JP4899740B2 - 半導体発光素子、半導体発光装置および製造方法 - Google Patents

半導体発光素子、半導体発光装置および製造方法 Download PDF

Info

Publication number
JP4899740B2
JP4899740B2 JP2006252084A JP2006252084A JP4899740B2 JP 4899740 B2 JP4899740 B2 JP 4899740B2 JP 2006252084 A JP2006252084 A JP 2006252084A JP 2006252084 A JP2006252084 A JP 2006252084A JP 4899740 B2 JP4899740 B2 JP 4899740B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor light
light emitting
emitting device
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006252084A
Other languages
English (en)
Other versions
JP2008078169A (ja
Inventor
英徳 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006252084A priority Critical patent/JP4899740B2/ja
Publication of JP2008078169A publication Critical patent/JP2008078169A/ja
Application granted granted Critical
Publication of JP4899740B2 publication Critical patent/JP4899740B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体発光装置とその製造方法に関わる。より具体的には、窒化ガリウム系の基板を用いた半導体発光装置において、基板に存在する転位束を基板上に形成する下地層で覆い隠し、その後発光層となる半導体層を形成した半導体発光装置およびその製造方法に関する。
半導体発光装置では、青色を発光するものがIII−V族窒化物系半導体を用いて実用化されており、色のバリエーションが可能になった。そのため照明用途への実用化が期待されている。この窒化物半導体では、従来サファイヤ(Al23)の基板が用いられてきた。これは窒化物半導体と同材質の広い基板を得ることが困難であったからである。
そのため、成長させる窒化物半導体と基板との格子不整合が生じ、基板上に形成する窒化物半導体の結晶性が劣るといった問題があった。
窒化物半導体では、主に結晶成長時に生じる転位点を少なくさせることを目標に開発が行われてきた。そして、転位点の数を大幅に減らした窒化物半導体の基板も得られるようになってきた(特許文献1参照)。
特開2001−102307号公報
上記のような基板では、転位点を減少させるためにわざと転位点を集めた転位束という部分が存在する。図10に、このような基板上に発光層を形成した状態を示す。図10は半導体発光素子で転位束11の部分での断面を示す。基板12には、転位束11がある。転位束11は基板作製時に生じた結晶欠陥部の集まりと考えればよい。
この基板12上にn型層21、活性層22、p型層23さらにp側電極25を形成する。n側電極24はp型層形成後、p型層と活性層の一部をエッチングなどで除去し、むき出しにしたn型層21上に形成する。
基板の転位束11は、各層の形成に影響を及ぼす。各層は結晶異常部13としてその影響を継承し、p側電極25上にピット19と呼ばれる穴ができる。
図11は、図10の半導体発光素子をp側電極25を透して上から見た図である。実際にはp側電極が透明電極でなければ基板は見えない。図10はちょうど点線P1−P1の断面にあたる。転位束11の周辺には六角状の結晶領域16が形成されている。ピット19は、この六角状の結晶領域16の頂上に開いた噴火口のように観測される。
このピットができると、この下に形成される結晶異常部13が静電破壊等により容易に結晶劣化し、p側電極からn側電極への電流がリークしやすくなり、最悪の場合この半導体発光素子が機能しないという課題が発生する。
上記の課題を解決するために本発明は、窒化ガリウム系の基板の上に下地層を形成し、その上にn型層、活性層、p型層などからなる発光層を形成する。また、この下地層はピット上に形成される六角状の結晶領域の頂点までを含む厚さで形成する。
このようにすると、基板の転位束の影響を下地層で吸収し、転位束を継承するピットを非常に小さくすることができる。すなわち、ピットの発生しない半導体発光素子をえることができ、p側電極とn側電極の間の電流リークを抑えることができるという効果がある。従って、歩留まりが向上し、生産性を高くすることが出来る。
(実施の形態1)
次に本発明の実施の形態について図1を参照しながら説明する。なお、図2は本実施の形態の半導体発光素子110をp側電極から見た図であり、図1は図2のE1−E1の部分の断面図である。
図1に戻って、基板12は窒化ガリウム系の基板である。具体的には窒化ガリウム(GaN)や窒化アルミニウムガリウム(AlGaN)などであるが、他に添加元素があってもよい。基板の大きさは数百ミクロンから数ミリの方形が一般的である。転位束11は基板の結晶成長時にできるもので、高い確率で上記の面積の基板に1つ以上は含まれる場合が多い。
下地層14は、基板12と同じ組成の化合物で形成するのが好ましい。しかし、基板上の転位束を埋めることができれば、他の添加元素が含まれていても構わない。
下地層14は、通常の結晶成長方法を用いることができる。好ましくは気相成長法がよい。窒化ガリウム系の気相成長法としては例えば、HVPE(ハイドライド気相成長法:Hydride Vapor Phase Epitaxy)法、MOCVD法(有機金属気相成長法:Metal Organic Chemical Vapor Deposition)などがある。結晶成長はその条件により、成長方向に優劣ができることが知られているが、本発明の下地層14は基板面に対して垂直方向より水平方向の成長が優位になるような条件で行なう。基板に含まれる転位束を覆い隠すことが目的だからである。
基板面に対して水平方向の成長を促進させるのは、製造方法や製造装置、基板の処理によって変わるので、一意的に規定できず、個々の場合により条件を詰めるしかない。
例えば、III族原料としてトリメチルガリウム(TMG)、V族原料としてアンモニアを反応させて窒化ガリウムを基板上に堆積させるMOCVD法では、TMGやアンモニアガスの流量、キャリアガスの流量や種類、反応炉の圧力、基板温度などさまざまなパラメータがある。チャンバー構造や基板の事前処理にもよるが、キャリアガス中の水素濃度を高める、アンモニアガスの流量を増やす、反応炉の圧力を低める、基板温度を高めるような条件で、基板に水平な方向の結晶成長を優位にすることができる。
下地層は、基板表面に水平方向に優位に成長させるのであるが、垂直方向にも成長は行われる。つまり、基板に含まれる転位束を被いながら基板垂直方向にも成長する。このとき、転位束を底面の中心にする六角錐状に結晶領域16が現れる。窒化ガリウム系の結晶が六方晶であるので、C面方向の成長を抑制されながら成長するためにこのような結晶領域が形成されるものと考えられる。転位束から継承された結晶異常部13は、六角錐状の結晶領域16に被い尽くされる。
下地層は、少なくともこの六角錐の頂点15が形成される厚さまで形成する。六角錐の頂点が観測できるということは、基板の転位束を完全に下地層が被い尽くしたことを意味するからである。
このように六角錐の頂点が形成されるまでの厚さは、上記のように製造条件によって異なるため、特定はできないが、好ましくは5μm以下、より好ましくは2μm以下の厚さになるように製造条件を求めるのがよい。
下地層の上にはGaNのn型層21、InGaNの活性層22及びGaNのp型層23をこの順で積層する。これらの層が発光に寄与するため、以後これらをまとめて発光層20と呼ぶこともある。次に、p型層および活性層の一部をエッチングし、n型層を露出させる。この露出したn型層21の表面にn側電極24を形成する。p型層23の表面にはp側電極25を形成する。
なお、窒化ガリウム系青色LEDのn型層、活性層、p型層の各層の構成としては、ここで挙げた例に限定されるものではない。例えば、活性層22は、InGaNとGaNが交互に積層した多層構造(量子井戸構造)としてもよい。
また、p側電極25は発光層で発した光を基板12の側に反射するために反射率の高い銀(Ag)やアルミニウム(Al)、ロジウム(Rh)等の金属電極を用いてもよい。また、p型層23とp側電極25のオーミック接触抵抗を小さくするためにp型層とp側電極の間に白金(Pt)やニッケル(Ni)、コバルト(Co)、インジウム錫酸化物(ITO)等の電極層を用いればより好ましい。また、n側電極24はアルミニウム(Al)やチタン(Ti)等を用いることができる。
また、半導体発光装置として、n側電極とp側電極と引出電極の間を接続するのにバンプを用いる場合は、p側電極25およびn側電極24の表面にバンプとの接着強度を高めるために金(Au)やアルミニウム(Al)を用いることが望ましい。これらの電極は真空蒸着法、スパッタリング法などによって、形成することができる。
このように転位束上の結晶異常部13を下地層で被い尽くすと、pn電極間での電流リークを抑制することができる。ただし、下地層で転位束を被い尽くしても、六角錐上の結晶領域の頂点からは、結晶異常部が継承される。しかし、下地層中に六角錐の頂点が含まれるようにすれば、実質上pn電極間の電流リークを防止することができる。また、結晶異常部の影響によりp側電極層において若干の盛り上がりが残る。
図3には、p側電極およびn側電極にバンプ31を介して半導体発光素子をサブマウント30上に搭載した状態を示す。サブマウント30は、半導体発光素子110の支持体である。サブマウントは主としてSiツェナーダイオードや、窒化アルミニウム(AlN)やアルミナ(Al23)等のセラミックが用いられる。サブマウント30は半導体発光素子110で発生した熱に対するヒートシンクの役割も果たすので、熱伝導性に優れる材料が好ましい。
またサブマウントは、n側引出電極33とp側引出電極32を有し、半導体発光素子110への電流の供給端子の支持体でもある。引出電極は図3のように電流線40と41の接続ポート状の形状でよいが、サブマウントに貫通孔を設け、その中に導電性材料を充填したスルーホールであってもよい。
バンプ31は、金(Au)、金−錫合金、半田、インジウム(In)合金、導電性ポリマー等を用いることができる。また、メッキ法、真空蒸着法、スクリーン印刷法、液滴射出法、ワイヤーバンプ法等によって、引出電極上に作製することができる。バンプはp側電極やn側電極上に直接形成しても良い。
バンプをサブマウントもしくは半導体発光素子上に形成した後、これらを密着させ、超音波振動を用いた溶着で接着する。このように、半導体発光素子に引出電極を取り付けた状態で半導体発光装置10が完成する。
(実施の形態2)
図4には、他の半導体発光素子109の形態を示す。基板12上に下地層14を形成し、n型層21、活性層22、p型層23を形成するのは、実施の形態1と同じである。本実施の形態では、p型層、活性層をエッチングしてむき出したn型層上にn側電極を作製するのではなく、下地層を形成したのと反対側の基板上にn側電極24を形成する。
図5は、p型層23から本実施の形態の半導体素子を見た状態を示す。下地層14中に形成された六角錐状の結晶領域16を観測することができる。図4は図5の点線E2−E2での断面を示す。
図6は図4の半導体発光素子をサブマウント30上に搭載し、半導体発光装置9とした状態を示す。p側引出電極32はサブマウント上に形成してある。n側引出電極は、サブマウント上の別の場所に設ける。若しくはn側電極とリードフレームを直接導通させるようにしてもよい。この場合はリードフレームがn側引出電極となる。n側電極とn側引出電極の間は、ワイヤーボンディング43で接続する。
本実施の形態では、p側電極25とn側電極24を基板の同じ側の面に作製しないので、p側電極を大きく作製する事ができる。また、サブマウント上のp側引出電極とp側電極を全面で接着できるので、サブマウントと半導体発光素子の接着は非常に強固にできる。p側電極は、半導体発光装置としての発光効率を上げるために、実施の形態1で説明したように反射率の高い金属電極を用いるのが好ましいが、これに限定されるものではない。
p側電極とp側引出電極との間は、金−錫合金や半田、あるいは、銀(Ag)や金(Au)の粉末を樹脂などの有機バインダー中に分散させた導電性ペーストといった導電性接着剤35を用いることもできる。
(実施の形態3)
図7には、また本発明の半導体発光素子の他の実施形態を示す。本実施の形態では、p型層側を主発光面とする。図8は、本実施の形態の半導体発光素子108をp側電極から見た図である。本実施の形態では、後述するようにp型層上に透明電極26を配し、その一部にパット電極27を作製するため、図8のように見える。先の実施の形態同様、六角錐の結晶領域16が、その稜と頂点15によって確認できる。図7は図8の点線E3−E3での断面を示す。
基板上に下地層14を形成し、n型層21、活性層22、p型層23を形成するのは、実施の形態1と同じである。p側電極25は、p型層23上にp側透明電極26を配置し、p側透明電極上にパッド電極27を配して形成する。このようにp側電極は、p型層上に透明電極やパット電極といった複数の構成で形成してもよい。もちろんこの構成は、n側電極に利用してもよい。
透明電極はインジウム−錫酸化物(ITO)を始め、酸化錫にフッ素をわずかに加えた薄膜や酸化インジウムにアンチモンをわずかに加えた薄膜、さらには酸化亜鉛(ZnO)等も使用することができる。パッド電極には、金、アルミニウムといった導電性の金属やこれらの合金を用いることができる。パッド電極の透明電極に接する側にはロジウムやチタン、ニッケルを設けることでパッド電極と透明電極の接着力を強固にできる。透明電極やパッド電極は蒸着やスパッタリングといった方法で形成することができる。n側電極24は下地層を設けたのと反対側の基板面に形成される。本実施の形態では、n側電極は主発光面と反対方向にあるので、実施の形態1のp側電極のように反射率の高いアルミニウム等の金属電極を用いるのが好ましい。
図9は上記の半導体発光素子108をサブマウント上に登載し半導体発光装置8とした状態を示す。n側電極とn側引出電極間は導電性接着剤35を用いることができ、実施の形態2のp側電極とp側引出電極間との接着と同じである。
また、パット電極とp側引出電極(図示せず)との間の関係も実施の形態2におけるn側電極とn側引出電極との関係と同じである。
本発明は、広い面積の基板を作製した場合に転位束が生じてしまう窒化ガリウム系の基板を半導体発光装置に使用する場合に、転位束の影響を発光層に及ぼさないようにさせることができるため、窒化ガリウム系の半導体発光装置の製造に利用する事が出来る。
第1の実施の形態における半導体発光素子の構成を示す断面図 第1の実施の形態における半導体発光素子をp側電極から見た図 第1の実施の形態の半導体発光素子で作製した半導体発光装置を示す図 第2の実施の形態における半導体発光素子の構成を示す断面図 第2の実施の形態における半導体発光素子をp側電極から見た図 第2の実施の形態の半導体発光素子で作製した半導体発光装置を示す図 第3の実施の形態における半導体発光素子の構成を示す断面図 第3の実施の形態における半導体発光素子をp側電極から見た図 第3の実施の形態の半導体発光素子で作製した半導体発光装置を示す図 従来の半導体発光装置の断面を示す図 従来の半導体発光装置をp側電極から見た図
符号の説明
8 実施の形態3の半導体発光装置
9 実施の形態2の半導体発光装置
10 実施の形態1の半導体発光装置
11 転位束
12 基板
13 結晶異常部
14 下地層
15 六角錐状結晶領域の頂点
16 六角状結晶領域
20 発光層
21 n型層
22 活性増
23 p型層
24 n側電極
25 p側電極
30 サブマウント
31 バンプ
32 p側引出電極
33 n側引出電極
35 導電性接着剤

Claims (8)

  1. 表面に窒化ガリウム系の下地層を形成した窒化ガリウム系の基板と、
    前記下地層の上に形成された窒化ガリウム系のn型半導体層、活性層およびp型半導体層とを有し、
    前記下地層には、前記基板上の転位ピットを底面に有する六角状の結晶領域を含む半導体発光素子。
  2. 前記六角状の結晶領域は頂点を有する六角である請求項1記載の半導体発光素子。
  3. 前記下地層は前記基板と同じ材質である請求項1又は2のいずれかに記載の半導体発光素子。
  4. 表面に窒化ガリウム系の下地層を形成した窒化ガリウム系の基板と、
    前記下地層の上に形成された窒化ガリウム系のn型半導体層、活性層およびp型半導体層と、
    前記p型半導体層上に設けられたp側電極と、
    前記n型半導体層上若しくは前記基板の前記下地層が形成されていない面に設けられたn側電極と、
    前記p側電極に接続されたp側引出電極と、
    前記n側電極に接続されたn側引出電極とを有し、
    前記下地層には、前記基板上の転位ピットを底面に有する六角状の結晶領域を含む半導体発光装置。
  5. 前記六角状の結晶領域は頂点を有する六角である請求項記載の半導体発光装置。
  6. 前記下地層は前記基板と同じ材質である請求項又はのいずれかに記載の半導体発光装置。
  7. 窒化ガリウム系の基板上に窒化ガリウム系の下地層を、少なくとも前記基板上の転位ピットを底面に有する六角状の結晶領域が頂点を有するまで形成する工程と、
    前記下地層の上に窒化ガリウム系のn型半導体層、活性層およびp型半導体層を形成する工程と、
    前記n型半導体層上にn側電極を形成する工程と、
    前記p型半導体層上にp側電極を形成する工程と、
    前記n側電極にn側引出電極を形成する工程と、
    前記p側電極にp側引出電極を形成する工程とを含む半導体発光装置の製造方法。
  8. 前記n側電極を形成する工程は、前記基板の前記下地層を形成していない面に形成する請求項記載の半導体発光装置の製造方法。
JP2006252084A 2006-09-19 2006-09-19 半導体発光素子、半導体発光装置および製造方法 Expired - Fee Related JP4899740B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252084A JP4899740B2 (ja) 2006-09-19 2006-09-19 半導体発光素子、半導体発光装置および製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252084A JP4899740B2 (ja) 2006-09-19 2006-09-19 半導体発光素子、半導体発光装置および製造方法

Publications (2)

Publication Number Publication Date
JP2008078169A JP2008078169A (ja) 2008-04-03
JP4899740B2 true JP4899740B2 (ja) 2012-03-21

Family

ID=39349975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252084A Expired - Fee Related JP4899740B2 (ja) 2006-09-19 2006-09-19 半導体発光素子、半導体発光装置および製造方法

Country Status (1)

Country Link
JP (1) JP4899740B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003804A (ja) * 2008-06-19 2010-01-07 Sharp Corp 窒化物半導体発光ダイオード素子およびその製造方法
US9048385B2 (en) 2009-06-24 2015-06-02 Nichia Corporation Nitride semiconductor light emitting diode
JP2013033921A (ja) * 2011-06-30 2013-02-14 Mitsubishi Chemicals Corp 窒化物系発光ダイオード素子およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032538B2 (ja) * 1998-11-26 2008-01-16 ソニー株式会社 半導体薄膜および半導体素子の製造方法
JP3557441B2 (ja) * 2000-03-13 2004-08-25 日本電信電話株式会社 窒化物半導体基板およびその製造方法
JP3654242B2 (ja) * 2000-12-21 2005-06-02 日亜化学工業株式会社 窒化物半導体基板の製造方法
JP2002338396A (ja) * 2001-05-14 2002-11-27 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体基板およびその製造方法
JP3910041B2 (ja) * 2001-10-29 2007-04-25 シャープ株式会社 窒化物半導体レーザ素子及びこれを備えた半導体光学装置
JP4282305B2 (ja) * 2002-10-22 2009-06-17 シャープ株式会社 窒化物半導体レーザ素子、その製造方法及びそれを備えた半導体光学装置

Also Published As

Publication number Publication date
JP2008078169A (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4925726B2 (ja) 発光ダイオードの製造方法
JP3912044B2 (ja) Iii族窒化物系化合物半導体発光素子の製造方法
EP2657992A2 (en) Light emitting device and light emitting device package
JP2007184411A (ja) 発光ダイオードおよびその製造方法ならびに集積型発光ダイオードおよびその製造方法ならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法
US9450017B2 (en) Semiconductor light emitting device and method of fabricating the same
JP5816243B2 (ja) 発光素子及び発光素子パッケージ
JP2008172040A (ja) 半導体発光素子、半導体発光素子の製造方法、バックライト、ディスプレイおよび電子機器
US11335830B2 (en) Photo-emission semiconductor device and method of manufacturing same
JP2004006498A (ja) Iii族窒化物系化合物半導体発光素子
KR101039904B1 (ko) 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
TW200810151A (en) Process for producing gallium nitride type compound semiconductor light emitting element, gallium nitride type compound semiconductor light emitting element, and lamp using the same
JP2008244161A (ja) Iii族窒化物系化合物半導体発光素子の電極形成方法
KR100982988B1 (ko) 수직구조 반도체 발광소자 및 그 제조방법
JP2007288067A (ja) 発光ダイオード
KR101007078B1 (ko) 발광소자 및 그 제조방법
KR101047647B1 (ko) 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
JP4899740B2 (ja) 半導体発光素子、半導体発光装置および製造方法
JP6429049B1 (ja) 可撓性led素子と可撓性led表示パネル
JP5630276B2 (ja) 半導体発光素子、半導体発光装置
JP2009206461A (ja) 窒化物半導体発光素子とその製造方法
US11888091B2 (en) Semiconductor light emitting device and light emitting device package
KR20110121176A (ko) 반도체 발광소자 및 이의 제조방법
KR20120052745A (ko) 발광 소자 및 발광소자 패키지
JP2007042985A (ja) 窒化ガリウム系化合物半導体発光素子及びその実装体
KR102042540B1 (ko) 발광 소자 및 발광 소자 패키지

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R151 Written notification of patent or utility model registration

Ref document number: 4899740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees