JP4915671B2 - イオン源、イオン注入装置およびイオン注入方法 - Google Patents

イオン源、イオン注入装置およびイオン注入方法 Download PDF

Info

Publication number
JP4915671B2
JP4915671B2 JP2007243308A JP2007243308A JP4915671B2 JP 4915671 B2 JP4915671 B2 JP 4915671B2 JP 2007243308 A JP2007243308 A JP 2007243308A JP 2007243308 A JP2007243308 A JP 2007243308A JP 4915671 B2 JP4915671 B2 JP 4915671B2
Authority
JP
Japan
Prior art keywords
ion
current density
cathode
density distribution
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007243308A
Other languages
English (en)
Other versions
JP2009076287A (ja
Inventor
貴敏 山下
忠司 池尻
啓子 久澤
秀行 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Ion Equipment Co Ltd
Original Assignee
Nissin Ion Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Ion Equipment Co Ltd filed Critical Nissin Ion Equipment Co Ltd
Priority to JP2007243308A priority Critical patent/JP4915671B2/ja
Priority to US12/233,151 priority patent/US7791041B2/en
Publication of JP2009076287A publication Critical patent/JP2009076287A/ja
Application granted granted Critical
Publication of JP4915671B2 publication Critical patent/JP4915671B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • H01J27/14Other arc discharge ion sources using an applied magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/061Construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/082Electron beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/083Beam forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24542Beam profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • H01J2237/31706Ion implantation characterised by the area treated
    • H01J2237/31708Ion implantation characterised by the area treated unpatterned
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • H01J2237/31706Ion implantation characterised by the area treated
    • H01J2237/3171Ion implantation characterised by the area treated patterned

Description

この発明は、進行方向と実質的に直交する平面内におけるY方向の寸法が当該Y方向と実質的に直交するX方向の寸法よりも大きいリボン状(これはシート状または帯状と呼ばれることもある。以下同様)のイオンビームを発生させるイオン源、それを備えるイオン注入装置および当該イオン注入装置におけるイオン注入方法に関する。
図1に、進行方向Zと実質的に直交する平面内におけるY方向の寸法WY が当該Y方向と実質的に直交するX方向の寸法WX よりも大きいリボン状のイオンビーム2の一例を示す。
特許文献1には、プラズマ生成容器内において、イオン引出しスリットの長手方向を挟んでフィラメントと反射電極とを対向させ、かつ両者を結ぶ軸に沿う方向に(即ちイオン引出しスリットの長手方向に沿う方向に)磁界を印加する、いわゆるバーナス型のイオン源が記載されている。このイオン源のイオン引出しスリットの長手方向をY方向とすることによって、上記のようなY方向の寸法の大きいリボン状のイオンビームを発生させることは一応可能である。
特開2002−334662号公報(段落0002−0012、図12)
上記イオン源を用いて、例えば、大型のターゲットに対して均一性の良いイオン注入を行うためには、当該イオン源から発生させる(引き出す)リボン状イオンビームの寸法を大きくし、かつY方向におけるビーム電流密度分布の均一性を良くする必要がある。そのためには、上記イオン源のプラズマ生成容器のY方向の寸法を大きくし、かつ当該プラズマ生成容器内のY方向におけるプラズマ密度分布の均一性を良くする必要がある。
しかし、プラズマ生成容器が大きくなると、プラズマ生成容器内のプラズマ密度分布はどうしても不均一になるので、Y方向におけるビーム電流密度分布の均一性の良いイオンビームを引き出すことは困難である。
仮に何らかの方法で、プラズマ生成容器内のプラズマ密度分布を均一にする制御を行おうとしても、従来のイオン源では、磁界がY方向に沿って印加されていて、当該磁界の影響がY方向の全体に及ぶために、プラズマ密度をY方向において部分的に制御することは困難であり、従ってY方向におけるプラズマ密度分布の均一性を良くすることは困難である。換言すれば、上記Y方向に沿う磁界が、却って、Y方向におけるプラズマ密度分布の制御を困難にしている。かと言って、上記磁界の印加を止めると、当該磁界による電子の閉じ込め作用を奏さなくなるので、プラズマ生成効率が低下してしまう。
そこでこの発明は、プラズマ生成容器内のY方向におけるプラズマ密度を部分的に制御可能にして、リボン状イオンビームのY方向におけるビーム電流密度分布の均一性を良くすることや、所定の不均一な分布を実現可能にしたイオン源を提供することを一つの目的としている。
またこの発明は、注入室内におけるリボン状イオンビームのY方向におけるビーム電流密度分布の均一性を良くすることができるイオン注入装置を提供することを他の目的としている。
更にこの発明は、注入室内におけるリボン状イオンビームのY方向におけるビーム電流密度分布を所定の不均一な分布にすることができるイオン注入装置を提供することを他の目的としている。
更にこの発明は、上記所定の不均一な分布を実現することができるイオン注入装置を用いて、ターゲットの面内において一様でないドーズ量分布を形成することができるイオン注入方法を提供することを他の目的としている。
この発明に係る第1のイオン源は、進行方向と実質的に直交する平面内におけるY方向の寸法が当該Y方向と実質的に直交するX方向の寸法よりも大きいリボン状のイオンビームを発生させるイオン源において、内部でプラズマを生成するための容器であって、陽極を兼ねていて内部にガスが導入され、かつ前記Y方向に伸びたイオン引出し口を有するプラズマ生成容器と、前記プラズマ生成容器の前記X方向の少なくとも一方側に設けられていて、プラズマ生成容器内へ電子を放出してプラズマ生成容器内で放電を生じさせて前記ガスを電離させて前記プラズマを生成する1以上の陰極と、前記プラズマ生成容器内であって、前記X方向の少なくとも他方側に前記陰極に対向させて配置されていて、プラズマ生成容器に対して負電位または浮遊電位にされて、プラズマ生成容器内の電子を反射させる1以上の反射電極と、前記プラズマ生成容器内に、前記X方向に沿う磁界をそれぞれ発生させるものであって、前記Y方向に沿って複数段に配置された複数の電磁石とを備えていることを特徴としている。
この第1のイオン源においては、プラズマ生成容器内の電子が陰極と反射電極との間で動くことのできる範囲は、X方向に沿う磁界によって主としてX方向に沿う方向に制限されるので、Y方向への電子の移動は少なくなる。従って、各段の磁界によって閉じ込められた電子が他の部分のプラズマ生成に与える影響は小さくなる。しかも、Y方向に沿って複数段に配置された複数の電磁石を備えていて、各段の電磁石から発生させる各段の磁界の強さを調整することができるので、各段の磁界による電子の閉じ込め作用ひいては当該電子によるプラズマ生成作用を個別に調整することができる。その結果、プラズマ生成容器内のY方向におけるプラズマ密度を部分的に制御することができる。
この発明に係る第2のイオン源は、進行方向と実質的に直交する平面内におけるY方向の寸法が当該Y方向と実質的に直交するX方向の寸法よりも大きいリボン状のイオンビームを発生させるイオン源において、内部でプラズマを生成するための容器であって、陽極を兼ねていて内部にガスが導入され、かつ前記Y方向に伸びたイオン引出し口を有するプラズマ生成容器と、前記プラズマ生成容器の前記X方向の少なくとも一方側に設けられていて、プラズマ生成容器内へ電子を放出してプラズマ生成容器内で放電を生じさせて前記ガスを電離させて前記プラズマを生成するものであって、前記Y方向に沿って複数段に配置された複数の陰極と、前記プラズマ生成容器内であって、前記X方向の少なくとも他方側に前記陰極に対向させて配置されていて、プラズマ生成容器に対して負電位または浮遊電位にされて、プラズマ生成容器内の電子を反射させる1以上の反射電極と、前記プラズマ生成容器内に、しかも前記複数の陰極を含む領域に、前記X方向に沿う磁界を発生させる電磁石とを備えていることを特徴としている。
この第2のイオン源においては、プラズマ生成容器内の電子が陰極と反射電極との間で動くことのできる範囲は、X方向に沿う磁界によって主としてX方向に沿う方向に制限されるので、Y方向への電子の移動は少なくなる。従って、上記磁界によって閉じ込められた電子が他の部分のプラズマ生成に与える影響は小さくなる。しかも、Y方向に沿って複数段に配置された陰極を備えていて、各段の陰極から放出する電子量を調整することができるので、当該電子による各段のプラズマ生成作用を個別に調整することができる。その結果、プラズマ生成容器内のY方向におけるプラズマ密度を部分的に制御することができる。
この発明に係る第1のイオン注入装置は、前記第1のイオン源と、前記イオン源の各陰極をそれぞれ加熱して電子を放出させるための1以上の陰極電源と、前記イオン源の各電磁石に直流の励磁電流をそれぞれ供給する複数の励磁電源と、前記イオン源から発生させた前記イオンビームをターゲットに入射させるための注入室内における前記イオンビームの前記Y方向におけるビーム電流密度分布を測定するビーム測定器と、前記ビーム測定器からの測定情報に基づいて前記各励磁電源を制御して、前記各電磁石から発生させる前記磁界の強さを制御して、前記ビーム測定器で測定するビーム電流密度分布を均一に近づける制御機能を有している制御装置とを備えていることを特徴としている。
この発明に係る第2のイオン注入装置は、前記第2のイオン源と、前記イオン源の各陰極をそれぞれ加熱して電子を放出させるための複数の陰極電源と、前記イオン源の電磁石に直流の励磁電流を供給する励磁電源と、前記イオン源から発生させた前記イオンビームをターゲットに入射させるための注入室内における前記イオンビームの前記Y方向におけるビーム電流密度分布を測定するビーム測定器と、前記ビーム測定器からの測定情報に基づいて前記各陰極電源を制御して、前記各陰極から放出する電子量を制御して、前記ビーム測定器で測定するビーム電流密度分布を均一に近づける制御機能を有している制御装置とを備えていることを特徴としている。
この発明に係る第3のイオン注入装置は、前記第1のイオン源と、前記イオン源の各陰極をそれぞれ加熱して電子を放出させるための1以上の陰極電源と、前記イオン源の各電磁石に直流の励磁電流をそれぞれ供給する複数の励磁電源と、前記イオン源から発生させた前記イオンビームをターゲットに入射させるための注入室内における前記イオンビームの前記Y方向におけるビーム電流密度分布を測定するビーム測定器と、前記ビーム測定器からの測定情報に基づいて前記各励磁電源を制御して、前記各電磁石から発生させる前記磁界の強さを制御して、前記ビーム測定器で測定するビーム電流密度分布を、ビーム電流密度が互いに異なる複数の領域を含む所定の不均一な分布に近づける制御機能を有している制御装置とを備えていることを特徴としている。
この発明に係る第4のイオン注入装置は、前記第2のイオン源と、前記イオン源の各陰極をそれぞれ加熱して電子を放出させるための複数の陰極電源と、前記イオン源の電磁石に直流の励磁電流を供給する励磁電源と、前記イオン源から発生させた前記イオンビームをターゲットに入射させるための注入室内における前記イオンビームの前記Y方向におけるビーム電流密度分布を測定するビーム測定器と、前記ビーム測定器からの測定情報に基づいて前記各陰極電源を制御して、前記各陰極から放出する電子量を制御して、前記ビーム測定器で測定するビーム電流密度分布を、ビーム電流密度が互いに異なる複数の領域を含む所定の不均一な分布に近づける制御機能を有している制御装置とを備えていることを特徴としている。
この発明に係るイオン注入方法の一つは、前記第3または第4のイオン注入装置において、前記イオン源からのイオンビームを横切るようにターゲットを前記X方向に沿って機械的に移動させることと、ターゲットをその中心部を中心にして回転させることの少なくとも一方を行って、ターゲットの面内において一様でないドーズ量分布を形成することを特徴としている。
請求項1に記載の発明によれば、プラズマ生成容器内の電子が陰極と反射電極との間で動くことのできる範囲は、X方向に沿う磁界によって主としてX方向に沿う方向に制限されるので、Y方向への電子の移動は少なくなる。従って、各段の磁界によって閉じ込められた電子が他の部分のプラズマ生成に与える影響は小さくなる。しかも、Y方向に沿って複数段に配置された複数の電磁石を備えていて、各段の電磁石から発生させる各段の磁界の強さを調整することができるので、各段の磁界による電子の閉じ込め作用ひいては当該電子によるプラズマ生成作用を個別に調整することができる。その結果、プラズマ生成容器内のY方向におけるプラズマ密度を部分的に制御することができる。
その結果、例えば、リボン状イオンビームのY方向におけるビーム電流密度分布の均一性を良くすることや、所定の不均一な分布を実現することが可能になる。
請求項2に記載の発明によれば、各電磁石は、プラズマ生成容器をX方向において挟んで対を成している電磁石であるので、プラズマ生成容器内における磁界のY方向への広がりを少なくすることができる。その結果、各段の磁界によって閉じ込められた電子が他の部分のプラズマ生成に与える影響をより小さくして、プラズマ生成容器内のY方向におけるプラズマ密度を部分的に制御する作用効果をより確実にすることができる。
請求項3に記載の発明によれば、プラズマ生成容器内の電子が陰極と反射電極との間で動くことのできる範囲は、X方向に沿う磁界によって主としてX方向に沿う方向に制限されるので、Y方向への電子の移動は少なくなる。従って、上記磁界によって閉じ込められた電子が他の部分のプラズマ生成に与える影響は小さくなる。しかも、Y方向に沿って複数段に配置された陰極を備えていて、各段の陰極から放出する電子量を調整することができるので、当該電子による各段のプラズマ生成作用を個別に調整することができる。その結果、プラズマ生成容器内のY方向におけるプラズマ密度を部分的に制御することができる。
その結果、例えば、リボン状イオンビームのY方向におけるビーム電流密度分布の均一性を良くすることや、所定の不均一な分布を実現することが可能になる。
請求項4に記載の発明によれば、電磁石は、X方向の寸法よりもY方向の寸法が大きいレーストラック状のコイルを有しており、かつプラズマ生成容器をX方向において挟んで対を成している電磁石であるので、プラズマ生成容器内における磁界のY方向への広がりを少なくすることができる。その結果、上記磁界によって閉じ込められた電子が他の部分のプラズマ生成に与える影響をより小さくして、プラズマ生成容器内のY方向におけるプラズマ密度を部分的に制御する作用効果をより確実にすることができる。
請求項5、6に記載の発明によれば、ビーム測定器からの測定情報に基づいて各励磁電源を制御して、各電磁石から発生させる磁界の強さを制御して、ビーム測定器で測定するビーム電流密度分布を均一に近づける制御機能を有している制御装置を備えているので、注入室内におけるリボン状イオンビームのY方向におけるビーム電流密度分布の均一性を良くすることができる。
請求項7、10に記載の発明によれば、制御装置が、全体調整機能および個別調整機能を有しているので、注入室内におけるリボン状イオンビームのY方向全体のビーム電流密度分布の平均値を第1の許容範囲内に入れることができると共に、Y方向における各グループのビーム電流密度分布の平均値を全て第2の許容範囲内に入れることができる。従って、イオンビームのY方向におけるビーム電流密度分布の平均値を設定値に近づけると共に、当該ビーム電流密度分布の均一性をより確実に良くすることができる。
請求項8、9に記載の発明によれば、ビーム測定器からの測定情報に基づいて各陰極電源を制御して、各陰極から放出する電子量を制御して、ビーム測定器で測定するビーム電流密度分布を均一に近づける制御機能を有している制御装置を備えているので、注入室内におけるリボン状イオンビームのY方向におけるビーム電流密度分布の均一性を良くすることができる。
請求項11に記載の発明によれば、ビーム測定器からの測定情報に基づいて各励磁電源を制御して、各電磁石から発生させる磁界の強さを制御して、ビーム測定器で測定するビーム電流密度分布を、ビーム電流密度が互いに異なる複数の領域を含む所定の不均一な分布に近づける制御機能を有している制御装置を備えているので、注入室内におけるリボン状イオンビームのY方向におけるビーム電流密度分布を所定の不均一な分布にすることができる。
請求項12、14に記載の発明によれば、制御装置によって、Y方向における各グループのビーム電流密度分布の各平均値を、互いに値の異なる設定値を含む複数の設定値に対してそれぞれ許容範囲内に入れることができるので、注入室内におけるリボン状イオンビームのY方向におけるビーム電流密度分布をより確実に所定の不均一な分布にすることができる。
請求項13に記載の発明によれば、ビーム測定器からの測定情報に基づいて各陰極電源を制御して、各陰極から放出する電子量を制御して、ビーム測定器で測定するビーム電流密度分布を、ビーム電流密度が互いに異なる複数の領域を含む所定の不均一な分布に近づける制御機能を有している制御装置を備えているので、注入室内におけるリボン状イオンビームのY方向におけるビーム電流密度分布を所定の不均一な分布にすることができる。
請求項15〜17に記載の発明によれば、上記所定の不均一なビーム電流密度分布を実現することができるイオン注入装置を用いて、ターゲットの面内において一様でないドーズ量分布を形成することができる。換言すれば、一つのターゲットの面内に互いにドーズ量の異なる複数の注入領域を形成することができる。その結果、例えば、ターゲットの面内に形成される半導体デバイスの内の特定領域の半導体デバイスの特性補正や特性変化をイオン注入によって行うこと等にも臨機応変に対応することができる。
(1)イオン源について
図2は、この発明に係るイオン源の一実施形態を、イオンビーム進行方向に見て示す断面図である。図3は、図2に示すイオン源を備えるイオン注入装置の一実施形態を示す図であり、イオン源は図2中の矢印P方向に見た断面図で示している。イオン注入装置については、後で詳述する。
このイオン源(第1のイオン源)10aは、例えば図1に示したような、進行方向Zと実質的に直交する平面内におけるY方向の寸法WY が当該Y方向と実質的に直交するX方向の寸法WX よりも大きいリボン状のイオンビーム2を発生させるイオン源である。図4、図5に示すイオン源(第2のイオン源)10bも同様である。
リボン状と言っても、厚さが紙や布のように薄いという意味ではない。例えば、イオンビーム2のX方向の寸法WX は5cm〜10cm程度、Y方向の寸法WY は35cm〜50cm程度である。但しこれに限られるものではない。
イオン源10aは、内部でプラズマ16を生成するための容器であって、陽極を兼ねているプラズマ生成容器12を備えている。プラズマ生成容器12は、例えば、直方体の箱状をしている。プラズマ生成容器12内には、プラズマ16生成の原料となるガス(蒸気の場合を含む)が導入される。
プラズマ生成容器12は、その一つの面(前面)に、Y方向に伸びたイオン引出し口14を有している。イオン引出し口14は、例えば、イオン引出しスリットであり、イオンビーム2の断面に対応した形状をしている。
プラズマ生成容器12内のX方向の一方側(図2における左側)に、プラズマ生成容器12内へ電子(熱電子)を放出してプラズマ生成容器12内で放電を生じさせて上記ガスを電離させてプラズマ16を生成する複数の陰極20が設けられている。陰極20の数は、図示例では三つであるが、これに限られるものではない。各陰極20は、この実施形態では、直熱型の陰極、即ちフィラメントである。
各陰極20は、この実施形態では、棒状(線状とも言える)のものであって、横から見た形状がコ字状をしていて(図3参照)、その中央辺部分がY方向に沿って伸びる向きで、Y方向に沿って複数段に配置されている。
各陰極20には、それを加熱して電子を放出させるための陰極電源22がそれぞれ接続されている。各陰極電源22は、図示例のように直流電源でも良いし、交流電源でも良い。各陰極電源22は、例えば、後述する制御装置70からの制御によって、各陰極20に流す電流IF を個別に制御(増減)することができる。それによって、各陰極20から放出する電子量を制御することができる。
陰極20とプラズマ生成容器12との間には、各陰極20から放出させた熱電子を加速して、プラズマ生成容器12内に導入されたガスを電離させると共にプラズマ生成容器12内でアーク放電を生じさせて、プラズマ16を生成する直流のアーク電源28が、各陰極20を負極側にして接続されている。アーク電源28は、この実施形態のように複数の陰極20に共通のものでも良いし、各陰極20とプラズマ生成容器12との間に個別に設けても良い。
プラズマ生成容器12内のX方向の他方側(図2における右側)に、陰極20に対向させて、板状の第1の反射電極30が配置されている。更にこの実施形態のように、陰極20のX方向における背後側にも、板状の第2の反射電極32を配置しておいても良い。各反射電極30、32は、この実施形態ではそれぞれ、プラズマ生成容器12内の一つの側面の概ね全体をカバーする大きさをしている。
両反射電極30、32は、プラズマ生成容器12および各陰極20から電気的に絶縁されている。両反射電極30、32は、この実施形態のようにバイアス電源34からプラズマ生成容器12を基準にして負のバイアス電圧VB を印加して、プラズマ生成容器12に対して負電位にしても良いし、電気的にどこにも接続せずに浮遊電位にしても良い。浮遊電位にしても、両反射電極30、32は、主に陰極20から放出され、アーク電源28の出力電圧相当のエネルギーの高い熱電子が入射して負電位に帯電するからである。
両反射電極30、32は、プラズマ生成容器12に対して負電位になり、プラズマ生成容器12内の電子(主として陰極20からの電子)を反射させる(追い返す)働きをする。従って、反射電極30、32を設けると、電子は、後述する磁界50の方向を軸として磁界50中で旋回しながら両反射電極30、32間を往復運動するようになり、その結果、当該電子と原料のガスとの衝突確率が高くなってガスの電離効率が高くなるので、プラズマ16の生成効率が高まる。反射電極32を設けていない場合は、電子は、各陰極20と反射電極30との間を往復運動する。
反射電極は、陰極20に対向する反射電極30だけでも上記電子の反射、ガスの電離効率の向上、プラズマ16の生成効率の向上の作用を奏することができるけれども、この実施形態のように陰極20の背後にも反射電極32を設けておくと、上記作用をより高めることができる。
更にこのイオン源10aは、プラズマ生成容器12内に、X方向に沿う磁界50をそれぞれ発生させる(印加する)ものであって、Y方向に沿って複数段に配置された複数の電磁石40を備えている。磁界50の向きは図示例とは逆向きでも良い(後述するイオン源10bにおいても同様)。電磁石40の数は、図示例では三つであるが、これに限られるものではない。各電磁石40は、陰極20が複数の場合は、この実施形態のように各陰極20の位置に対応させて設けるのが好ましい。
各電磁石40は、磁極42と、それに巻かれたコイル44とを有している。
各電磁石40は、この実施形態では、プラズマ生成容器12をX方向において挟んで対を成している電磁石である。対を成す電磁石40の磁極42同士は、ヨーク(図示省略。以下同様)によって互いに磁気的に結合されている。全ての磁極42をヨークによって磁気的に結合しておいても良い。
各電磁石40には、複数の励磁電源(直流電源)46から直流の励磁電流IE がそれぞれ供給される。この実施形態では、対を成している電磁石40のコイル44は互いに直列接続されており(図2中の各符号a〜fの内の同一符号の箇所同士は電気的に接続されている)、各励磁電源46は対を成す電磁石40にそれぞれ共通の電源である。但しそのようにせずに、各電磁石40に励磁電源46をそれぞれ設けても良い。
各励磁電源46は、例えば、後述する制御装置70からの制御によって、各電磁石40に供給する励磁電流IE をそれぞれ制御することができる。それによって、各電磁石40から発生させる磁界50の強さを制御することができる。
イオン引出し口14の出口付近には、プラズマ生成容器12内のプラズマ16からイオンビーム2を引き出す引出し電極系18が設けられている。引出し電極系18は、図示例のような1枚の電極に限られるものではない。
なお、例えばプラズマ生成容器12と電磁石40との間には、非磁性材から成る真空容器(これはイオン源チャンバーとも呼ばれる)が設けられるが、ここではその図示を省略している。図4、図5等においても同様である。
このイオン源10aにおいては、前述した従来のイオン源と違って、磁界50はX方向に沿う方向に印加される。従って、プラズマ生成容器12内の電子が陰極20と反射電極30との間、あるいは両反射電極30、32間で動くことのできる範囲は、X方向に沿う磁界50によって主としてX方向に沿う方向に制限されるので、Y方向への電子の移動は少なくなる。これは、電子は、磁界50に巻き付く旋回運動(ラーモア運動)をするので、磁界に沿う方向(即ちX方向)に移動することはできても、磁界50を横切る方向(即ちY方向)への移動は困難だからである。電子軌道のシミュレーションによっても、電子は、主として各陰極20と反射電極30との間にそれぞれ集まって、陰極20または電磁石40の段数に等しい数の集団を作ることが確かめられている。従って、各段の電磁石40による磁界50によって閉じ込められた電子が他の部分のプラズマ生成に与える影響は小さくなる。
しかも、Y方向に沿って複数段に配置された複数の電磁石40を備えていて、各段の電磁石40から発生させる各段の磁界50の強さを調整することができるので、各段の磁界50による電子の閉じ込め作用ひいては当該電子によるプラズマ生成作用を個別に調整することができる。その結果、プラズマ生成容器12内のY方向におけるプラズマ密度を部分的に制御することができる。
例えば、磁界50を弱くすると、電子のラーモア半径が大きくなって電子密度が下がるので、電子がガス分子と衝突しにくくなると共に、ラーモア半径が大きいので電子がプラズマ生成容器12の壁面等の構造物に衝突して消滅する割合も増える等の理由によって、プラズマ生成効率が低下してプラズマ密度は小さくなる。逆に磁界50をある程度までは強くすると、電子のラーモア半径が小さくなって電子密度が上がるので、電子がガス分子と衝突しやすくなると共に、ラーモア半径が小さいので電子がプラズマ生成容器12の壁面等の構造物に衝突して消滅する割合も減る等の理由によって、プラズマ生成効率が向上してプラズマ密度は大きくなる。しかも上述したように電子の動ける範囲は磁界50によってX方向に制限されていてY方向への移動は少ないので、プラズマ密度の部分的な増減が他の部分のプラズマ密度に与える影響は小さい。
主として上記のような作用によって、各段の電磁石40から発生させる各段の磁界50の強さを調整することによって、プラズマ生成容器12内のY方向におけるプラズマ密度を部分的に制御することができる。
その結果、例えば、このイオン源10aから引き出すリボン状イオンビーム2のY方向におけるビーム電流密度分布の均一性を良くすることができる。あるいはそれとは逆に、敢えてビーム電流密度分布が不均一になるように制御して、所定の不均一なビーム電流密度分布を実現することもできる。この所定の不均一な分布は、制御された不均一な分布と言うこともできる(以下同様)。
また、このイオン源10aでは、各電磁石40は、プラズマ生成容器12をX方向において挟んで対を成している電磁石であるので、プラズマ生成容器12内における磁界50のY方向への広がりを少なくすることができる。その結果、各段の磁界50によって閉じ込められた電子が他の部分のプラズマ生成に与える影響をより小さくして、プラズマ生成容器12内のY方向におけるプラズマ密度を部分的に制御する作用効果をより確実にすることができる。
なお、陰極20の数、形状、配置等は、上記実施形態のものに限らない。例えば、図6に示す例のように、複数の陰極20を、イオン引出し口14をX方向において挟むように、プラズマ生成容器12内のX方向における一方側と他方側とに分けて交互に配置しても良い。後述するイオン源10bにおいても同様である。あるいは、このイオン源10aは、後述するイオン源10bとは違って、各段の磁界50の強さを調整して各段の磁界50による電子閉じ込め作用ひいては当該電子によるプラズマ生成作用を個別に調整するものであるので、陰極20は1以上あれば良い。例えば、陰極20は、図2に示す三つの陰極20を一つにしたようなY方向に長い一つの陰極(例えばフィラメント)でも良い。
もっとも、この実施形態のイオン源10aのように、Y方向に沿って複数段に配置された複数の陰極20を設けておいて、各電磁石40から発生させる磁界50の強さ制御と、各陰極20から放出する電子量制御とを併用して、プラズマ生成容器12内のY方向におけるプラズマ密度分布を部分的に制御するようにしても良い。そのようにすれば、制御可能対象が増えるので、プラズマ密度を部分的に制御しやすくなる。
また、各陰極20は、上記実施形態のような直熱型の陰極(フィラメント)の代わりに、傍熱型の陰極にしても良い。後述するイオン源10bにおいても同様である。傍熱型の陰極の一例を図7に示す。
図7に示す例では、各陰極20は、プラズマ生成容器12の壁面に設けられた複数の穴13の部分にそれぞれ設けられている。反射電極32には、各陰極20に対応させて、各陰極20から放出された電子を通す穴33がそれぞれ設けられている。各陰極20の背後には、各陰極20を加熱して各陰極20から電子(熱電子)をプラズマ生成容器12内へ放出させるフィラメント21がそれぞれ設けられている。各フィラメント21には、それを加熱するフィラメント電源24がそれぞれ接続されている。各フィラメント電源24は、図示例のように直流電源でも良いし、交流電源でも良い。
各フィラメント21と陰極20との間には、フィラメント21から放出された熱電子を陰極20に向けて加速して、当該熱電子の衝撃を利用して陰極20を加熱する直流のボンバード電源26が、陰極20を正極側にしてそれぞれ接続されている。この各ボンバード電源26と上記各フィラメント電源24とで各陰極電源22を構成している。
各電源24、26の出力の少なくとも一方を増減させることによって、各陰極20から放出する電子量を制御することができる。例えば、この例のように、各ボンバード電源26の出力電圧VD を、上記制御装置70によって個別に制御(増減)するようにしても良い。
アーク電源28については、前述したとおりである。
なお、プラズマ生成容器12に対して各陰極20およびフィラメント21を配置するより具体的な構造は、図7では簡略化して示しているが、例えば特許第3758667号公報等に記載されているような公知の構造を採用すれば良い。
また、各陰極20およびフィラメント21をプラズマ生成容器12内に位置させても良い。例えば、反射電極32を設ける場合は、図2に示す陰極20と同様に、反射電極32よりも内側に各陰極20を位置させても良い。
反射電極30、32の数、形状、配置等も、上記実施形態のものに限らない。例えば、前述したように、陰極20の背後の反射電極32は必ずしも設けなくても良い。また、反射電極30を(反射電極32を設ける場合はそれも)、各陰極20にそれぞれ対応する複数の反射電極に分割しても良い。その場合は、複数の各反射電極に、複数のバイアス電源34からバイアス電圧VB を個別に印加するようにしても良い。反射電極30、32を分割しない場合は、それに印加するバイアス電圧VB によってプラズマ密度を全体的に調整することができる。反射電極30、32を分割してバイアス電圧VB を個別に印加する場合は、各バイアス電圧VB によってプラズマ密度を部分的に制御することができる。プラズマ密度の制御にこのような制御を併用しても良い。後述するイオン源10bにおいても同様である。
また、プラズマ生成容器12内へのガス導入は、1箇所からガスを導入しても良いし、Y方向に沿って複数段に配置された複数のガス導入口から流量調節器をそれぞれ経由してガスを導入するようにしても良い。1箇所から導入する場合は、そのガス流量によってプラズマ密度を全体的に調整することができる。複数のガス導入口から導入する場合は、各ガス流量によってプラズマ密度を部分的に制御することができる。プラズマ密度の制御にこのような制御を併用しても良い。後述するイオン源10bにおいても同様である。
図4は、この発明に係るイオン源の他の実施形態を、イオンビーム進行方向に見て示す断面図である。図5は、図4に示すイオン源を備えるイオン注入装置の一実施形態を示す図であり、イオン源は図4中の矢印Q方向に見た断面図で示している。図2、図3に示したイオン源10aと同一または相当する部分には同一符号を付し、以下においては上記イオン源10aとの相違点を主体に説明する。イオン注入装置については、後で詳述する。
このイオン源10bは、プラズマ生成容器12内に、Y方向に沿って複数段に配置された複数の陰極20を備えている。各陰極20については前述したとおりである。
更に、プラズマ生成容器12内に、しかも上記複数の陰極20を含む領域に、X方向に沿う磁界50を発生させる電磁石40を備えている。
電磁石40は、この実施形態では、X方向の寸法よりもY方向の寸法が大きい長方形の磁極42と、それに巻かれていてX方向の寸法よりもY方向の寸法が大きいレーストラック状のコイル44とを有している。磁極42のY方向の寸法は、例えば、プラズマ生成容器12のY方向の寸法と同程度かそれよりも大きくしている。
電磁石40は、この実施形態では、プラズマ生成容器12をX方向において挟んで対を成している電磁石であり、対を成す電磁石40の磁極42は、ヨーク(図示省略)によって互いに磁気的に結合されている。
この実施形態では、対を成している電磁石40のコイル44は互いに電気的に直列接続されており、共通の励磁電源(直流電源)46から直流の励磁電流IE が供給される。但しそのようにせずに、各コイル44に励磁電源46をそれぞれ設けても良い。
このイオン源10bにおいても、前述した従来のイオン源と違って、磁界50はX方向に沿う方向に印加される。従って、上記イオン源10aの場合と同様に、プラズマ生成容器12内の電子が陰極20と反射電極30との間、あるいは両反射電極30、32間で動くことのできる範囲は、X方向に沿う磁界50によって主としてX方向に沿う方向に制限されるので、Y方向への電子の移動は少なくなる。これは、前述したように、電子は、磁界50に巻き付く旋回運動(ラーモア運動)をするので、磁界に沿う方向(即ちX方向)に移動することはできても、磁界50を横切る方向(即ちY方向)への移動は困難だからである。電子軌道のシミュレーションによっても、電子は、主として各陰極20と反射電極30との間にそれぞれ集まって、陰極20の段数に等しい数の集団を作ることが確かめられている。従って、上記X方向の磁界50によって閉じ込められた電子が他の部分のプラズマ生成に与える影響は小さくなる。
しかも、Y方向に沿って複数段に配置された陰極20を備えていて、各段の陰極20から放出する電子量を調整することができるので、当該電子による各段のプラズマ生成作用を個別に調整することができる。その結果、プラズマ生成容器12内のY方向におけるプラズマ密度を部分的に制御することができる。
例えば、陰極20から放出する電子量を多くすると、電子がガス分子と衝突する確率が高くなってプラズマ密度は大きくなる。逆に陰極20から放出する電子量を少なくすると、電子がガス分子と衝突する確率が低くなってプラズマ密度は小さくなる。しかも上述したように電子の動ける範囲は磁界50によってX方向に制限されていてY方向への移動は少ないので、プラズマ密度の部分的な増減が他の部分のプラズマ密度に与える影響は小さい。
主として上記のような作用によって、各段の陰極20から放出する電子量を調整することによって、プラズマ生成容器12内のY方向におけるプラズマ密度を部分的に制御することができる。
その結果、例えば、このイオン源10bから引き出すリボン状イオンビーム2のY方向におけるビーム電流密度分布の均一性を良くすることができる。あるいはそれとは逆に、敢えてビーム電流密度分布が不均一になるように制御して、所定の不均一なビーム電流密度分布を実現することもできる。
また、このイオン源10bでは、電磁石40は、X方向の寸法よりもY方向の寸法が大きいレーストラック状のコイルを有しており、かつプラズマ生成容器12をX方向において挟んで対を成している電磁石であるので、プラズマ生成容器12内における磁界50のY方向への広がりを少なくすることができる。その結果、上記磁界50によって閉じ込められた電子が他の部分のプラズマ生成に与える影響をより小さくして、プラズマ生成容器12内のY方向におけるプラズマ密度を部分的に制御する作用効果をより確実にすることができる。
先のイオン源10aと比べると、このイオン源10bには次の利点がある。(a)電磁石40の数およびそれ用の励磁電源46の数が少なくて済む。(b)大きな電磁石40によって、プラズマ生成容器12内の広い領域に亘って、X方向に対して平行性の良い磁界50、換言すればY方向への広がりの少ない磁界50を発生させることができるので、電子のY方向への移動をより少なくして、各陰極20から放出した電子を各陰極20の前方付近により確実に閉じ込めることができる。従って、プラズマ密度の所定部分の制御が他の部分に及ぼす影響を小さくすることができるので、プラズマ密度分布の制御性が良い。
(2)イオン注入装置について
(2−1)ビーム電流密度分布の均一性を良くする場合
図3は、図2に示すイオン源を備えるイオン注入装置の一実施形態を示す図である。このイオン注入装置は、上記イオン源10aから引き出されたイオンビーム2をターゲット52に入射させてイオン注入を行う装置であり、上記イオン源10a、陰極電源22および励磁電源46に加えて、次のようなビーム測定器60、制御装置70等を備えている。イオン源10aからターゲット52周りまでのイオンビーム2の輸送経路は、図示しない真空容器内にあって真空雰囲気に保たれる。
ターゲット52は、例えば、半導体基板、ガラス基板等である。
ビーム測定器60は、イオンビーム2をターゲット52に入射させるための注入室(図示省略)内におけるイオンビーム2のY方向におけるビーム電流密度分布を測定するものである。ビーム測定器60は、より具体的には、ターゲット52の近傍に設けられていて、ターゲット52に相当する位置におけるイオンビーム2のY方向におけるビーム電流密度分布を測定するものである。
ビーム測定器60が図示例のようにターゲット52の前方に設けられている場合は、ターゲット52へのイオン注入時には、ビーム測定器60をイオン注入の邪魔にならない位置に移動させれば良い。ビーム測定器60がターゲット52の後方に設けられている場合は、測定時にはターゲット52等を測定の邪魔にならない位置に移動させれば良い。
ビーム測定器60は、例えば、イオンビーム2のビーム電流密度を測定する多数の測定器(例えばファラデーカップ)をY方向に並設して成る多点ビーム測定器であるが、一つの測定器を移動機構によってY方向に移動させる構造のものでも良い。
このイオン注入装置は、ターゲット52を保持するホルダ54をターゲット52と共に、例えば矢印Eに示すように、ターゲット52の中心部52aを中心にして回転させる回転装置56と、この回転装置56、ホルダ54およびターゲット52の全体を、例えば矢印Fに示すように、X方向に沿って移動(例えば往復駆動)させる駆動装置58とを備えている。
イオンビーム2のY方向の寸法WY をターゲット52のY方向の寸法よりも大きくしておくことと、駆動装置58によるターゲット52の上記移動とを併用することによって、ターゲット52の全面にイオン注入を行うことができる。
ビーム測定器60からの測定情報DAは、制御装置70に供給される。制御装置70は、例えば、測定情報DAに基づいて前記各励磁電源46(図2参照)を制御して、前記各電磁石40から発生させる磁界50の強さを制御して、ビーム測定器60で測定するビーム電流密度分布を均一に近づける制御機能を有している。
より具体例を挙げると、制御装置70は、ビーム測定器60で測定したビーム電流密度が相対的に大きい領域に対応する電磁石40から発生させる磁界50を弱くすることと、同ビーム電流密度が相対的に小さい領域に対応する電磁石40から発生させる磁界50を強くすることの少なくとも一方を行って、ビーム測定器60で測定するビーム電流密度分布を均一に近づける制御機能を有している。
従って、このイオン注入装置によれば、注入室内におけるリボン状イオンビーム2のY方向におけるビーム電流密度分布の均一性を良くすることができる。
制御装置70は、次の(a)および(b)に示す調整機能を有していても良い。
(a)ビーム測定器60で測定した全体のビーム電流密度分布の平均値を演算して、当該平均値が所定の設定値に対して第1の許容範囲内に入るように、前記陰極20から放出する電子量を一律に制御する全体調整機能。
(b)ビーム測定器60からの測定情報DAを前記各電磁石40に対応する範囲毎にグループ分けし、各グループのY方向におけるビーム電流密度分布の平均値をそれぞれ演算し、当該平均値が前記設定値に対する第2の許容範囲内に入っていないグル−プについては、当該平均値が前記設定値よりも大きければ当該グループに対応している電磁石40から発生させる磁界を弱くし、当該平均値が前記設定値よりも小さければ当該グループに対応している電磁石40から発生させる磁界を強くして、各グループのビーム電流密度分布の平均値が全て前記設定値に対して第2の許容範囲内に入るように制御する個別調整機能。
上記(a)、(b)の調整機能における制御内容のより具体例を、図9、図10を参照して説明する。また、均一化制御の前後におけるビーム電流密度分布の概略例を図8に示し、以下においてはこの図8も参照する。なお、下記の設定値SET、許容範囲εA 、εB は、例えば、制御装置70に予め設定しておけば良い。
まず、図9に示す全体調整が行われる。即ち、ビーム測定器60によって、イオンビーム2のY方向の全体のビーム電流密度分布を測定する(ステップ100)。これによって、例えば、図8中のビーム電流密度分布Aが得られる。そして、ビーム電流密度分布Aの平均値AVEを演算する(ステップ101)。
次いで、この平均値AVEが、その設定値SETに対する第1の許容範囲εA 内にあるか否かを判断する(ステップ102)。許容範囲εA 内にあれば、全体調整の目的は達成されているので、全体調整は終了する。
許容範囲εA 内になければ、ステップ103に進んで、平均値AVEが設定値SETより大きいか否かを判断し、大きければステップ104に進んで、全ての陰極20から放出する電子量を一律に少なくする制御を行う。小さければステップ105に進んで、全ての陰極20から放出する電子量を一律に多くする制御を行う。「一律に」というのは、複数の陰極20について互いに実質的に同じ量だけ電子量を増加または減少させることである。陰極20が一つの場合は、それから放出する電子量を制御することである。
上記電子量の増減によって、前述したように、各陰極20に対応する領域でのプラズマ16の密度が増減し、ひいては当該各領域に対応するイオンビーム2のビーム電流密度が増減する。従って、イオンビーム2のY方向におけるビーム電流密度分布が変化する。その後は、ステップ100に戻って、平均値AVEが許容範囲εA 内に入るまで、ステップ100〜105の制御が繰り返される。
以上の全体調整によって、平均値AVEが許容範囲εA 内に入るように制御される。これによって、例えば、図8中のビーム電流密度分布Bが得られる。この状態では、まだ個別調整を行っていないので、ビーム電流密度分布Bは元のビーム電流密度分布Aに似た形状をしており、ビーム電流密度分布Aをほぼ平行移動させたようなものである。
通常は、上記全体調整に続いて、図10に示す個別調整が行われる。この個別調整は、ビーム測定器60からの測定情報DAを、各電磁石40に対応する範囲毎に複数のグループiに分けて扱う。iは1からn(≧2)の自然数である。nは、より具体的には電磁石40(図5に示すイオン注入装置の場合は陰極20)の数である。
グループ1から測定・制御を始めるとして、i=1とする(ステップ110)。
ビーム測定器60によって、イオンビーム2のY方向の全体のビーム電流密度分布を測定する(ステップ111)。これによって、例えば、図8中のビーム電流密度分布Bが得られる。
そして、ビーム測定器60からの測定情報DAを、各電磁石40に対応する範囲毎にグループ分けする(ステップ112)。電磁石40がY方向に3段に配置されている場合は、n=3であり、図8に示すようにグループ1〜3に分ける。このグループ分けは、換言すれば、各段の電磁石40がY方向におけるプラズマ密度ひいてはビーム電流密度に影響を与える範囲毎にグループ分けすることである。このようにグループ分けすることができるのは、前述したように、イオン源10aがY方向におけるビーム電流密度を部分的に制御することができるからである。
そしてグループi(初めは1)のビーム電流密度分布の平均値AVEi を演算し(ステップ113)、平均値AVEi が前記設定値SETに対する第2の許容範囲εB 内にあるか否かを判断する(ステップ114)。通常は、図8にも示すように、εA >εB としておく。許容範囲εB 内にあれば(例えば図8中の平均値AVE1 、AVE2 参照)、そのグループiの調整は必要ないので、ステップ115に進んでiがn(即ち最終グループ)か否かを判断し、nであれば個別調整は終了し、nでなければステップ116に進んでiを1増やした後にステップ111に戻る。
平均値AVEi が許容範囲εB 内になければi ステップ117に進んで、平均値AVEi が前記設定値SETより大か否かを判断し、大きければステップ118に進んで、当該グループiに対応する電磁石40から発生させる磁界50をくし、小さければ(例えば図8中の平均値AVE3 参照)、ステップ119に進んで、当該グループiに対応する電磁石40から発生させる磁界50をくする。
上記磁界50の増減によって、前述したように、各電磁石40に対応する領域でのプラズマ16の密度が増減し、ひいては当該領域に対応するイオンビーム2のビーム電流密度が増減する。即ち、グループiのビーム電流密度が増減する。これによって、グループiの平均値AVEi が前記設定値SETに近づくように制御される。その後はステップ111に戻って、平均値AVEi が許容範囲εB 内に入るまで、ステップ111〜114および117〜119の制御が繰り返される。
以上の個別調整によって、各グループiの平均値AVEi が全て許容範囲εB 内に入るように制御される。これによって、例えば、図8中のビーム電流密度分布Cが得られる。
なお、必要に応じて、上記個別調整や全体調整を何回か繰り返すようにしても良い。
制御装置70が上記のような全体調整機能および個別調整機能を有していると、注入室内におけるリボン状イオンビーム2のY方向全体のビーム電流密度分布の平均値AVEを第1の許容範囲εA 内に入れることができると共に、Y方向における各グループiのビーム電流密度分布の平均値AVEi を全て第2の許容範囲εB 内に入れることができる。従って、イオンビーム2のY方向におけるビーム電流密度分布の平均値を設定値SETに近づけると共に、当該ビーム電流密度分布の均一性をより確実に良くすることができる。
図5は、図4に示すイオン源を備えるイオン注入装置の一実施形態を示す図である。図3に示したイオン注入装置と同一または相当する部分には同一符号を付し、以下においては図3に示したイオン注入装置との相違点を主体に説明する。
このイオン注入装置においては、制御装置70は、例えば、ビーム測定器60からの測定情報DAに基づいて前記各陰極電源22を制御して、前記各陰極20から放出する電子量を制御して、ビーム測定器60で測定するビーム電流密度分布を均一に近づける制御機能を有している。
より具体例を挙げると、制御装置70は、ビーム測定器60で測定したビーム電流密度が相対的に大きい領域に対応する陰極20から放出する電子量を少なくすることと、同ビーム電流密度が相対的に小さい領域に対応する陰極20から放出する電子量を多くすることの少なくとも一方を行って、ビーム測定器60で測定する前記ビーム電流密度分布を均一に近づける制御機能を有している。
従って、このイオン注入装置によれば、注入室内におけるリボン状イオンビーム2のY方向におけるビーム電流密度分布の均一性を良くすることができる。
制御装置70は、上記(a)および図9に示した全体調整機能、ならびに、次の(c)に示す個別調整機能を有していても良い。
(c)ビーム測定器60からの測定情報DAを前記各陰極20に対応する範囲毎にグループ分けし、各グループのY方向におけるビーム電流密度分布の平均値をそれぞれ演算し、当該平均値が前記設定値SETに対する第2の許容範囲εB 内に入っていないグル−プについては、当該平均値が前記設定値SETよりも大きければ当該グループに対応している陰極20から放出する電子量を少なくし、当該平均値が前記設定値SETよりも小さければ当該グループに対応している陰極20から放出する電子量を多くして、各グループのビーム電流密度分布の平均値が全て前記設定値SETに対して第2の許容範囲εB 内に入るように制御する個別調整機能。
この(c)の個別調整機能における制御内容のより具体例を図11を参照して説明する。図10の制御内容と同一または相当する部分には同一符号を付し、図10の制御内容との相違点を主体に説明する。
ステップ112では、ビーム測定器60からの測定情報DAを、各陰極20に対応する範囲毎にグループ分けする。陰極20がY方向に3段に配置されている場合は、n=3であり、図8に示すようにグループ1〜3に分ける。このグループ分けは、換言すれば、各段の陰極20がY方向におけるプラズマ密度ひいてはビーム電流密度に影響を与える範囲毎にグループ分けすることである。このようにグループ分けすることができるのは、前述したように、イオン源10bがY方向におけるビーム電流密度を部分的に制御することができるからである。
ステップ117に続くステップ120では、グループiに対応する陰極20から放出する電子量を少なくし、ステップ121では同電子量を多くする。
上記放出電子量の増減によって、前述したように、各陰極20に対応する領域でのプラズマ16の密度が増減し、ひいては当該領域に対応するイオンビーム2のビーム電流密度が増減する。即ち、グループiのビーム電流密度が増減する。これによって、グループiの平均値AVEi が前記設定値SETに近づくように制御される。その後はステップ111に戻って、平均値AVEi が許容範囲εB 内に入るまで、ステップ111〜114、117、120および121の制御が繰り返される。
以上の個別調整によって、各グループiの平均値AVEi が全て許容範囲εB 内に入るように制御される。これによって、例えば、図8中のビーム電流密度分布Cが得られる。
なお、この場合も、必要に応じて、上記個別調整や全体調整を何回か繰り返すようにしても良い。
制御装置70が上記のような全体調整機能および個別調整機能を有していると、注入室内におけるリボン状イオンビーム2のY方向全体のビーム電流密度分布の平均値AVEを第1の許容範囲εA 内に入れることができると共に、Y方向における各グループiのビーム電流密度分布の平均値AVEi を全て第2の許容範囲εB 内に入れることができる。従って、イオンビーム2のY方向におけるビーム電流密度分布の平均値を設定値SETに近づけると共に、当該ビーム電流密度分布の均一性をより確実に良くすることができる。
(2−2)ビーム電流密度分布を所定の不均一な分布にする場合
図3に示すイオン注入装置において、制御装置70を次のようなものにしても良い。
即ち、制御装置70は、ビーム測定器60からの測定情報DAに基づいて前記各励磁電源46(図2参照)を制御して、前記各電磁石40から発生させる磁界50の強さを制御して、ビーム測定器60で測定するビーム電流密度分布を、ビーム電流密度が互いに異なる複数の領域を含む所定の不均一な分布に近づける制御機能を有している。
従って、このイオン注入装置によれば、注入室内におけるリボン状イオンビーム2のY方向におけるビーム電流密度分布を所定の不均一な分布にすることができる。
制御装置70は、ビーム測定器60からの測定情報DAを前記各電磁石40に対応する範囲毎にグループ分けし、各グループのY方向におけるビーム電流密度分布の平均値をそれぞれ演算し、当該各平均値が、互いに値の異なる設定値を含む複数の設定値に対してそれぞれ所定の許容範囲内に入るように、各グループに対応している各電磁石40から発生させる磁界50の強さをそれぞれ制御する制御機能を有していても良い。
この場合の制御装置70における制御内容のより具体例を、図13を参照して説明する。また、所定の不均一なビーム電流密度分布の概略例を図12に示し、以下の説明においてはこの図12も参照する。なお、下記の設定値SET1 〜SET3 、許容範囲ε1 〜ε3 は、例えば、制御装置70に予め設定しておけば良い。
図13は、図10に示した制御内容と多くの点で同じである。同一または相当する部分には同一符号を付し、異なる部分を主体に以下に説明すると、図10に示したステップ114、117の代わりにステップ122、123の制御を行う。
ステップ122では、グループiのビーム電流密度分布の平均値AVEi が、当該グループiについての設定値SETi に対応する所定の許容範囲εi 内にあるか否かを判断する。この設定値SETi は複数あり、その内には互いに値の異なる設定値が含まれている。図12に示す例では、SET1 =SET3 ≠SET2 である。各許容範囲εi は、全て同じ許容範囲でも良いし、グループに応じて異なる許容範囲としても良い。
平均値AVEi が許容範囲εi 内になければ、ステップ123に進んで、平均値AVEi が設定値SETi より大きいか否かを判断し、それに応じてステップ118または119に進む。このステップ118、119における制御内容および作用は、図10の場合と同じである。その後はステップ111に戻って、平均値AVEi が許容範囲εi 内に入るまで、図13に示す制御が繰り返される。
以上の制御によって、各グループiの平均値AVEi が各設定値SETi に対する許容範囲εi 内にそれぞれ入るように制御される。これによって、例えば、図12に示すビーム電流密度分布が得られる。
制御装置70が上記のような制御機能を有していると、Y方向における各グループiのビーム電流密度分布の各平均値AVEi を、互いに値の異なる設定値を含む複数の設定値SETi に対してそれぞれ許容範囲εi 内に入れることができるので、注入室内におけるリボン状イオンビーム2のY方向におけるビーム電流密度分布をより確実に所定の不均一な分布にすることができる。
図5に示すイオン注入装置において、制御装置70を次のようなものにしても良い。
即ち、制御装置70は、ビーム測定器60からの測定情報DAに基づいて前記各陰極電源22を制御して、前記各陰極20から放出する電子量を制御して、ビーム測定器60で測定するビーム電流密度分布を、ビーム電流密度が互いに異なる複数の領域を含む所定の不均一な分布に近づける制御機能を有している。
従って、このイオン注入装置によれば、注入室内におけるリボン状イオンビーム2のY方向におけるビーム電流密度分布を所定の不均一な分布にすることができる。
制御装置70は、ビーム測定器60からの測定情報DAを前記各陰極20に対応する範囲毎にグループ分けし、各グループのY方向におけるビーム電流密度分布の平均値をそれぞれ演算し、当該各平均値が、互いに値の異なる設定値を含む複数の設定値に対してそれぞれ所定の許容範囲内に入るように、各グループに対応している各陰極20から放出する電子量をそれぞれ制御する制御機能を有していても良い。
この場合の制御装置70における制御内容のより具体例を、図14を参照して説明する。図14は、図11に示した制御内容と多くの点で同じである。同一または相当する部分には同一符号を付し、異なる部分を主体に以下に説明すると、図11に示したステップ114、117の代わりにステップ122、123の制御を行う。このステップ122、123における制御内容は、図13の場合と同じである。
従って、図14に示す制御によって、各グループiの平均値AVEi が各設定値SETi に対する許容範囲εi 内にそれぞれ入るように制御される。これによって、例えば、図12に示すビーム電流密度分布が得られる。
制御装置70が上記のような制御機能を有していると、Y方向における各グループiのビーム電流密度分布の各平均値AVEi を、互いに値の異なる設定値を含む複数の設定値SETi に対してそれぞれ許容範囲εi 内に入れることができるので、注入室内におけるリボン状イオンビーム2のY方向におけるビーム電流密度分布をより確実に所定の不均一な分布にすることができる。
(3)イオン注入方法について
上記所定の不均一なビーム電流密度分布を実現することができるイオン注入装置(図3、図5参照)を用いて、例えば次の(A)、(B)または(C)に示すイオン注入方法によって、ターゲット52の面内において一様でないドーズ量分布を形成することができる。換言すれば、一つのターゲット52の面内に互いにドーズ量の異なる複数の注入領域を形成することができる。その結果、例えば、ターゲット52の面内に形成される半導体デバイスの内の特定領域の半導体デバイスの特性補正や特性変化をイオン注入によって行うこと等にも臨機応変に対応することができる。
(A)イオンビーム2を横切るようにターゲット52をX方向に沿って機械的に移動させることと、ターゲット52をその中心部52aを中心にして回転させることの少なくとも一方を行って、ターゲット52の面内において一様でないドーズ量分布を形成する。
(B)イオンビーム2を横切るようにターゲット52をX方向に沿って機械的に移動させることと、イオンビーム2の照射領域外においてターゲット52をその中心部52aを中心にして回転させることとを併用して、ターゲット52の面内において一様でないドーズ量分布を形成する。
(C)イオンビーム2の照射領域内でターゲット52をその中心部52aを中心にして回転させることを行って、ターゲット52の面内において一様でないドーズ量分布を形成する。
上記(B)のイオン注入方法のより具体例を図15、図16を参照して説明する。図16は図15に続くものである。イオンビーム2のY方向におけるビーム電流密度分布は、例えば、図12に示すビーム電流密度分布とする(図17においても同様)。当該ビーム電流密度分布を前記平均値AVE1 〜AVE3 で図15〜図17中に示している。
まず、図15Aに示すように、イオンビーム2を横切るようにターゲット52をX方向に沿って機械的に移動させる(矢印F参照)。これは、前述した駆動装置58を用いて行えば良い。この移動は、片道でも良いし、往復でも良く、必要な回数行えば良い(図16Aにおいても同様)。その結果、図15Bに示すように、ターゲット52の面内に、X方向に沿って三つの注入領域R1 〜R3 が形成される。例えば、注入領域R1 およびR3 のドーズ量をd1 、注入領域R2 のドーズ量をd2 とする。
なお、イオンビーム2のビーム電流密度分布が例えば図12に示すようになだらかに変化している場合は、各注入領域R1 〜R3 間の境界部分は、実際は、グラデーションを持ったものとなる。即ち、ドーズ量がなだらかに変化しているものとなる。後述する他の注入領域間の境界部分についても同様である。
続いて、図15Bに示すように、イオンビーム2の照射領域外において、ターゲット52をその中心部52aを中心にして回転させる(矢印E参照)。これは、前述した回転装置56を用いて行えば良い。この回転の角度は、この例では90度であるが、それに限られるものではない。
次いで、図16Aに示すように、イオンビーム2を横切るようにターゲット52をX方向に沿って機械的に移動させる。これは図15Aの場合と同じである。この移動によって、図15Aの場合と同様に、ターゲット52の面内に、X方向に沿って三つの注入領域が形成され、これが先の注入領域R1 〜R3 に重ねられる。その結果、図16Bに示すように、ターゲット52の面内には、9個の注入領域R4 〜R12が形成される。各注入領域R4 〜R12のドーズ量d4 〜d12は、例えば、次式となる。
[数1]
4 =2d2
5 =d1 +d2
6 =2d1
7 =d1 +d2
8 =2d1
9 =d1 +d2
10=2d1
11=d1 +d2
12=2d1
このようにして、ターゲット52の面内において一様でないドーズ量分布を形成することができる。
ターゲット52の回転角度を上記90度以外にして、例えば90度よりも小さくして、図15、図16よりも多数回、ターゲット52のX方向に沿う移動および回転を行っても良い。
上記(C)のイオン注入方法のより具体例を図17を参照して説明する。図17Aに示すように、イオンビーム2の照射領域内で、ターゲット52をその中心部52aを中心にして回転させる(矢印E参照)。これは、前述した回転装置56を用いて行えば良い。回転の回数は、必要な回数にすれば良い。その結果、図17Bに示すように、中心に円形の注入領域R13が形成され、その周囲に円環状の注入領域R14が形成される。両注入領域R13、R14のドーズ量をd13、d14とすると、d13≠d14となる。
このようにして、ターゲット52の面内において一様でないドーズ量分布を形成することができる。
なお、上記ドーズ量分布はあくまでも例であり、イオンビーム2のY方向におけるビーム電流密度分布の状況、ターゲット52のX方向の移動およびターゲット52の回転を上記例以外のものにすることによって、上記例以外のドーズ量分布を形成することもできる。
リボン状のイオンビームの一例を示す斜視図である。 この発明に係るイオン源の一実施形態を、イオンビーム進行方向に見て示す断面図である。 図2に示すイオン源を備えるイオン注入装置の一実施形態を示す図であり、イオン源は図2中の矢印P方向に見た断面図で示している。 この発明に係るイオン源の他の実施形態を、イオンビーム進行方向に見て示す断面図である。 図4に示すイオン源を備えるイオン注入装置の一実施形態を示す図であり、イオン源は図4中の矢印Q方向に見た断面図で示している。 陰極の配置の他の例を示す図である。 傍熱型の陰極の例を示す図である。 均一化制御の前後におけるビーム電流密度分布の一例を示す概略図である。 ビーム電流密度分布を均一化する場合の全体調整の制御内容の一例を示すフローチャートである。 ビーム電流密度分布を均一化する場合の個別調整の制御内容の一例を示すフローチャートである。 ビーム電流密度分布を均一化する場合の個別調整の制御内容の他の例を示すフローチャートである。 ビーム電流密度分布を所定の不均一な分布にした一例を示す概略図である。 ビーム電流密度分布を所定の不均一な分布に調整する場合の制御内容の一例を示すフローチャートである。 ビーム電流密度分布を所定の不均一な分布に調整する場合の制御内容の他の例を示すフローチャートである。 ターゲットの面内において一様でないドーズ量分布を形成するイオン注入方法の一実施形態を示す図であり、図16に続く。 ターゲットの面内において一様でないドーズ量分布を形成するイオン注入方法の一実施形態を示す図であり、図15から続く。 ターゲットの面内において一様でないドーズ量分布を形成するイオン注入方法の他の実施形態を示す図である。
符号の説明
2 イオンビーム
10a、10b イオン源
12 プラズマ生成容器
14 イオン引出し口
16 プラズマ
20 陰極
22 陰極電源
30、32 反射電極
40 電磁石
46 励磁電源
50 磁界
52 ターゲット
60 ビーム測定器
70 制御装置

Claims (17)

  1. 進行方向と実質的に直交する平面内におけるY方向の寸法が当該Y方向と実質的に直交するX方向の寸法よりも大きいリボン状のイオンビームを発生させるイオン源において、
    内部でプラズマを生成するための容器であって、陽極を兼ねていて内部にガスが導入され、かつ前記Y方向に伸びたイオン引出し口を有するプラズマ生成容器と、
    前記プラズマ生成容器の前記X方向の少なくとも一方側に設けられていて、プラズマ生成容器内へ電子を放出してプラズマ生成容器内で放電を生じさせて前記ガスを電離させて前記プラズマを生成する1以上の陰極と、
    前記プラズマ生成容器内であって、前記X方向の少なくとも他方側に前記陰極に対向させて配置されていて、プラズマ生成容器に対して負電位または浮遊電位にされて、プラズマ生成容器内の電子を反射させる1以上の反射電極と、
    前記プラズマ生成容器内に、前記X方向に沿う磁界をそれぞれ発生させるものであって、前記Y方向に沿って複数段に配置された複数の電磁石とを備えていることを特徴とするイオン源。
  2. 前記各電磁石は、前記プラズマ生成容器を前記X方向において挟んで対を成している電磁石である請求項1記載のイオン源。
  3. 進行方向と実質的に直交する平面内におけるY方向の寸法が当該Y方向と実質的に直交するX方向の寸法よりも大きいリボン状のイオンビームを発生させるイオン源において、
    内部でプラズマを生成するための容器であって、陽極を兼ねていて内部にガスが導入され、かつ前記Y方向に伸びたイオン引出し口を有するプラズマ生成容器と、
    前記プラズマ生成容器の前記X方向の少なくとも一方側に設けられていて、プラズマ生成容器内へ電子を放出してプラズマ生成容器内で放電を生じさせて前記ガスを電離させて前記プラズマを生成するものであって、前記Y方向に沿って複数段に配置された複数の陰極と、
    前記プラズマ生成容器内であって、前記X方向の少なくとも他方側に前記陰極に対向させて配置されていて、プラズマ生成容器に対して負電位または浮遊電位にされて、プラズマ生成容器内の電子を反射させる1以上の反射電極と、
    前記プラズマ生成容器内に、しかも前記複数の陰極を含む領域に、前記X方向に沿う磁界を発生させる電磁石とを備えていることを特徴とするイオン源。
  4. 前記電磁石は、前記X方向の寸法よりもY方向の寸法が大きいレーストラック状のコイルを有しており、かつ前記プラズマ生成容器を前記X方向において挟んで対を成している電磁石である請求項3記載のイオン源。
  5. 請求項1または2記載のイオン源と、
    前記イオン源の各陰極をそれぞれ加熱して電子を放出させるための1以上の陰極電源と、
    前記イオン源の各電磁石に直流の励磁電流をそれぞれ供給する複数の励磁電源と、
    前記イオン源から発生させた前記イオンビームをターゲットに入射させるための注入室内における前記イオンビームの前記Y方向におけるビーム電流密度分布を測定するビーム測定器と、
    前記ビーム測定器からの測定情報に基づいて前記各励磁電源を制御して、前記各電磁石から発生させる前記磁界の強さを制御して、前記ビーム測定器で測定するビーム電流密度分布を均一に近づける制御機能を有している制御装置とを備えていることを特徴とするイオン注入装置。
  6. 前記制御装置は、前記ビーム測定器で測定したビーム電流密度が相対的に大きい領域に対応する前記電磁石から発生させる前記磁界を弱くすることと、同ビーム電流密度が相対的に小さい領域に対応する前記電磁石から発生させる前記磁界を強くすることの少なくとも一方を行って、前記ビーム測定器で測定する前記ビーム電流密度分布を均一に近づける制御機能を有している請求項5記載のイオン注入装置。
  7. 前記制御装置は、
    (a)前記ビーム測定器で測定した全体のビーム電流密度分布の平均値を演算して、当該平均値が所定の設定値に対して第1の許容範囲内に入るように、前記陰極から放出する電子量を一律に制御する全体調整機能と、
    (b)前記ビーム測定器からの測定情報を前記各電磁石に対応する範囲毎にグループ分けし、各グループのY方向におけるビーム電流密度分布の平均値をそれぞれ演算し、当該平均値が前記設定値に対する第2の許容範囲内に入っていないグル−プについては、当該平均値が前記設定値よりも大きければ当該グループに対応している電磁石から発生させる磁界を弱くし、当該平均値が前記設定値よりも小さければ当該グループに対応している電磁石から発生させる磁界を強くして、各グループのビーム電流密度分布の平均値が全て前記設定値に対して第2の許容範囲内に入るように制御する個別調整機能とを有している請求項5記載のイオン注入装置。
  8. 請求項3または4記載のイオン源と、
    前記イオン源の各陰極をそれぞれ加熱して電子を放出させるための複数の陰極電源と、
    前記イオン源の電磁石に直流の励磁電流を供給する励磁電源と、
    前記イオン源から発生させた前記イオンビームをターゲットに入射させるための注入室内における前記イオンビームの前記Y方向におけるビーム電流密度分布を測定するビーム測定器と、
    前記ビーム測定器からの測定情報に基づいて前記各陰極電源を制御して、前記各陰極から放出する電子量を制御して、前記ビーム測定器で測定するビーム電流密度分布を均一に近づける制御機能を有している制御装置とを備えていることを特徴とするイオン注入装置。
  9. 前記制御装置は、前記ビーム測定器で測定したビーム電流密度が相対的に大きい領域に対応する前記陰極から放出する電子量を少なくすることと、同ビーム電流密度が相対的に小さい領域に対応する前記陰極から放出する電子量を多くすることの少なくとも一方を行って、前記ビーム測定器で測定する前記ビーム電流密度分布を均一に近づける制御機能を有している請求項8記載のイオン注入装置。
  10. 前記制御装置は、
    (a)前記ビーム測定器で測定した全体のビーム電流密度分布の平均値を演算して、当該平均値が所定の設定値に対して第1の許容範囲内に入るように、前記陰極から放出する電子量を一律に制御する全体調整機能と、
    (b)前記ビーム測定器からの測定情報を前記各陰極に対応する範囲毎にグループ分けし、各グループのY方向におけるビーム電流密度分布の平均値をそれぞれ演算し、当該平均値が前記設定値に対する第2の許容範囲内に入っていないグル−プについては、当該平均値が前記設定値よりも大きければ当該グループに対応している陰極から放出する電子量を少なくし、当該平均値が前記設定値よりも小さければ当該グループに対応している陰極から放出する電子量を多くして、各グループのビーム電流密度分布の平均値が全て前記設定値に対して第2の許容範囲内に入るように制御する個別調整機能とを有している請求項8記載のイオン注入装置。
  11. 請求項1または2記載のイオン源と、
    前記イオン源の各陰極をそれぞれ加熱して電子を放出させるための1以上の陰極電源と、
    前記イオン源の各電磁石に直流の励磁電流をそれぞれ供給する複数の励磁電源と、
    前記イオン源から発生させた前記イオンビームをターゲットに入射させるための注入室内における前記イオンビームの前記Y方向におけるビーム電流密度分布を測定するビーム測定器と、
    前記ビーム測定器からの測定情報に基づいて前記各励磁電源を制御して、前記各電磁石から発生させる前記磁界の強さを制御して、前記ビーム測定器で測定するビーム電流密度分布を、ビーム電流密度が互いに異なる複数の領域を含む所定の不均一な分布に近づける制御機能を有している制御装置とを備えていることを特徴とするイオン注入装置。
  12. 前記制御装置は、前記ビーム測定器からの測定情報を前記各電磁石に対応する範囲毎にグループ分けし、各グループのY方向におけるビーム電流密度分布の平均値をそれぞれ演算し、当該各平均値が、互いに値の異なる設定値を含む複数の設定値に対してそれぞれ所定の許容範囲内に入るように、各グループに対応している各電磁石から発生させる磁界の強さをそれぞれ制御する制御機能を有している請求項11記載のイオン注入装置。
  13. 請求項3または4記載のイオン源と、
    前記イオン源の各陰極をそれぞれ加熱して電子を放出させるための複数の陰極電源と、
    前記イオン源の電磁石に直流の励磁電流を供給する励磁電源と、
    前記イオン源から発生させた前記イオンビームをターゲットに入射させるための注入室内における前記イオンビームの前記Y方向におけるビーム電流密度分布を測定するビーム測定器と、
    前記ビーム測定器からの測定情報に基づいて前記各陰極電源を制御して、前記各陰極から放出する電子量を制御して、前記ビーム測定器で測定するビーム電流密度分布を、ビーム電流密度が互いに異なる複数の領域を含む所定の不均一な分布に近づける制御機能を有している制御装置とを備えていることを特徴とするイオン注入装置。
  14. 前記制御装置は、前記ビーム測定器からの測定情報を前記各陰極に対応する範囲毎にグループ分けし、各グループのY方向におけるビーム電流密度分布の平均値をそれぞれ演算し、当該各平均値が、互いに値の異なる設定値を含む複数の設定値に対してそれぞれ所定の許容範囲内に入るように、各グループに対応している各陰極から放出する電子量をそれぞれ制御する制御機能を有している請求項13記載のイオン注入装置。
  15. 請求項11ないし14のいずれかに記載のイオン注入装置において、
    前記イオン源からのイオンビームを横切るようにターゲットを前記X方向に沿って機械的に移動させることと、ターゲットをその中心部を中心にして回転させることの少なくとも一方を行って、ターゲットの面内において一様でないドーズ量分布を形成することを特徴とするイオン注入方法。
  16. 請求項11ないし14のいずれかに記載のイオン注入装置において、
    前記イオン源からのイオンビームを横切るようにターゲットを前記X方向に沿って機械的に移動させることと、イオンビームの照射領域外においてターゲットをその中心部を中心にして回転させることとを併用して、ターゲットの面内において一様でないドーズ量分布を形成することを特徴とするイオン注入方法。
  17. 請求項11ないし14のいずれかに記載のイオン注入装置において、
    前記イオン源からのイオンビームの照射領域内でターゲットをその中心部を中心にして回転させることを行って、ターゲットの面内において一様でないドーズ量分布を形成することを特徴とするイオン注入方法。
JP2007243308A 2007-09-20 2007-09-20 イオン源、イオン注入装置およびイオン注入方法 Expired - Fee Related JP4915671B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007243308A JP4915671B2 (ja) 2007-09-20 2007-09-20 イオン源、イオン注入装置およびイオン注入方法
US12/233,151 US7791041B2 (en) 2007-09-20 2008-09-18 Ion source, ion implantation apparatus, and ion implantation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243308A JP4915671B2 (ja) 2007-09-20 2007-09-20 イオン源、イオン注入装置およびイオン注入方法

Publications (2)

Publication Number Publication Date
JP2009076287A JP2009076287A (ja) 2009-04-09
JP4915671B2 true JP4915671B2 (ja) 2012-04-11

Family

ID=40470649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243308A Expired - Fee Related JP4915671B2 (ja) 2007-09-20 2007-09-20 イオン源、イオン注入装置およびイオン注入方法

Country Status (2)

Country Link
US (1) US7791041B2 (ja)
JP (1) JP4915671B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040723B2 (ja) * 2008-02-26 2012-10-03 日新イオン機器株式会社 イオン源
JP4428467B1 (ja) * 2008-08-27 2010-03-10 日新イオン機器株式会社 イオン源
US7999479B2 (en) * 2009-04-16 2011-08-16 Varian Semiconductor Equipment Associates, Inc. Conjugated ICP and ECR plasma sources for wide ribbon ion beam generation and control
US8907307B2 (en) * 2011-03-11 2014-12-09 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for maskless patterned implantation
JP2013004272A (ja) * 2011-06-15 2013-01-07 Nissin Ion Equipment Co Ltd イオン源およびイオン注入装置
US9142386B2 (en) 2013-03-15 2015-09-22 Nissin Ion Equipment Co., Ltd. Ion beam line
US9865422B2 (en) 2013-03-15 2018-01-09 Nissin Ion Equipment Co., Ltd. Plasma generator with at least one non-metallic component
US9502213B2 (en) 2013-03-15 2016-11-22 Nissin Ion Equipment Co., Ltd. Ion beam line
US8994272B2 (en) 2013-03-15 2015-03-31 Nissin Ion Equipment Co., Ltd. Ion source having at least one electron gun comprising a gas inlet and a plasma region defined by an anode and a ground element thereof
US9275819B2 (en) * 2013-03-15 2016-03-01 Nissin Ion Equipment Co., Ltd. Magnetic field sources for an ion source
WO2014201285A1 (en) 2013-06-12 2014-12-18 General Plasma, Inc. Linear duoplasmatron
WO2015094381A1 (en) * 2013-12-20 2015-06-25 White Nicholas R A ribbon beam ion source of arbitrary length
CN106932809B (zh) * 2015-12-30 2023-07-14 核工业西南物理研究院 一种w字形多板变角组合结构的主动水冷量热靶结构
US10553395B2 (en) * 2016-04-25 2020-02-04 Nissin Electric Co., Ltd. Ion beam irradiation device and ion beam irradiation method
US9734982B1 (en) * 2016-05-24 2017-08-15 Nissin Ion Equipment Co., Ltd. Beam current density distribution adjustment device and ion implanter
US9978554B1 (en) * 2017-01-26 2018-05-22 Varian Semiconductor Equipment Associates, Inc. Dual cathode ion source
US10153134B1 (en) * 2018-02-20 2018-12-11 Nissin Ion Equipment Co., Ltd. Plasma generation system
TWI695949B (zh) * 2019-04-03 2020-06-11 台灣氣立股份有限公司 節能型真空控制閥
US11798775B2 (en) 2021-09-30 2023-10-24 Axcelis Technologies, Inc. Extended lifetime dual indirectly-heated cathode ion source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797160B2 (ja) 2000-11-09 2006-07-12 日新イオン機器株式会社 イオン源およびその運転方法
JP3758667B1 (ja) 2005-05-17 2006-03-22 日新イオン機器株式会社 イオン源
JP4179337B2 (ja) * 2006-05-17 2008-11-12 日新イオン機器株式会社 イオン源およびその運転方法
US7589333B2 (en) * 2006-09-29 2009-09-15 Axcelis Technologies, Inc. Methods for rapidly switching off an ion beam
US8803110B2 (en) * 2006-09-29 2014-08-12 Axcelis Technologies, Inc. Methods for beam current modulation by ion source parameter modulation
JP5040723B2 (ja) * 2008-02-26 2012-10-03 日新イオン機器株式会社 イオン源

Also Published As

Publication number Publication date
US7791041B2 (en) 2010-09-07
US20090078890A1 (en) 2009-03-26
JP2009076287A (ja) 2009-04-09

Similar Documents

Publication Publication Date Title
JP4915671B2 (ja) イオン源、イオン注入装置およびイオン注入方法
JP5040723B2 (ja) イオン源
JP4179337B2 (ja) イオン源およびその運転方法
JP5357759B2 (ja) イオンビームの磁場走査および補正のためのシステム
JP4049163B2 (ja) イオン注入装置
JP4875883B2 (ja) イオン化したクラスタ、分子及び単一原子を発生するためのイオン発生装置
US8324592B2 (en) Ion source and a method of generating an ion beam using an ion source
WO2014146569A1 (zh) 用于离子束系统的间热式宽带束离子源和宽带离子束系统
JP4449954B2 (ja) イオン注入装置およびその調整方法
JP4582065B2 (ja) 分析電磁石、その制御方法およびイオン注入装置
US9443698B2 (en) Hybrid scanning for ion implantation
JP3550831B2 (ja) 粒子線照射装置
US6242749B1 (en) Ion-beam source with uniform distribution of ion-current density on the surface of an object being treated
KR101398729B1 (ko) 이온 주입 장치
JP5634992B2 (ja) イオンビーム照射装置及びイオンビーム発散抑制方法
JP6052792B2 (ja) マイクロ波イオン源及びその運転方法
JP5257399B2 (ja) イオン源及びイオン注入装置
JP2004055390A (ja) イオン源
JP6752449B2 (ja) イオンビーム中和方法と装置
CN111133551B (zh) 离子源装置
JP2023132162A (ja) イオン源
JP5695805B2 (ja) イオンビーム処理のための磁場低減装置及び磁気プラズマ供給システム
WO2023075969A1 (en) Mismatched optics for angular control of extracted ion beam
JP2005038689A (ja) イオン源
CN118056258A (zh) 用于所提取离子束的角度控制的失配光学器件

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees