幅動作時は、前記ソース領域と前記ドレイン領域との間であって前記第4の半導体領域の上方の領域において前記第3の半導体領域が空乏化する、ことを特徴とする。  According to a first aspect of the present invention, unit pixels including a photodiode and a first conductivity type amplifying MOS transistor that receives and amplifies a signal charge generated by the photodiode at a gate are arranged on a semiconductor substrate. In the solid-state imaging device, the photodiode includes a first semiconductor region of the first conductivity type and a light receiving surface of the photodiode as a reference from below the first semiconductor region to below the amplification MOS transistor. A second semiconductor region of a second conductivity type that extends, and the source and drain regions of the amplification MOS transistor have the same conductivity type as the source and drain regions, compared to the source and drain regions The source and drain regions of the amplification MOS transistor are disposed in a third semiconductor region having a low impurity concentration. And the second semiconductor region below the amplifying MOS transistor, and at least below a part of the source and drain regions and below the gate of the amplifying MOS transistor. A fourth semiconductor region of the type, and at least during the amplification operation of the amplification MOS transistor, the third semiconductor region is located between the source region and the drain region and above the fourth semiconductor region. The semiconductor region is depleted.
本発明の第2の側面は、フォトダイオードと、前記フォトダイオードにて生じた信号電荷をゲートに受けて増幅して出力する第1導電型の増幅用MOSトランジスタとを含む単位画素が半導体基板に配列された固体撮像装置において、前記増幅用MOSトランジスタは、前記増幅用MOSトランジスタのソース及びドレイン領域と同一導電型の第1導電型であり、かつ、前記ソース及びドレイン領域よりも不純物濃度が低い第1の半導体領域中に配されており、少なくとも前記増幅用MOSトランジスタのゲートの下方であって、前記ソース及びドレイン領域よりも下方に第2導電型の第2の半導体領域が配され、前記増幅用MOSトランジスタのゲートの下方であって、前記増幅用MOSトランジスタのゲート絶縁膜と前記第1の半導体領域との界面に接する領域に、前記第1の半導体領域よりも不純物濃度の高い第1導電型の第3の半導体領域が配され、少なくとも前記増幅用MOSトランジスタの増幅動作時には、前記ソース領域と前記ドレイン領域との間であって前記第2の半導体領域の上方の領域において前記第1の半導体領域が空乏化する、ことを特徴とする。  According to a second aspect of the present invention, a unit pixel including a photodiode and a first conductivity type amplifying MOS transistor that receives and amplifies a signal charge generated in the photodiode at a gate is output to a semiconductor substrate. In the arranged solid-state imaging device, the amplification MOS transistor has a first conductivity type that is the same conductivity type as the source and drain regions of the amplification MOS transistor, and has an impurity concentration lower than that of the source and drain regions. A second semiconductor region of a second conductivity type is disposed at least below the gate of the amplification MOS transistor and below the source and drain regions, and is disposed in the first semiconductor region; Below the gate of the amplifying MOS transistor, the gate insulating film of the amplifying MOS transistor and the first semiconductor region A third semiconductor region of the first conductivity type having an impurity concentration higher than that of the first semiconductor region is disposed in a region in contact with the interface between the source region and the source region, and at least during the amplification operation of the amplification MOS transistor The first semiconductor region is depleted in a region between the drain region and above the second semiconductor region.

このとき、少なくとも増幅用MOSトランジスタのゲート直下の半導体は、第二のP型半導体にいたるまで、前記第一のN型半導体または、該ゲート直下の半導体界面付近に導入された第三のN型半導体と前記第一のN型半導体とで形成される。前記増幅用MOSトランジスタのチャンネルと前記第二のP型半導体層との間は前記第一の不純物濃度の薄いN型半導体層があって、増幅用MOSトランジスタがソースフォロワとして動作し、ソース電位がP型半導体層電位に対して逆バイアスがかかった時には空乏化する。このようなある幅を持った空乏層が存在することで前記増幅用MOSトランジスタのチャンネルと前記第二のP型半導体層との間の容量は小さくなるため、基板バイアス効果による前記増幅用MOSトランジスタのしきい値電圧の変動が小さく抑えられソースフォロワ動作時のゲイン低下を抑えることができる。また、基板バイアス効果が小さいため、増幅用MOSトランジスタのチャンネルを流れるキャリアを界面に押しやる効果も小さくなりソースフォロワ動作時に発生する1/fノイズを小さく抑えることができる。さらに前記第二のP型半導体層は、光によって発生した信号電子がフォトダイオード周辺のN型MOSトランジスタのソース、ドレインに吸収されるのを妨げるポテンシャルバリアの役割もはたし、フォトダイオードに吸収される信号電子をふやし、感度を上げることができる。   At this time, at least the semiconductor directly under the gate of the amplification MOS transistor reaches the second P-type semiconductor, or the third N-type introduced near the semiconductor interface immediately below the gate. A semiconductor and the first N-type semiconductor are formed. Between the channel of the amplifying MOS transistor and the second P-type semiconductor layer is an N-type semiconductor layer with a low first impurity concentration, the amplifying MOS transistor operates as a source follower, and the source potential is Depletion occurs when a reverse bias is applied to the P-type semiconductor layer potential. Since the capacitance between the channel of the amplification MOS transistor and the second P-type semiconductor layer is reduced by the presence of such a depletion layer having a certain width, the amplification MOS transistor due to the substrate bias effect. Fluctuations in the threshold voltage can be suppressed to a small level, and a decrease in gain during source follower operation can be suppressed. In addition, since the substrate bias effect is small, the effect of pushing carriers flowing through the channel of the amplification MOS transistor to the interface is small, and 1 / f noise generated during the source follower operation can be suppressed to a small value. Further, the second P-type semiconductor layer also serves as a potential barrier that prevents signal electrons generated by light from being absorbed by the source and drain of the N-type MOS transistor around the photodiode, and is absorbed by the photodiode. Can increase the sensitivity of the signal electrons.

本発明第一の実施形態によれば、低ノイズ、高ゲイン、高感度のCMOS型固体撮像装置を提供することができる。   According to the first embodiment of the present invention, it is possible to provide a CMOS solid-state imaging device with low noise, high gain, and high sensitivity.

また、本発明第二の実施形態によれば、第一の実施形態の効果に加えて、さらに安価なCMOS型固体撮像装置を提供することができる。   Further, according to the second embodiment of the present invention, in addition to the effects of the first embodiment, a further inexpensive CMOS solid-state imaging device can be provided.

(第一の実施形態)
図1は本発明の特徴をもっとも良く表す画素の一部の断面図であってフォトダイオード、増幅用MOSトランジスタ、素子分離部の断面構造を示すものであり、同図において図5、図6と同じ部材については同じ番号を付して説明を省略する。図1における24はN型のウエルまたはN基板15の上層部である。25はN基板15とN層24とのあいだにあるP型の層であり、フォトダイオードはN型の層24とP型層25とで形成される。N層17の不純物濃度はN層24の不純物濃度よりも高く設定され、信号電子は17に集まる。26は画素内N型MOSトランジスタの少なくともゲート部直下にあり、ソース、ドレインよりもさらに深い場所に形成されるP型半導体層、27は増幅用MOSトランジスタ3のチャンネル部に形成する24よりも不純物濃度の高いN型半導体層である。なおP型半導体層26はフォトダイオードを形成しているN型半導体24と画素内N型MOSトランジスタのソース、ドレインとを電気的に分離するために前記ソース、ドレイン領域の少なくとも一部の直下にも形成されている。
(First embodiment)
FIG. 1 is a cross-sectional view of a part of a pixel that best represents the features of the present invention, and shows the cross-sectional structure of a photodiode, an amplifying MOS transistor, and an element isolation portion. The same members are denoted by the same reference numerals and description thereof is omitted. Reference numeral 24 in FIG. 1 denotes an upper portion of an N-type well or N substrate 15. Reference numeral 25 denotes a P-type layer between the N substrate 15 and the N layer 24, and a photodiode is formed by the N-type layer 24 and the P-type layer 25. The impurity concentration of the N layer 17 is set higher than the impurity concentration of the N layer 24, and signal electrons gather at 17. 26 is at least immediately below the gate portion of the N-type MOS transistor in the pixel, and is a P-type semiconductor layer formed deeper than the source and drain, and 27 is more impurity than 24 formed in the channel portion of the amplifying MOS transistor 3. This is an N-type semiconductor layer having a high concentration. The P-type semiconductor layer 26 is provided immediately below at least part of the source and drain regions in order to electrically isolate the N-type semiconductor 24 forming the photodiode from the source and drain of the N-type MOS transistor in the pixel. Is also formed.

図1のような画素構造における増幅用MOSトランジスタ3の動作時のポテンシャル状況を図2を用いて説明する。図2は増幅用MOSトランジスタ3のゲートを含む深さ方向のポテンシャルを示したものであり、横が深さ方向、縦がポテンシャルであって、電位の高いほうが下側になっている。各場所を示す番号は図1における番号と同じであり、28はゲート酸化膜である。MOSトランジスタ3がソースフォロワ動作するとき、ゲート酸化膜28内の固定電荷の影響がないとして、MOSトランジスタ3を構成する各部の電位は電位の高い順にドレイン18、ソース19、P型半導体層26となるが、ソース電位がゲート電位よりも高い状態であれば、キャリアが流れるチャンネル部の電位はゲートよりも高くなるので、図2に示すように、チャンネル部における最高の電位はシリコン界面よりもややシリコン内部に入ったところに現れ、いわゆる埋め込みチャンネルが形成される。チャンネル27とP型半導体層26とは逆バイアス状態であり、本発明においては26と27とのあいだの不純物濃度の低いN型半導体層24は空乏化している。このため、チャンネルがP型半導体層内に形成される時と比べると、チャンネル−P型半導体基板すなわち図2におけるチャンネル−P型半導体層26との容量が小さく形成できるので、基板バイアス効果が十分に小さくなり、前記のような逆バイアスがかかってもチャンネル中の電子を界面側に押しやる効果が小さく、図2に示したような埋め込みチャンネル状態が実現できる。   The potential situation during operation of the amplification MOS transistor 3 in the pixel structure as shown in FIG. 1 will be described with reference to FIG. FIG. 2 shows the potential in the depth direction including the gate of the amplifying MOS transistor 3. The horizontal direction is the depth direction, the vertical direction is the potential, and the higher potential is on the lower side. The number indicating each location is the same as the number in FIG. 1, and 28 is a gate oxide film. When the MOS transistor 3 operates as a source follower, it is assumed that there is no influence of the fixed charges in the gate oxide film 28. The potentials of the respective parts constituting the MOS transistor 3 are the drain 18, source 19, and P-type semiconductor layer 26 in order of increasing potential. However, if the source potential is higher than the gate potential, the potential of the channel portion through which carriers flow is higher than that of the gate. Therefore, as shown in FIG. 2, the highest potential in the channel portion is slightly higher than the silicon interface. A so-called buried channel is formed as it enters the silicon. The channel 27 and the P-type semiconductor layer 26 are in a reverse bias state. In the present invention, the N-type semiconductor layer 24 having a low impurity concentration between 26 and 27 is depleted. Therefore, compared with the case where the channel is formed in the P-type semiconductor layer, the capacitance of the channel-P-type semiconductor substrate, that is, the channel-P-type semiconductor layer 26 in FIG. Even if a reverse bias as described above is applied, the effect of pushing the electrons in the channel toward the interface is small, and a buried channel state as shown in FIG. 2 can be realized.

具体的な構造例をあげると、N型シリコン半導体領域24の不純物濃度が1015/cmであって、増幅用MOSトランジスタ3のドレイン18、ソース19の接合深さが0.4μm、P型半導体層26は半導体界面から深さ1.0μmの場所に界面側の接合深さが、不純物濃度のピークが深さ1.2μmのところにあるよう形成され、N半導体層27は不純物濃度2×1016/cm、接合深さ0.2μmで形成、シリコン酸化膜で形成されるゲート酸化膜が150Åとする。P型半導体層26が電位0Vにあるとして、MOSトランジスタ3がソースフォロワ動作する時ソース電位が1V以上になれば、チャンネルが形成されるN半導体層27とP型半導体層26のあいだの半導体領域24は空乏化する。この時N型半導体層27とP型半導体層26間の容量はゲート酸化膜容量に対して1/17程度となって無視しうるようになる。次に、ゲート酸化膜中の固定電荷を考えないとすると、N型半導体層27はゲート20の電位に対して約1V高くなった時点で空乏化する。したがってN型半導体層27中に形成されるチャンネルに電流が流れるソースフォロワ動作では、たとえばソース電位はゲート20の電位に対し0.7V高い状態を保つ。この時形成されるチャンネルはシリコン界面より内部のN型半導体層27中にある。ゲート20の電位が0.3V以上であれば、ソース電位が1V以上となり、チャンネルが形成されるN型半導体層27とP型半導体層26のあいだの半導体領域24は空乏化した状態となるので、バックゲートバイアス効果の影響が小さく、ゲート20の電位が変動してもチャンネル電位との相対関係、およびチャンネルの深さはあまり影響を受けることのないソースフォロワ動作が実現する。 As a specific structural example, the impurity concentration of the N-type silicon semiconductor region 24 is 10 15 / cm 3 , the junction depth of the drain 18 and the source 19 of the amplification MOS transistor 3 is 0.4 μm, P-type The semiconductor layer 26 is formed at a depth of 1.0 μm from the semiconductor interface such that the junction depth on the interface side is at a peak of impurity concentration of 1.2 μm, and the N semiconductor layer 27 is 2 × impurity concentration. A gate oxide film formed of 10 16 / cm 3 and a junction depth of 0.2 μm and formed of a silicon oxide film has a thickness of 150 mm. If the P-type semiconductor layer 26 is at a potential of 0V and the source potential becomes 1V or higher when the MOS transistor 3 operates as a source follower, the semiconductor region between the N semiconductor layer 27 and the P-type semiconductor layer 26 where the channel is formed 24 is depleted. At this time, the capacitance between the N-type semiconductor layer 27 and the P-type semiconductor layer 26 is about 1/17 of the gate oxide film capacitance and can be ignored. Next, assuming that fixed charges in the gate oxide film are not considered, the N-type semiconductor layer 27 is depleted when it becomes approximately 1 V higher than the potential of the gate 20. Therefore, in the source follower operation in which current flows through a channel formed in the N-type semiconductor layer 27, for example, the source potential is maintained at 0.7V higher than the potential of the gate 20. The channel formed at this time is in the N-type semiconductor layer 27 inside the silicon interface. If the potential of the gate 20 is 0.3 V or higher, the source potential is 1 V or higher, and the semiconductor region 24 between the N-type semiconductor layer 27 and the P-type semiconductor layer 26 in which the channel is formed becomes depleted. Thus, a source follower operation is realized in which the influence of the back gate bias effect is small and the relative relationship with the channel potential and the channel depth are not significantly affected even when the potential of the gate 20 varies.

このような埋め込みチャンネルMOSトランジスタにおいては、チャンネル電子に対する界面に存在するトラップの影響が小さく抑えられるため、表面チャンネルMOSトランジスタに比べて1/fノイズを低減することができる。また増幅用MOSトランジスタのしきい電位は、バックゲート効果が小さいため、ソース電位依存性が小さく、ソースフォロワ動作させた時のゲインが高くなる。さらに、P型半導体層26が画素内MOSトランジスタのソース、ドレインの下部にも形成されることによって、光入射によりN型半導体層24で発生した信号電子にとってのポテンシャル障壁として働くため、信号電子が前記MOSトランジスタのソース、ドレインに吸収されるのを妨げる。したがって、光発生電子がフォトダイオード部の電子蓄積層17に吸収される確率が高くなり、感度を上げることができる。よって、従来CMOS型固体撮像装置に比べて、低ノイズ、高ゲイン、高感度のCMOS型固体撮像装置を提供することができる。   In such a buried channel MOS transistor, since the influence of traps existing at the interface with respect to channel electrons is suppressed, 1 / f noise can be reduced as compared with the surface channel MOS transistor. Further, the threshold potential of the amplifying MOS transistor has a small back gate effect, so that the source potential dependency is small, and the gain when the source follower operation is performed becomes high. Furthermore, since the P-type semiconductor layer 26 is also formed below the source and drain of the in-pixel MOS transistor, it acts as a potential barrier for the signal electrons generated in the N-type semiconductor layer 24 by light incidence. It is prevented from being absorbed by the source and drain of the MOS transistor. Therefore, the probability that photogenerated electrons are absorbed by the electron storage layer 17 of the photodiode portion is increased, and the sensitivity can be increased. Therefore, it is possible to provide a CMOS solid-state image pickup device with low noise, high gain, and high sensitivity as compared with the conventional CMOS solid-state image pickup device.

(第二の実施形態)
図3は本発明第二の実施形態を説明するための画素の断面図である。同図において、図1と同じ部材については同じ番号を付しているが、図3においては図1におけるN型半導体層27がない。よって、ソースフォロワ動作させた時、増幅用MOSトランジスタに形成されるチャンネルの埋め込み度合いは第一の実施形態に比べると弱く、表面チャンネルに近いが、チャンネル部への不純物イオン導入がないため、1/fノイズの原因となるチャンネル、およびシリコン界面における欠陥が少ない。また、基板バイアス効果が小さいのは、第一の実施形態と同じである。よってP型半導体層中に形成された通常構造のN型MOSトランジスタに比べて1/fノイズが小さく、ソースフォロワ動作のゲインが高い。フォトダイオードの感度が高いのは第一の実施形態と同じであるが、N型半導体層27を形成するプロセス工程がないため、本実施形態を応用したCMOS型固体撮像装置をより安価に提供することができる。
(Second embodiment)
FIG. 3 is a cross-sectional view of a pixel for explaining the second embodiment of the present invention. In this figure, the same members as those in FIG. 1 are given the same numbers, but in FIG. 3, there is no N-type semiconductor layer 27 in FIG. Therefore, when the source follower operation is performed, the degree of embedding of the channel formed in the amplification MOS transistor is weaker than that of the first embodiment and is close to the surface channel, but no impurity ions are introduced into the channel portion. / F Channels causing noise and defects at the silicon interface are few. The substrate bias effect is small as in the first embodiment. Therefore, the 1 / f noise is small and the gain of the source follower operation is high as compared with the N-type MOS transistor having the normal structure formed in the P-type semiconductor layer. Although the sensitivity of the photodiode is the same as in the first embodiment, there is no process step for forming the N-type semiconductor layer 27, so that a CMOS solid-state imaging device to which this embodiment is applied is provided at a lower cost. be able to.

以上第一および第二の実施形態における増幅用MOSトランジスタ以外のMOSトランジスタについては、ゲート直下のシリコン界面からP型半導体層26にいたるN型半導体層24中に、ソース、ドレイン間の耐圧向上のためのP型半導体層を導入した構造をとってもよいし、増幅用MOSトランジスタと同じ構造であってもよい。また、第一および第二の実施形態におけるP型半導体層26は一層で形成されるが、P型半導体層25とP型半導体層26とのあいだに、単数または複数層のP型半導体層を形成し、P型半導体層25とP型半導体層26との電気的導通をより強固にする構造であってもよい。また、信号電子が蓄積されるN型層17の半導体界面部にP型の半導体層が形成されるいわゆる埋め込みフォトダイオードが使われるものであってもよい。   As for the MOS transistors other than the amplification MOS transistors in the first and second embodiments, the breakdown voltage between the source and the drain is improved in the N-type semiconductor layer 24 from the silicon interface immediately below the gate to the P-type semiconductor layer 26. Therefore, a structure in which a P-type semiconductor layer is introduced may be employed, or the same structure as that of the amplification MOS transistor may be employed. In addition, although the P-type semiconductor layer 26 in the first and second embodiments is formed as a single layer, a single or a plurality of P-type semiconductor layers are provided between the P-type semiconductor layer 25 and the P-type semiconductor layer 26. The structure may be formed to further strengthen the electrical continuity between the P-type semiconductor layer 25 and the P-type semiconductor layer 26. Further, a so-called embedded photodiode in which a P-type semiconductor layer is formed at the semiconductor interface portion of the N-type layer 17 where signal electrons are accumulated may be used.

なお、上記本発明の説明におけるN型、P型の極性をすべて反転した構造であってもよい。   A structure in which all the N-type and P-type polarities in the description of the present invention are reversed may be used.

(第三の実施形態)
図4に基づいて、本発明の固体撮像装置をスチルビデオカメラに適用した場合の一実施形態について詳述する。
(Third embodiment)
Based on FIG. 4, an embodiment in which the solid-state imaging device of the present invention is applied to a still video camera will be described in detail.

図4は、本発明の固体撮像装置を「スチルビデオカメラ」に適用した場合を示すブロック図である。   FIG. 4 is a block diagram showing a case where the solid-state imaging device of the present invention is applied to a “still video camera”.

図4において、101はレンズのプロテクトとメインスイッチを兼ねるバリア、102は被写体の光学像を固体撮像素子(固体撮像装置)104に結像させるレンズ、103はレンズ102を通った光量を可変するための絞り、104はレンズ102で結像された被写体を画像信号として取り込むための固体撮像素子、106は固体撮像素子104より出力される画像信号のアナログ−ディジタル変換を行うA/D変換器、107はA/D変換器6より出力された画像データに各種の補正を行ったりデータを圧縮する信号処理部、108は固体撮像素子4、撮像信号処理回路105、A/D変換器106、信号処理部107に、各種タイミング信号を出力するタイミング発生部、109は各種演算とスチルビデオカメラ全体を制御する全体制御・演算部、110は画像データを一時的に記憶する為のメモリ部、111は記録媒体に記録または読み出しを行うためのインターフェース部、112は画像データの記録または読み出しを行う為の半導体メモリ等の着脱可能な記録媒体、113は外部コンピュータ等と通信する為のインターフェース部である。   In FIG. 4, 101 is a barrier that serves as a lens protect and main switch, 102 is a lens that forms an optical image of a subject on a solid-state imaging device (solid-state imaging device) 104, and 103 is a variable for changing the amount of light passing through the lens 102. 104, a solid-state imaging device 104 for capturing an object imaged by the lens 102 as an image signal, 106 an A / D converter for performing analog-digital conversion of an image signal output from the solid-state imaging device 104, 107 Is a signal processing unit that performs various corrections on the image data output from the A / D converter 6 and compresses the data. 108 is a solid-state imaging device 4, an imaging signal processing circuit 105, an A / D converter 106, and signal processing. The timing generator 109 outputs various timing signals to the unit 107, and 109 is an overall control for controlling various operations and the entire still video camera. An arithmetic unit 110, a memory unit for temporarily storing image data, 111 an interface unit for recording or reading on a recording medium, and 112 a semiconductor memory for recording or reading image data A removable recording medium 113 is an interface unit for communicating with an external computer or the like.

次に、前述の構成における撮影時のスチルビデオカメラの動作について説明する。
バリア101がオープンされるとメイン電源がオンされ、次にコントロール系の電源がオンし、更にA/D変換器106などの撮像系回路の電源がオンされる。
Next, the operation of the still video camera at the time of shooting in the above configuration will be described.
When the barrier 101 is opened, the main power supply is turned on, the control system power supply is turned on, and the power supply of the imaging system circuit such as the A / D converter 106 is turned on.

それから、露光量を制御する為に、全体制御・演算部109は絞り103を開放にし、固体撮像素子104から出力された信号はA/D変換器106で変換された後、信号処理部107に入力される。   Then, in order to control the exposure amount, the overall control / arithmetic unit 109 opens the aperture 103, and the signal output from the solid-state image sensor 104 is converted by the A / D converter 106 and then sent to the signal processing unit 107. Entered.

そのデータを基に露出の演算を全体制御・演算部109で行う。   Based on this data, exposure calculation is performed by the overall control / calculation unit 109.

この測光を行った結果により明るさを判断し、その結果に応じて全体制御・演算部109は絞りを制御する。   The brightness is determined based on the result of the photometry, and the overall control / calculation unit 109 controls the aperture according to the result.

次に、固体撮像素子104から出力された信号をもとに、高周波成分を取り出し被写体までの距離の演算を全体制御・演算部109で行う。その後、レンズを駆動して合焦か否かを判断し、合焦していないと判断した時は、再びレンズを駆動し測距を行う。   Next, based on the signal output from the solid-state image sensor 104, the high-frequency component is extracted and the distance to the subject is calculated by the overall control / calculation unit 109. Thereafter, the lens is driven to determine whether or not it is in focus. When it is determined that the lens is not in focus, the lens is driven again to perform distance measurement.

そして、合焦が確認された後に本露光が始まる。   Then, after the in-focus state is confirmed, the main exposure starts.

露光が終了すると、固体撮像素子104から出力された画像信号はA/D変換器106でA/D変換され、信号処理部107を通り全体制御・演算部109によりメモリ部に書き込まれる。   When the exposure is completed, the image signal output from the solid-state imaging device 104 is A / D converted by the A / D converter 106, passes through the signal processing unit 107, and is written in the memory unit by the overall control / calculation unit 109.

その後、メモリ部110に蓄積されたデータは、全体制御・演算部109の制御により記録媒体制御I/F部を通り半導体メモリ等の着脱可能な記録媒体112に記録される。   Thereafter, the data stored in the memory unit 110 is recorded on a removable recording medium 112 such as a semiconductor memory through the recording medium control I / F unit under the control of the overall control / arithmetic unit 109.

また、外部I/F部113を通り直接コンピュータ等に入力して画像の加工を行ってもよい。   Further, the image processing may be performed by directly entering the computer or the like through the external I / F unit 113.

本発明は、映像を撮影するカメラに利用することができる。   The present invention can be used in a camera that captures images.

本発明第一の実施形態を説明するための画素の断面構造図である。1 is a cross-sectional structure diagram of a pixel for explaining a first embodiment of the present invention. 本発明第一の実施形態を説明するための画素動作時のポテンシャル図である。It is a potential diagram at the time of pixel operation for explaining the first embodiment of the present invention. 本発明第二の実施形態を説明するための画素の断面構造図である。It is sectional drawing of the pixel for demonstrating 2nd embodiment of this invention. 本発明第三の実施形態によるスチルビデオカメラの構成を示すブロック図である。It is a block diagram which shows the structure of the still video camera by 3rd embodiment of this invention. 従来の画素の回路図である。It is a circuit diagram of the conventional pixel. 従来の画素の断面構造図である。It is a cross-sectional structure diagram of a conventional pixel.

符号の説明Explanation of symbols

1 画素
2 フォトダイオード
3 増幅用MOSトランジスタ
4フローティングディフュージョン
5 信号電荷転送用MOSトランジスタ
6リセット用MOSトランジスタ
7選択用MOSトランジスタ
8ゲート制御線
9ゲート制御線
10ゲート制御線
11電源線
12 画素出力線
13 定電流供給用MOSトランジスタ
14 ゲート制御線
15 半導体基板
16 半導体ウエル
17 フォトダイオード領域
18 ドレイン領域
19 ソース領域
20 ゲート
21 素子分離領域
22 チャネルストッパー
23 配線
24 N型半導体層
25 P型半導体層
26 型半導体層
27 N型半導体層
104 固体撮像素子(固体撮像装置)
1 pixel 2 photodiode 3 amplification MOS transistor 4 floating diffusion 5 signal charge transfer MOS transistor 6 reset MOS transistor 7 selection MOS transistor 8 gate control line 9 gate control line 10 gate control line 11 power supply line 12 pixel output line 13 Constant current supply MOS transistor 14 Gate control line 15 Semiconductor substrate 16 Semiconductor well 17 Photodiode region 18 Drain region 19 Source region 20 Gate 21 Element isolation region 22 Channel stopper 23 Wiring 24 N-type semiconductor layer 25 P-type semiconductor layer 26-type semiconductor Layer 27 N-type semiconductor layer 104 Solid-state imaging device (solid-state imaging device)

Claims (6)

フォトダイオードと、前記フォトダイオードで発生した信号電荷をゲートに受けて増幅して出力する第1導電型の増幅用MOSトランジスタとを含む単位画素が半導体基板に列された固体撮像装置において、
前記フォトダイオードは、第1導電型の第1の半導体領域と、前記フォトダイオードの受光面を基準として前記第1の半導体領域の下方から前記増幅用MOSトランジスタの下方まで延在する第2導電型の第2の半導体領域と、を含んで構成され、
前記増幅用MOSトランジスタのソース及びドレイン領域は、前記ソース及びドレイン領域と同一導電型で前記ソース及びドレイン領域に比べて不純物濃度の低い第3の半導体領域内に配されており、
前記増幅用MOSトランジスタの前記ソース及びドレイン領域と前記増幅用MOSトランジスタの下方における前記第2の半導体領域との間であって、少なくとも前記ソース及びドレイン領域の一部の下方及び前記増幅MOSトランジスタのゲートの下方の領域第2導電型の第の半導体領域が配され
少なくとも前記増幅用MOSトランジスタの増幅動作時は、前記ソース領域と前記ドレイン領域との間であって前記第4の半導体領域の上方の領域において前記第3の半導体領域が空乏化する、
ことを特徴とする固体撮像装置。
A photodiode, in the solid-state imaging device unit pixel is an array on a semiconductor substrate including a first conductivity type amplifying MOS transistor for outputting a signal charge generated by the photodiode is amplified by receiving a gate,
The photodiode includes a first semiconductor region of a first conductivity type, said photodiode second conductivity type extending to below the amplifying MOS transistor from the lower side of the first semiconductor region, based on the light receiving surface of the A second semiconductor region, and
The source and drain regions of the amplifying MOS transistor are disposed in a third semiconductor region having the same conductivity type as the source and drain regions and a lower impurity concentration than the source and drain regions,
It is between the second semiconductor region in the lower of the source and drain regions and the amplifying MOS transistor of the amplifying MOS transistor, at least a portion of the lower and the amplifying MOS transistor of the source and drain regions beneath the region of the gate of the fourth semiconductor region of the second conductivity type is disposed,
At least during the amplification operation of the amplification MOS transistor, the third semiconductor region is depleted in the region between the source region and the drain region and above the fourth semiconductor region.
A solid-state imaging device.
請求項1の固体撮像装置において、前記増幅用MOSトランジスタのゲートの下方であって、前記増幅用MOSトランジスタのゲート絶縁膜と前記増幅用MOSトランジスタの前記ソース及びドレイン領域配された前記第3の半導体領域との界面に接する領域に、前記第1の半導体領域よりも不純物濃度の高い第1導電型の第の半導体領域が配されていることを特徴とする固体撮像装置。 In the solid-state imaging device according to claim 1, wherein a lower gate of the amplifying MOS transistor, the third of said source and drain regions are disposed in the amplifying MOS transistor and the gate insulating film of the amplifying MOS transistor A solid-state imaging device, wherein a fifth semiconductor region of a first conductivity type having an impurity concentration higher than that of the first semiconductor region is disposed in a region in contact with the interface with the semiconductor region. 請求項2に記載の固体撮像装置において、前記増幅用MOSトランジスタは埋め込みチャンネルを有することを特徴とする固体撮像装置。   3. The solid-state imaging device according to claim 2, wherein the amplification MOS transistor has a buried channel. フォトダイオードと、前記フォトダイオードにて生じた信号電荷をゲートに受けて増幅して出力する第1導電型の増幅用MOSトランジスタとを含む単位画素が半導体基板に列された固体撮像装置において、
前記増幅用MOSトランジスタは、前記増幅用MOSトランジスタのソース及びドレイン領域と同一導電型の第1導電型であり、かつ、前記ソース及びドレイン領域よりも不純物濃度が低い第1の半導体領域中に配されており、
少なくとも前記増幅用MOSトランジスタのゲートの下方であって、前記ソース及びドレイン領域よりも下方に第2導電型の第2の半導体領域が配され、
前記増幅用MOSトランジスタのゲートの下方であって、前記増幅用MOSトランジスタのゲート絶縁膜と前記第1の半導体領域との界面に接する領域に、前記第1の半導体領域よりも不純物濃度の高い第1導電型の第3の半導体領域が配され、
少なくとも前記増幅用MOSトランジスタの増幅動作時には、前記ソース領域と前記ドレイン領域の間であって前記第2の半導体領域の上方の領域において前記第1の半導体領域が空乏化
ことを特徴とする固体撮像装置。
A photodiode, in the solid-state imaging device unit pixel is an array on a semiconductor substrate comprising an amplifying MOS transistor of a first conductivity type and outputting the amplified received in the gate of the signal charge generated by the photodiode,
The amplification MOS transistor has a first conductivity type that is the same conductivity type as the source and drain regions of the amplification MOS transistor, and is disposed in a first semiconductor region having a lower impurity concentration than the source and drain regions. Has been
A lower gate of at least the amplifying MOS transistor, a second semiconductor region of a second conductivity type disposed below said source and drain regions,
In the region below the gate of the amplification MOS transistor and in contact with the interface between the gate insulating film of the amplification MOS transistor and the first semiconductor region, the impurity concentration higher than that of the first semiconductor region is provided. A third semiconductor region of one conductivity type is disposed;
During amplification operation of at least the amplifying MOS transistor, said first semiconductor region in the upper region of the second semiconductor region a between the source region and the drain region are you depleted,
A solid-state imaging device.
請求項4に記載の固体撮像装置において、前記増幅用MOSトランジスタは埋め込みチャンネルを有することを特徴とする固体撮像装置。   5. The solid-state imaging device according to claim 4, wherein the amplification MOS transistor has a buried channel. 請求項1乃至5のいずれか1項に記載の固体撮像装置を備えることを特徴とするカメラ。   A camera comprising the solid-state imaging device according to claim 1.
JP2007340116A 2007-12-28 2007-12-28 Solid-state imaging device and camera Expired - Fee Related JP4921345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007340116A JP4921345B2 (en) 2007-12-28 2007-12-28 Solid-state imaging device and camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007340116A JP4921345B2 (en) 2007-12-28 2007-12-28 Solid-state imaging device and camera

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003288939A Division JP4155568B2 (en) 2003-08-07 2003-08-07 Solid-state imaging device and camera

Publications (2)

Publication Number Publication Date
JP2008153677A JP2008153677A (en) 2008-07-03
JP4921345B2 true JP4921345B2 (en) 2012-04-25

Family

ID=39655453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007340116A Expired - Fee Related JP4921345B2 (en) 2007-12-28 2007-12-28 Solid-state imaging device and camera

Country Status (1)

Country Link
JP (1) JP4921345B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141488A (en) * 2000-11-06 2002-05-17 Canon Inc Solid-state image pickup device and solid-state image pickup system thereof
JP2002151599A (en) * 2000-11-13 2002-05-24 Hitachi Ltd Semiconductor integrated circuit device and manufacturing method therefor
JP4542736B2 (en) * 2001-01-18 2010-09-15 株式会社東芝 Semiconductor device
JP4681767B2 (en) * 2001-07-17 2011-05-11 キヤノン株式会社 Imaging device and camera

Also Published As

Publication number Publication date
JP2008153677A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
US11575847B2 (en) Solid-state imaging device, method of driving the same, and electronic apparatus
JP4514188B2 (en) Photoelectric conversion device and imaging device
US8031250B2 (en) Solid-state imaging device and method of driving the same
JP4455435B2 (en) Solid-state imaging device and camera using the solid-state imaging device
JP4794877B2 (en) Solid-state imaging device and camera
US8183604B2 (en) Solid state image pickup device inducing an amplifying MOS transistor having particular conductivity type semiconductor layers, and camera using the same device
JP5641287B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP4208559B2 (en) Photoelectric conversion device
JP2006073736A (en) Photoelectric converter, solid state imaging device and system
JP5065789B2 (en) Solid-state imaging device
JP5326507B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP2009181986A (en) Solid-state image pickup element and solid-state image pickup device
WO2010137269A1 (en) Solid-state image pickup device
JP4761491B2 (en) Solid-state imaging device and imaging system using the same
US9406816B2 (en) Solid-state imaging apparatus, method of manufacturing solid-state imaging apparatus and electronic device
US8233065B2 (en) Charge detection device and charge detection method, solid-state imaging device and driving method thereof, and imaging device
JP2008218756A (en) Photoelectric conversion device and image pickup system
JP4921345B2 (en) Solid-state imaging device and camera
JP2008177593A (en) Solid-state image sensor and camera
JP5361938B2 (en) Solid-state imaging device and camera
JP5518226B2 (en) Solid-state imaging device
JP5312492B2 (en) Solid-state imaging device
JP2003324191A (en) Photoelectric conversion device and image pickup unit
JP2002330345A (en) Image pickup device
JP2006196536A (en) Imaging element

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090326

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R151 Written notification of patent or utility model registration

Ref document number: 4921345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees