JP4898559B2 - ヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニット - Google Patents

ヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニット Download PDF

Info

Publication number
JP4898559B2
JP4898559B2 JP2007139294A JP2007139294A JP4898559B2 JP 4898559 B2 JP4898559 B2 JP 4898559B2 JP 2007139294 A JP2007139294 A JP 2007139294A JP 2007139294 A JP2007139294 A JP 2007139294A JP 4898559 B2 JP4898559 B2 JP 4898559B2
Authority
JP
Japan
Prior art keywords
stage compressor
low
helium
pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007139294A
Other languages
English (en)
Other versions
JP2008291781A (ja
Inventor
正夫 椎林
隆夫 水野
健司 東條
康 伊豆永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007139294A priority Critical patent/JP4898559B2/ja
Publication of JP2008291781A publication Critical patent/JP2008291781A/ja
Application granted granted Critical
Publication of JP4898559B2 publication Critical patent/JP4898559B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニットに係り、特に、低段圧縮機及び高段圧縮機を備えるヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニットに好適なものである。
従来のヘリウム液化冷凍装置に関しては、例えば特開平3−271583号公報(特許文献1)の図15及び図18に開示されたものがある。このヘリウム液化冷凍装置は、作動ガスとしてヘリウムガスを使用した圧縮機ユニットと負荷側冷凍機とこれらの配管とヘリウム用スクロール圧縮機を制御するインバータとを備えて構成されている。前記圧縮機ユニットは、1台のヘリウム用スクロール圧縮機と、油冷却器を有する油インジェクション回路と、ヘリウム用スクロール圧縮機の吐出ヘリウムガスを冷却するガス冷却器とを備えて構成されている。前記ヘリウム用スクロール圧縮機は、スクロールラップ部の設定容積比が3.4〜4.5のスクロール歯形形状を有する互いに噛み合わされた固定スクロール及び旋回スクロールを備え、高圧と低圧の圧力比となる高圧力比が20前後となるように構成されている。
特開平3−271583号公報
ヘリウム液化冷凍装置における油冷却器やガス冷却器は、水冷式が一般的であったが、現在では水が不要となる空冷式に移行している。このため装置全体の温度が高くなり、これに伴って吐出側圧力Pd2が2.5MpaG(25kg/cmG)前後と高くなり、圧縮機の吐出側圧力Pd2と吸込み側圧力Ps1との比となる運転圧力比は、従来の18〜20前後からさらに高圧力比の24〜26の運転圧力比条件が要求される。従来の圧縮機においては、1台の圧縮機で達成しようとすると体積効率の大幅な低下と圧縮機動力の増加という性能低下の問題がある。特に、体積効率の大幅な低下は、ジュールトムソン弁と該弁から流下した液化ヘリウムの量が減少して、ヘリウム容器内の超電導磁石への冷却効果が損なわれるという問題に至る。
本発明の目的は、コストアップの抑制及び圧縮機の能力制御性の簡便・容易化を図りつつ、高性能化と長寿命化を図ることができるヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニットを得ることにある。
前述の目的を達成するための本発明の第1の態様は、作動ガスとしてヘリウムガスを使用した空冷式ヘリウム用圧縮機ユニットと負荷側冷凍機とを備えたヘリウム液化用冷凍装置において、前記空冷式ヘリウム用圧縮機ユニットは、ヘリウムガスを低圧から中間圧に昇圧する低段圧縮機を有する低段圧縮機ユニットと、前記低段圧縮機で中間圧に圧縮されたヘリウムガスを中間圧から高圧に昇圧する高段圧縮機を有する高段圧縮機ユニットと備え、前記負荷側冷凍機はヘリウムガス予冷却用冷凍機とジュールトムソン弁と該弁から流下した液化ヘリウムを溜めるヘリウム容器とを備え、前記低段圧縮機の行程容積と前記高段圧縮機の工程容積とを同一に設定すると共に、前記低段圧縮機及び前記高段圧縮機のインバータ用電動機を同一に設定し、前記低段圧縮機及び前記高段圧縮機を1台のインバータにて同一回転数で駆動制御し、前記低段圧縮機及び前記高段圧縮機のスクロールラップ部の設定容積比が2.1〜2.4の同一のスクロール歯形形状を有し、前記低段圧縮機の運転圧力比を9〜11に設定すると共に前記高段圧縮機の運転圧力比を2.3〜2.8に設定して、高圧と低圧との圧力比である高圧力比が24〜26となるようにし、前記低段圧縮機の吐出側に逆止弁を備えたことにある。
また、本発明の第2の態様は、作動ガスとしてヘリウムガスを使用した空冷式ヘリウム用圧縮機ユニットと負荷側冷凍機とを備えたヘリウム液化用冷凍装置において、前記空冷式ヘリウム用圧縮機ユニットは、ヘリウムガスを低圧から中間圧に昇圧する低段圧縮機を有する低段圧縮機ユニットと、前記低段圧縮機で中間圧に圧縮されたヘリウムガスを中間圧から高圧に昇圧する高段圧縮機を有する高段圧縮機ユニットと備え、前記負荷側冷凍機はヘリウムガス予冷却用冷凍機とジュールトムソン弁と該弁から流下した液化ヘリウムを溜めるヘリウム容器とを備え、前記低段圧縮機の行程容積と前記高段圧縮機の工程容積とを同一に設定すると共に、前記低段圧縮機及び前記高段圧縮機のインバータ用電動機を同一に設定し、前記低段圧縮機及び前記高段圧縮機を1台のインバータにて同一回転数で駆動制御し、前記低段圧縮機及び前記高段圧縮機のスクロールラップ部の設定容積比が2.1〜2.4の同一のスクロール歯形形状を有し、前記低段圧縮機の運転圧力比を9〜11に設定すると共に前記高段圧縮機の運転圧力比を2.3〜2.8に設定して、高圧と低圧との圧力比である高圧力比が24〜26となるようにし、前記低段圧縮機の吐出側で且つ前記ヘリウムガス予冷却用冷凍機から前記高段圧縮機に至る配管より低段圧縮機側に逆止弁を備え、前記低段圧縮機の吐出側で且つ前記逆止弁より低段圧縮機側から前記低段圧縮機の吸入側にバイパスするバイパス配管を備え、そのバイパス配管の途中に流量調整機能を有する減圧弁手段を備えたことにある。
また、本発明の第の態様は、作動ガスとしてヘリウムガスを使用し、ヘリウムガスを低圧から中間圧に昇圧する低段圧縮機を有する低段圧縮機ユニットと、前記低段圧縮機で中間圧に圧縮されたヘリウムガスを中間圧から高圧に昇圧する高段圧縮機を有する高段圧縮機ユニットと備え、ヘリウムガス予冷却用冷凍機とジュールトムソン弁と該弁から流下した液化ヘリウムを溜めるヘリウム容器とからなる負荷側冷凍機にヘリウムガスを供給する空冷式ヘリウム用圧縮機ユニットにおいて、前記低段圧縮機の行程容積と前記高段圧縮機の工程容積とを同一に設定すると共に、前記低段圧縮機及び前記高段圧縮機のインバータ用電動機を同一に設定し、前記低段圧縮機及び前記高段圧縮機を1台のインバータにて同一回転数で駆動制御し、前記低段圧縮機及び前記高段圧縮機のスクロールラップ部の設定容積比が2.1〜2.4の同一のスクロール歯形形状を有し、前記低段圧縮機の運転圧力比を9〜11に設定すると共に前記高段圧縮機の運転圧力比を2.3〜2.8に設定して、高圧と低圧との圧力比である高圧力比が24〜26となるようにし、前記低段圧縮機の吐出側で且つ前記ヘリウムガス予冷却用冷凍機から前記高段圧縮機に至る配管より低段圧縮機側に逆止弁を備え、前記低段圧縮機の吐出側で且つ前記逆止弁より低段圧縮機側から前記低段圧縮機の吸入側にバイパスするバイパス配管を備え、そのバイパス配管の途中に流量調整機能を有する減圧弁手段を備えたことにある。
本発明によれば、ヘリウムガスを低圧から中間圧に昇圧する低段圧縮機及び中間圧から高圧に昇圧する高段圧縮機を備え、低段圧縮機の行程容積を前記高段圧縮機の工程容積と同一に設定したので、各圧縮機の運転圧力比を従来機に対して約半分の圧力比に設定することができ、圧縮室間の内部漏れ低減による体積効率の向上を図ることができると共に、各圧縮機を同一に製造できることで各圧縮機を安価に製造できる。さらには、各圧縮機の工程容積と同一に設定したことにより、圧縮機内蔵のインバータ用電動機も同一品を使用することができ、1つのインバータにて2つの圧縮機を同時に回転数制御することができることとなり、両圧縮機の能力制御性が簡便・容易となると共に、冷凍負荷が小さい場合には、低い運転周波数とすることができ、大幅な省エネルギーを達成することができる。
以下、参考例及び本発明の複数の実施形態について図を用いて説明する。参考例及び各実施形態の図における同一符号は同一物または相当物を示す。
参考例
参考例を図1から図11を用いて説明する。
参考例のヘリウム液化用冷凍装置50の全体構成・機能に関して図1および図2を参照しながら説明する。図1は参考例のヘリウム液化用冷凍装置50の全体構成を示す図、図2は参考例の圧縮機ユニット258の構成を示す図である。
図1に示すように、ヘリウム液化用冷凍装置50は、作動ガスとしてヘリウムガスを使用した空冷式ヘリウム用圧縮機ユニット258と負荷側冷凍機259とを備えて構成されている。
圧縮機ユニット258は、ヘリウムガスを低圧から中間圧に昇圧する低段圧縮機100(図2参照)を有する低段圧縮機ユニット1100と、低段圧縮機100で中間圧に圧縮されたヘリウムガスを中間圧から高圧に昇圧する高段圧縮機200(図2参照)を有する高段圧縮機ユニット1200と備えて構成されている。
負荷側冷凍機259は、ヘリウムガス予冷却用冷凍機300、400と、ジュールトムソン弁260と、該ジュールトムソン弁260から流下した液化ヘリウムを溜めるヘリウム容器500とを備えて構成されている。
圧縮機ユニット258及び負荷側冷凍機259を構成する機器の間を接続する配管は、ヘリウム容器500から低段圧縮機100に至る低圧配管600と、低段圧縮機ユニット1100から高段圧縮機ユニット1200及び予冷却用冷凍機300、400から高段圧縮機ユニット1200に至る中間圧配管650、820、860、830、700と、高段圧縮機ユニット1200から予冷却用冷凍機300、400及びジュールトムソン弁へ至る高圧配管773とから成っている。
低段圧縮機100と高段圧縮機200とを直列・シリーズに設置すると共に、低段圧縮機100の行程容積Vthおよび設定容積比Vrと高段圧縮機200の行程容積Vthおよび設定容積比Vrとをそれぞれ同一のものとしている。
冷凍機300、400は、高段圧縮機ユニット1200の吸入側配管である中間圧配管700と吐出側配管である高圧配管750との間に接続されている。ヘリウム容器500は、低段圧縮機ユニット1100の吸入側配管である低圧配管600と高圧配管750との間に接続されている。780は冷凍機300の流出側配管820と冷凍機400の流出側配管860との配管830への合流点である。832は低段圧縮機ユニット1100の吐出側配管である中間圧ガス配管650と配管830との中間圧配管700への合流点である。760は配管750から冷凍機300の流入側配管800と冷凍機400及びヘリウム容器500の流入側配管756への分岐点である。770は配管756から冷凍機400の流入側配管850とヘリウム容器500の流入側配管773への分岐点である。
係る構成とすることにより、例えば、行程容積Vth=150CC/revを有するスクロールラップ形状を適用した場合、運転周波数として75Hzにおいて、低段圧縮機100を循環するヘリウムガス流量はGs=30Nm/hとなり、高段圧縮機200を循環するヘリウムガス流量はGh=300Nm/hとなる。流量比・能力比として、Gh/Gs=10前後となるように設定する。従来の単一の圧縮機を用いた例で、ヘリウムガス流量Gs=15Nm/hを確保する場合にはGh/Gs=20の高い比率となる。参考例では、低段圧縮機100に高段圧縮機200の行程容積、例えばVth=150CC/revの同一品を適用するものであり、これにより、流量比がより小さくなり、両圧縮機の動力負荷の差を小さくすることができる。また、高段圧縮機200の負荷を軽減できるものである。そのことが、後述する図10に示すように、装置全体として省エネ化が図れるものとなる。
図2に示すように、低段圧縮機ユニット1100は、低段圧縮機100、油冷却器33、絞り部271、冷却器651、油分離手段652を主要構成要素として構成されている。また、高段圧縮機ユニット1200として、高段圧縮機200、油冷却器333、絞り部2711、冷却器753、油分離手段754を主要構成要素として構成されている。
インバータ900は、圧縮機ユニット258外に設置されてもよいし、圧縮機ユニット258内に設置されてもよい。1台のインバータ900にて2台の圧縮機100,200を駆動して同一の運転周波数による回転数制御ができるものである。同一のヘリウム用圧縮機であり、これに収納するインバータ用電動機3a,3bも同一品であり、インバータ制御機能(運転周波数、二次電圧関係等)が単一化できる。
参考例では、上記したように、ヘリウム液化用冷凍装置50において、低圧Ps1から中間圧Pd1に昇圧する低段圧縮機100と中間圧Pd1から高圧Pd2に昇圧する高段圧縮機200の両方の圧縮機の行程容積Vthを、例えば150CC/revという大きさの同一値に設定しものである。
低段圧縮機100から吐出されたヘリウムガスは、空冷式冷却器651と油分離器652を経由し、高段圧縮機200の吸入配管700に至り、さらに、該圧縮機200から高圧の吐出圧力Pd2となり、吐出管20から空冷式冷却器752に至る。該冷却器752からのヘリウムガスは、油分離器753さらにアドゾーバ(油吸着器)754を経由して、外部の冷凍機300,400、及びヘリウム容器500に移動する。
次にヘリウムガスは、ヘリウム冷凍機300、400で適宜に断熱膨張された後、再び配管820,830及び860にて、吸入ガスとして高段圧縮機200に戻る。また、ヘリウム容器500からのヘリウムガスは、配管600にて、吸入ガスとして低段圧縮機100に戻る。なお、両圧縮機100、200は、1つのインバータ900にて駆動する。これにより、2つの圧縮機100、200の回転数を同じに設定するもので、冷凍負荷の能力制御がバランスよくできるという効果がある。冷凍機側の負荷が変わっても、Gh/Gsの流量比が常時同一に設定できるもので、このように、参考例では、1台のインバータで運転圧力条件の異なる2台の圧縮機を同時運転することを特徴とするものである。980は電源で、390(390a,390b)は電源線である。
次に、図3から図9を参照しながら、低段圧縮機ユニット1100の構成、機能に関して説明する。図3は参考例における低段圧縮機ユニット1100を示す図である。図3では、縦形構造の注油式密閉形スクロール圧縮機を低段圧縮機100として用いた例であり、低段圧縮機100の部分を縦断面して示す。図4は図3の低段圧縮機100の固定スクロール5の平面図、図5は図4の固定スクロール5の縦断面図、図6は図3の低段圧縮機100の旋回スクロール6の平面図、図7は図6の旋回スクロール6の縦断面図、図8は低段圧縮機100または高段圧縮機200の正面図、図9は図8の平面図である。なお、低段圧縮機ユニット1100で以下に説明する構成及び機能は高段圧縮機ユニット1200でも基本的には同一であるため、重複する説明を省略する。
図3に示すように、低段圧縮機ユニット1100では、作動ガスがヘリウムガスであり、作動ヘリウムガスを冷却するための油インジェクション管31を密閉容器1の蓋キャップ2aに貫通して固定スクロール5の鏡板部5aに設けた油注入用ポート22に接続している。油注入用ポート22の開口部は、旋回スクロール6のラップ6bの歯先面に対向して開口している。密閉容器1内に、スクロール圧縮機部250が上側に、電動機部3が下側に収納されている。電動機部3はインバータ用電動機で構成され、運転周波数として30Hzから100Hzまで回転数を可変可能な特性を備えている。そして、密閉容器1内は、フレーム7を挟んで、吐出室1aと電動機室1bとに区画されている。スクロール圧縮機部250は、固定スクロール5と旋回スクロール6を互いに噛み合せて圧縮室(密閉空間)8を形成している。
図4及び図5に示すように、固定スクロール5は、円板状の鏡板5aと、これに直立しインボリュート曲線あるいはこれに近似の曲線に形成されたラップ5bとからなり、その中心部に吐出口10、外周部に吸入口15(15a,15b)を備えている。
図6及び図7に示すように、旋回スクロール6は、円板状の鏡板6aと、これに直立し、固定スクロール5のラップ5bと同一形状に形成されたラップ6bと、鏡板の反ラップ面に形成されたボス部6cとからなっている。
図3に戻って、フレーム7の中央部に軸受部である主軸受40が備えられ、この主軸受40に回転軸14が支承され、回転軸14の先端に偏心軸14aが設けられている。偏心軸14aはボス部6cに旋回運動が可能なように挿入されている。固定スクロール5はフレーム7に複数本のボルト81によって固定されている。旋回スクロール6は、オルダムリングおよびオルダムキーよりなるオルダム機構38によってフレーム7に支承され、固定スクロール5に対して自転しないで旋回運動をするように形成されている。回転軸14には、圧縮機部250と反対方向に延びる電動機軸14bが一体に設けられ、電動機軸14bには電動機部3が直結されている。
固定スクロール5の吸入口15には密閉容器1を貫通して吸入管17が接続されている。吐出口10が開口している吐出室1aは、通路18a,18bを介して、電動機室1bと連通している。この電動機室1bは密閉容器中央部のケ−シング部2bを貫通する吐出管20に連通している。また、電動機3の上側の電動機室1b1は、電動機ステータ3aとケーシング2bの側壁との間の隙間25(25b、25C)および電動機ステータ3aと電動機ロータ3bとの隙間26を介して、電動機3の下側の電動機室1b2と連通している。
吸入管17と固定スクロール5との間には高圧部と低圧部とをシールするOリング53が設けられている。また、吸入管17内には逆止弁13が設けられている。逆止弁13は圧縮機停止時の回転軸14の逆転を防止すると共に、密閉容器1内の潤滑油が低圧側に流出するのを防止するために設けられている。
旋回スクロール6の鏡板6aの背面には、スクロール圧縮機部250とフレーム7で囲まれた空間36(以下背圧室と呼ぶ)が形成されている。この背圧室36には、旋回スクロール6の鏡板6aに穿設した細孔6e、6f(図6参照)を通して、吸入圧力Ps1と吐出側の圧力Pd1との中間の圧力Pb1が導入される。これにより、旋回スクロール6を固定スクロール5に押付ける軸方向の付与力を与えられる。
潤滑油23は密閉容器1の底部に溜められている。この潤滑油23は、密閉容器1内の高圧圧力Pd1と上記背圧室36の中間圧力Pb1との差圧により油吸上管27へ吸上げられた後、回転軸14の給油孔14c内を流れ、旋回軸受32、主軸受40および補助軸受39へ給油される。旋回軸受32及び主軸受40へ給油された油は、背圧室36を経て、穴6e、6fを通してスクロールラップの圧縮室8へ注入され、圧縮ガスと混合されて吐出ガスと共に吐出室1aへ吐出される。なお、主軸受の円筒コロ主軸受40への給油差圧が確保されるため、軸受40の冷却作用を促進させ、ヘリウム圧縮機の性能向上に伴う軸受荷重の低減効果との相乗作用により円筒コロ主軸受40の寿命を大幅に延長することができる。また、軸受部32、40、39への給油が確実となり、圧縮機の信頼性が向上できる。密閉容器1の底部には、該底部の潤滑油23を器外へ取出す油取り出し管30が設けられている。また、密閉容器1の蓋キャップ部2aには、スクロール圧縮機部250の圧縮途中の圧縮室8へ油を注入する油インジェクション管31が設けられている。
上記構成により、電動機ロータ3bに直結した電動機軸14bが回転して偏心軸14aが偏心回転すると、旋回軸受32を介して旋回スクロール6は旋回運動を行う。この旋回運動により、圧縮室8は次第に中心に移動して容積が減少する。作動ガスは、吸入管17から吸入口15(15a,15b)を経て吸入室5fへ入り、軸受及び細穴6d,6eを経由した油と前記油注入用ポート22から注入された油と混合されて圧縮室8で圧縮され、吐出口10から吐出室1aへ吐出される。
吐出された作動ガスと油の混合体は通路18a,18bを通って電動機室1bへ流入する。図3の実線の矢印は作動ガスの流れを、破線の矢印は油の流れをそれぞれ示している。狭い通路18a,18bから広い空間の電動機室1bに流入した作動ガスと油は、その流速が急激に低下し、かつ流れ方向が変更するため、作動ガス中に含まれる油の大部分が分離され、作動ガスは吐出管20から流出し、油は下方に落ちて密閉容器1底部に留まる。
密閉容器1の底部に溜められた潤滑油23は、密閉容器1内の圧力(吐出圧力Pd1)と圧縮室8の圧力(吐出圧力Pd1以下の圧力)との差圧によって、油取り出し管30の流入部30aから油取り出し管30内に流入していく。油取り出し管30内へ流入した油は、外部油配管36aを通って空冷式油冷却器33へ至り、ここで適宜冷却された後、油インジェクション管36b、31および油注入用ポート22を経て圧縮室8へ注入される。271は油流量調節弁である。この様にして圧縮室8へ注入された油は、該圧縮室8内において作動ガスの冷却およびスクロールラップ先端部等の摺動部を潤滑する役目を果す。
スクロール圧縮機100,200は、次の式(1)に示すスクロールラップ部の設定容積比Vrが2.1〜2.4の同一のスクロール歯形形状を有する互に噛み合わされた固定スクロール5及び旋回スクロール6を備えたことを特徴とするものである。
Vr=(2λ1−4π+α)/(2λs+2π+α) … (1)
ここで、λ1:ラップ巻き終り角度(インボリュート伸開角)、λS:ラップ巻き始め角度(インボリュート伸開角)、π:円周率、α:旋回半径εthとスクロールラップの基礎円半径aの比(=εth/a)である。
設定容積比Vrとは、最大吸い込み容積となる行程容積Vthを圧縮室8の吐出行程直前の最内室の容積Vdで除した値である。特に、その中でも、もっとも効果のあるスクロール圧縮機として、両方の圧縮機100,200に共通して、スクロールラップ部の設定容積比Vrを2.3のスクロール歯形形状に設定するものである。具体的なスクロールラップ形状としては、図6に示すように、ランプ終端部(先端部)の位置6mが、ラップ巻き始め角度λ1となり、ラップ中央部(先端部)の6pの位置が上記ラップ巻き始め角度λSとなる。
図6において、65はインボリュート曲線で、a点が始点(λS)となる。d点とc点を結ぶ曲線67は内側円弧曲線で、先端部はa点とc点とをなめらかな円弧曲線66にて結んでいる。d点より外側の曲線68は、インボリュート曲線である。歯溝寸法(図6のDt寸法)は次の式(2)で与えられる。
Dt=2×εth+t … (2)
Vr=2.3仕様のスクロールスクロールラップ形状例の場合、そのラップ巻き始め角度(a点)はおよそλs=2.0radとなる。f点及びg点がラップ巻き終り部の点となる。角度にして、f点の位置となる、例えば、インボリュート伸開角λ1=19.3radとなる。曲線69は円弧形状であり、点fと点gを滑らかに結んでいる。
次に、図10を参照しながら、圧縮機入力について説明する。図10は参考例における中間圧力Pd1及び中間圧力比Pd1/Ps1に対する圧縮機入力の特性図である。
空冷式冷却器を備えた2つのヘリウム用スクロール圧縮機ユニットにおいては、高圧圧力は、前記したように、例えばPd2=2.4MpaG(約24kg/cmG)の条件となる。図10から、ヘリウム液化冷凍装置の圧力条件、例えば、Ps1=0.01MpaG(約0.1kg/cm2G)、Pd2=2.4MpaG(約24kg/cm2G)の条件において、圧縮機の入力の面で、中間圧力Pd1の最適範囲は0.8MpaGから1.0MpaGとなる。圧力比としては、低圧Ps1から中間圧Pd1に昇圧する低段圧縮機100の運転圧力比として主にPd1/Ps1=9〜11となるものである。一方、中間圧Pd1から高圧Pd2に昇圧する高段圧縮機200の運転圧力比としてPd2/Pd1=2.3〜2.8となる。低段圧縮機となるヘリウム用スクロール圧縮機100の入力値は、行程容積150CC/revで運転周波数65Hzにおいては、W1=約5.8kWとなる。また、高段圧縮機となるヘリウム用スクロール圧縮機200の入力値は、行程容積150CC/revで運転周波数65Hzにおいては、W2=約16.5kWとなる。上記入力の比率W2/W1=270〜280%と、高段圧縮機200の入力が高くなる。
このため、装置全体として入力低減を図るためには、高段圧縮機のスクロールラップ形状を低圧力比条件に見合う省エネ性の高い設定容積比Vr=2.1〜2.4に設定することが望ましい。このスクロールラップ形状の設定容積比Vr=2.1〜2.4からずれると装置全体の入力が図10に示すような増加傾向となり、高性能化を実現できない。参考例の運転圧力比の条件設定とすることにより、高圧と低圧の圧力比となる高圧力比24〜26を達成し、省エネ性の高い装置を提供することができる。その中で特にスクロールラップ形状の設定容積比Vr=2.3に設定することが、性能面で実用的に有利となる。
次に、図11及び図12を参照しながら、ヘリウムガス流量について説明する。
図11は参考例における中間圧力Pd1と低段圧縮機100及び高段圧縮機200のヘリウムガス流量Gs,Ghとの関係を示す特性図である。なお、1点破線にてロータリタイプ圧縮機のヘリウムガス流量Gsの特性を比較のために図示してあるが、これから明らかなように内部漏れの小さいスクロール圧縮機が有利である。
図11に示すように、中間圧力Pd1を高く設定することにより、高段圧縮機200のヘリウムガス流量Ghは増加し、一方、低段圧縮機100のヘリウムガス流量Gsは漸減する。
冷凍機300としては、容器壁に内蔵したNガスシールド板用冷凍機またはHeガスの予冷用の冷凍機の例であり、冷却温度としては20Kレベルとなる。一方、冷凍機400としては、超電導磁石の冷却用の冷凍機の例であり、冷却温度としては4Kレベルとなる。これら両者300、400の冷凍負荷が運転周波数75Hzにおいて、中間圧力Pd1=0.8MpaG時で280Nm/hが必要能力の場合、中間圧力をPd1=0.85MpaGに高く設定することにより、図11のa点からb点に能力増加ができることになる。その分、運転周波数を75Hzから65Hzに低下しても能力確保(a点)できる。
これらの作用を図12を用いて説明する。図12は参考例における運転周波数に対するヘリウムガス流量Gh,Gsの関係を示す特性図である。図12において、中間圧力Pd1の値をパラメータとして示し、中間圧力Pd1=0.7MPaG条件とPd1=0.85MPaG条件との能力を比較して示す。
点Aから点Bへの状態変化は、高段圧縮機200の行程容積Vthを150CC/revで同一とし、中間圧力Pd1を0.7MPaGから0.85MPaGに増加し、運転周波数を75Hzから65Hzに低下した場合を示す。また、点Cから点Dへの状態変化は、低段圧縮機100の行程容積Vthを100CC/revから150CC/revに増加し、中間圧力Pd1を0.7MPaGから0.85MPaGに増加し、運転周波数を75Hzから65Hzに低下した場合を示す。このように中間圧力Pd1を適切な範囲に増加させることにより、運転周波数を低させても、減点Aを点Bの状態に同一能力を確保できると共に、点Cを点Dの状態に能力を増加できる。点A(点C)の状態における圧縮機全体入力に対する点B(点D)の状態における圧縮機全体入力は、図10に示すように、圧縮機100,200の回転数の低減効果等により5%前後の低減効果がある。なお、点Cを点Dの状態に運転状態が変更となることにより、低段圧縮機100の能力余剰分が発生する。それは、図15においてΔGの記号で示している。この余剰冷凍能力は、通常の冷凍負荷に対して高くなる起動初期の冷凍負荷に供され、プルダウン運転時間の短縮が図れる。
参考例では、運転状態を点B(点D)から増速して従来の運転周波数(75Hz)まで増速することにより、最大冷凍能力の点E、点Fの運転が可能となる。従来の能力でよい場合には、65Hz/75Hz=86%となり、約14%の行程容積Vthの低下、ひいては圧縮機の小型化が可能となる効果が得られる。
このように、適正な中間圧力Pd1に設定については、運転周波数のより低速化運転による圧縮機の入力低減効果、ヘリウム装置全体の入力低減化、及び液体ヘリウム容器全体の冷却効果が向上できるGs流量の確保の観点から、上記の中間圧力Pd1を0.8MpaGから0.95MpaGと設定することが望ましい。両方の圧縮機100、200の運転周波数を低下できることにより、主軸受部の転がり軸受の寿命が大きく伸張できる効果もある。
次に、図13を参照しながら、停止状態から圧縮機100、200をインバータ900にて駆動する際の制御方法について説明する。図13は参考例における低段圧縮機100及び高段圧縮機200のヘリウムガス流量Gs,Ghの運転周波数に対する変化を示す。
停止状態から圧縮機110、200をインバータ900にて駆動する際、最初から冷凍負荷に応じた周波数制御することではなく、先ず圧縮機110、200の各部の温度を上昇させてある程度圧縮機内部に潤滑油がゆきわたるようにするため、起動初期には60Hz運転を強制的に20分〜40分前後継続して運転することが圧縮機信頼性面でよい。インバータ駆動においては先ず最初に暖気運転を実施する運転パターンとするものである。その後に、冷凍負荷に応じて、能力制御・周波数制御するものである。図13の(a)〜(f)点は、各周波数におけるヘリウムガス流量を示す。上述したように、各周波数におけるGh/Gsは、10前後となるように設定している。
以上説明したように、参考例によれば、次の作用効果を奏することができる。
(1)ヘリウム液化冷凍装置50に2つの圧縮機100、200を直列に配置し、低圧から中間圧に昇圧する低段側圧縮機100と、中間圧から高圧に昇圧する高段側圧縮機200の2つを備え、かつ両方の圧縮機100、200の行程容積を同一に設定することにより、それぞれの運転圧力比を従来機に対して、約半分の圧力比に設定でき、圧縮室間の内部漏れ低減による体積効率の向上効果、液体ヘリウム容器内の超電導コイルへの冷却効果が向上できる。また、2つの圧縮機100、200を同一に設置・使用することで、生産性の向上が図れ、圧縮機ユニット258及び圧縮機100、200の製造コストも安価にできる効果がある。
(2)同一の圧縮機100、200を配置し、さらに内蔵したインバータ用電動機も同一品を使用することによって、1つのインバータ900にて2つの圧縮機100、200を同時に回転数制御することができ、両圧縮機100、200の能力制御性が簡便・容易となる。また、冷凍負荷が小さい場合には、低い運転周波数とすることができ、大幅な省エネルギーを達成することができる。また、インバータ制御により、転がり軸受の長寿命化、ひいては、ヘリウム圧縮機100、200の長寿命化が達成できる。
(3)中間圧力の最適範囲に設定することにより、高段側圧縮機200の小型化と該圧縮機200の省エネ化、ひいては上記(2)項と関連して信頼性が大幅に向上できる。
(4)中間圧力の最適な設定により、高段側圧縮機200の入力となる負荷低減効果を最大に発揮せしめ、その結果、装置全体として高圧力比に対して、高効率で高信頼性のヘリウム液化冷凍装置を提供できるものとなる。
(第実施形態)
次に、本発明の第実施形態について図14を用いて説明する。図14は本発明の第実施形態のヘリウム液化用冷凍装置の全体構成を示す図である。この第実施形態は、次に述べる点で参考例と相違するものであり、その他の点については参考例と基本的には同一であるので、重複する説明を省略する。
この第実施形態では、低圧Ps1から中間圧Pd1に昇圧する低段圧縮機100の吐出配管660に逆止弁手段を備え、吸入配管流路600には電磁弁などの電動弁手段610を備えたものである。これは、冷凍サイクルの運転後に圧縮機100、200が停止した場合、冷凍サイクル全体が1つの圧力にバランスし、再起動時における低段圧縮機100の起動を軽減するために上記弁手段660,610を設けるものである。
例えば、Ps1=0.1kg/cm2G、Pd1=9.0kg/cm2G、Pd2=24kg/cm2Gの圧力条件で圧縮機が停止した場合、そのバランス圧力PBが16〜20kg/cm2Gと比較的に高い圧力レベルとなることがある。その高いバランス圧力から2つの圧縮機100、200が再起動した場合、低段圧縮機100の吐出圧力Pd1がバランス圧力PBより小さくなり、配管700から配管650への逆流が生じることになる。これによって、低段圧縮機100の起動初期の負荷トルクが増大することとなり、その分圧縮機入力が増加することとなる。これを解消するため、本実施形態では、吐出配管660に逆止弁手段660を備え、かつ吸入配管流路600に電磁弁などの電動弁手段610を備えるものである。
なお、吸入配管流路600の電動弁手段610を省いても、本発明の目的を妨げるものではない。また、低段圧縮機100についてのみ、該圧縮機100の吐出穴10の上方部にリード弁タイプの逆止弁手段(図示せず)を付属させてもよい。
(第実施形態)
次に、本発明の第実施形態について図15を用いて説明する。図15は本発明の第実施形態のヘリウム液化用冷凍装置の全体構成を示す図である。この第実施形態は、次に述べる点で第実施形態と相違するものであり、その他の点については第実施形態と基本的には同一であるので、重複する説明を省略する。
この第実施形態では、低圧圧力Ps1から中間圧Pd1に昇圧する低段圧縮機100の吐出配管650側から吸入配管600側にバイパスする配管645を備え、そのバイパス配管645の途中に流量調整機能を有する減圧弁手段666を備えたものである。余剰となるヘリウムガス流量Gsの一部をバイパスさせてもよい。該バイパスする配管645は、前記吐出配管660に設けた逆止弁手段660の下流側に分岐点644を備え、かつ吸入配管流路600途中に設けた電動弁手段610の上流側の分岐点648を構成するものである。
参考例のヘリウム液化用冷凍装置の全体構成を示す図である。 図1の圧縮機ユニットの構成を示す図である。 参考例における低段圧縮機ユニットを示す図である。 図3の低段圧縮機の固定スクロールの平面図である。 図4の固定スクロールの縦断面図である。 図3の低段圧縮機の旋回スクロールの平面図である。 図6の旋回スクロールの縦断面図である。 参考例の低段圧縮機または高段圧縮機の正面図である。 図8の平面図である。 参考例における中間圧力及び中間圧力比に対する圧縮機入力の特性図である。 参考例における中間圧力及び運転周波数に対するヘリウムガス流量の特性図である。 参考例における運転周波数に対するヘリウムガス流量の関係を示す特性図である。 圧縮機を停止状態からインバータにて駆動する際の参考例における制御方法を説明する図である。 本発明の第実施形態のヘリウム液化用冷凍装置の全体構成を示す図である。 本発明の第実施形態のヘリウム液化用冷凍装置の全体構成を示す図である。
符号の説明
1…密閉容器、1a…吐出室、1b…電動機室、3…電動機部、3a…電動機ステータ、3b…電動機ロータ、5…固定スクロール、5a…固定スクロール鏡板、5b…ラップ、5f…吸入室、6…旋回スクロール、6a…旋回スクロール鏡板、6b…ラップ、6c…ボス部、6p…旋回スクロール中央先端部、7…フレーム、8…圧縮室、10…吐出口、13…逆止弁、14…回転軸、14a…偏心軸、14b…電動機軸、15…吸入口、17…吸入管、18a,18b…通路、20…吐出管、22…ポート、23…潤滑油、27…油吸上管、30…油取り出し管、30a…流入部、31…油インジェクション管、32…旋回軸受、33…油冷却器、36…油配管、38…オルダム機構、39…軸受部(補助軸受)、40…軸受部(主軸受)、50…ヘリウム液化用冷凍装置、53…Oリング、250…圧縮機部、258…空冷式ヘリウム用圧縮機ユニット、259…負荷側冷凍機、260…ジュールトムソン弁、271…絞り部、300、400…冷凍機、500…ヘリウム容器、600…吸入配管、651…ガスと油の冷却器、652…油分離手段、700…吸入配管、752…ガスと油の冷却器、753…油分離手段、754…アドゾーバ(油吸着器)、900…インバータ、1100,1200…圧縮機ユニット。

Claims (3)

  1. 作動ガスとしてヘリウムガスを使用した空冷式ヘリウム用圧縮機ユニットと負荷側冷凍機とを備えたヘリウム液化用冷凍装置において、
    前記空冷式ヘリウム用圧縮機ユニットは、ヘリウムガスを低圧から中間圧に昇圧する低段圧縮機を有する低段圧縮機ユニットと、前記低段圧縮機で中間圧に圧縮されたヘリウムガスを中間圧から高圧に昇圧する高段圧縮機を有する高段圧縮機ユニットと備え、
    前記負荷側冷凍機はヘリウムガス予冷却用冷凍機とジュールトムソン弁と該弁から流下した液化ヘリウムを溜めるヘリウム容器とを備え、
    前記低段圧縮機の行程容積と前記高段圧縮機の工程容積とを同一に設定すると共に、
    前記低段圧縮機及び前記高段圧縮機のインバータ用電動機を同一に設定し、
    前記低段圧縮機及び前記高段圧縮機を1台のインバータにて同一回転数で駆動制御し、
    前記低段圧縮機及び前記高段圧縮機のスクロールラップ部の設定容積比が2.1〜2.4の同一のスクロール歯形形状を有し、
    前記低段圧縮機の運転圧力比を9〜11に設定すると共に前記高段圧縮機の運転圧力比を2.3〜2.8に設定して、高圧と低圧との圧力比である高圧力比が24〜26となるようにし、
    前記低段圧縮機の吐出側に逆止弁を備えたことを特徴とするヘリウム液化用冷凍装置。
  2. 作動ガスとしてヘリウムガスを使用した空冷式ヘリウム用圧縮機ユニットと負荷側冷凍機とを備えたヘリウム液化用冷凍装置において、
    前記空冷式ヘリウム用圧縮機ユニットは、ヘリウムガスを低圧から中間圧に昇圧する低段圧縮機を有する低段圧縮機ユニットと、前記低段圧縮機で中間圧に圧縮されたヘリウムガスを中間圧から高圧に昇圧する高段圧縮機を有する高段圧縮機ユニットと備え、
    前記負荷側冷凍機はヘリウムガス予冷却用冷凍機とジュールトムソン弁と該弁から流下した液化ヘリウムを溜めるヘリウム容器とを備え、
    前記低段圧縮機の行程容積と前記高段圧縮機の工程容積とを同一に設定すると共に、
    前記低段圧縮機及び前記高段圧縮機のインバータ用電動機を同一に設定し、
    前記低段圧縮機及び前記高段圧縮機を1台のインバータにて同一回転数で駆動制御し、
    前記低段圧縮機及び前記高段圧縮機のスクロールラップ部の設定容積比が2.1〜2.4の同一のスクロール歯形形状を有し、
    前記低段圧縮機の運転圧力比を9〜11に設定すると共に前記高段圧縮機の運転圧力比を2.3〜2.8に設定して、高圧と低圧との圧力比である高圧力比が24〜26となるようにし、
    前記低段圧縮機の吐出側で且つ前記ヘリウムガス予冷却用冷凍機から前記高段圧縮機に至る配管より低段圧縮機側に逆止弁を備え、
    前記低段圧縮機の吐出側で且つ前記逆止弁より低段圧縮機側から前記低段圧縮機の吸入側にバイパスするバイパス配管を備え、
    そのバイパス配管の途中に流量調整機能を有する減圧弁手段を備えたことを特徴とするヘリウム液化用冷凍装置。
  3. 作動ガスとしてヘリウムガスを使用し、ヘリウムガスを低圧から中間圧に昇圧する低段圧縮機を有する低段圧縮機ユニットと、前記低段圧縮機で中間圧に圧縮されたヘリウムガスを中間圧から高圧に昇圧する高段圧縮機を有する高段圧縮機ユニットと備え、ヘリウムガス予冷却用冷凍機とジュールトムソン弁と該弁から流下した液化ヘリウムを溜めるヘリウム容器とからなる負荷側冷凍機にヘリウムガスを供給する空冷式ヘリウム用圧縮機ユニットにおいて、
    前記低段圧縮機の行程容積と前記高段圧縮機の工程容積とを同一に設定すると共に、
    前記低段圧縮機及び前記高段圧縮機のインバータ用電動機を同一に設定し、
    前記低段圧縮機及び前記高段圧縮機を1台のインバータにて同一回転数で駆動制御し、
    前記低段圧縮機及び前記高段圧縮機のスクロールラップ部の設定容積比が2.1〜2.4の同一のスクロール歯形形状を有し、
    前記低段圧縮機の運転圧力比を9〜11に設定すると共に前記高段圧縮機の運転圧力比を2.3〜2.8に設定して、高圧と低圧との圧力比となる高圧力比を24〜26とし、
    前記低段圧縮機の吐出側で且つ前記ヘリウムガス予冷却用冷凍機から前記高段圧縮機に至る配管より低段圧縮機側に逆止弁を備え、
    前記低段圧縮機の吐出側で且つ前記逆止弁より低段圧縮機側から前記低段圧縮機の吸入側にバイパスするバイパス配管を備え、
    そのバイパス配管の途中に流量調整機能を有する減圧弁手段を備えたことを特徴とする空冷式ヘリウム用圧縮機ユニット。
JP2007139294A 2007-05-25 2007-05-25 ヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニット Expired - Fee Related JP4898559B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139294A JP4898559B2 (ja) 2007-05-25 2007-05-25 ヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139294A JP4898559B2 (ja) 2007-05-25 2007-05-25 ヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニット

Publications (2)

Publication Number Publication Date
JP2008291781A JP2008291781A (ja) 2008-12-04
JP4898559B2 true JP4898559B2 (ja) 2012-03-14

Family

ID=40166754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139294A Expired - Fee Related JP4898559B2 (ja) 2007-05-25 2007-05-25 ヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニット

Country Status (1)

Country Link
JP (1) JP4898559B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8978400B2 (en) * 2009-11-09 2015-03-17 Sumitomo (Shi) Cryogenics Of America Inc. Air cooled helium compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3278927B2 (ja) * 1992-10-05 2002-04-30 ダイキン工業株式会社 ヘリウム冷凍機
JP2002266753A (ja) * 2001-03-08 2002-09-18 Toshiba Kyaria Kk 圧縮機および冷凍サイクル装置

Also Published As

Publication number Publication date
JP2008291781A (ja) 2008-12-04

Similar Documents

Publication Publication Date Title
US8435014B2 (en) Hermetically sealed scroll compressor
US8992191B2 (en) Scroll compressor with differential pressure hole
US10378539B2 (en) System including high-side and low-side compressors
JP3876335B2 (ja) ヘリウム用スクロール圧縮機
JPH05133366A (ja) 2段気体圧縮機
JP4337820B2 (ja) スクロール型流体機械
JP3584781B2 (ja) スクロール圧縮機及び冷凍装置
JP4898559B2 (ja) ヘリウム液化用冷凍装置及びヘリウム用圧縮機ユニット
JP4529118B2 (ja) ヘリウム用スクロール圧縮機
JP4107492B2 (ja) ヘリウム用スクロール圧縮機及びヘリウム用スクロール圧縮装置
JP2647225B2 (ja) スクロール圧縮機及びそれを用いたヘリウム液化用冷凍装置
JP4519490B2 (ja) スクロール圧縮機
JP2002295381A (ja) ヘリウム用横形スクロール圧縮機
JP5055110B2 (ja) ヘリウム用密閉型スクロール圧縮機
JP2012219791A (ja) 密閉形スクロール圧縮機
JP5330776B2 (ja) 多段圧縮機
JP5279324B2 (ja) ヘリウム用密閉形スクロール圧縮機
JPH08210279A (ja) 横形ヘリウム用スクロール圧縮機
JPH04203381A (ja) ヘリウム用スクロール圧縮機の油注入機構
KR101545580B1 (ko) 냉동 사이클
JP2013204477A (ja) スクロール圧縮機
JPH06117382A (ja) 極低温用スクロール圧縮機
JP2007046531A (ja) 横形スクロール圧縮機
JP2005214010A (ja) ヘリウム用スクロール圧縮装置
JPH0626474A (ja) スクロール型圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees