JP5952880B2 - オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト - Google Patents

オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト Download PDF

Info

Publication number
JP5952880B2
JP5952880B2 JP2014230666A JP2014230666A JP5952880B2 JP 5952880 B2 JP5952880 B2 JP 5952880B2 JP 2014230666 A JP2014230666 A JP 2014230666A JP 2014230666 A JP2014230666 A JP 2014230666A JP 5952880 B2 JP5952880 B2 JP 5952880B2
Authority
JP
Japan
Prior art keywords
layer
copper
optoelectronic component
optoelectronic
component according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014230666A
Other languages
English (en)
Other versions
JP2015057848A (ja
Inventor
ルッツ ヘッペル
ルッツ ヘッペル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to JP2014230666A priority Critical patent/JP5952880B2/ja
Publication of JP2015057848A publication Critical patent/JP2015057848A/ja
Application granted granted Critical
Publication of JP5952880B2 publication Critical patent/JP5952880B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、オプトエレクトロニクス部品を製造する方法であって、オプトエレクトロニクス部品が、動作時に活性ゾーンを形成する半導体層と、半導体層の上に配置される、キャリア基板としての銅層と、を備えている、方法に関する。さらに、本発明は、この方法によって製造されるオプトエレクトロニクス部品と、このタイプの複数のオプトエレクトロニクス部品のレイアウトとに関する。
銅基板(特に、ヒートシンクとしての役割を果たし、さらに機械的安定性をもたらす)を備えたオプトエレクトロニクス部品の製造において、特に、オプトエレクトロニクス部品が発光ダイオードまたはレーザダイオードである場合、機能しない部品に関連する極めて多数の不良品が発生することが観察されてきた。
欧州特許第0905797号明細書 国際公開第02/13281号 独国特許第19640594号明細書
I. Schnitzer et al., Appl. Phys. Lett. 63 (16), October 18, 1993, pages 2174 - 2176
したがって、本発明の目的は、機能しないオプトエレクトロニクス部品に関連する不良品の発生数が少ない方法を開示することである。
この目的は、独立請求項による製造方法、部品、および部品レイアウトによって達成される。従属請求項は、さらなる実施形態および本方法のバリエーションを開示する。オプトエレクトロニクス部品を製造するための、本発明による方法は、以下のステップを含んでいる。方法ステップAとして、成長基板と、成長基板の上に配置される(動作時にアクティブであるゾーンを生成するための)半導体層と、を形成するステップと、方法ステップBにおいて、半導体層の上に分離構造を形成するステップと、分離構造によって区切られている領域において、半導体層の上に多数の銅層を堆積させるステップと、を含んでいる。さらなる方法ステップとして、本方法は、方法ステップDとして、分離構造を除去するステップと、銅層の少なくとも側面領域に保護層を形成するステップと、を含んでいる。最後に、本方法は、方法ステップFにおいて、銅層の上に補助基板を貼り付けるステップと、方法ステップGにおいて、(半導体層の表面が露出するように)成長基板を除去するステップと、方法ステップHにおいて、半導体層と、銅層と、補助基板とからなる複合体アセンブリ(composite assembly)を個片化して、互いに分離された、それぞれが(一般的にはただ1つの)銅層を有する部品、を形成するステップと、を含んでいる。
なお、用語「部品」は、完成している部品(例えば、発光ダイオード(LED)やレーザダイオードなど)のみならず、基板や半導体層も意味し、したがって、一例として、銅層および半導体層からなる複合体アセンブリは、この段階で部品であり、上位の(例えば電気接続部がさらに設けられた)別の部品の一部を形成することができる。本発明によるオプトエレクトロニクス部品は、例えば、薄膜半導体チップ、特に、薄膜発光ダイオードチップとすることができる。
本オプトエレクトロニクス部品は、例えば、薄膜発光ダイオードチップとすることができる。
薄膜発光ダイオードチップは、以下の特徴的な形状構造の少なくとも1つによって区別される。
− 放射を発生させる半導体積層体の主領域(キャリア要素、特に、キャリア基板の側の主領域)に、反射層が堆積または形成されており、半導体積層体が、特に、放射を発生させるエピタキシャル積層体であり、反射層が、半導体積層体において発生する電磁放射の少なくとも一部分を、半導体積層体中に反射して戻す。
− 薄膜発光ダイオードチップはキャリア要素を有し、これは、半導体積層体を上にエピタキシャル成長させた成長基板ではなく、半導体積層体に後から固定された個別のキャリア要素である。
− 半導体積層体の厚さは、20μm以下の範囲、特に10μm以下の範囲である。
− 半導体積層体が成長基板を備えていない。この場合、「成長基板を備えていない」とは、(適切な場合に)成長目的に使用された成長基板が、半導体積層体から除去されている、または少なくとも大幅に薄くされていることを意味する。具体的には、成長基板は、単独では、またはエピタキシャル積層体のみとの組合せでは自身を支持できない程度まで薄くされている。大幅に薄くされた成長基板の残りの部分は、特に、成長基板として機能するには適さない。
− 半導体積層体は、少なくとも一領域が混合構造(intermixing structure)を有する少なくとも1つの半導体層を含んでおり、この混合構造によって、理想的には半導体積層体における近似的に光のエルゴード分布につながり、すなわち、この完全混合構造は、実質的にエルゴード的確率過程である散乱挙動を有する。
薄膜発光ダイオードチップの基本原理は、例えば非特許文献1に記載されており、この点に関するこの文書の開示内容は、参照によって本文書に組み込まれている。薄膜発光ダイオードチップの例は、特許文献1および特許文献2に記載されており、この点に関するこれらの文書の開示内容は、同様に参照によって本文書に組み込まれている。
本発明において使用されている用語「層」は、個々の層、または、複数の層からなる積層体を意味する。特に、半導体層は、複数の層の積層体(例えば、p型ドープ半導体層およびn型ドープ半導体層の積層体)とすることができる。含まれているミラー層は、(適切な場合)2層以上の層の積層体からなることもできる。本出願において記載されている他のすべての層は、一般に、特に明記されていない限りはただ1層からなる。
1つの層または1つの要素が別の層または別の要素の「上」または「上方」に配置または形成されている場合、そのことは、本文書においては、その1つの層または1つの要素が、その別の層またはその別の要素の上に、直接的な機械的接触もしくは電気的接触、またはその両方の状態で直接的に配置されていることを意味する。さらには、その1つの層または1つの要素が、その別の層またはその別の要素の上または上方に間接的に配置されていることも意味する。この場合、その1つの層とその別の層との間、またはその1つの要素とその別の要素との間に、さらなる層もしくはさらなる要素またはその両方が配置されていてもよい。
1つの層または1つの要素が別の2つの層または2つの要素の「間に」配置されている場合、そのことは、本文書においては、その1つの層または1つの要素が、その別の2つの層または2つの要素の一方と、直接的な機械的接触もしくは電気的接触またはその両方の状態に配置されている、または間接的な接触の状態にあり、かつ、その別の2つの層または2つの要素のもう一方と、直接的な機械的接触もしくは電気的接触またはその両方の状態に配置されている、または間接的な接触の状態にあることを意味する。この場合、間接的な接触の状態にある場合には、その1つの層とその別の2つの層の少なくとも一方との間、またはその1つの要素とその別の2つの要素の少なくとも一方との間に、さらなる層もしくはさらなる要素またはその両方が配置されていてもよい。
本発明によると、「分離構造」は、別の層の上に形成されている構造要素であって、その別の層の上に(互いに隔てられた)多数のさらなる層を横方向に並べて堆積できるようにするための構造要素、を意味するものと理解されたい。したがって、分離構造の目的は、具体的には、半導体層の上に、互いに隔てられており互いに結合されていない銅層を堆積させることである。さらには、分離構造は、その目的を果たした時点で、隣接する層を損傷することなく(例えば化学的に)再び除去できる材料、からなる構造を意味するものと理解されたい。
ステップA〜ステップHを含む本発明による方法は、これらのステップが必ず指定の順序で実施されるように実行する。この場合、最初に成長基板を形成し、その上に、通常では最初にn型ドープ半導体層を堆積させ、次いでp型ドープ半導体層を堆積させる。次いで、多数の銅層を横方向に並べて堆積させることができるように、この半導体層(例えば上述した部分層からなる)の上に分離構造を形成する。したがって、このステップによって、成長基板およびその上に配置されている半導体層が複数の領域に分かれ、これらの領域は、(個片化の後)、方法ステップCにおいて形成された銅層の1つをそれぞれが含んだ個々の部品を形成する。銅層を堆積させた後、分離構造を除去し、次いで、銅層の側面領域に保護層を設ける。この場合、保護層は、銅層を完全に覆うことができるが、通常では銅層の側面領域のみを覆い、半導体層に実質的に平行に延在する銅層の領域は、保護層によってその一部分のみを覆う、またはまったく覆わない。しかしながら、半導体層に平行に延在する保護層の部分によって導電性が確保される場合、銅層を完全に覆うことも考えられる。個々の銅層の間の領域(すなわち以前に分離構造によって覆われていた領域)も、保護層で覆うことができる。
この場合、「側面」領域とは、成長基板(および半導体層)の表面に平行には延在しておらず、特に、成長基板(および半導体層)の表面に実質的に垂直な領域である。特に、側面領域の向き(orientation)は、前に形成した分離構造の向きに対応する。したがって、銅層の側面領域は、特に、以前に分離構造との共通の界面を形成していた領域である。
方法ステップEの後の方法ステップFにおいて、銅層に補助基板を貼り付ける。このステップは、例えば、ポッティング材料(例えば接着剤)を用いて行うことができ、ポッティング材料は、以前に形成した分離構造によって生じた溝を埋め、複合体アセンブリ(layer composite assembly)が形成される。しかしながら、補助基板を銅層の上(または銅層の領域全体にわたり保護層が形成されている場合、保護層の上)に直接配置することもできる。すなわち、補助基板は、保護層および銅層(該当時)の上に全領域にわたり直接配置する、あるいは、半導体層に実質的に平行に延在する銅層の表面領域(適切な場合には保護層が設けられている)の上のみに直接配置することができる。最後に、ステップGおよびステップHにおいて、成長基板を除去し(十分な機械的結合力は補助基板によって確保される)、この方法ステップの段階で得られた複合体アセンブリを個片化することができる。この場合、個片化は、一般的には一連の工程が完了した後に行う。個片化は、pn接合部の分離もしくは電気コンタクトの取り付けまたはその両方を行ってメサ領域を画成することにより、実行することができる。
本発明による方法によって達成される利点として、本方法では、機能しない部品または正常に機能しない部品の発生数が大幅に減少する。本発明によると、銅層の上、正確には、特に、部品の機能にとって本質的であるさらなる層によって以降に覆われない領域の上に、保護層を形成することによって、製造される部品における短絡の発生割合を大幅に減少させることが可能であり、さらに一般には、部品の寿命を延ばすことも可能であることが判明した(本発明においては、オプトエレクトロニクス部品の機能にとって本質的である層とは、その層がなければ部品に電圧を印加したときに活性ゾーンが形成されない層であるものと理解されたい。したがって、特に、電荷キャリアが通過する(すなわち電子もしくは正孔またはその両方が運ばれる)層は、本質的な層であるものと理解されたい)。したがって、短絡に関する問題は、第一に、部品のはんだ付け時に発生するものと考えられる(例えば、銅層の側面、すなわちはんだ付けが要求されない領域に、電気的結合に必要なはんだの残留部が存在する結果として、短絡が発生する)。はんだの代わりに、導電性接着剤を電気的結合に使用する場合にも、このことが同様にあてはまる。第二に、銅または銅イオンのマイグレーションを保護層によって防止できるものと考えられる。特に、特定のプラスチック(例えば熱可塑性プラスチック)では、(銀イオンの場合におけるような)激しいマイグレーションが考えられる。この場合、マイグレーションは、特に、電圧の印加時(これによって電界が発生する)に起こり、銅キャリアからの銅(または銅イオン)が、例えば部品に使用されているプラスチックハウジングの方向に移動する。これにより、プラスチック内に導電路が生じることがあり、異常電流(fault current)あるいは電気的短絡につながりうる。このような移動が発生しうる熱可塑性プラスチックは、例えば、本発明によるオプトエレクトロニクス部品に使用されるポッティング化合物に含めることができる。しかしながら、プラスチックが存在しなくても、銅のマイグレーションが発生することがある。その場合、銅イオンが電界中で部品の一部の表面上で移動するものと考えられる。さらには、使用する半導体層(または使用する部分層)によって異なるが、本発明によるオプトエレクトロニクス部品の寿命を保護層によって延ばすことができることも判明した。銅(または銅イオン)のマイグレーションが、半導体層の損傷の一因であるものと考えられる。
本発明による、使用する保護層は、有機成分もしくは無機成分またはその両方を含んでいる、あるいは、有機成分または無機成分からなることができる。
保護層の機能として、「はんだ停止層」または「導電性接着剤停止層」のみを考慮する場合、保護層は、無機材料、特に、非導電性または半導性の無機材料、例えば金属塩(例:金属酸化物)からなることができる、または、このような材料を主成分として含んでいることができる。さらには、はんだ停止機能を目的として、保護層として有機材料(すなわち特に、はんだ停止レジスト)を使用することも可能である。このような「はんだ停止層」または「導電性接着剤停止層」の効果として、保護層がはんだまたは導電性接着剤によって濡れない、または極めてわずかに濡れる程度であり、したがって短絡を防止することができる。
銅のマイグレーション(例えば、使用するポッティング化合物に起因する)を防止する必要がある場合、銅または銅イオンの拡散を防止する、特に、無機材料、特に、金属または金属塩(特に金属酸化物)を、保護層として考慮する。例外的な場合、有機材料(特に、熱硬化性プラスチック)も、銅または銅イオンのマイグレーションを防止することができる。一般的に、銅のマイグレーションに対するこのような保護層は、銅層を密封し、これにより、銅または銅イオンが保護層を通って移動することが完全に防止される。
はんだ停止機能および銅のマイグレーション防止の両方を目的とする場合、特に、金属塩(特に金属酸化物)を含んだ保護層、ほとんどの場合、金属塩(特に金属酸化物)からなる保護層、が適している。しかしながら、場合によっては、(上述したように)銅のマイグレーションを防止すると同時にはんだ停止機能も有する熱硬化性プラスチックも考えられる。
しかしながら、本発明による方法による利点は、製造される部品の品質が改善される(形成される保護層によって達成される)ことだけではない。本方法の一連のステップでは、半導体積層体(および特に、半導体層の(銅層とは反対側の)主領域またはその上に配置されるさらなる層であって、例えば放射放出オプトエレクトロニクス部品の放射が放出される領域または層)の具体的な構造に関して実質的に自由な部品を製造することが可能である。したがって、例えば、任意の望ましい様式で、この面に電気コンタクトを堆積させることができる。さらなる機能層を堆積させることができ、半導体層の(または、さまざまな部分層によって形成される積層体の)3次元形状は、銅層(またはヒートシンク)を堆積させた後に確定することができる。一例として、2つの主領域に平行な断面積の大きさが、銅層の側の主領域(以下では「上側主領域」とも称する)から他方の主領域の方向に次第に減少していく半導体層を形成することが可能である(したがって放射放出デバイスの場合、放射の放出方向に次第に細くなっており、したがってメサ構造を有する)。その一方で、メサ構造が逆の形である(すなわち、銅層の側の主領域の方向に断面積が次第に減少する)部品は、上側主領域とそれに隣接する領域とが鋭角をなすため、機械的安定性が低下する。本発明によると、正のメサエッジ(positive mesa edges)であるため、高い安定性および破壊強度が達成される。さらには、本発明による方法の利点として、さらなる層を堆積させるとき、部品の表面領域を(例えばフォトレジストによって)保護しなければならない場合に、この処理を特に少ない数のステップによって行うことができる。
本オプトエレクトロニクス部品は、特に、発光ダイオード(LED)として、またはレーザダイオードとして実施することができ、この場合、半導体層は、電磁放射を放出するのに適している活性領域を有する少なくとも1層の活性層を有する。
半導体チップは、活性層における活性領域として、例えば、pn接合、ダブルへテロ構造、単一量子井戸構造(SQW構造)、または多重量子井戸構造(MQW構造)を有することができる。本出願においては、量子井戸構造という表現は、特に、閉じ込めの結果として電荷キャリアにおいてエネルギ状態の量子化が起こる任意の構造を包含する。特に、量子井戸構造という表現は、量子化の次元について何らかの指定を行うものではない。したがって、量子井戸構造には、特に、量子井戸、量子細線、および量子ドットと、これらの構造の任意の組合せとが含まれる。半導体積層体は、活性領域を有する活性層に加えて、さらなる機能層および機能領域を備えていることができ、これらの層・領域は、p型/n型にドープされた電荷キャリア輸送層(すなわち電子輸送層および正孔輸送層)、p型/n型/アンドープの閉じ込め層、クラッド層よび導波層、バリア層、平坦化層、バッファ層、保護層、電極、およびこれらの層の組合せ、から選択される。
半導体層は、エピタキシャル積層体として(すなわちエピタキシャル成長させる半導体積層体として)具体化することができる。この場合、半導体積層体は、特に、窒化物系半導体として具体化することができる。窒化物系半導体という用語は、すべての窒化物系化合物半導体材料を包含する。これには、窒化物と第III族元素の二元化合物、三元化合物、四元化合物の少なくとも1種類からなる半導体構造が含まれる。このような材料の例は、BN、AlGaN、GaN、InAlGaN、またはさらなるIII−V族化合物である。この意味において、半導体積層体また半導体チップは、InAlGaNをベースとして具体化することができる。InAlGaNをベースとする半導体チップおよび半導体積層体としては、特に、エピタキシャル形成される半導体積層体が、複数の異なる個々の層からなる積層体を備えており、この積層体が、III−V族化合物系半導体材料InAlGa1−x−yN(0≦x≦1、0≦y≦1、x+y≦1)の材料を含んでいる少なくとも1層を含んでいるものが挙げられる。
InGaAlNをベースとする少なくとも1層の活性層を備えている半導体積層体は、例えば、紫外線から緑色または黄緑色の波長域の電磁放射を放出することができる。
さらには、半導体積層体は、例えばAlGaAsをベースとして具体化することができる。AlGaAsをベースとする半導体チップおよび半導体積層体としては、特に、エピタキシャル形成される半導体積層体が、複数の異なる個々の層からなる積層体を備えており、この積層体の少なくとも1層が、III−V族化合物系半導体材料AlGa1−xAs(0≦x≦1)の材料を含んでいるものが挙げられる。特に、AlGaAsをベースとする材料を含んでいる活性層は、赤色から赤外線の波長域の1つまたは複数のスペクトル成分を有する電磁放射を放出するのに適している。さらには、このような材料は、上記の元素に加えて、または代わりに、InもしくはPまたはその両方を含んでいることができる。
これに代えて、またはこれに加えて、半導体積層体または半導体チップは、III−V族化合物系半導体材料のみならず、または代わりに、II−VI族化合物系半導体材料を含んでいることもできる。
上に指定した材料は、いずれも、1種類または複数種類のドーパントと、材料の物理特性を実質的に変化させることのない追加の構成成分を含んでいることができる。
本発明による方法のステップCにおいて堆積させる銅層は、金属層を堆積させるための任意の方法によって堆積させることができる。特に、経済性の理由から、めっき法による(特に、無電解めっきによる、または陽極酸化による)堆積が好ましい。一例として、本発明によると、分離構造が存在するため、「めっき法によって溝の付いた状態に堆積させる」形で行うことができる。ただし当然ながら、別の方法で銅層を堆積させることも可能である。
本発明による銅層は、純粋な銅層である必要はなく、高い剛性、空隙率(porosity)、あるいは高い応力を達成することのできる添加物を含んでいることもできる。一般には、銅層は、1重量%以下、通常では0.5重量%以下の添加物を含んでいる。添加物として挙げることができるのは、第一に、ニッケル添加物であり(例えば中間層として、銅層の良好な硬さ(したがって高い機械的耐荷重)をもたらすが、上に示したよりも高い重量割合が必要であり、例えばめっき法を採用する場合、めっき槽を変更することによって形成しなければならない)、第二に、非金属の添加物、例えばカーボン、硫黄、リンである(これらの添加物も、当業者に公知である添加物からめっき法によって銅層の中に組み込まれ、組み込み割合は、一般に、選択される電流密度および温度によって変えることができる)。
本発明による方法の一実施形態においては、半導体層は、成長基板とは反対側の面(以下では「下側主領域」とも称する)に反射層を有し、この反射層によって、オプトエレクトロニクス部品において発生する放射を放射出口領域の方向に進路を変えることができる。このミラー層には、主成分として銀を含んだ材料を使用することが可能である。ミラー層は、例えば気相蒸着、スパッタリング、またはCVDによって、半導体層に堆積させることができる。さらなる方法ステップとして、その工程では半導体層が構造化されないステップによって(例えば湿式化学エッチングまたはプラズマエッチングによって)、ミラー層を構造化することもできる。構造化されたミラー層の利点として、ミラー層が除去されている領域では、部品の動作時に電流の印加が減少する、または完全に防止される。結果として、半導体層の反対の面(光取り出し面)に導体トラックやボンディングパッドなど陰を形成する要素が存在する領域のみにおいて、電流の印加を抑制することが可能である。
さらには、ミラー層の上に拡散バリア層を堆積させることができ、拡散バリア層は、ミラー層に含まれている銀または銀イオンの拡散を防止する。このような拡散バリア層は、例えば、TiWNもしくはTiNまたはその両方を含んだ材料からなることができ、例えば、スパッタリング、気相蒸着、またはCVDによって堆積させることができる。
さらなる実施形態においては、ステップAの後(多くの場合にはステップAの直後、ただし適切な場合にはステップBの後)、半導体層にコンタクト層を堆積させる。このようなコンタクト層によって達成できることとして、第一に、銅層(およびその上に配置されているミラー層(存在時))が半導体層に良好に接合する。第二に、コンタクト層によって、銅層の堆積を良好に行うことができる(特に、めっき法によって堆積させる場合)。コンタクト層は、理想的には、これらの両方の要件を達成する。コンタクト層としては、特に、金、パラジウム、スズ、銀、ニッケル、または白金、あるいはこれらの元素の合金を含んでいる層が適している。この場合、特に、これらの元素または合金からなる層が適している。合金としては、例えば、金−スズ合金(例えば、約65〜85重量%の割合の金を含んでいる)、またはパラジウム−インジウム合金を挙げることができる。ステップBの後に堆積させる場合、その利点として、コンタクト層が全領域にわたって堆積することがなく、上に挙げた機能を果たすことができるが、部品を個片化するときにコンタクト層を通る切り口が生じない。
コンタクト層は、例えば最大で1μmの厚さを有することができるが、多くの場合、0.5μm以下の厚さを有する。めっき法による堆積の挙動を改善する目的には、(例えばパラジウムの)例えば1〜数個の原子層でも十分である。したがって、コンタクト層の厚さを、1nm未満とする、あるいは例えば1〜100nmの範囲内とすることもできる。
コンタクト層は、例えば、スパッタリング法、気相蒸着法、CVD法、または類似する方法によって堆積させることができる。
この実施形態の一構造においては、ステップGの後、部品に熱処理を行うことができる。この熱処理は、コンタクト層および銅層の拡散につながることが好ましく、したがって、コンタクト層と銅層との間の界面に「金属間化合物」のゾーンが生じ、これによってコンタクト層および半導体層の上の銅層の接合が改善される。熱処理はステップEの後に行うことが好ましく、なぜならそうでない場合、熱処理工程によって銅層の表面が酸化し、後から表面の酸化物層を除去しなければならないためである。しかしながら原理的には、ステップCの後に早期に熱処理を行うことも考えられる。熱処理は、約200℃の温度で行うことが好ましく、結果として金属原子の十分な拡散速度が達成される。金または金合金からなるコンタクト層と銅層との間には、特に良好な拡散を生じさせることができる。
本発明による方法のさらなる実施形態においては、ステップE(保護層を形成する)を、2つのサブステップE1およびE2に分けることができる。この場合、方法ステップE1として、銅層の少なくとも側面領域に金属層を堆積させ、方法ステップE2として、少なくとも、銅層の側面領域に堆積した金属層を酸化して、金属酸化物層を形成する。
このような方法によって、例えば、第一に、銅層の露出した表面全体を金属層によって被覆することができ、その後、銅層の側面領域のみ(または、銅層のうち、以降のステップにおいてオプトエレクトロニクス部品の機能にとって重要な層によって被覆されない部分領域)を酸化して、金属酸化物層を形成することができる。
金属層を堆積させる前に、銅層の露出した表面に形成されている酸化物を取り除き、例えばプラズマエッチングによって除去することが好ましいことがある。あるいは、適切な湿式化学法によって除去を行うこともできる。サブステップE2における酸化は、例えばプラズマ炉の中で行うことができる。この場合に形成される金属酸化物層は、化学量論的に完全な金属酸化物を形成する必要はなく、特に表面に近くない領域において、一部分のみの酸化を行う(結果として非化学量論的に金属酸化物が形成される)ことも可能である。当然ながら、金属酸化物に変換する代わりに、金属窒化物または酸窒化物、あるいは類似する物質に変換することも考えられる。
金属層は、通常に使用される被覆方法によって、例えばスパッタリング、気相蒸着、CVDによって、またはめっき法によって、堆積させることができる。しかしながら、特定の金属塩(例えば金属窒化物)の場合、2段階の方法E1およびE2を行うのではなく、銅層の側面領域に金属塩層を1ステップで直接堆積させることが好ましいことがある(例えばCVD法によって堆積させ、この場合、対応するプロセスガスを加え、対応する金属塩前駆体を使用する)。
金属酸化物(または他の何らかの金属塩(例えば金属窒化物))からなる保護層を形成する場合、考慮される層としては、特に、金属成分として、アルミニウム、チタン、クロム、ニッケル、亜鉛のうちの1種類または複数種類の金属を含んでいる層、または金属成分が、これらのうちの1種類または複数種類の金属からなる層が挙げられる。複数のオプトエレクトロニクス部品においては、ニッケルからなる金属層から形成される保護層が、(特に、経済性の観点からも)有利であることが判明した。
本発明による方法のさらなる実施形態においては、ステップGの後、ステップK1を行うことができる。この場合、(ステップGにおいて露出した)半導体層の表面の部分領域の上に、電気コンタクトを堆積させる。ステップK1は、原理的にはさらに後の時点で行うこともできる。しかしながら通常では、ステップGの直後(または適切な場合にはステップK2(以下に説明する)の直後)に行う。
さらなる実施形態においては、ステップGの後、ステップK2を実行する。この場合、ステップGにおいて露出した半導体層の表面を構造化する。構造化は、この場合、半導体層の上側主領域の表面に溝を形成する、もしくは表面を粗面化する、またはその両方とすることができる。
表面への溝の形成は、例えばエッチング法によって行うことができる。エッチング法は、特に、エッチング工程の結果としてメサ溝が形成されるように行う。特に、このメサ溝は、それまで存在していた半導体層が個々の半導体構造に分割されるように具体化し、個々の半導体構造は、個片化(ステップH)の後に得られる部品の半導体層に対応する。したがって一般には、メサ溝を形成するための構造化は、メサ溝が、個々の銅層の間の(ステップBで形成される)「溝」に空間的に対応するように行い、したがって、特に個片化時に、個々の部品を1ステップで互いに分離することができる。メサ領域は、後からのチップ領域の一部分を構成することもでき、すなわちその場合、チップは、分離された複数の半導体領域を備えているが、これらの半導体領域を互いに電気的に結合することができる。
方法ステップGにおいて露出した表面の側からメサ溝がエッチングされることにより、正のメサエッジ、または、表面に対して90°の角度をなすメサエッジが得られる。すなわち、エッチング工程によって形成されるメサ溝は、以前に成長基板に結合していた「領域」から見たとき、それ以外の層の方向に次第に細くなっている。対照的に、メサ自体(すなわち特に半導体層)は、上側主領域から見て広がっていく。メサ溝の側壁は、特に、わずかに傾斜しており表面に垂直には延びておらず、これはウェットエッチング法の結果である。例えばドライエッチング法では、約90°の角度を得ることができる。
正のメサエッジは、機械的な利点を有するのみならず、放射放出部品の場合に、光の放出をある程度改善することも可能である。
半導体層の表面を構造化するステップでは、表面の粗面化も行うことができる。このように粗面化された表面によって、(放射放出部品の場合に)放射の取り出しの改善を達成することが可能である。表面の粗面化は、同様にエッチング工程によって行うことができる。
本発明の目的は、このようなオプトエレクトロニクス部品によって、および、複数のこのようなオプトエレクトロニクス部品を備えた部品レイアウトによって、達成することができる。
一実施形態によると、本オプトエレクトロニクス部品は、キャリア基板としての銅層の上に配置されている半導体層を備えている。この場合、銅層の少なくとも側面領域に保護層が配置されている。
オプトエレクトロニクス部品の動作時、特に、放射を放出するための活性ゾーンが、半導体層の中に形成される。銅層の側面領域に配置されている保護層によって、短絡の防止、もしくは、部品の寿命の延長、またはその両方が可能になる。保護層は、具体的には、銅または銅イオンのマイグレーションを防止する、もしくは、はんだ停止機能または導電性接着剤停止層としての役割を果たす、またはその両方であるものと考えられる。
一実施形態においては、保護層は、特に、ニッケル酸化物の形で、ニッケルを含んでいる。
さらなる実施形態においては、半導体層は、AlGaInP層もしくはAlGaInAs層またはその両方を備えている。上述したように、半導体層は、複数の部分層からなることができ、AlGaInP層およびAlGaInAs層の一方または両方がこれらの部分層の1つであることができる。本発明によると、AlGaInP層またはAlGaInAs層は、それぞれ、AlGaInPまたはAlGaInAsをベースとする層であるものと理解されたい。したがって、本発明によると、このような層は次のように定義される。すなわち、この層は、少なくとも1種類の材料AlGaIn1−x−yPまたはAlGaIn1−x−yAs(0≦x≦1、0≦y≦1、x+y≦1)を含んでいる。この場合、この材料は、上記の化学式に従った数学的に正確な組成を有する必要はない。むしろ、この材料は、1種類または複数種類のドーパントと、材料の物理特性を実質的に変化させることのない追加の構成成分とを含んでいることができる。このような層を備えている部品は、例えば緑色光から赤色光、特に、赤色光、黄色光、または橙色光を放出することができる。
本発明によると、AlGaInP層またはAlGaInAs層を含んでいるオプトエレクトロニクス部品は、本発明に従って設けられている保護層が含まれていない場合、機能しない部品または正常に機能しない部品に関連する不良品の割合が特に高いことが観察されてきた。したがって、AlGaInP層またはAlGaInAs層は、銅のマイグレーションによって特に容易に損傷しうるものと考えられ、銅のマイグレーションの影響として、最終的に半導体層はその機能をもはや果たすことができず、例えばLEDは、もはや光を発しない、または弱い出力で光を発するのみである。
さらなる実施形態においては、オプトエレクトロニクス部品は、コンタクト層、特に、金、パラジウム、白金、またはこれらの元素の合金からなるコンタクト層を、半導体層の側の銅層の主領域の上に有する。本部品は、このコンタクト層とは無関係に、銅層の側の半導体層の面の上に、ミラー層を有することができる。このミラー層は、通常では半導体層の上に直接配置されている。適切な場合、銅層の側のミラー層の面の上に、拡散バリア層が配置されている。
さらには、本発明による目的は、互いに機械的に結合されている(すなわち、何らかの力によって固定された状態で、または確実に固定された状態で互いに結合されている)複数のオプトエレクトロニクス部品、を備えた部品レイアウト、によって解決される。特に、オプトエレクトロニクス部品は共通のハウジングの中に配置されており、したがって、原理的には、部品レイアウトの個々のオプトエレクトロニクス部品の間に、イオン(例えば銀イオンまたは銅イオン)の拡散経路が生じうる。部品は、特に、共通のキャリア材料の上に配置することができ、キャリア材料は、ハウジングと協働して、半導体層および銅層からなる構造を完全に囲んでいる。さらには、個々の部品をポッティング化合物によって互いに結合することができる。このような部品レイアウトは、個々のオプトエレクトロニクス部品が同じである、または異なる(例えば異なる色の光を放出することができる)ことをさらに特徴とすることができ、例えば、部品レイアウトに含まれている部品の1つが、AlGaInP層もしくはAlGaInAs層またはその両方を有する半導体層を備えていることができる。
このタイプの部品レイアウトでは、AlGaInP層またはAlGaInAs層を備えた特に損傷を受けやすい部品の寿命を延ばし、したがって部品レイアウト全体の寿命を大幅に延ばすことが可能である。この部品レイアウトの、AlGaInP層もしくはAlGaInAs層またはその両方を備えた第1のオプトエレクトロニクス部品から第2のオプトエレクトロニクス部品への銅または銅イオンの拡散は、本発明に従って設けられる保護層によって明らかに防止される。
さらに、本発明による(個々の)部品は、多くの場合、キャリア基板およびハウジングからなる上述した構造を有する。この場合、オプトエレクトロニクス部品自体は、ハウジング内の唯一の機能要素である必要はなく、別の機能要素(例えば、部品の動作状態を記録してそれを絶え間なく制御する機能要素、温度センサ、光センサ)を含めることもできる。
以下では、本発明のバリエーションについて、図面および例示的な実施形態を参照しながらさらに詳しく説明する。
成長基板および半導体層(上にミラー層が配置されている)からなる積層体を示している。 図1の積層体の上に拡散バリア層およびコンタクト層をさらに堆積させた状態を示している。 図2による積層体において、分離構造をさらに形成した状態を示している。 図3の複合体アセンブリにおいて、分離構造の間に銅層を配置した状態を示している。 分離構造を除去した後の複合体アセンブリを示している。 図5による複合体アセンブリに金属層を堆積させた後の状態を示している。 熱処理後の複合体アセンブリを示している。 図7による複合体アセンブリにおいて、裏面コンタクトを堆積させた状態を示している。 銅層の側面領域における保護層を酸化した後の複合体アセンブリの状態を示している。 図9による積層体に補助基板を貼り付けた状態を示している。 成長基板を除去した後の積層体を示している。 コンタクト接続面を設けた状態の積層体を示している。 半導体層を粗面化した状態の積層体を示している。 メサ溝を形成した状態の積層体を示している。 被覆層を設けた状態の積層体を示している。 弾性基板に移した後の積層体を示している。 弾性基板の個片化された部品の概略図を示している。 プリント基板上の個片化された部品の概略図を示している。 共通のキャリア上に3個のオプトエレクトロニクス部品を備えた部品レイアウトの概略的な側面図および平面図を示している。 共通のキャリア上に3個のオプトエレクトロニクス部品を備えた部品レイアウトの概略的な側面図および平面図を示している。
図1は、方法ステップAにおいて形成される積層体の概略的な側面図を示している。この積層体は、3つの層(半導体層2は2つの部分層に分かれている)を備えており、すなわち、積層体の成長基板1と、n型ドープ半導体層2a(例えばn型窒化ガリウム層)およびp型ドープ半導体層2b(例えばp型窒化ガリウム層)と、ミラー層3である。この場合、ミラー層を拡散バリア領域3a(例えばSiOからなることができる)によって隔てることができる。
成長基板としては、GaP、GaN、SiC、Si、またはGeからなる基板、またはサファイアからなる基板を考慮する。多くの場合、サファイアまたはシリコンからなる基板を使用する。
図2は、拡散バリア層4(特に、ミラー層の銀イオンのマイグレーションを防止することを目的としている)およびコンタクト層5(特に、後から堆積させる銅層のためのシード層の役割を果たす)を堆積させた後の側面図を示している。コンタクト層5は、例えば、金または金−スズ合金からなることができる。
拡散バリア層4は、例えばニッケルからなることができる。したがって、これに続く層へのオーミック接続を確保する目的で、多くの場合、イオン・プレクリーニング(ion precleaning)を行うことが好ましく、プレクリーニングでは、(拡散バリア層として使用される)このようなニッケル層(または他の何らかの金属層)の表面において各金属の自然酸化物を除去する。このステップは、コンタクト層5を堆積させる前に、その状態で行うことができる。
図3は、例えば図2からさらに処理を行った実施形態の概略側面図を示している。この場合、コンタクト層5に分離構造6が形成されている。分離構造6は、特に、個々のオプトエレクトロニクス部品における銅層を互いに隔てるために設ける。分離構造6の位置は、拡散バリア領域3aに対応している。
本発明によると、分離構造は、特に、めっき堆積法の実施時に分離構造の上に金属層が堆積することを防止する材料、から形成されている。したがって、分離構造の効果として、金属層は、これらの分離構造の間の水平に並んだ各領域(この実施形態の場合にはコンタクト層5)において、分離構造の垂直な側面の間のみに堆積する。分離構造は、特に、非導電性材料からなることができ、感光性または非感光性とすることができる。このような分離構造の適切な材料は、ポリマー、ポリイミド、エポキシ樹脂、フォトレジスト、熱可塑性化合物、パリレン、および類似する材料を含んでいる。
図4は、図3に示した分離構造の間に銅層7を堆積させた状態の概略側面図を示している。銅層7は、特に、めっきによって堆積させることができ、この場合、コンタクト層5が堆積の加速を促進し、シード層としての役割を果たす。
図5は、図4に示した分離構造6を再び除去した状態の層構造の実施形態の概略側面図を示している。したがって、銅層7の間に溝が形成されており、後から個片化するとき切断面がこの溝を通る。したがって、溝は、拡散バリア領域3aに対応している。
図6は、図5による層構造の上に金属層8を堆積させた状態の実施形態の概略側面図を示している。この場合、層堆積ステップは、銅層7の側面領域7aも金属層8によって完全に覆われるように行われている。
この場合、金属層8の厚さは、通常では1〜6μmである。多くの場合、2〜3μmの層厚さ(例えば3μm)を選択する。しかしながら、200nmの層厚さでも、金属層から形成される保護層11に意図される目的を果たすことができる。6μmより大きい層厚さは、多くの場合、製造技術の理由からあまり適していない。
図7は、図6による層構造の実施形態の概略側面図を示しており、積層体に熱処理を行うことにより銅層7とコンタクト層5との間に拡散が生じた。一例として、コンタクト層が金または金合金からなる場合、界面において金と銅の「混合」が起こり、金属間化合物が形成される(ただし、複数の異なる種類の原子の統計的分布が存在しており、明確な融点を有する、化学的化合物の意味において純粋な合金が生じるわけではない)。熱処理によって「拡散層」9が形成され、これにより、金層の上の銅層の接合が改善される。熱処理は、例えば、100〜200℃、多くの場合に180〜200℃の温度において、30分〜1時間行うことができる。
図8は、図7による層構造の実施形態に裏面コンタクト10を堆積させた状態の概略側面図を示している。この場合、裏面コンタクトは、例えば、導電性の貴金属、もしくは、特に、コンタクト領域上にチップをはんだ付けする工程に適している材料、またはその両方からなることができる。例えば、金、銀、スズ、ニッケル、これらの金属の合金、のうちの少なくとも1種類からなる材料、あるいは、これらの金属または合金またはその両方を主成分として含んでいる材料、が挙げられる。拡散バリア層4およびコンタクト層5に関連してすでに説明したように、良好な接合を目的として、形成された表面酸化物を除去するため、この場合には金属層8の表面にイオン・プレクリーニングを行うことができる。
図9に示した層構造の概略側面図は、方法ステップEまたはE2を行った後の状態を示している。この場合、銅層7の側面領域7aに配置されている金属層8を酸化して、金属酸化物からなる保護層11を形成する。この酸化は、例えばプラズマ炉の中で行うことができる。銅層の水平領域の上に配置されている金属層8の酸化を防止する目的で、図8に示した裏面コンタクト層の代わりに、任意の望ましいさらなる保護層、特に、保護する領域のみに堆積させ得る層を、堆積させることも可能である。この目的には、気相蒸着工程の高い指向性を利用することができる。
図10は、図9に示した層構造の上に補助基板13を貼り付けた状態の層構造の概略側面図を示している。この場合、補助基板13は、接着剤12によって層構造の上に固定されており、接着剤12は、金属層7の間の隙間(分離構造6によって形成された)も満たすことができる。補助基板の厚さは、多くの場合、5μm〜1000μmの範囲内である。任意の材料、すなわち導電性材料(例:金属)、あるいは非導体(例:サファイア)を使用することができる。補助基板は、成長基板の除去を可能とする目的で積層体を安定化させる役割を果たす。
図11は、図10による層構造の実施形態から成長基板1を除去した後の概略側面図を示している(180°回転させてある)。この場合、成長基板は、例えばレーザリフトオフ(LLO)によって除去することができる。
レーザリフトオフ(LLO)においては、他の層から分離する基板を、その基板を貫通するパルスレーザまたは非パルスレーザを使用して照射する。この結果、基板に隣接する半導体層の表面が加熱される。必要な温度に達した時点で、基板を分離する。基板と半導体層をレーザリフトオフによって分離する方法については、例えば特許文献3に記載されており、この点に関するこの文書の開示内容は、参照によって本文書に組み込まれている。例えば成長基板としてのシリコンの場合、半導体層において選択的に停止する、化学的方法を主体とする除去方法を使用することも可能である。
成長基板1をリフトオフした後、その結果として露出する半導体層2の面に一連の処理を行って完成させる。この場合、一例として、電気コンタクト構造14(例えばボンディングパッド)を堆積させることができる。これは方法ステップK1または図12に対応する。図13は、半導体層2の露出した面を(例えば水酸化カリウムによって)粗面化した状態の層構造の概略側面図を示しており、粗面化によって半導体層の不規則な表面15(放射の取り出しを改善する)が形成されている。
図14は、半導体層2の表面15を構造化した後の積層体の状態を示している。この構造化は、例えば、マスキングおよびエッチングによって行うことができる。この場合、多数の溝16(またはメサ)が得られ、それまでの連続的な半導体層2が個々の半導体層(または部分積層体)に分割されている。この場合、溝16の空間的な配置は、(分離構造6によって形成された)銅層7の間の隙間の配置に対応している。この場合、溝16は、銅層の方向に次第に細くなっており、結果として、(図14に示したように)正のメサエッジが得られる。
一実施形態においては、溝16の幅b1は、個々の銅層の間に存在する「溝」b2の幅よりも大きい。結果として、銅層の幅が半導体層の幅よりも大きい部品が得られる。これによって、部品の機械的安定性がさらに高まる。この場合、幅b1は、一般的には少なくとも22μmであり、幅b2は、通常では少なくとも30μmである。幅b1は、多くの場合には40〜50μmの範囲内、例えば43〜47μmの範囲内であり、幅b2は、30〜40μmの範囲内、多くの場合には33〜37μmの範囲内である。このような幅b1および幅b2では、後からの個片化工程において半導体部品のさまざまな層および保護層が損傷しない。
図15は、さらなる実施形態の概略側面図を示している。この場合、溝16の表面に被覆層17が設けられている。この場合、被覆層17は、半導体層2の不動態化および保護の役割を果たしており、電気コンタクト構造14は覆われない(したがって電気コンタクトによる接続が可能である)ように堆積している。
図16は、補助基板13および接着剤層12(存在時)を除去した後の状態を示している。この場合、補助基板の代わりに弾性基板18が配置されており、これにより、個片化ステップを行った後に弾性基板18を伸ばすことができ、したがって、個片化されたオプトエレクトロニクス部品のさらなる処理を良好に行うことが可能である。
図17は、方法ステップHを行った後の実施形態の概略側面図を示している。この場合、矢印19の方向における分離ステップによって、オプトエレクトロニクス部品が互いに分離されている。この場合、個片化は、例えば、ソーイング(すなわち機械的に)によって、またはレーザによって行うことができる。レーザを使用する利点として、形成される切り溝の幅をわずか9μm程度とすることができ、したがって特に最適な方法である。さらには、レーザによる切断は、特に正確である。
図18は、プリント基板20の上に配置されている、本発明によるオプトエレクトロニクス部品30の実施形態の概略側面図を示している。図18の層構造は、印刷基板20に近い方から、裏面コンタクト層10と、金属層8と、銅層7および側面領域7aに配置された保護層11と、拡散層9と、コンタクト層5と、拡散バリア層4と、ミラー層3および側面に配置された拡散バリア領域3aと、半導体層2(部分層2a,2b)および側面に配置された被覆層17と、電気コンタクト構造14と、を有する。
図19Aおよび図19Bは、3個のオプトエレクトロニクス部品30を備えている部品レイアウトの概略図を側面図(図19A)および平面図(図19B)として示している。
図19Aは、キャリア要素33を備えたレイアウトを示しており、オプトエレクトロニクス部品(この実施形態ではLED)30は、キャリア要素33としての反射体空洞(reflector cavity)35の中に配置されている。この場合、反射体空洞は、ポッティング化合物によって満たす、もしくは、放射を反射する表面を有する、またはその両方とすることができる。さらには、この部品は透明なハウジング34を有する。LEDとの電気接続は、ボンディングワイヤ(図示していない)によって形成することができる。しかしながら、ボンディングワイヤが必要ないように、LEDチップの裏面から接続を形成することもできる。3個の発光ダイオード30は、例えば3つの異なる色(例えば青色、緑色、黄〜橙色)の光を放出することができる。
図19Bは、図19Aによる実施形態を平面図として示している。この図は、反射体空洞35の中の3個の発光ダイオード30の配置と、複数の異なる発光ダイオードを個別に駆動することを可能にする電気接続(陽極31および陰極32)とを示している。
個々のLEDの形でのオプトエレクトロニクス部品は、図19Aおよび図19Bに従って具体化することができ、この場合、必要であるのは2個の電気接続部(および1個のオプトエレクトロニクス部品30)のみである。
ここまで、本発明について例示的な実施形態に基づいて説明してきたが、本発明はこれらの実施形態によって限定されない。本発明は、任意の新規の特徴および特徴の任意の組合せを包含しており、特に、請求項における特徴の任意の組合せを含んでいる。これらの特徴または特徴の組合せは、それ自体が請求項あるいは例示的な実施形態に明示的に記載されていない場合であっても、本発明に含まれる。

Claims (18)

  1. キャリア基板として形成された銅層(7)の上に配置されている半導体層(2)、を備えているオプトエレクトロニクス部品であって、
    前記銅層(7)の水平領域および側面領域は金属層(8)で覆われており、前記銅層(7)の側面領域(7a)は前記金属層(8)によって完全に覆われており、
    前記銅層(7)の前記側面領域(7a)を覆っている前記金属層(8)のみが酸化されており、これにより前記銅層(7)の前記側面領域(7a)に金属酸化物層である保護層(11)が形成されており
    前記保護層(11)は銅のマイグレーションを防止するための層である、
    オプトエレクトロニクス部品。
  2. 前記金属層(8)は、前記銅層(7)の水平領域に、酸化されていない部分を有する、
    請求項1に記載のオプトエレクトロニクス部品。
  3. 前記金属層(8)の前記酸化されていない部分に、裏面コンタクト層(10)が配置されている、
    請求項2に記載のオプトエレクトロニクス部品。
  4. 前記銅層(7)は前記半導体層(2)上に堆積されており、前記オプトエレクトロニクス部品は成長基板を有しない、
    請求項1から請求項3のいずれかに記載のオプトエレクトロニクス部品。
  5. 前記銅層(7)は、前記半導体層(2)上にめっき層として形成されている、
    請求項1から請求項4のいずれかに記載のオプトエレクトロニクス部品。
  6. 前記銅層(7)の側の前記半導体層(2)の面の上にミラー層(3)が配置されている、
    請求項1から請求項5のいずれかに記載のオプトエレクトロニクス部品。
  7. 前記ミラー層(3)は、前記ミラー層(3)が構造化された領域において、前記オプトエレクトロニクス部品の動作時に、電流の印加が減少、または完全に防止されるように構造化されている、
    請求項6に記載のオプトエレクトロニクス部品。
  8. 前記銅層(7)の側の前記ミラー層(3)の面の上に拡散バリア層(4)が配置されている、
    請求項6または請求項7に記載のオプトエレクトロニクス部品。
  9. 前記保護層(11)は、はんだ停止層または導電性接着剤停止層である、
    請求項1から請求項8のいずれかに記載のオプトエレクトロニクス部品。
  10. 前記保護層(11)は、ニッケルまたはニッケル酸化物を含んでいる、
    請求項1から請求項9のいずれかに記載のオプトエレクトロニクス部品。
  11. 記半導体層(2)が、AlGaInP層もしくはAlGaInAs層またはその両方を備えている、
    請求項1から請求項10のいずれかに記載のオプトエレクトロニクス部品。
  12. 前記半導体層(2)の側の前記銅層(7)の主面の上に少なくとも1層のコンタクト層(5)が配置されている、
    請求項1から請求項11のいずれかに記載のオプトエレクトロニクス部品。
  13. 前記コンタクト層(5)が、
    金、パラジウム、白金、スズ、銀、ニッケル、およびこれらの元素の合金、からなる群、
    から選択されるはんだ、を備えている、またはこの種類の材料からなる、
    請求項12に記載のオプトエレクトロニクス部品。
  14. 前記銅層(7)は、前記コンタクト層(5)上のめっき層として形成されている、
    請求項12または請求項13に記載のオプトエレクトロニクス部品。
  15. 請求項1から請求項14のいずれかに記載の複数のオプトエレクトロニクス部品(30)、を備えている部品レイアウトであって、
    前記オプトエレクトロニクス部品(30)は共通のキャリア層(33)の上に配置されており、前記オプトエレクトロニクス部品が同じであるかまたは異なっており、前記オプトエレクトロニクス部品の少なくとも1個の半導体層(2)はAlGaInP層もしくはAlGaInAs層またはその両方を備えている、
    部品レイアウト。
  16. プラスチックハウジング(34)と請求項1から請求項14のいずれかに記載のオプトエレクトロニクス部品(30)を備えた部品であって、
    前記オプトエレクトロニクス部品(30)は前記プラスチックハウジング(34)内に配置され、前記保護層(11)は、前記プラスチックハウジング(34)の方向への前記銅層(7)からの銅または銅イオンのマイグレーションを防ぐように構成されている、
    部品。
  17. 前記プラスチックハウジング(34)は反射体空洞(35)を有し、前記オプトエレクトロニクス部品(30)は前記反射体空洞(35)内に配置され、前記反射体空洞(35)は放射を反射する表面を有する、
    請求項16に記載の部品。
  18. 前記反射体空洞(35)はポッティング化合物によって満たされている、
    請求項17に記載の部品。
JP2014230666A 2014-11-13 2014-11-13 オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト Expired - Fee Related JP5952880B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014230666A JP5952880B2 (ja) 2014-11-13 2014-11-13 オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014230666A JP5952880B2 (ja) 2014-11-13 2014-11-13 オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012502445A Division JP5650716B2 (ja) 2009-04-03 2009-04-03 オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト

Publications (2)

Publication Number Publication Date
JP2015057848A JP2015057848A (ja) 2015-03-26
JP5952880B2 true JP5952880B2 (ja) 2016-07-13

Family

ID=52815809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014230666A Expired - Fee Related JP5952880B2 (ja) 2014-11-13 2014-11-13 オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト

Country Status (1)

Country Link
JP (1) JP5952880B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654639B2 (ja) * 2004-09-09 2011-03-23 日亜化学工業株式会社 発光装置及びその製造方法
JP4920223B2 (ja) * 2005-09-20 2012-04-18 昭和電工株式会社 窒化物系半導体発光素子及びその製造方法
JP2007214480A (ja) * 2006-02-13 2007-08-23 Showa Denko Kk GaN系半導体発光素子およびその製造方法
JP2007281245A (ja) * 2006-04-07 2007-10-25 Mitsubishi Electric Corp 電子装置
JP2009049371A (ja) * 2007-07-26 2009-03-05 Sharp Corp 窒化物系化合物半導体発光素子およびその製造方法

Also Published As

Publication number Publication date
JP2015057848A (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
TWI736544B (zh) 發光元件及其製造方法
KR101945140B1 (ko) 질화물 반도체 자외선 발광 소자 및 질화물 반도체 자외선 발광 장치
JP5650716B2 (ja) オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト
US7432119B2 (en) Light emitting diode with conducting metal substrate
US9054016B2 (en) Radiation-emitting semiconductor chip
KR20100021429A (ko) 반도체 웨이퍼 조립체의 취급 방법
JP5195452B2 (ja) 発光素子
US11335830B2 (en) Photo-emission semiconductor device and method of manufacturing same
TWI699011B (zh) 半導體發光裝置
US20210408351A1 (en) Optoelectronic semiconductor component comprising first connection regions, and optoelectronic device
JP3767863B2 (ja) 半導体発光素子およびその製法
CN106159073B (zh) 发光元件及其制造方法
KR20130097817A (ko) 감소된 치수들을 갖는 고체 상태 조명 장치들 및 제조 방법들
US8217566B2 (en) Electroluminescent device and method for producing an electroluminescent device
JP2009200150A (ja) ZnO系半導体素子とその製造方法及び光半導体素子
US8742395B2 (en) Semiconductor light emitting device
JP5952880B2 (ja) オプトエレクトロニクス部品の製造方法、オプトエレクトロニクス部品、および複数のオプトエレクトロニクス部品を有する部品レイアウト
US10672945B2 (en) Method for manufacturing light emitting device
US20210391506A1 (en) Optoelectronic component having a dielectric reflective layer and production method for same
US11888091B2 (en) Semiconductor light emitting device and light emitting device package
KR20100067441A (ko) 정전기 보호 기능을 갖는 수직구조 반도체 발광소자
KR20120069048A (ko) 발광 소자 및 그 제조 방법
KR102356516B1 (ko) 발광소자 및 발광소자 패키지
KR101158077B1 (ko) 고효율 발광 다이오드 및 그것을 제조하는 방법
KR101171855B1 (ko) 반도체 발광소자용 지지기판 및 상기 지지기판을 이용한고성능 수직구조의 반도체 발광소자

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent or registration of utility model

Ref document number: 5952880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees