JP4920223B2 - 窒化物系半導体発光素子及びその製造方法 - Google Patents

窒化物系半導体発光素子及びその製造方法 Download PDF

Info

Publication number
JP4920223B2
JP4920223B2 JP2005272574A JP2005272574A JP4920223B2 JP 4920223 B2 JP4920223 B2 JP 4920223B2 JP 2005272574 A JP2005272574 A JP 2005272574A JP 2005272574 A JP2005272574 A JP 2005272574A JP 4920223 B2 JP4920223 B2 JP 4920223B2
Authority
JP
Japan
Prior art keywords
layer
nitride
metal plate
semiconductor light
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005272574A
Other languages
English (en)
Other versions
JP2007088059A (ja
Inventor
弘 大澤
高史 程田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005272574A priority Critical patent/JP4920223B2/ja
Priority to CN2006800342708A priority patent/CN101268560B/zh
Priority to US12/067,227 priority patent/US7939845B2/en
Priority to EP06810337.3A priority patent/EP1928031B1/en
Priority to KR1020087008047A priority patent/KR100961034B1/ko
Priority to PCT/JP2006/318641 priority patent/WO2007034834A1/ja
Publication of JP2007088059A publication Critical patent/JP2007088059A/ja
Application granted granted Critical
Publication of JP4920223B2 publication Critical patent/JP4920223B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は窒化物系半導体発光素子、及びその製造方法に関する。
近年、短波長光発光素子用の半導体材料としてGaN系化合物半導体材料が注目を集めている。GaN系化合物半導体は、サファイア単結晶をはじめとして、種々の酸化物基板やIII―V族化合物を基板として、その上に有機金属気相化学反応法(MOCVD法)や分子線エピタキシー法(MBE法)等によって形成される。
サファイア単結晶基板は、GaNとは格子定数が10%以上も異なるが、AlNやAlGaNなどのバッファ層を形成することにより、その上に良好な窒化物半導体を形成することができ、一般的に広く用いられている。サファイア単結晶基板を用いた場合、n型半導体層、発光層、p型半導体層が、この順で積層される。サファイア基板は絶縁体であるので、その素子構造は一般的に、p型半導体層上に形成された正極とn型半導体層上に形成された負極が存在することになる。ITOなどの透明電極を正極に使用してp型半導体側から光を取り出すフェイスアップ方式、Agなどの高反射膜を正極に使用してサファイア基板側から光を取り出すフリップチップ方式の2種類がある。
このように、サファイア単結晶基板は一般的に広く用いられているが、絶縁体であるためにいくつかの問題点がある。
第一に、負極を形成するために発光層をエッチングなどにより除去してn型半導体層を露出させることから負極の部分だけ発光層の面積が減ってしまい、その分、出力が低下する。
第二に、正極と負極が同一面にあるために電流の流れが水平方向になってしまい、局部的に電流密度の高いところができ、素子が発熱してしまう。
第三に、サファイア基板の熱伝導率は低いので、発生した熱が拡散せず素子の温度が上昇してしまう。
以上の問題を解決するため、サファイア単結晶基板上にn型半導体層、発光層、p型半導体層がこの順で積層した素子に導電性基板を接着し、その後、サファイア単結晶基板を除去して、正極と負極を上下に配置させる方法が開示されている(例えば、特許文献1)。
また、導電性基板を接着させるのではなく、メッキによって作製する方法が開示されている(例えば、特許文献2)。
導電性基板を接着させる方法には、AuSnなどの低融点金属化合物を接着材とする方法や、真空中でアルゴンプラズマ等を用いて接合面を活性化させ接着する活性化接合等の方法がある。これらの方法では、接着面が極めて平滑であることが要求され、パーティクルなどの異物がある場合にその部分が浮いてしまい、良好に接着できなくなる虞がある等、均一な接着面を形成することは困難であった。
メッキによって基板を作製する場合、異物による影響がほとんど無い点で有利であるが、p型半導体側がメッキにより覆われてしまうため、光取り出し効率が低下してしまう。光取り出し効率を向上させるため、メッキ処理の前に、オーミック接触層上に高反射率を持つAgなどを成膜する手法が一般的に用いられるが、この方法では、ほとんどの反射光が発光層を通過しなければならないため、発光層での光吸収が問題になる。
この際の反射光の発生を出来る限り防止するため、支持基板に透明性基板を用いた半導体素子が提案されている(例えば、特許文献3)。
しかしながら、支持基板に透明性基板を用いる場合、例えば、SOG(スピンオンガラス)では5μm程度が厚膜の限界であるので十分な強度を持った基板が作成できないという問題があった。
特許第3511970号公報 特開2004−47704号公報 特開2003−309286号公報
本発明は上記事情に鑑みてなされたもので、支持基板の強度特性に優れるとともに、該支持基板からの反射光が少なく、光取り出し効率を向上させた半導体素子及びその製造方法を提供することを目的とする。
本発明者等は、上記問題を解決するため鋭意努力検討した結果、少なくともn型半導体層、発光層、p型半導体層、金属膜層、金属板がこの順序で積層されてなる窒化物系半導体発光素子において、前記金属膜層及び前記メッキ金属板が、前記p型半導体層上に部分的に形成されており、前記p型半導体層上において、前記金属膜層及び前記メッキ金属板が形成されていない部分に透光性物質層が形成された構成とすることにより、基板強度に優れ、且つ反射光が少ない、即ち光取り出し効率が良い素子を作製することが可能なことを見出し、本発明を完成した。さらに、金属膜層及びメッキ金属板を前記p型半導体層上において平面視交差状態に形成し、前記p型半導体層上において前記金属膜層及び前記メッキ金属板が形成されていない部分に前記透光性物質層を形成することにより、本発明の効果はより一層発揮される。
即ち本発明は以下に関する。
(1)なくともn型半導体層、発光層、p型半導体層、金属膜層、メッキ金属板がこの順序で積層されてなる窒化物系半導体発光素子において、前記金属膜層及び前記メッキ金属板が、前記p型半導体層上に部分的に形成され、前記メッキ金属板が支持基板であり、前記p型半導体層上において、前記金属膜層及び前記メッキ金属板が形成されていない部分に屈折率が1.4〜2.6の範囲内である透光性物質層が形成されていることを特徴とする窒化物系半導体発光素子。
(2)前記p型半導体層上に形成される前記金属膜層及び前記メッキ金属板が、平面視交差状態に設けられており、前記p型半導体層上において、前記金属膜層及び前記メッキ金属板が形成されていない部分に前記透光性物質層が設けられていることを特徴とする(1)に記載の窒化物系半導体発光素子。
(3)前記透光性物質層が前記p型半導体層上に積層され、前記透光性物質層が少なくとも前記金属膜層とメッキ金属板によって部分的に囲われていることを特徴とする(1)又は(2)に記載の窒化物系半導体発光素子。
(4)前記透光性物質層が、透明電極を介してp型半導体層上に積層され、前記透光性物質層が少なくとも前記金属膜層とメッキ金属板によって部分的に囲われていることを特徴とする(1)又は(2)に記載の窒化物系半導体発光素子。
(5)前記透光性物質層が、透光性樹脂、シリカ系物質又はチタニア系物質の何れかからなることを特徴とする(1)〜(4)の何れかに記載の窒化物系半導体発光素子。
)前記透光性物質層の膜厚が10μm〜200μmの範囲内であることを特徴とする(1)〜()の何れかに記載の窒化物系半導体発光素子。
)前記金属膜層がオーミック接触層を含むことを特徴する(1)〜()の何れかに記載の窒化物系半導体発光素子。
)前記オーミック接触層が、Pt、Ru、Os、Rh、Ir、Pd、Agの単体金属、及び/又は、それらの合金からなることを特徴とする(7)に記載の窒化物系半導体発光素子。
)前記オーミック接触層の膜厚が0.1nm〜30nmの範囲内であることを特徴とする(7)又は(8)に記載の窒化物系半導体発光素子。
10)前記メッキ金属板の膜厚が10μm〜200μmの範囲内であることを特徴とする(1)〜()の何れかに記載の窒化物系半導体発光素子。
11)前記メッキ金属板が、NiP合金、Cu、またはCu合金からなることを特徴とする(1)〜(10)の何れかに記載の窒化物系半導体発光素子。
12)前記金属膜層と前記メッキ金属板との間にメッキ密着層が形成されていることを特徴とする(1)〜(11)の何れかに記載の窒化物系半導体発光素子。
13)前記メッキ密着層が、前記メッキ金属板をなすメッキの50重量%以上を占める主成分と同一の組成を50重量%以上含有することを特徴とする(12)に記載の窒化物系半導体発光素子。
14)前記メッキ密着層がNiP合金からなることを特徴とする(12)又は(13)に記載の窒化物系半導体発光素子。
15)基板上に少なくともバッファ層、n型半導体層、発光層、p型半導体層、金属膜層、メッキ金属板を積層する積層工程を有する窒化物系半導体発光素子の製造方法において、前記積層工程において、前記金属膜層及び前記メッキ金属板を、前記p型半導体層上に部分的に形成し、前記p型半導体層上において、前記金属膜層及び前記メッキ金属板が形成されていない部分に屈折率が1.4〜2.6の範囲内である透光性物質層を形成し、前記積層工程終了後に、前記基板およびバッファ層を除去することにより、前記n型半導体層を露出させることを特徴とする窒化物系半導体発光素子の製造方法。
16)前記積層工程において、前記金属膜層及び前記金属板を、個々に平面視ライン状で交差状態に形成することを特徴とする(15)に記載の窒化物系半導体発光素子の製造方法。
17)前記基板をレーザによって除去することを特徴とする(15)又は(16)に記載の窒化物系半導体発光素子の製造方法。
18)前記メッキ金属板を形成した後、100℃〜300℃の温度で熱処理することを特徴とする(15)〜(17)の何れかに記載の窒化物系半導体発光素子の製造方法。
本発明の窒化物系半導体発光素子によれば、少なくともn型半導体層、発光層、p型半導体層、金属膜層、金属板がこの順序で積層されてなる構造において、前記金属膜層及び前記メッキ金属板が、前記p型半導体層上に部分的に形成されており、前記p型半導体層上において、前記金属膜層及び前記メッキ金属板が形成されていない部分に透光性物質層が形成された構成としている。
上記構成により、窒化物系半導体発光素子の発光出力が向上するが、これは、透光性物質に、屈折率が1.4〜2.6と高い物質を使用することによって臨界角が大きくなり、より全反射しにくくなるからである。なお、上限が2.6なのは、GaNの屈折率が2.6であるのでこれ以上大きくする必要がない。これ以上大きくすると。透光性物質から光を取り出すことが難しくなる。
本発明では、上記構成により、基板強度に優れるとともに、且つ反射光が少ない、即ち光取り出し効率が良く発光出力が高い窒化物系半導体発光素子を得ることができる。
また、本発明の窒化物系半導体発光素子は、特に金属膜層及びメッキ金属板を前記p型半導体層上において平面視交差状態に形成し、前記p型半導体層上において前記金属膜層及び前記メッキ金属板が形成されていない部分に前記透光性物質層を形成することにより、本発明の効果はより一層発揮される。
以下、本発明の窒化物系半導体発光素子の実施形態について、図面を参照して説明する。
ただし、本発明は以下の各実施形態に限定されるものではなく、例えばこれら実施形態の構成要素同士を適宜組み合わせても良い。
図1〜図4は、本実施形態の窒化物系半導体発光素子を説明する図であり、図1は、n型半導体層、発光層、p型半導体層を形成し、その上にオーミック接触層、反射層、メッキ密着層を部分的に形成し、その上にメッキ金属板を形成するとともに、p型半導体層上に部分的に透光性物質層を形成した本発明の窒化物系半導体発光素子の一例を示す断面模式図である。図2は、窒化物系半導体発光素子の製造方法の一例を説明する図であり、本実施形態では、図1に示すような上下電極配置型の構造とする前に、図2に示すような窒化物系半導体層を形成する。なお、図1に示す2点鎖線は、平面視交差状態に形成されているメッキ金属板上に形成された正電極の一部分を示しており、図2に示す2点鎖線は、平面視交差状態に形成されているオーミック接触層、反射層、メッキ密着層及びメッキ金属板の一部分を示している。
図3〜5は、窒化物系半導体発光素子の製造方法を説明する平面図であり、基板上に複数並べて形成した窒化物系半導体発光素子に対し、ダイシングラインDL1、DL2に沿って素子単位に分割することで、本発明の窒化物系半導体発光素子が得られる。
本実施形態の窒化物系半導体発光素子1は、n型半導体層103、発光層104、p型半導体層105、透明電極106、オーミック接触層107(金属膜層)、反射層108、メッキ密着層109、メッキ金属板110が、この順序で積層(図1の上下方向)されてなる。
また、窒化物系半導体発光素子1において、透明電極106上に、反射層108、メッキ密着層109、メッキ金属板110が、この順序で積層されており、これら各層がp型半導体層105上において、平面視十字状に交差して部分的に形成されている。すなわち、図3に示す断面線A−Aの方向から見た場合には、図1に示す例の横幅方向(図1の左右方向)で、オーミック接触層107、反射層108、メッキ密着層109及びメッキ金属板110の各幅が、透明電極106の幅の約30%になるように形成されている。また、オーミック接触層107、反射層108、メッキ密着層109及びメッキ金属板110の各層の縦幅方向(図1の紙面垂直方向)は、透明電極106の幅の100%になるように形成されている。また、図3に示す断面線B−Bの方向から見た場合も、図1に示すオーミック接触層107、反射層108、メッキ密着層109及びメッキ金属板110の横幅及び縦幅が、上述と同様の関係とされている。
また、本実施形態では、透明電極106上において、オーミック接触層107、反射層108、メッキ密着層109及びメッキ金属板110が形成されていない部分に、透光性物質層114が形成されている。
そして、本実施形態では、n型半導体層103の下面に、透明電極112を介して負電極113が形成され、メッキ金属板110の上面に正電極111が形成されることにより、上下電極配置型に概略構成されている。
次に、本発明の窒化物系半導体発光素子を作製する際の手順について、図2、図3及び図4に示す例を用いて以下に説明する。
まず、サファイア基板(基板)201上にバッファ層202を形成し、そのバッファ層202を介して、n型半導体層203、発光層204、p型半導体層205を積層して窒化物系半導体層を形成する。このようにして形成された窒化物系半導体の上(つまり、p型半導体層205上)に、透明電極206を形成する。これらのn型半導体層203、発光層204、p型半導体層205及び透明電極206は、横幅を図2に示すように同一サイズに形成し、また、縦幅についても同一サイズに形成する。
次いで、透明電極206上に、オーミック接触層207及び反射層208を、この順序で積層して形成する。本実施形態のオーミック接触層207及び反射層208は、図3に示す例のように、各素子単位で縦横に交差するようにして、平面視格子状のパターンで透明電極206上に部分的に形成する。オーミック接触層207及び反射層208のパターン形成は、レジスト材料を使用することにより、後述する公知のフォトリソグラフィー技術、又はリフトオフ技術等を用いて行う。
そして、メッキを施すことによってメッキ金属板210を形成する。本実施形態のメッキ金属板210の形成は、メッキを施すオーミック接触層207及び反射層208を形成するべき部分以外の部分に絶縁性の保護膜を形成してメッキを行うか、またはメッキ用の厚膜レジスト材料を使用し、公知のフォトリソグラフィー技術もしくはリフトオフ技術によって、オーミック接触層207及び反射層208のパターンにのみメッキを行う。なお、メッキ処理前に、メッキ金属板210と反射層208(金属膜層)との密着性を向上させるため、メッキ密着層209を形成することが好ましい。また、メッキ密着層209は省略しても良い。
次いで、図4に示すように、透明電極206上において、オーミック接触層207、反射層208、メッキ密着層209及びメッキ金属板210が形成されていない部分に、透光性物質層214を形成する。図4に示す例では、透明電極206上において、十字状に形成されたオーミック接触層207、反射層208、メッキ密着層209及びメッキ金属板210が形成されていない部分に、隙間無く透光性物質層214を形成している。
次いで、サファイア基板201を剥離し、さらにバッファ層202を除去する。次いで、正電極及び負電極を形成することにより、図1に示す正電極111及び負電極112を形成する。そして、図3に示すようなダイシングラインDL1、DL2に沿ってメッキ金属板210を素子単位で分割することにより、図1に示す窒化物系半導体発光素子1を得ることができる。
本実施形態の窒化物系半導体発光素子は、図1に示すように、p型半導体層105上に透明電極106を介して積層されているオーミック接触層107、反射層108、メッキ密着層109及びメッキ金属板110の各層が、p型半導体層105の上面105aに対し、透明電極106を介して、十字状に交差するように、部分的に形成されている。
また、透明電極106上において、オーミック接触層107、反射層108、メッキ密着層109及びメッキ金属板110が形成されていない部分に、透光性物質層114が形成されている。
なお、オーミック接触層107、反射層108、メッキ密着層109及びメッキ金属板110の面積、即ちオーミック接触層107の底部107aの面積は、p型半導体層105の上面105aの面積に対して、10〜90%の範囲内の面積比であることが好ましい。
図1の断面図に示す例では、上述したように、オーミック接触層107の底部107aが、p型半導体層105の上面105aに対して、つまり、該上面105aと同寸に形成された透明電極106の上面106aに対して幅方向(図1左右方向)で約30%の幅に形成されている。また、図3及び図4の平面図に示す例では、透明電極206(p型半導体層205)上において、各素子単位で縦横に交差して平面視格子状に形成されたメッキ金属板210、オーミック接触層207及び反射層208が、各素子上において縦横各約30%の幅で形成されており、p型半導体層205上の各素子単位の面積比で、つまり、透明電極206上の面積比で約50%とされている。
また、図5に示すように、本発明の窒化物系半導体発光素子は、各素子単位で縦横に交差して平面視格子状に形成されたメッキ金属板310及びオーミック接触層307の交差部320を、交差部分が若干、上面視略円形状に膨らんだ膨出部311を有する形状としても良い。
前述の製造工程において用いるサファイア基板201には、サファイア単結晶(Al;A面、C面、M面、R面)、スピネル単結晶(AgAl)、ZnO単結晶、LiAlO単結晶、LiGaO単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶、GaAs単結晶などの公知の基板材料を何ら制限無く用いることができる。SiCなどの導電性基板を用いれば、正極と負極を上下に配置させた素子の作製は、基板剥離を行わなくとも可能であるが、その場合には絶縁体であるバッファ層202を使用することができなくなるので、サファイア基板201上に成長する窒化物系半導体層の結晶が劣化してしまい、良好な半導体素子を形成することができない。本発明においては、導電性のSiC、Siを用いた場合でもサファイア基板201の剥離を行う。
バッファ層202は、例えば、サファイア単結晶基板とGaNの格子定数が10%以上も異なるため、その中間の格子定数を有するAlNやAlGaN等が、GaNの結晶性を向上させるために一般的に使用されており、本発明においてもAlNやAlGaNが何ら制限なく用いられる。
窒化物系半導体は、例えばn型半導体層103、発光層104、p型半導体層105からなるヘテロ接合構造で構成される。窒化物系半導体層としては、一般式AlInGa1−x−yN(0≦x<1、0≦y<1、x+y<1)で表される半導体が多数知られており、本発明においても一般式AlInGa1−x−yN(0≦x<1、0≦y<1、x+y<1)で表される窒化物系半導体が何ら制限なく用いられる。
窒化物系半導体の成長方法は特に限定されず、有機金属化学気相成長法(MOCVD)、ハイドライド気相成長法(HPVE)、分子線エピタキシー法(MBE)等、III族窒化物系半導体を成長させることが知られている全ての方法を適用できる。好ましい成長方法としては、膜厚制御性、量産性の観点からMOCVD法である。
MOCVD法では、キャリアガスとして水素(H)または窒素(N)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、V族原料であるN源としてはアンモニア(NH)、ヒドラジン(N)などが用いられる。
また、ドーパントとしては、n型にはSi原料としてモノシラン(SiH)またはジシラン(Si)を、Ge原料としてゲルマン(GeH)を用い、p型にはMg原料としては例えばビスシクロペンタジエニルマグネシウム(CpMg)またはビスエチルシクロペンタジエニルマグネシウム((EtCp)Mg)を用いる。
窒化物系半導体をサファイア基板上で分割する方法としては、エッチング法、レーザカッティング法など公知の技術を何ら制限なく用いることが出来る。レーザリフトオフ法を用いる場合、窒化物系半導体を分割する際に、サファイア基板101にダメージを与えないようにすることが、良好な基板剥離を行う点で好ましい。従って、エッチング法で分割する場合、窒化物系半導体に対してはエッチングレートが早く、サファイア基板101に対してはエッチングレートが遅い手法を用いることが好ましい。レーザで分割する場合は、GaNとサファイアに対する吸収波長の違いから、300〜400nmの波長を持ったレーザを用いることが好ましい。
オーミック接触層107に要求される性能としては、p型半導体層105との接触抵抗が小さいことが必須である。
オーミック接触層107の材料としては、p型半導体層105との接触抵抗の観点から、Pt、Ru、Os、Rh、Ir、Pd等の白金族、またはAgを用いることが好ましい。さらに好ましくは、Pt、Ir、Rh及びRuであり、Ptが特に好ましい。
オーミック接触層106にAgを用いることは、良好な反射を得るためには好ましいが、接触抵抗はPtよりも大きい。したがって、接触抵抗がそれほど要求されない用途にはAgを用いることも可能である。
但し、p型半導体層105上に透明電極106があらかじめ形成される場合は、透明電極106とp型半導体層105間の接触抵抗が大きく、透明電極106とオーミック接触層107との接触抵抗は小さくなるので、オーミック接触層107としては上記の材料以外にTi、V、Cr、Co、Ni、Zr、Nb、Mo、Hf、Ta、Wなどを用いること、できる。
オーミック接触層107の厚さは、低接触抵抗を安定して得るために0.1nm以上とすることが好ましい。さらに好ましくは1nm以上であり、均一な接触抵抗が得られる。
また、オーミック接触層107上には、Ag合金等からなる反射層108を設けても良い。Pt、Ir、Rh、Ru、OS、Pd等は、Ag合金と比較すると可視光から紫外領域の反射率が低い。したがって、発光層104からの光が十分に反射せず、発光出力の高い素子を得ることが難しい。この場合、オーミック接触層107を、光が十分に透過するように薄く形成し、Ag合金等からなる反射層108を形成して反射光を得る方が、良好なオーミック接触が得られ、かつ出力の高い素子を作製することができる。この場合のオーミック接触層107の膜厚は30nm以下とすることが好ましい。さらに好ましくは10nm以下である。
オーミック接触層107および反射層108の成膜方法については、特に制限されることはなく公知のスパッタ法や蒸着法を用いることができる。
反射層108にはAg合金を用いることが好ましい。
反射層108の膜厚は、良好な反射率を得るためには0.1nm以上とすることが好ましい。さらに好ましくは1nm以上であり、良好な反射率が得られる。また、Ag合金はマイグレーションを起こしやすいので、メッキにより保護するとはいえ、より薄い方が好ましい。したがって、膜厚は200nm以下とすることがより好ましい。
反射層108の成膜方法については、特に制限されることはなく公知のスパッタ法や蒸着法を用いることができる。スパッタ法はスパッタ粒子が高エネルギーを持って基板表面に衝突して成膜されるので、密着力の高い膜を得ることができる。したがって、スパッタ法を用いることがより好ましい。
透明電極106には、ITO(In−Sn−O合金)、IZO(In−Zn−O合金)、AZO(Zn−Al−O合金)等、公知の材料をなんら制限無く用いることができる。
透明電極106の厚さは、低接触抵抗を安定して得るために100nm以上とすることが好ましい。透明電極106にも光は吸収されるので、厚くなりすぎると出力が低下ししまう。このため、透明電極106は1μm以下とすることが好ましい。
また、透明電極106は、p型半導体層上105上の全面に形成されることが電流拡散の点で好ましい。
透明電極106の成膜方法については、特に制限されることはなく公知のスパッタ法や蒸着法を用いることができる。さらに、成膜後、100℃〜300℃の温度でアニールすることが、透過率やシート抵抗の低減に有効である。
なお、密着性向上のため、メッキ金属板110の直下、即ちメッキ金属板110と反射層108との間にメッキ密着層109を形成しても良い。メッキ密着層109の材料は、メッキ金属板110に使用するメッキによって異なってくるが、メッキ成分に主に含まれる物質を多く含んでいたほうが密着性を向上させる。例えば、メッキ密着層109は、メッキ金属板110の50重量%以上を占める主成分と同一の組成を、50重量%以上含有する構成とすることが好ましい。
また、メッキ金属板110にNiPメッキを用いる場合、メッキ密着層にはNi系合金を用いることが好ましい。さらに好ましくはNiP合金を用いることである。また、メッキ金属板110にCuメッキを用いる場合、メッキ密着層にはCu系合金を用いることが好ましい。さらに好ましくはCuを用いることである。
メッキ密着層109の厚さは、良好な密着性を得るために0.1nm以上とすることが好ましい。さらに好ましくは1nm以上であり、均一な密着性が得られる。メッキ密着層109の厚さに特に上限はないが、生産性の観点から2μm以下にすることが好ましい。
メッキ密着層109の成膜方法については、特に制限されることはなく公知のスパッタ法や蒸着法を用いることができる。スパッタ法は、スパッタ粒子が高エネルギーを持って基板表面に衝突して成膜されるので、密着性の高い膜を得ることができる。したがって、スパッタ法を用いることがより好ましい。
メッキ金属板110には、無電解メッキ、電解メッキのどちらでも用いることができる。無電解メッキの場合、材料としてはNiP合金メッキを用いることが好ましく、電解メッキの場合、材料としてはCuを用いることが好ましい。
メッキ金属板110の厚さは、基板としての強度を保つために10μm以上とすることが好ましい。また、メッキ金属板110が厚すぎるとメッキの剥離が起こりやすくなり、かつ生産性も低くなるので200μm以下とすることが好ましい。
メッキを実施する際は、窒化物系半導体発光素子の表面を、汎用の中性洗剤等を用いて、予め脱脂洗浄しておくことが好ましい。また、硝酸などの酸を用いてメッキ密着層等の表面に化学エッチングを施すことにより、メッキ密着層上の自然酸化膜を除去するのが好ましい。
NiPメッキ等のメッキ処理方法としては、メッキ浴として、例えば、硫酸ニッケル、塩化ニッケルなどのニッケル源と、次亜リン酸塩などのリン源を含むものを用いた無電解メッキ処理法を採用することができる。無電解メッキ法に用いられるメッキ浴として好適な市販品としては、上村工業製のニムデンHDXなどがある。無電解メッキ処理を行う際のメッキ浴のpHは4〜10、温度は30〜95℃とすることが好ましい。
CuまたはCu合金のメッキ処理方法としては、メッキ浴として、例えば硫酸銅などのCu源を用いる電解メッキ処理法を採用することができる。電気メッキ処理を行う際のメッキ浴のpHは2以下の強酸条件下で実施することが好ましい。温度は10〜50℃とすることが好ましく、常温(25℃)で実施することがより好ましい。電流密度は0.5〜10A/dmで実施することが好ましく、2〜4A/dmで実施することがより好ましい。
また、表面を平滑化させるためにレベリング剤を添加することがより好ましい。レベリング剤に用いられる市販品としては、例えば上村工業製のETN−1−AやETN−1−Bなどが用いられる。
上述のようにして得られたメッキ金属板110の密着性を向上させるため、熱処理を行うことが好ましい。熱処理温度は100〜300℃の範囲とすることが、密着性向上の点から好ましい。熱処理温度を上述の範囲以上とすると、密着性がさらに向上する可能性はあるものの、オーミック性が低下してしまう虞がある。
オーミック接触層107及び反射層108(金属膜層)、メッキ金属板110を、p型半導体層105(透明電極106)上において部分的に形成する方法としては、いくつかの方法が考えられる。
オーミック接触層107及び反射層108を部分的に形成する方法としては、公知のフォトリソグラフィー技術、及びリフトオフ技術を用いることができる。
メッキ金属板110を部分的に形成する方法としては、以下の2つの方法が主として考えられる。
(1)メッキを施すオーミック接触層107及び反射層108以外の部分に、絶縁性の保護膜を形成する。メッキは絶縁体上には成長しないので、パターン化されたオーミック接触層107及び反射層108上にのみ形成される。
(2)メッキ用の厚膜レジスト材料を使用して、公知のフォトリソグラフィー技術およびリフトオフ技術を用いる。
オーミック接触層107、反射層108、メッキ金属板110のパターン形状については、これら各層がp型半導体層105上において占める部分をできるだけ減らすことと、メッキ金属板110が基板としての強度を保つこととの相反する性質のバランスをとった形状とすることが必要である。
オーミック接触層107、反射層108、メッキ金属板110のパターンは、図3〜5に示すような十字状に形成することが、p型半導体層105上において占める部分をできるだけ少なくしながら基板強度を保つ点で好ましい。
しかしながら、オーミック接触層107、反射層108、メッキ金属板110のパターンは、図3及び図4に示すような形状に限るものではなく、透明電極106上において格子状、あるいは網目状、クロスライン状、櫛歯状、円環状、角環状、L字状、Y字状等、いずれの形状であっても良く、上述の基板強度や後述する金属パッド取付性を考慮しながら適宜決定することができる。
また、ボンディング用のワイヤーを着けやすくするために、金属パッドが装着される部分の面積を広く形成することが好ましい。例えば、図5に示すように、素子中心部のメッキ金属板310の交差部320を、膨出部311を有した平面視略円形状として大きく形成することが、金属パッド装着のためには好ましい。
透光性物質層114をなす透光性材料としては、透光性樹脂、シリカ系物質、チタニア系物質等を用いることが好ましい。
透光性樹脂としては、ポリメチルメタクリレート系樹脂、ポリカーボネート系樹脂、ポリイミド系樹脂、エポキシ樹脂、シリコン樹脂等、透光性を有している樹脂であれば公知の材料を何ら制限なく用いることが出来る。
透光性樹脂の塗布方法には、スピンコート法、射出成型法等、公知の方法を何ら制限無く用いることができるが、生産性の観点からスピンコート法を用いることが好ましい。
シリカ系物質としては、シリカゾル、メチルシロキサン系、ハイメチルシロキサン系、水素化メチルメチルシロキサン系、燐ドープシリケート系、ポリシラザン系等、透光性を有しているシリカ系物質であれば公知の材料を何ら制限なく用いることが出来る。
また、シリカ系物質の塗布後、加湿条件で処理することが、シリカガラスへの転化が容易に進む点で好ましい。
シリカ系物質の塗布後、100℃〜500℃の温度でベークすることが、剛性向上、及びシリカ系物質中に含まれる水分や有機成分等を除去できる点で好ましい。
シリカ系物質の塗布には、スピンコート法、スプレー法、ディップコート法等、公知の方法を何ら制限無く用いることができるが、生産性の観点からスピンコート法を用いることが好ましい。
チタニア系物質としては、チタニアゾル、リン酸チタニア等、透光性を有している物質であれば公知の材料を何ら制限なく用いることが出来る。
チタニア系物質の塗布後、100℃〜500℃の温度でベークすることが、剛性向上、及びチタニア系物質中に含まれる水分や有機成分等を除去できる点で好ましい。
チタニア系物質の塗布には、スピンコート法、スプレー法、ディップコート法等、公知の方法を何ら制限無く用いることができるが、生産性の観点からスピンコート法を用いることが好ましい。
透光性物質層114を設ける理由としては、高屈折率の透光性物質を用いてp型半導体層105(透明電極106)上に透光性物質層114を形成することにより、窒化物系半導体発光素子の光取り出し効率が向上することが挙げられる。従って、透光性物質層114は、p型半導体層105上、あるいは透明電極106を介してp型半導体層105上に形成されることが好ましい。
透光性物質層114の屈折率は、1.4〜2.6の範囲内であることが、窒化物系半導体発光素子の光取り出し効率を向上させる点で好ましい。
また、透光性物質層114は、350nm〜550nmの波長範囲において、透過率80%以上であることが好ましい。
透光性物質層は、図4に示す例の透光性物質層214のように、透過電極206上において、オーミック接触層207、反射層208、メッキ密着層209及びメッキ金属板210が形成されていない部分に隙間無く形成することが好ましい。これにより、透光性物質層214による光取り出し効率の向上、及びメッキ金属板210による基板強度向上の効果を両立して達成することができる。
また、透光性物質層に用いるシリカ系物質、チタニア系物質等は、本来は厚膜を形成するのが困難であるが、透過電極206上において、オーミック接触層207、反射層208、メッキ密着層209及びメッキ金属板210に密接するような形で設けられた構成とすることにより、5μm以上の厚膜を形成することが可能になる。
透光性物質層の膜厚は、光取り出し効率を向上されるためには1μm以上であることが必要である。また、透過電極206上において、オーミック接触層207、反射層208、メッキ密着層209及びメッキ金属板210と密接するような形で設けられることから、メッキ金属板210の最適膜厚範囲の最大値である200μm以下とする必要性がある。
メッキ金属板110の形成後、サファイア基板(図2のサファイア基板201参照)の剥離を行う。サファイア基板を剥離する方法としては、研磨法、エッチング法、レーザリフトオフ法など公知の技術を何ら制限なく用いることが出来る。
サファイア基板を剥離した後、研磨法、エッチング法などによりバッファ層(図2のバッファ層202参照)を除去し、n型半導体層103を露出させ、該n型半導体層103上に図示略の負極を形成する。負極としては、公知の各種組成及び構造のものを、何ら制限なく用いることが出来る。
また、正極としては、Au、Al、Ni及びCu等の材料を用いた各種構造が公知であり、これら公知の材料を何ら制限なく用いることが出来る。
以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。
[実施例1]
本実施例では、図1の断面模式図に示すような窒化物系半導体発光素子を作成した。
まず、サファイア基板上に、AlNからなるバッファ層(厚さ10nm)を介して、厚さ5μmのSiドープn型GaNコンタクト層、厚さ30nmのn型In0.1Ga0.9Nクラッド層、厚さ30nmのSiドープGaN障壁層および厚さ2.5nmのIn0.2Ga0.8N井戸層を5回積層し、最後に障壁層を設けた多重井戸構造の発光層、厚さ50nmのMgドープp型Al0.07Ga0.93Nクラッド層、厚さ150nmのMgドープp型GaNコンタクト層を順に積層した。
次いで、p型半導体層105上に、厚さ300nmのITO(SnO:10wt%)からなる透明電極106を、蒸着法で成膜して形成した。そして、酸素雰囲気中において、300℃の温度で1時間のアニールを行った。
次いで、厚さ1.5nmのPt層からなるオーミック接触層107と、厚さ30nmのAg層からなる反射層108を、この順序でスパッタ法により成膜した。さらに、厚さ30nmのNiP合金(Ni:80at%、P:20at%)からなるメッキ密着層109を、スパッタ法により成膜した。なお、オーミック接触層107(Pt層)、反射層108(Ag層)、メッキ密着層109(NiP合金層)は、公知のフォトリソグラフィー技術、及びリフトオフ技術を用いて、図3に示すような格子状にパターン化した。
この際の、パターン幅Wは30μmとし、透明電極の面積(300×300)=90000μmに対する十字状パターン(面積(30×300+30×270)=17100μm)の面積比は、17100/90000=19%とした。
次いで、透明電極106上において、オーミック接触層107、反射層108、メッキ密着層109から構成される金属膜層以外の部分に、メッキ用の厚膜レジスト(AZエレクトロマテリアルズ社製、AZ UT21−HR)を形成した。
次いで、NiP合金からなるメッキ密着層109の膜表面を、硝酸水溶液(5N)に浸漬し、温度25℃、時間30秒で処理し、酸化皮膜を除去した。
次いで、メッキ浴(上村工業製、ニムデンHDX−7G)を用いて、メッキ密着層109上に50μmのNiP合金からなる無電解メッキを形成し、メッキ金属板110を得た。この際の処理条件は、pH4.6、温度90℃、処理時間を3時間とした。次いで、このメッキ金属板110を水洗、乾燥した後、クリーンオーブンを用いて250℃の条件下で1時間のアニールを行った。
次いで、液体状の透光性樹脂(信越化学社製、シリコン樹脂 SCR−1011、屈折率1.5)を、透明電極106上において、オーミック接触層107、反射層108、メッキ密着層109から構成される金属膜層以外の部分に隙間なく塗布し、100℃の条件下で1時間、150℃の条件で5時間乾燥して樹脂を硬化させ、透光性物質層114を形成した。
次いで、サファイア基板及びバッファ層を、研磨法により剥離しn型半導体層103を露出させた。
そして、n型半導体層103表面に、厚さ400nmのITO(SnO:10wt%)からなる透明電極を、蒸着により成膜した。次いで、ITO表面上の中央部に、Cr(40nm)、Ti(100nm)、Au(1000nm)からなる負極を、蒸着法により成膜した。負電極のパターンは、公知のフォトリソグラフィー技術及びリフトオフ技術を用いた。
また、p型半導体表面上には、Au(1000nm)からなる図示略の正極を、蒸着法により成膜した。
次いで、ダイシングにより分割し、350μm角の、本発明の窒化物系半導体素子を得た。
得られた窒化物系半導体発光素子について、TO−18缶パッケージに実装して、テスターによって印加電流20mAにおける発光出力を測定したところ、発光出力は21mWであった。
[実施例2]
透光性物質層114の材料として、シリコン樹脂に替えてチタニアゾルを用いた点を除き、実施例1と同様の処理を行い、本発明の窒化物系半導体素子を得た。
チタニアゾルは、塗布後、150℃の条件で1時間、300℃の条件で3時間の処理を行うことにより乾燥、固化させた。この際のチタニアゾルの屈折率は2.2であった。
得られた窒化物系半導体発光素子について、TO−18缶パッケージに実装して、テスターによって印加電流20mAにおける発光出力を測定したところ、発光出力は22mWであった。
[比較例1]
透光性物質層を形成しなかった点を除き、実施例1と同様にして窒化物系半導体発光素子を作製した。
作製した窒化物系半導体発光素子について、TO−18缶パッケージに実装して、テスターによって印加電流20mAにおける発光出力を測定したところ、発光出力は20mWであった。
[評価結果]
上述のように、p型半導体層上に、オーミック接触層、反射層、メッキ金属板を部分的に形成し、上記各層を形成していない部分にシリコン樹脂からなる透光性物質層を設けた実施例1の窒化物系半導体発光素子は、21mWの発光出力が得られた。
また、透光性物質層の材料として、シリコン樹脂に替えてチタニアゾル樹脂を用いた実施例2の窒化物系半導体発光素子は、22mWの発光出力が得られた。
これに対し、透光性物質層を形成していない、比較例1に示す窒化物系半導体発光素子は、発光出力は20mWであった。
透光性物質層の材料として、屈折率が1.5のシリコン樹脂を用いた実施例1の窒化物系半導体発光素子では、透光性物質層を形成していない比較例1の窒化物系半導体発光素子と比較して5%の発光出力の向上が確認された。
また、透光性物質層の材料として、屈折率が2.2のチタニアゾル樹脂を用いた実施例2の窒化物系半導体発光素子では、比較例1の窒化物系半導体発光素子と比較して10%の発光出力の向上が確認された。
透光性物質層を設けない場合の屈折率は1であるため、透光性物質層の屈折率が上昇するほど、光取り出し効率が向上していることがわかる。これは、透光性物質に、屈折率が1.4〜2.6と高い物質を使用することにより臨界角が大きくなるため、より全反射しにくくなるからである。なお、上限が2.6なのは、GaNの屈折率が2.6であるのでこれ以上大きくする必要がない。これ以上大きくすると、透光性物質から光を取り出すことが難しくなる。
上記結果により、本発明の窒化物系半導体発光素子が、光取り出し効率に優れていることが明らかである。
本発明によって提供される窒化物系半導体発光素子は、優れた特性と安定性を有し、発光ダイオードおよびランプ等の材料として有用である。
本発明の窒化物系化合物半導体発光素子の一例を示す図であり、断面構造を示した模式図である。 本発明の窒化物系化合物半導体発光素子の製造方法を説明する図であり、断面構造を示した模式図である。 本発明の窒化物系化合物半導体発光素子の分割前の状態を示す平面図である。 本発明の窒化物系化合物半導体発光素子の分割前の状態を示す平面図である。 本発明の窒化物系化合物半導体発光素子の分割前の状態を示す平面図である。
符号の説明
1…窒化物系半導体発光素子、101、201…サファイア基板(基板)、102、202…バッファ層、103、203…n型半導体層、104、204…発光層、105、205…p型半導体層、106、206…透明電極、107、207…オーミック接触層、108、208…反射層、109、209…メッキ密着層、110、210…メッキ金属板、114、214…透光性物質層

Claims (18)

  1. なくともn型半導体層、発光層、p型半導体層、金属膜層、メッキ金属板がこの順序で積層されてなる窒化物系半導体発光素子において、
    前記金属膜層及び前記メッキ金属板が、前記p型半導体層上に部分的に形成され、前記メッキ金属板が支持基板であり、
    前記p型半導体層上において、前記金属膜層及び前記メッキ金属板が形成されていない部分に屈折率が1.4〜2.6の範囲内である透光性物質層が形成されていることを特徴とする窒化物系半導体発光素子。
  2. 前記p型半導体層上に形成される前記金属膜層及び前記メッキ金属板が、平面視交差状態に設けられており、
    前記p型半導体層上において、前記金属膜層及び前記メッキ金属板が形成されていない部分に前記透光性物質層が設けられていることを特徴とする請求項1に記載の窒化物系半導体発光素子。
  3. 前記透光性物質層が前記p型半導体層上に積層され、前記透光性物質層が少なくとも前記金属膜層とメッキ金属板によって部分的に囲われていることを特徴とする請求項1又は2に記載の窒化物系半導体発光素子。
  4. 前記透光性物質層が、透明電極を介してp型半導体層上に積層され、前記透光性物質層が少なくとも前記金属膜層とメッキ金属板によって部分的に囲われていることを特徴とする請求項1又は2に記載の窒化物系半導体発光素子。
  5. 前記透光性物質層が、透光性樹脂、シリカ系物質又はチタニア系物質の何れかからなることを特徴とする請求項1〜4の何れかに記載の窒化物系半導体発光素子。
  6. 前記透光性物質層の膜厚が10μm〜200μmの範囲内であることを特徴とする請求項1〜の何れかに記載の窒化物系半導体発光素子。
  7. 前記金属膜層がオーミック接触層を含むことを特徴する請求項1〜の何れかに記載の窒化物系半導体発光素子。
  8. 前記オーミック接触層が、Pt、Ru、Os、Rh、Ir、Pd、Agの単体金属、及び/又は、それらの合金からなることを特徴とする請求項7に記載の窒化物系半導体発光素子。
  9. 前記オーミック接触層の膜厚が0.1nm〜30nmの範囲内であることを特徴とする請求項7又は8に記載の窒化物系半導体発光素子。
  10. 前記メッキ金属板の膜厚が10μm〜200μmの範囲内であることを特徴とする請求項1〜の何れかに記載の窒化物系半導体発光素子。
  11. 前記メッキ金属板が、NiP合金、Cu、またはCu合金からなることを特徴とする請求項1〜10の何れかに記載の窒化物系半導体発光素子。
  12. 前記金属膜層と前記メッキ金属板との間にメッキ密着層が形成されていることを特徴とする請求項1〜11の何れかに記載の窒化物系半導体発光素子。
  13. 前記メッキ密着層が、前記メッキ金属板をなすメッキの50重量%以上を占める主成分と同一の組成を50重量%以上含有することを特徴とする請求項12に記載の窒化物系半導体発光素子。
  14. 前記メッキ密着層が、NiP合金またはCu合金からなることを特徴とする請求項12又は請求項13に記載の窒化物系半導体発光素子。
  15. 基板上に少なくともバッファ層、n型半導体層、発光層、p型半導体層、金属膜層、メッキ金属板を積層する積層工程を有する窒化物系半導体発光素子の製造方法において、
    前記積層工程において、前記金属膜層及び前記メッキ金属板を、前記p型半導体層上に部分的に形成し、
    前記p型半導体層上において、前記金属膜層及び前記メッキ金属板が形成されていない部分に屈折率が1.4〜2.6の範囲内である透光性物質層を形成し、
    前記積層工程終了後に、前記基板およびバッファ層を除去することにより、前記n型半導体層を露出させることを特徴とする窒化物系半導体発光素子の製造方法。
  16. 前記積層工程において、前記金属膜層及び前記金属板を、個々に平面視ライン状で交差状態に形成することを特徴とする請求項15に記載の窒化物系半導体発光素子の製造方法。
  17. 前記基板をレーザによって除去することを特徴とする請求項15又は16に記載の窒化物系半導体発光素子の製造方法。
  18. 前記メッキ金属板を形成した後、100℃〜300℃の温度で熱処理することを特徴とする請求項1517の何れかに記載の窒化物系半導体発光素子の製造方法。
JP2005272574A 2005-09-20 2005-09-20 窒化物系半導体発光素子及びその製造方法 Active JP4920223B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005272574A JP4920223B2 (ja) 2005-09-20 2005-09-20 窒化物系半導体発光素子及びその製造方法
CN2006800342708A CN101268560B (zh) 2005-09-20 2006-09-20 氮化物系半导体发光元件及其制造方法
US12/067,227 US7939845B2 (en) 2005-09-20 2006-09-20 Nitride semiconductor light-emitting device and production method thereof
EP06810337.3A EP1928031B1 (en) 2005-09-20 2006-09-20 Nitride semiconductor light-emitting device and method for manufacturing same
KR1020087008047A KR100961034B1 (ko) 2005-09-20 2006-09-20 질화물계 반도체 발광 소자 및 그 제조 방법
PCT/JP2006/318641 WO2007034834A1 (ja) 2005-09-20 2006-09-20 窒化物系半導体発光素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272574A JP4920223B2 (ja) 2005-09-20 2005-09-20 窒化物系半導体発光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2007088059A JP2007088059A (ja) 2007-04-05
JP4920223B2 true JP4920223B2 (ja) 2012-04-18

Family

ID=37974772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272574A Active JP4920223B2 (ja) 2005-09-20 2005-09-20 窒化物系半導体発光素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP4920223B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527261B1 (ko) * 2009-04-03 2015-06-08 오스람 옵토 세미컨덕터스 게엠베하 광전 소자의 제조 방법, 광전 소자, 및 복수 개의 광전 소자를 포함하는 소자 장치
JP5952880B2 (ja) * 2014-11-13 2016-07-13 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960636B2 (ja) * 1995-09-29 2007-08-15 三洋電機株式会社 発光素子
JP2000188421A (ja) * 1998-12-21 2000-07-04 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子
JP4060511B2 (ja) * 2000-03-28 2008-03-12 パイオニア株式会社 窒化物半導体素子の分離方法
JP3896044B2 (ja) * 2002-07-11 2007-03-22 シャープ株式会社 窒化物系半導体発光素子の製造方法およびその製品

Also Published As

Publication number Publication date
JP2007088059A (ja) 2007-04-05

Similar Documents

Publication Publication Date Title
JP5533675B2 (ja) 半導体発光素子
KR100961034B1 (ko) 질화물계 반도체 발광 소자 및 그 제조 방법
JP5276959B2 (ja) 発光ダイオード及びその製造方法、並びにランプ
US7939351B2 (en) Production method for nitride semiconductor light emitting device
KR20080070750A (ko) 질화갈륨계 화합물 반도체 발광 소자 및 그 제조 방법, 및 질화갈륨계 화합물 반도체 발광 소자로 이루어진 램프
WO2006011672A1 (en) Positive electrode for semiconductor light-emitting device
JP4841909B2 (ja) 窒化物系半導体発光素子
JP2007081312A (ja) 窒化物系半導体発光素子の製造方法
JP2006066903A (ja) 半導体発光素子用正極
WO2007125860A1 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法及び窒化ガリウム系化合物半導体発光素子、並びにランプ
JP4951443B2 (ja) 発光ダイオードの製造方法
JP4799975B2 (ja) 窒化物系半導体発光素子及びその製造方法
KR100975711B1 (ko) 질화물 반도체 발광 장치 및 그 제조 방법
JP4799974B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4920223B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4202353B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4749809B2 (ja) 窒化物系半導体発光素子
JP5047482B2 (ja) 窒化物系半導体発光素子及びその製造方法
JP4791119B2 (ja) 窒化物系半導体発光素子の製造方法
JP2009094108A (ja) GaN系LED素子の製造方法
JP2008227544A (ja) 窒化物系半導体発光素子及びその製造方法
JP2012146826A (ja) 半導体発光素子、半導体発光素子の製造方法及び半導体発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4920223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350