JP4900895B2 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
JP4900895B2
JP4900895B2 JP2005214604A JP2005214604A JP4900895B2 JP 4900895 B2 JP4900895 B2 JP 4900895B2 JP 2005214604 A JP2005214604 A JP 2005214604A JP 2005214604 A JP2005214604 A JP 2005214604A JP 4900895 B2 JP4900895 B2 JP 4900895B2
Authority
JP
Japan
Prior art keywords
carbon atoms
group
atom
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005214604A
Other languages
English (en)
Other versions
JP2007035791A (ja
Inventor
達也 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005214604A priority Critical patent/JP4900895B2/ja
Publication of JP2007035791A publication Critical patent/JP2007035791A/ja
Application granted granted Critical
Publication of JP4900895B2 publication Critical patent/JP4900895B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、電気エネルギーを光に変換して発光できる発光素子、特に、有機電界発光素子(発光素子、又はEL素子)に関する。
有機電界発光(EL)素子は、低電圧で高輝度の発光を得ることができるため、有望な表示素子として注目されている。この有機電界発光素子の重要な特性値として、外部量子効率がある。外部量子効率は、
外部量子効率φ=素子から放出されたフォトン数/素子に注入された電子数
で算出され、この値が大きいほど消費電力の点で有利な素子と言える。
有機電界発光素子の外部量子効率は、
外部量子効率φ=内部量子効率×光取り出し効率
で決まる。有機化合物からの蛍光発光を利用する有機EL素子においては、内部量子効率の限界値が25%であり、光取り出し効率が約20%であることから、外部量子効率の限界値は約5%とされている。
発光素子の特性をさらに向上する手段として、オルトメタル化イリジウム錯体(Ir(ppy)3:Tris-Ortho-Metalated Complex of Iridium(III) with 2-Phenylpyridine)からの発光を利用した緑色発光素子が報告されている(例えば、特許文献1参照)。これらに記載のりん光(燐光)発光素子は、従来の一重項発光素子に比べて発光効率が大幅に向上しているが、耐久性、効率の点で改良が望まれている。
これを改良する手段として、有機ホウ素誘導体を用いる発光素子が報告されているが(例えば、特許文献2参照)、効率(消費電力)、耐久性の点でさらなる改良が望まれている。
米国特許出願公開第2002/0034656号明細書 特開2003−234192号公報
本発明の目的は、効率(消費電力等)及び耐久性の少なくとも一つが良好な有機電界発光素子の提供にある。
本発明は、下記<1>項に関するものであるが、その他の事項についても参考のために記載した。
<1>一対の電極間に発光層を含む少なくとも一層の有機化合物層を有する有機電界発光素子であって、該発光層が下記一般式(3)で表される化合物を少なくとも一種含有し、さらに、燐光発光材料を含有することを特徴とする有機電界発光素子。
Figure 0004900895
一般式(3)中、
Ar 31 、Ar 32 はそれぞれペンタフルオロフェニル基を表す。
31 は単結合を表す。
31 は、テトラフルオロフェニル基をC=C結合と共に形成する原子群を表す。
32 は、イミダゾール環の窒素原子のうち、ホウ素に配位していない方の窒素原子にメチル基又はフェニル基が置換しているベンズイミダゾール基をN=C結合と共に形成する原子群を表す。
この課題は下記手段によって達成された。
(1)一対の電極間に発光層を含む少なくとも一層の有機化合物層を有する有機電界発光素子であって、該少なくとも一層の有機化合物層が下記一般式(1)で表される化合物を少なくとも一種含有することを特徴とする有機電界発光素子。
Figure 0004900895
一般式(1)中、R11、R12、R13 はそれぞれ置換基を表し、R11、R12、R13の少なくとも一つは、ホウ素原子に炭素原子で結合する置換基である。R11とR12は結合して環を形成していてもよい。L11はホウ素原子に配位する基を表す。L11とR13は結合して環を形成していてもよい。
(2)R11、R12、R13 の全てが、ホウ素原子に炭素原子で結合する置換基であることを特徴とする上記(1)に記載の有機電界発光素子。
(3)一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることを特徴とする上記(1)又は(2)に記載の有機電界発光素子。
Figure 0004900895
一般式(2)中、R21、R22、R23 はそれぞれ置換基を表し、R21、R22、R23の少なくとも一つは、ホウ素原子に炭素原子で結合する置換基である。また、R21とR22は結合して環を形成していてもよい。L21はホウ素原子に配位する基を表す。X21は単結合又は連結基を表す。
(4)一般式(1)で表される化合物が、下記一般式(3)で表される化合物であることを特徴とする上記(1)又は(2)に記載の有機電界発光素子。
Figure 0004900895
一般式(3)中、Ar31、Ar32はそれぞれ炭素原子でホウ素原子に結合するアリール基、ヘテロアリール基を表す。Ar31とAr32は結合して環を形成していてもよ
い。X31は単結合又は連結基を表す。Q31は芳香族基を表し、Q32は含窒素ヘテロアリール基を表す。
(5)少なくとも一層の有機化合物層が、さらに燐光発光材料を含有することを特徴とする上記(1)〜(4)のいずれか一項に記載の有機電界発光素子。
(6)発光層に上記一般式(1)で表される化合物を含有することを特徴とする上記(1)〜(5)のいずれか一項に記載の有機電界発光素子。
本発明によれば、効率(消費電力等)及び耐久性の少なくとも一つが良好な有機電界発光素子が実現できる。
本発明は一対の電極間に発光層を含む少なくとも一層の有機化合物層を有する有機電界発光素子であって、前記一般式(1)で表される化合物を少なくとも一種含有することを特徴とする有機電界発光素子に関する。以下に一般式(1)について説明する。
一般式(1)において、R11、R12、R13 はそれぞれ置換基を表し、R11、R12、R13の少なくとも一つは、ホウ素原子に炭素原子で結合する置換基である。R11とR12は結合して環を形成していてもよい。
置換基としては、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。
11、R12、およびR13上の置換基としては、それぞれ、例えば、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。
ホウ素原子に炭素原子で結合する置換基としては、例えば、ホウ素原子に炭素原子で結合するアルキル基、ホウ素原子に炭素原子で結合するアリール基、ホウ素原子に炭素原子で結合するヘテロアリール基、ホウ素原子に炭素原子で結合するアルケニル基、ホウ素原子に炭素原子で結合するアルキニル基が挙げられる。
11、R12、R13 はアルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、アミノ基、フッ素原子が好ましく、ホウ素原子に炭素原子で結合するアルキル基、ホウ素原子に炭素原子で結合するアリール基、ホウ素原子に炭素原子で結合するヘテロアリール基がより好ましく、ホウ素原子に炭素原子で結合するアリール基、ホウ素原子に炭素原子で結合するヘテロアリール基がさらに好ましい。
また、R11、R12、R13 の少なくとも二つがホウ素原子に炭素原子で結合する基(好ましくはホウ素原子に炭素原子で結合するアリール基、ホウ素原子に炭素原子で結合するヘテロアリール基)であることが好ましく、R11、R12、R13の全てがホウ素原子に炭素原子で結合する基であることがより好ましく、R11、R12、R13 の全てがホウ素原子に炭素原子で結合するアリール基、ホウ素原子に炭素原子で結合するヘテロアリール基であることがさらに好ましく、R11、R12、R13の全てがホウ素原子に炭素原子で結合するアリール基であることが特に好ましい。
11はホウ素原子に配位する基を表す。L11とR13は結合して環を形成していてもよい。ホウ素原子に配位する基としては、窒素原子で配位する原子群、酸素原子で配位する原子群、硫黄原子で配位する原子群、りん原子で配位する原子群が挙げられる。
窒素原子で配位する原子群としては、例えば含窒素ヘテロ環基(ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、チアゾール、オキサゾール、ピロール、イミダゾール、ピラゾール、トリアゾールなど)、アミノ基(アルキルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばメチルアミノ)、アリールアミノ基(例えばフェニルアミノ)などが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、イミノ基などが挙げられる。これらの基はさらに置換されていても良い。置換基の例としては、前述のR11上の置換基として説明した基が挙げられる。
酸素原子で配位する原子群としては、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、カルボニル基(例えばケトン基、エステル基、アミド基など)、エーテル基(例えばジアルキルエーテル基、ジアリールエーテル基、フリル基など)などが挙げられる。これらの基はさらに置換されていても良い。置換基の例としては、前記R11で説明した基が挙げられる。
硫黄原子で配位する原子群としては、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、チオカルボニル基(例えばチオケトン基、チオエステル基など)、チオエーテル基(例えばジアルキルチオエーテル基、ジアリールチオエーテル基、チオフリル基など)などが挙げられる。これらの基はさらに置換されていても良い。置換基の例としては、前述のR11で説明した基が挙げられる。
りん原子で配位する原子群としては、ジアルキルホスフィノ基、ジアリールホスフィノ基、トリアルキルホスフィン、トリアリールホスフィン、ホスフィニン基等があげられる。これらの基はさらに置換されていても良い。置換基の例としては、後述のR11で説明した基が挙げられる。
11は窒素原子で配位する原子群、酸素原子で配位する原子群が好ましく、窒素原子で配位する原子群がより好ましく、含窒素ヘテロ環基がさらに好ましい。
一般式(1)で表される化合物は、一般式(2)で表される化合物であることが好ましく、一般式(3)で表される化合物であることがより好ましい。
一般式(2)について説明する。R21、R22、R23 は、それぞれ、前記R11、R12、R13と同義であり、好ましい範囲も同じである。R21、R22、R23の少なくとも一つは、ホウ素原子に炭素原子で結合する置換基を表す。また、R21とR22は結合して環を形成していてもよい。L21はL11と同義であり、好ましい範囲も同じである。
21は単結合又は連結基を表す。連結基としては、アルキレン連結基、アリーレン連結基、ヘテロアリーレン連結基、アルケニレン連結基、アルキニレン連結基、酸素連結基、窒素連結基、硫黄連結基、及び、これらの組み合わせからなる連結基(例えばメチレンオキシレン連結基)などが挙げられる。
21は単結合、アルキレン連結基、酸素連結基、窒素連結基が好ましく、単結合、アルキレン連結基がより好ましく、単結合がさらに好ましい。
一般式(3)について説明する。Ar31、Ar32はそれぞれ炭素原子でホウ素原子に結合するアリール基、ヘテロアリール基を表し、炭素原子で結合したアリール基が好ましく、フェニル基がより好ましい。Ar31とAr32は結合して環を形成していてもよい。
31は前記X21と同義であり、好ましい範囲も同じである。
31は芳香族基を表す。Q31は置換基を有していてもよく、置換基としては、前記R11上の置換基で説明した基が挙げられる。芳香族基としては、アリール基、ヘテロアリール基が挙げられ、アリール基が好ましく、フェニル基がより好ましい。
32は含窒素ヘテロアリール基を表す。Q32は置換基を有していてもよく、置換基としては、前記R11上の置換基で説明した基が挙げられる。Q32は5員環の含窒素ヘテロアリール基、6員環の含窒素ヘテロアリール基が好ましく、5員環を有する含窒素ヘテロアリール基がより好ましく、5,6縮環の含窒素ヘテロアリール基がさらに好ましく、5,6縮環イミダゾール基(ベンズイミダゾール基、イミダゾピリジン基、イミダゾピリミジン基など)が特に好ましい。
有機層(好ましくは発光層)中で用いられる発光材料は、特に限定されないが、蛍光発光材料及び燐光発光材料の少なくとも一種を用いることができる。蛍光発光材料としては公知の材料が用いられる。燐光発光材料としては、イリジウム錯体、白金錯体、レニウム錯体、オスミウム錯体、ルテニウム錯体等が挙げられる。3座以上の配位子を有する金属錯体であることが好ましく、4座以上の配位子を有する金属錯体(好ましくは金属錯体系燐光材料)であることがより好ましく、4座配位子を有する白金錯体燐光材料であることがさらに好ましい。本発明の素子において、少なくとも一層の有機化合物層が、さらに燐光発光材料を含有することが好ましく、少なくとも一層の発光層が上記一般式(1)で表される化合物と発光材料(蛍光発光材料及び燐光発光材料の少なくとも一種)とを含有することがより好ましい。
燐光発光材料としては、例えば、国際公開WO2004/108857A1号パンフレットなどに記載の化合物(燐光発光材料、金属錯体(白金錯体))が挙げられる。
本発明の発光素子中の発光層は、一般式(1)で表される化合物、燐光材料、ホール輸送性材料を少なくとも含む事が好ましい。発光層中で用いられるホール輸送性材料は特に限定されないが、アミン誘導体、チオフェン誘導体、金属錯体であることが好ましく、アリールアミン誘導体(トリフェニルアミン誘導体、ベンゾアゼピン誘導体、カルバゾール誘導体など)であることがより好ましい。
本発明の一般式(1)で表される化合物は低分子化合物であっても良く、また、オリゴマー化合物、一般式(1)で表される構造を主鎖又は側鎖に有するポリマー化合物(重量平均分子量(ポリスチレン換算)は好ましくは1000〜5000000、より好ましくは2000〜1000000、さらに好ましくは3000〜100000である。)であっても良い。本発明の一般式(1)で表される化合物は低分子化合物であることが好ましい。
本発明の発光素子の外部量子効率としては、5%以上が好ましく、10%以上がより好ましく、13%以上がさらに好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、もしくは、20℃で素子を駆動した時の100〜300cd/m付近での外部量子効率の値を用いることができる。
本発明の発光素子の内部量子効率としては、30%以上が好ましく、50%以上がさらに好ましく、70%以上がさらに好ましい。素子の内部量子効率は、
内部量子効率=外部量子効率/光取り出し効率
で算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能である。
本発明の発光素子は、ホール輸送層、発光層、電子輸送層の少なくとも3層を有する素子であることが好ましい。
本発明の発光層に含まれるホスト材料のイオン化ポテンシャルは、5.8eV以上、6
.3eV以下であることが好ましく、5.95eV以上、6.25eV以下であることがより好ましく、6.0eV以上6.2eV以下であることがさらに好ましい。
発光層中のホスト材料の電子移動度は 1×10−6cm/Vs以上、1×10−1cm/Vs以下であることが好ましく、5×10−6cm/Vs以上1×10−2cm/Vs以下であることがより好ましく、1×10−5cm/Vs以上1×10−2cm/Vs以下であることがさらに好ましく、5×10−5cm/Vs以上1×10−2cm/Vs以下であることが特に好ましい。
発光層中のホスト材料のホール移動度は 1×10−6cm/Vs以上、1×10−1cm/Vs以下であることが好ましく、5×10−6cm/Vs以上1×10−2cm/Vs以下であることがより好ましく、1×10−5cm/Vs以上1×10−2cm/Vs以下であることがさらに好ましく、5×10−5cm/Vs以上1×10−2cm/Vs以下であることが特に好ましい。
本発明の発光層に含まれるホスト材料、電子輸送層、及び、ホール輸送材料のガラス転移点は90℃以上400℃以下であることが好ましく、100℃以上380℃以下であることがより好ましく、120℃以上370℃以下であることがさらに好ましく、140℃以上360℃以下であることが特に好ましい。
本発明の有機電界発光素子は青色色純度の観点から、発光の極大波長は好ましくは390nm以上、495nm以下であり、より好ましくは400nm以上、490nm以下である。また、本発明の発光素子は500nm以上にも発光極大波長を有しても良く、白色発光素子であっても良い。
本発明の有機電界発光素子は青色色純度の観点から、発光のCIE色度値のx値は、好ましくは0.22以下であり、より好ましくは0.20以下である。
本発明の有機電界発光素子は青色色純度の観点から、発光のCIE色度値のy値は、好ましくは0.25以下であり、より好ましくは0.20以下であり、さらに好ましくは0.15以下である。
本発明の有機電界発光素子は青色色純度の観点から、発光スペクトルの半値幅は100nm以下が好ましく、90nm以下がより好ましく、80nm以下がさらに好ましく、70nm以下が特に好ましい。
燐光材料のTレベル(最低三重項励起状態のエネルギーレベル)は、60 Kcal/mol 以上(251.4 KJ/mol以上)、90 Kcal/mol 以下(377.1 KJ/mol以下) が好ましく、62 Kcal/mol 以上(259.78 KJ/mol 以上)、85 Kcal/mol 以下(356.15 KJ/mol 以下)がより好ましく、65 Kcal/mol 以上(272.35 KJ/mol以上)、80 Kcal/mol 以下(335.2 KJ/mol 以下)がさらに好ましい。
発光層中のホスト材料のTレベル(最低三重項励起状態のエネルギーレベル)は、60 Kcal/mol 以上(251.4 KJ/mol以上)、90 Kcal/mol 以下(377.1 KJ/mol以下) が好ましく、62 Kcal/mol 以上(259.78 KJ/mol 以上)、85 Kcal/mol 以下(356.15 KJ/mol 以下)がより好ましく、65 Kcal/mol 以上(272.35 KJ/mol以上)、80 Kcal/mol 以下(335.2 KJ/mol 以下)がさらに好ましい。
発光層に隣接する層(ホール輸送層、電子輸送層、電荷ブロック層、励起子ブロック層など)のTレベル(最低三重項励起状態のエネルギーレベル)は、60 Kcal/mol 以上(251.4 KJ/mol以上)、90 Kcal/mol 以下(377.1
KJ/mol以下) が好ましく、62 Kcal/mol 以上(259.78 KJ/mol 以上)、85 Kcal/mol 以下(356.15 KJ/mol 以下)がより好ましく、65 Kcal/mol 以上(272.35 KJ/mol以上)、80 Kcal/mol 以下(335.2 KJ/mol 以下)がさらに好ましい。
次に本発明の化合物例を示すが、本発明はこれに限定されない。
Figure 0004900895
Figure 0004900895
Figure 0004900895
Figure 0004900895
本発明の化合物は、種々の公知の手法を用い、合成できる。例えば、(1−1)で表される化合物は、Dalton Trans., 2003,1337. に記載の下記の手法で合成することができる。
Figure 0004900895
次に、本発明の有機電界発光素子に関して説明する。本発明の有機電界発光素子は、システム、駆動方法、利用形態など特に問わない。代表的な有機電界発光素子として有機EL(エレクトロルミネッセンス)素子を挙げることができる。
本発明の発光素子は、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板・ITO層・有機層の屈折率を制御する、基板・ITO層・有機層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
本発明の発光素子は、陰極側から発光を取り出す、いわゆる、トップエミッション方式(特開2003−208109号、特開2003−248441号、特開2003−257651号、特開2003−282261号などの公報に記載)であっても良い。
本発明の発光素子で用いられる基材は、特に限定されないが、ジルコニア安定化イットリウム、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルや、ポリエチレン、ポリカーボネート、
ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)、テフロン(登録商標)、ポリテトラフルオロエチレン−ポリエチレン共重合体等の高分子量材料であっても良い。
本発明の有機電界発光素子は、青色蛍光発光化合物を含有しても良いし、また、青色蛍光化合物を含有する青色発光素子と本発明の発光素子を同時に用いて、マルチカラー発光デバイス、フルカラー発光デバイスを作製しても良い。
本発明の有機電界発光素子の発光層は積層構造を少なくとも一つ有していても良い。積層数は2層以上50層以下が好ましく、4層以上30層以下がより好ましく、6層以上20層以下がさらに好ましい。
積層を構成する各層の膜厚は特に限定されないが、0.2nm以上、20nm以下が好ましく、0.4nm以上、15nm以下がより好ましく、0.5nm以上10nm以下がさらに好ましく、1nm以上5nm以下が特に好ましい。
本発明の有機電界発光素子の発光層は複数のドメイン構造を有していても良い。発光層中に他のドメイン構造を有していても良い。例えば、発光層が、ホスト材料A及び蛍光材料Bの混合物からなる約1nmの領域と、ホスト材料C及び蛍光材料Dの混合物からなる約1nmの領域で構成されていても良い。各ドメインの径は、0.2nm以上10nm以下が好ましく、0.3nm以上5nm以下がより好ましく、0.5nm以上3nm以下がさらに好ましく、0.7nm以上2nm以下が特に好ましい。
本発明の化合物を含有する発光素子の有機層の形成方法は、特に限定されるものではないが、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層法、コーティング法(スプレーコート法、ディップコート法、含浸法、ロールコート法、グラビアコート法、リバースコート法、ロールブラッシュ法、エアーナイフコート法、カーテンコート法、スピンコート法、フローコート法、バーコート法、マイクログラビアコート法、エアードクターコート、ブレードコート法、スクイズコート法、トランスファーロールコート法、キスコート法、キャストコート法、エクストルージョンコート法、ワイヤーバーコート法、スクリーンコート法等)、インクジェット法、印刷法、転写法などの方法が用いられ、特性面、製造面で抵抗加熱蒸着、コーティング法、転写法が好ましい。
本発明の発光素子は陽極、陰極の一対の電極間に発光層もしくは発光層を含む複数の有機化合物膜を形成した素子であり、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成にはそれぞれ種々の材料を用いることができる。
陽極は正孔注入層、正孔輸送層、発光層などに正孔を供給するものであり、金属、合金、金属酸化物、電気伝導性化合物、又はこれらの混合物などを用いることができ、好ましくは仕事関数が4eV以上の材料である。具体例としては酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)等の導電性金属酸化物、あるいは金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられ、好ましくは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からITOが好ましい。陽極の膜厚は材料により適宜選択可能であるが、通常10nm〜5μmの範囲のものが好ましく、より好ましくは50nm〜1μmであり、更に好ましくは100nm〜500nmである。
陽極は通常、ソーダライムガラス、無アルカリガラス、透明樹脂基板などの上に層形成したものが用いられる。ガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合、シリカなどのバリアコートを施したものを使用することが好ましい。基板の厚みは、機械的強度を保つのに十分であれば特に制限はないが、ガラスを用いる場合には、通常0.2mm以上、好ましくは0.7mm以上のものを用いる。
陽極の作製には材料によって種々の方法が用いられるが、例えばITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法(ゾル−ゲル法など)、酸化インジウムスズの分散物の塗布などの方法で膜形成される。
陽極は洗浄その他の処理により、素子の駆動電圧を下げたり、発光効率を高めることも可能である。例えばITOの場合、UV−オゾン処理、プラズマ処理などが効果的である。
陰極は電子注入層、電子輸送層、発光層などに電子を供給するものであり、電子注入層、電子輸送層、発光層などの負極と隣接する層との密着性やイオン化ポテンシャル、安定性等を考慮して選ばれる。陰極の材料としては金属、合金、金属ハロゲン化物、金属酸化物、電気伝導性化合物、又はこれらの混合物を用いることができ、具体例としてはアルカリ金属(例えばLi、Na、K等)及びそのフッ化物又は酸化物、アルカリ土類金属(例えばMg、Ca等)及びそのフッ化物又は酸化物、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金又はそれらの混合金属、リチウム−アルミニウム合金又はそれらの混合金属、マグネシウム−銀合金又はそれらの混合金属、インジウム、イッテリビウム等の希土類金属等が挙げられ、好ましくは仕事関数が4eV以下の材料であり、より好ましくはアルミニウム、リチウム−アルミニウム合金又はそれらの混合金属、マグネシウム−銀合金又はそれらの混合金属等である。陰極は、上記化合物及び混合物の単層構造だけでなく、上記化合物及び混合物を含む積層構造を取ることもできる。例えば、アルミニウム/フッ化リチウム、アルミニウム/酸化リチウム の積層構造が好ましい。陰極の膜厚は材料により適宜選択可能であるが、通常10nm〜5μmの範囲のものが好ましく、より好ましくは50nm〜1μmであり、更に好ましくは100nm〜1μmである。
陰極の作製には電子ビーム法、スパッタリング法、抵抗加熱蒸着法、コーティング法、転写法などの方法が用いられ、金属を単体で蒸着することも、二成分以上を同時に蒸着することもできる。さらに、複数の金属を同時に蒸着して合金電極を形成することも可能であり、またあらかじめ調整した合金を蒸着させてもよい。
陽極及び陰極のシート抵抗は低い方が好ましく、数百Ω/□以下が好ましい。
発光層の材料は、電界印加時に陽極又は正孔注入層、正孔輸送層から正孔を注入することができると共に陰極又は電子注入層、電子輸送層から電子を注入することができる機能や、注入された電荷を移動させる機能、正孔と電子の再結合の場を提供して発光させる機能を有する層を形成することができるものであれば何でもよく、本発明の化合物のほか、例えばベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ペリレン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、8−キノリノールの金属錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、イリジウムトリスフェニルピリジン錯体、及び、白金ポルフィリン錯体に代表される遷移金属錯体、及び、それらの誘導体等が挙げられる。発光層の膜厚は特に限定されるものではないが、通常1nm〜5μmの範囲のものが好ましく、より好ましくは5nm〜1μmであり、更に好ましくは10nm〜500nmである。
発光層の形成方法は、特に限定されるものではないが、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層法、コーティング法、インクジェット法、印刷法、LB法、転写法などの方法が用いられ、好ましくは抵抗加熱蒸着、コーティング法である。
発光層は単一化合物で形成されても良いし、複数の化合物で形成されても良い。また、発光層は一つであっても複数であっても良く、それぞれの層が異なる発光色で発光して、例えば、白色を発光しても良い。単一の発光層から白色を発光しても良い。発光層が複数の場合は、それぞれの発光層は単一材料で形成されていても良いし、複数の化合物で形成されていても良い。
正孔注入層、正孔輸送層の材料は、陽極から正孔を注入する機能、正孔を輸送する機能、陰極から注入された電子を障壁する機能のいずれか有しているものであればよい。その具体例としては、カルバゾール、トリアゾール、オキサゾール、オキサジアゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、本発明の化合物、及び、それらの誘導体等が挙げられる。正孔注入層、正孔輸送層の膜厚は特に限定されるものではないが、通常1nm〜5μmの範囲のものが好ましく、より好ましくは5nm〜1μmであり、更に好ましくは10nm〜500nmである。正孔注入層、正孔輸送層は上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
正孔注入層、正孔輸送層の形成方法としては、真空蒸着法やLB法、前記正孔注入輸送材料を溶媒に溶解又は分散させてコーティングする方法、インクジェット法、印刷法、転写法が用いられる。コーティング法の場合、樹脂成分と共に溶解又は分散することができ、樹脂成分としては例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N−ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂などが挙げられる。
電子注入層、電子輸送層の材料は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入された正孔を障壁する機能のいずれか有しているものであればよい。その具体例としては、トリアゾール、オキサゾール、オキサジアゾール、イミダゾール、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン、8−キノリノールの金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、有機シラン、及び、それらの誘導体等が挙げられる。電子注入層、電子輸送層の膜厚は特に限定されるものではないが、通常1nm〜5μmの範囲のものが好ましく、より好ましくは5nm〜1μmであり、更に好ましくは10nm〜500nmである。電子注入層、電子輸送層は上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
電子注入層、電子輸送層の形成方法としては、真空蒸着法やLB法、前記電子注入輸送材料を溶媒に溶解又は分散させてコーティングする方法、インクジェット法、印刷法、転写法などが用いられる。コーティング法の場合、樹脂成分と共に溶解又は分散することが
でき、樹脂成分としては例えば、正孔注入輸送層の場合に例示したものが適用できる。
保護層の材料としては水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO2、Al23、GeO、NiO、CaO、BaO、Fe23、Y23、TiO2等の金属酸化物、MgF2、LiF、AlF3、CaF2等の金属フッ化物、SiN、SiOなどの窒化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
保護層の形成方法についても特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法を適用できる。
本発明の発光素子の用途は特に限定されないが、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等の分野に好適に使用できる。
以下に本発明の具体的実施例を述べるが、本発明の実施の態様はこれらに限定されない。
〔比較例1〕
洗浄したITO基板を蒸着装置に入れ、銅フタロシアニンを5nm蒸着し、この上に、NPD(N,N’−ジ−α−ナフチル−N,N’−ジフェニル)−ベンジジン)を40nm蒸着した。この上に、Ir(ppy)と化合物Aを10:90の比率(質量比)で30nm蒸着し、この上に、BAlqを6nm蒸着し、この上に、Alq(トリス(8−ヒドロキシキノリン)アルミニウム錯体)を20nm蒸着した。この上に、フッ化リチウムを3nm蒸着した後、アルミニウム60nmを蒸着し、素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加して発光させた結果、Ir(ppy)に由来する緑色発光が得られた。
〔実施例1〕
比較例1の化合物Aの代わりに、本発明の化合物(1−1)を用い、比較例1と同様に素子作製評価した結果、Ir(ppy)に由来する緑色の発光が得られた。1mA(発光面積4mm)で駆動した素子の輝度半減期は、比較例1の素子の2倍であった。また、1mA(発光面積4mm)の電流を流す為に必要な素子の駆動電圧は、約1V低下した。
〔実施例2〕
比較例1の化合物Aの代わりに、本発明の化合物(1−1)と化合物Bの1:1(蒸着レート質量比)の混合物を用い、Ir(ppy)の代わりに化合物Cを用い、比較例1と同様に素子作製評価した結果、化合物Cに由来する青色の発光が得られた。1mA(発光面積4mm)で駆動した素子の輝度半減期は、比較例1の素子の3倍であった。また、1mA(発光面積4mm)の電流を流す為に必要な素子の駆動電圧は、約1.5V低
下した。
他の本発明の化合物を用いた素子でも、効率(消費電力)、耐久性の高いEL素子を作製することができた。
なお、上記実施例ないしは比較例に用いた化合物(NPD、Ir(ppy)、BAlq、Alq、化合物A、化合物B、化合物C)の化学構造は下記の通りである。
Figure 0004900895

Claims (1)

  1. 一対の電極間に発光層を含む少なくとも一層の有機化合物層を有する有機電界発光素子であって、該発光層下記一般式(3)で表される化合物を少なくとも一種含有し、さらに、燐光発光材料を含有することを特徴とする有機電界発光素子。
    Figure 0004900895
    一般式(3)中、
    Ar 31 、Ar 32 はそれぞれペンタフルオロフェニル基を表す。
    31 は単結合を表す。
    31 は、テトラフルオロフェニル基をC=C結合と共に形成する原子群を表す。
    32 は、イミダゾール環の窒素原子のうち、ホウ素に配位していない方の窒素原子にメチル基又はフェニル基が置換しているベンズイミダゾール基をN=C結合と共に形成する原子群を表す。
JP2005214604A 2005-07-25 2005-07-25 有機電界発光素子 Active JP4900895B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214604A JP4900895B2 (ja) 2005-07-25 2005-07-25 有機電界発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214604A JP4900895B2 (ja) 2005-07-25 2005-07-25 有機電界発光素子

Publications (2)

Publication Number Publication Date
JP2007035791A JP2007035791A (ja) 2007-02-08
JP4900895B2 true JP4900895B2 (ja) 2012-03-21

Family

ID=37794699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214604A Active JP4900895B2 (ja) 2005-07-25 2005-07-25 有機電界発光素子

Country Status (1)

Country Link
JP (1) JP4900895B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504454B2 (ja) 2007-12-06 2014-05-28 国立大学法人京都大学 新規なホウ素化合物、それらの製造方法およびそれらを用いた機能性電子素子
JP5660371B2 (ja) * 2010-02-10 2015-01-28 国立大学法人京都大学 ホウ素含有化合物及びその製造方法
JP5924557B2 (ja) * 2010-02-10 2016-05-25 国立大学法人京都大学 ホウ素含有化合物
WO2014133141A1 (ja) * 2013-02-28 2014-09-04 日本放送協会 有機電界発光素子
JP6426466B2 (ja) * 2014-12-26 2018-11-21 国立大学法人山形大学 電子輸送材料、および有機エレクトロルミネッセンス素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226573A (ja) * 1999-02-04 2000-08-15 Matsushita Electric Ind Co Ltd 有機発光材料およびこれを用いた有機エレクトロルミネッセンス素子
JP2001131185A (ja) * 1999-11-05 2001-05-15 Seizo Miyata ホウ素化合物
JP3990869B2 (ja) * 2000-03-31 2007-10-17 キヤノン株式会社 有機ほう素化合物、該有機ほう素化合物の製造方法、及び該有機ほう素化合物を用いた有機発光素子
JP2003229277A (ja) * 2002-02-04 2003-08-15 Matsushita Electric Ind Co Ltd 発光素子材料およびそれを用いた発光素子並びに装置
US6661023B2 (en) * 2002-02-28 2003-12-09 Eastman Kodak Company Organic element for electroluminescent devices
GB0306097D0 (en) * 2003-03-15 2003-04-23 Elam T Ltd Electroluminescent complexes
WO2005062676A1 (ja) * 2003-12-24 2005-07-07 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置および表示装置

Also Published As

Publication number Publication date
JP2007035791A (ja) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4801928B2 (ja) 有機電界発光素子
JP4934346B2 (ja) 有機電界発光素子
JP4531509B2 (ja) 発光素子
JP4365196B2 (ja) 有機電界発光素子
JP4067286B2 (ja) 発光素子及びイリジウム錯体
JP4340401B2 (ja) 発光素子及びイリジウム錯体
JP3929706B2 (ja) イリジウム錯体からなる発光素子材料及び発光素子
JP5046548B2 (ja) 有機電界発光素子
JP4794919B2 (ja) 有機電界発光素子
JP2006303394A (ja) 有機電界発光素子
JP2009246373A (ja) 発光素子及びイリジウム錯体
JP4642016B2 (ja) 有機電界発光素子及び白金化合物
JP2004327313A (ja) 有機電界発光素子
JP2006156847A (ja) 有機電界発光素子
JP4934345B2 (ja) 有機電界発光素子
JP2006310479A (ja) 有機電界発光素子
JP2005327526A (ja) 有機電界発光素子
JP2006228936A (ja) 有機電界発光素子
JP4900895B2 (ja) 有機電界発光素子
JP4849812B2 (ja) 有機電界発光素子およびケイ素化合物
JP4928867B2 (ja) 有機電界発光素子
JP2005190949A (ja) 有機電界発光素子
JP2006086482A (ja) 有機電界発光素子
JP4794918B2 (ja) 有機電界発光素子
JP4864304B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4900895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250