JP4896410B2 - マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた表示媒体 - Google Patents

マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた表示媒体 Download PDF

Info

Publication number
JP4896410B2
JP4896410B2 JP2005024040A JP2005024040A JP4896410B2 JP 4896410 B2 JP4896410 B2 JP 4896410B2 JP 2005024040 A JP2005024040 A JP 2005024040A JP 2005024040 A JP2005024040 A JP 2005024040A JP 4896410 B2 JP4896410 B2 JP 4896410B2
Authority
JP
Japan
Prior art keywords
microcapsule
film
oxazoline
substance
gelatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005024040A
Other languages
English (en)
Other versions
JP2006205129A (ja
Inventor
太郎 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Corp KK
Original Assignee
Pilot Corp KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Corp KK filed Critical Pilot Corp KK
Priority to JP2005024040A priority Critical patent/JP4896410B2/ja
Publication of JP2006205129A publication Critical patent/JP2006205129A/ja
Application granted granted Critical
Publication of JP4896410B2 publication Critical patent/JP4896410B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、マイクロカプセルの製造法およびそれによって製造されたマイクロカプセル等に関するものである。より詳しくは、マイクロカプセルの製造時に特定の親水性コロイドとオキサゾリン基を有する化合物(以下、オキサゾリン化合物ということがある)によって皮膜を形成するマイクロカプセルの製造法等に関するものである。
本発明は、さらにそのようなマイクロカプセルを具備してなる磁気表示媒体等の表示・記録材料にも関するものである。
従来、マイクロカプセルは種々の用途に応用されており、その製造法に関しても多くの提案がなされている。例えば、工業的に応用されているマイクロカプセル化法の一つとして挙げられるコンプレックスコアセルベーション法は、以下のような処理例によってマイクロカプセルを製造するものである。
(1)皮膜物質(ポリカチオン)を含む水溶液中に芯物質(油性物質)を分散させ、油滴が水溶液中に分散したO/Wエマルジョンとする。
(2)エマルジョンにポリアニオンを添加して混合し、酸を添加してpHを3〜5程度に調整する。これによりコアセルベーションが生じ、コアセルベート皮膜が形成される。
(3)温度を低温にしてコアセルベート滴の皮膜をゲル化させ、さらに硬化剤を添加して皮膜を硬化(架橋および/または変性)させる。
このような方法でマイクロカプセルの皮膜に硬化剤として用いられるのはホルムアルデヒドやグルタルアルデヒド等のアルデヒド類が一般的であった。しかし、アルデヒド類は効果的な硬化剤であるが、毒性の観点や環境への配慮の観点から使用することが好ましくない。ホルムアルデヒド、グルタルアルデヒドは共にPRTR法第1種指定化学物質に指定されており、特にホルムアルデヒドは、近年シックハウス症候群の原因物質として関連性が疑われており、更に揮発性有機化合物(以下、VOCという)として排出規制対象物質に位置付けられている。このためにアルデヒド類に代わる硬化剤の種々の検討がなされている。
一方、オキサゾリン基を有する化合物(高分子)は硬化性樹脂組成物として積層フィルム、インクジェット記録紙、ハロゲン化銀写真感光材料等として提案されている(特許文献1〜3)。オキサゾリン基はカルボキシル基との反応が可能であり、カルボキシル基含有物質としてゼラチンについても一部例示がある。従って、カルボキシル基とオキサゾリン基の反応、及びゼラチンとオキサゾリン化合物との硬化に関すること自体は知られている。
しかしながら、これらの用途は主としてコーティングに関するものであり、比較的高温で反応させるものである。一部に、オキサゾリン基を有する化合物を用いた場合に比較的低い温度(たとえば60〜120℃)で硬化することができる(特許文献1)旨の開示はあるものの、水中での反応ではなく、やはり塗布物を乾燥・硬化させるものである。本発明で必要とする水中での反応は、その性質上、ある規定以下の温度で処理しなくてはならず、特異な条件を必要とするもので、単なる置換は出来ないものである。なぜならば硬化前で耐熱性を有していないゲル状親水性コロイドの皮膜は、ゲル化点以上の温度で容易に水に対して溶解してしまうからである。
また、マイクロカプセルを利用した磁気表示媒体や感熱性記録材料も検討されている(特許文献4)。しかし、これらの材料は、従来の方法により製造されたマイクロカプセルを用いるものであり、有害なアルデヒド類を含んだマイクロカプセルが用いられるのが一般的であった。
特開平5−25361号公報 特開平11−231447号公報 特開2002−296723号公報 特開2001−75510号公報
本発明は、従来用いられていた高い有害性を有するアルデヒド類を使用せず、かつ十分な耐熱性、強度、透明性が得られるマイクロカプセルを調整し、とりわけ磁気表示媒体等の表示媒体に適したマイクロカプセルを製造する方法等を提供しようとするものである。
本発明は、上記課題を解決するために、カルボキシル基を有する親水性コロイドとしてゼラチンを基本皮膜物質とし、上記基本皮膜物質を水中でオキサゾリン基を有する化合物によって硬化(架橋および/または変性、以下同じ)することによりマイクロカプセルを形成すること等を特徴としたことによって、本発明のマイクロカプセル等を完成した。
すなわち、本発明は、
「1.カルボキシル基を有する親水性コロイドとしてゼラチンを基本皮膜物質とするマイクロカプセルの製造方法であって、上記基本皮膜物質を、水中で、オキサゾリン基を有する化合物によって硬化することによりマイクロカプセルの皮膜を形成することを特徴とする、マイクロカプセルの製造法。
.前記ゼラチンがpI=4.9〜8.1である第項に記載のマイクロカプセルの製造法。
.第1項または第2項の何れかに記載の製造法によって得られる、ゼラチンを基本皮膜物質とし、該基本皮膜物質を水中でオキサゾリン基を有する化合物によって硬化した皮膜を有するマイクロカプセル。
.少なくとも芯物質として表示素子を内包した第3項に記載のマイクロカプセルを複数個配列して得られる表示媒体。」に関する。
本発明によれば、VOCとして、またシックハウス症候群の原因となりうる高い有害性を有するアルデヒド類を使用せずに、十分な耐熱性、強度、透明性を有するマイクロカプセルを調整することができる。
また、マイクロカプセル皮膜の硬化時にアルカリ領域へのpH調整が不要で、マイクロカプセル分散液の増粘やマイクロカプセル同士の凝集、マイクロカプセル皮膜の膨潤といった現象を回避できる。
また、同様の理由により酸性以外では安定でない物質のマイクロカプセル化に適する。
さらに、硬化剤として高分子、特にフィルム形成性高分子を用いると、硬化剤自体が皮膜性を有するため、皮膜物質を硬化させると同時に硬化剤自体による2重の被覆も生じ、内包物の保持能力を向上させることができる。
そして、この方法により得られたマイクロカプセルを用いることにより、有害物質を含まない上、解像度に優れた表示媒体等を得ることができる。
マイクロカプセルの製造法
本発明によるマイクロカプセルの製造法は、カルボキシル基を有する親水性コロイドを基本皮膜物質とし、上記基本皮膜物質をオキサゾリン基を有する化合物によって硬化することによりマイクロカプセルを形成すること等を特徴とする。
ここで親水性コロイドとは、溶媒中に存在し、芯物質の周囲に配位してエマルジョンを形成しうる分子コロイド等を示している。
例えば、カルボキシル基を有する親水性コロイドとしては、ゼラチンやアルブミンなどの水溶性蛋白質、澱粉や寒天、アラビアゴムなどの天然高分子物質、カルボキシメチルセルロース、カルボキシルメチルヒドロキシエチルセルロースなどの合成セルロースエーテル類、ポリビニルメチルエーテル・無水マレイン酸共重合体、カルボキシル基変性ポリビニルアルコールなどの合成高分子化合物などが挙げられ、その1種または2種以上を混合して使用することができる。中でも基本皮膜物質として使用するには、ゲル化性を有する水溶性蛋白質が好ましい。更にアルカリ処理ゼラチンや酸処理ゼラチンなどのゼラチン類がよく、その中でもアルカリ処理ゼラチンが最適である。
ゼラチンはコラーゲンから抽出する際の処理方法の違いにより酸処理ゼラチンとアルカリ処理ゼラチンに大別される。アルカリ処理ゼラチンは石灰漬処理工程でアミノ酸側鎖の脱アミド化が進み酸処理ゼラチンと比較してカルボキシル基への変性量が多い。オキサゾリン基はカルボキシル基との反応に対して活性が高いことからカルボキシル基を多く有しているアルカリ処理ゼラチンはオキサゾリン化合物による架橋材料として適している。
本発明の方法を、コンプレックスコアセルベーション法を用いた例として、その製造工程の順序に従って説明すると以下の通りである。
まず、カルボキシル基を有する親水性コロイド、すなわち、基本皮膜物質を含む水溶液中に芯物質(油性物質)を分散させ、油滴が水溶液中に分散したO/Wエマルジョンを形成させる。
用いられる芯物質は、目的とするマイクロカプセルに応じて任意に選択される。例えば粘着剤、接着剤、色材などが挙げられる。また、表示媒体の素子等、例えば磁気表示媒体の微小磁性粒子などを分散物として含む油性物質、または加熱により変色する感熱記録材料を用いることもできる。また、そのほか食品、医薬品、医薬部外品、香料、洗浄剤等、水に不混和なものを芯物質とすることができる。
基本皮膜物質は、ポリカチオンとして等イオン点を有する、ゲル化し得る親水性コロイドが使用され、一般に水溶性タンパク質が用いられる。より具体的にはゼラチン、寒天、カゼイン、大豆蛋白、コラーゲン、アルブミンなどが挙げられる。中でも酸処理ゼラチン、アルカリ処理ゼラチン等のゼラチンが好ましく、更にアルカリ処理ゼラチンを用いることが最も好ましい。
芯物質を基本皮膜物質を含む水溶液中に分散させるには、通常水溶液中に芯物質を添加し、撹拌や超音波照射などの方法を用いることができる。芯物質、皮膜物質の濃度は、目的とするマイクロカプセルに求められる性質や形状によって任意に選択される。また、分散により得られる芯物質の液滴の大きさは、最終的に得られるマイクロカプセルの大きさに関係する。マイクロカプセルの大きさはその目的に応じて選択され、エマルジョンの液滴の大きさがほぼマイクロカプセルの粒子径として反映される。最終的なマイクロカプセルの大きさは、具体的には球換算の直径が一般に0.1〜3000μm、好ましくは0.1〜2000μm、更に好ましくは0.1〜1000μmに応じた油滴が得られるように分散を行う。
続いて得られたO/Wエマルジョンにポリアニオンを混合し、均一とした後にpHを酸性にしてコアセルベート皮膜を形成させる。
用いられるポリアニオンは、必要に応じて選択されるが、具体的にはアラビアゴム、カルボキシメチルセルロースナトリウム、アルギン酸ナトリウム、ポリビニルベンゼンスルホン酸ナトリウム、ポリビニルメチルエーテル・無水マレイン酸共重合体などが挙げられる。これらのうちアラビアゴム、カルボキシメチルセルロースナトリウムなどが好適に用いられる。
ポリアニオンを混合した後、エマルジョンのpHは酸性、例えばpH=3〜5、好ましくは4〜5、に調整される。このときに用いられる酸は、芯物質や皮膜材料の性質を損なわないもの、また硬化反応を阻害しないものを選択することが好ましい。一般には酢酸、クエン酸、コハク酸、シュウ酸、乳酸、サリチル酸等の有機酸、塩酸、硫酸、リン酸等の無機酸が用いられる。
コアセルベート皮膜が形成されたエマルジョンを、皮膜のゲル化を行うために引き続き冷却する。通常はエマルジョンを5〜25℃、好ましくは5〜10℃、に冷却して皮膜をゲル化させる。
ゲル化した皮膜を硬化させるために、続いてエマルジョンに硬化剤を混合する。従来知られているホルムアルデヒドやグルタルアルデヒド等のアルデヒド類などによって硬化させることも可能ではあるが、これらは毒性の観点や環境への配慮の観点から使用することが好ましくない。
そこで本発明では、アルデヒド類に代わる硬化剤として毒性や環境へ負荷の少ないオキサゾリン基を有する化合物を用いる。このようないわゆるオキサゾリン化合物は、(化1)に示したようなオキサゾリン基を有する化合物であり、例えば、2,2’−ビス−(2−オキサゾリン)、2,2’−メチレン−ビス−(2−オキサゾリン)、2,2’−エチレン−ビス−(2−オキサゾリン)、2,2’−トリメチレン−ビス−(2−オキサゾリン)、2,2’−テトラメチレン−ビス−(2−オキサゾリン)、2、2’−ヘキサメチレン−ビス−(2−オキサゾリン)、2,2’−オクタメチレン−ビス−(2−オキサゾリン)、2,2’−エチレン−ビス−(4,4’−ジメチル−2−オキサゾリン)、2,2’−p−フェニレン−ビス−(2−オキサゾリン)、2,2’−m−フェニレン−ビス−(2−オキサゾリン)、2,2’−m−フェニレン−ビス−(4,4’−ジメチル−2−オキサゾリン)、ビス−(2−オキサゾリニルシクロヘキサン)スルフィド、ビス−(2−オキサゾリニルノルボルナン)スルフィドなどのオキサゾリン化合物。また、付加重合性オキサゾリン化合物として2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリンなどが挙げられる。これらの1種もしくは2種以上の化合物を重合または共重合したものを使用可能である。
さらに、該化合物と、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル等の(メタ)アクリル酸エステル類;(メタ)アクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等のハロゲン化α,β−不飽和単量体類;スチレン、α−メチルスチレン等のα,β−不飽和芳香族単量体類等を共重合したものも使用可能である。
そのような化合物の一例としては、上記の特許文献1、特許文献3等に記載のオキサゾリン化合物などが例示できる。
市販されている具体的な例としては、エポクロスWS−500、エポクロスWS−700、エポクロスK−1010E、エポクロスK−1020E、エポクロスK−1030E、エポクロスK−2010E、エポクロスK−2020E、エポクロスK−2030E、エポクロスRPS−1005、エポクロスRAS−1005(いずれも株式会社日本触媒製)、NKリンカーFX(新中村化学工業株式会社製)などが挙げられる。
Figure 0004896410
(式中、R1、R2、R3、R4、はそれぞれ独立に水素、ハロゲン、アルキル、アラルキル、フェニルまたは置換フェニルを表し、R5 は付加重合性不飽和結合を持つ非環状有機基を表す。)
オキサゾリン基を有する化合物は高分子化合物であることが好ましく、さらにフィルム形成性を有する高分子化合物であるとより好適である。ここで高分子化合物とは、数平均分子量が1万以上のものをいう。
フィルム形成性の高分子化合物を硬化剤として用いた場合、マイクロカプセル皮膜のさらなる強度向上、内包物の保持能力向上などの効果を得ることができる。これは、硬化剤自体が成膜性を有するため、皮膜物質を硬化させると同時に硬化剤自体による2重被覆を生じ、マイクロカプセル皮膜を強化するためと推測される。
ここでフィルム形成性とは、オキサゾリン基を有する高分子化合物単独の溶液を塗布・蒸発乾燥させた際にフィルム状の成膜性を有することをいう。
カプセル皮膜のさらなる強度向上のほか、密閉性の向上、可撓性、柔軟性などの好適効果も得ることができる。
このように皮膜を硬化させた後、必要に応じて濾過やデカンテーション、脱水、分液、乾燥等の操作により目的のマイクロカプセルを得ることができる。
なお、マイクロカプセルの組成は、上記成分のほか、オキサゾリン基化合物による硬化を阻害しない等、マイクロカプセルの性能に悪影響を与えない範囲で第三成分を配合することもできる。例えば、リン酸水素2アンモニウム等のオニウム塩を配合すると、硬化触媒として作用する場合があるので、条件によっては好ましい態様となる。
未硬化のゲル皮膜を水溶液中で硬化反応させる場合、処理温度を基本皮膜物質のゲル化点以上にすることは問題がある。なぜならば硬化前で耐熱性を有していないゲル皮膜は、そのゲル化点以上の温度で容易に水に対して溶解するからである。また、ゲル化点付近の温度ではマイクロカプセル同士の凝集が生じ易いなどの問題もある。特に、マイクロカプセルのように芯物質(内包物)の周囲に対して任意の位置・形状に基本皮膜物質を配置し、その状態を維持しながらの硬化を所望するときは非常に困難を伴う。例えば、基本皮膜物質の一種であるゼラチン水溶液の一般的なゲル化点は25℃前後である。
ゼラチンのような基本皮膜物質とオキサゾリン化合物を利用したマイクロカプセル、特にコンプレックスコアセルベーション法によるゼラチン皮膜マイクロカプセルなどの硬化剤としてオキサゾリン化合物を使用した例は見当たらない。
本発明ではオキサゾリン化合物を硬化剤として用い、且つ適正な反応条件を選択することで水中での皮膜硬化が可能となり、これを利用して、好適なマイクロカプセルの硬化が可能となった。
具体的な適正反応条件を以下に示す。
コンプレックスコアセルベーション法におけるオキサゾリン化合物による硬化は、未硬化の基本皮膜物質(ゼラチン)マイクロカプセルと調整液を分離し、マイクロカプセルを水で数回洗浄した後に行う必要がある。このような操作を行わないと硬化が十分に成されない。これは、コンプレックスコアセルベーション法でマイクロカプセルを調整した場合、マイクロカプセルが分散している水溶液中には、コアセルベーションに必要なポリアニオンや未析出(溶解状態)の基本皮膜物質(ゼラチン)分子が存在していると考えられる。ポリアニオンは通常、カルボキシル基を有する化合物(アラビアゴム、カルボキシメチルセルロース等)が一般的に使用される。また、基本皮膜物質(ゼラチン)分子は当然にカルボキシル基を有している。
すなわち、この状態のマイクロカプセル分散液中にはオキサゾリン基と反応し得るカルボキシル基含有成分として、
a)溶解状態の基本皮膜物質分子(ゼラチン等)
b)溶解状態のポリアニオン分子(アラビアゴム、カルボキシメチルセルロース等)
c)分散状態の基本皮膜物質ゲル(ゼラチンゲル等)
が存在しているといえる。分散状態の基本皮膜物質(ゼラチンゲル)とオキサゾリン化合物を効率的に反応させるには溶解状態のa)、b)を除去する必要があると推測されるからである。
オキサゾリン化合物はカルボキシル基を有する親水性コロイド全般と反応して硬化皮膜を有するマイクロカプセルを与えるが、カルボキシル基を有する親水性コロイドとしては、水溶性蛋白質が好ましく、中でもゼラチンが好ましい。特にpI(isoionic point:等イオン点)として4.9〜8.1を有するものが望ましく、さらにはアルカリ処理ゼラチンが好ましい。
本発明においてpIの測定値は、ゼラチン水溶液をイオン交換樹脂で処理した後、該ゼラチン水溶液を35℃においてpH測定した値を使用したが、それ以外の一般的に使用されるpI(isoionic point:等イオン点)測定、並びにそれに相当するものも使用可能である。
オキサゾリン化合物はゼラチン全般に対して硬化皮膜を形成し、好適なマイクロカプセルを得ることができるが、pIが8.1を超える(例えば、酸処理ゼラチン)ゼラチンを用いたマイクロカプセルは硬化後に静置(r.t.)状態で経時保管を行うとマイクロカプセル同士が凝集し、再分散が困難になる傾向がある。
pIはゼラチン等の等イオン点を表すものであり、これは基本皮膜物質(ゼラチン)分子の持つカルボキシル基とアミノ基の量を示すものであるといえる。
pIが低いゼラチンはアミノ酸側鎖の酸アミド結合が脱アミド化により減少し、カルボキシル基が増大していることを示す。オキサゾリン基はカルボキシル基と反応を生じるため、カルボキシル基の量が多いほど、基本皮膜物質(ゼラチン)とオキサゾリン化合物による架橋点は多くなると考えられる。つまり、十分な架橋が確保できることになり、経時的にも安定なマイクロカプセルが得られ易いと推測される。
オキサゾリン化合物と基本皮膜物質との反応はr.t.条件でも進行する。但し、一般的な有機反応と同様、できるだけ加温して反応を進めることが望ましい。このため、用いる基本皮膜物質はそのゲル化点ができるだけ高いものを用いた方が反応温度を確保でき、より短時間で所望の処理を行うことができる。
なお、本例はコンプレックスコアセルベーション法によって説明したが、シンプルコアセルベーション法、オリフィス法など他のマイクロカプセル製造法によっても類似の効果を得ることができる。
マイクロカプセル
本発明によるマイクロカプセルは、カルボキシル基を有する親水性コロイドである基本皮膜物質を、水中で、オキサゾリン基を有する化合物によって硬化させ、皮膜形成するものであり、上記のマイクロカプセルの製造プロセスなどにより得られるものである。
本発明によるマイクロカプセルは、芯物質および皮膜物質を選択することによって各種の用途に用いることができる。具体的には、粘着剤、接着剤、色材、食品、医薬品、医薬部外品、香料、洗浄剤などへの用途が挙げられる。これらの用途においては、毒性に対する配慮が必要となるため、マイクロカプセルの材料として毒性を有するアルデヒド類、例えばホルムアルデヒドやグルタルアルデヒドを用いないことが好ましい。また、表示媒体、玩具、文具等においてもVOCであるホルムアルデヒドの揮発や、誤った使用方法による事故等も想定され、好ましくない。すなわち、皮膜が排出規制対象物質であるVOCやシックハウス症候群の原因となりうる高い有害性を有するアルデヒド類を実質的に含まないことが好ましい。さらに、本発明によるマイクロカプセルを用いて表示媒体または記録材料を形成させることもできる。例えば、微小磁性粒子を分散物として含む油性物質を芯物質として用いることにより、磁気表示媒体の素子として用いることができる。また、加熱により変色する感熱性変色物質を芯物質として用いれば感熱性記録材料の素子とすることもできる。特に感熱性変色物質として、熱により発色、消色、および発消色が可能な物質、例えば電子受容性化合物と電子供与性呈色化合物との組み合わせ、を用いることで可逆性感熱記録材料を形成させることもできる。
マイクロカプセルを利用した磁気表示媒体や感熱記録材料はすでに知られている(例えば特許文献4)。しかしながら、それに用いられるマイクロカプセルの製造法においてはタンパク質皮膜の硬化にアルデヒド類を用いていることが多い。毒性や環境への配慮からこのようなアルデヒド類の使用は好ましくなく、アルデヒド類に変わる硬化剤としてオキサゾリン化合物が好ましい。
表示媒体または記録材料としてマイクロカプセルを用いるには、通常、支持体上にマイクロカプセルを配列させるが、マイクロカプセルの芯物質間に膨潤した皮膜厚み分の隙間が生じると、解像度やコントラストの低下原因となる。通常、アルデヒド類で硬化を行う場合、反応条件としてpHをアルカリ性、具体的にはpH=9以上に調整を行うが、このときpHをアルカリ性に調整したことによるマイクロカプセル皮膜の膨潤が生じることがある。しかしながら、本発明によるマイクロカプセルは硬化反応を酸性領域で行うことが出来るため、pH変化に伴う膨潤を回避できる。このため、芯物質を高密度で配列させることが可能であるので、解像度やコントラストに優れ、かつ有害なアルデヒド類を実質的に含まない、磁気表示媒体や感熱記録材料を提供することができる。
このような用途に用いることのできる本発明によるマイクロカプセルは、例えば前記したマイクロカプセルの製造法により製造することができる。このマイクロカプセルはその用途に応じて適当なサイズが選択されるが、一般に球換算の直径が0.1〜3000μm、好ましくは0.1〜2000μm、が選択される。中でも磁気表示媒体としては50〜1000μm、感熱性記録材料としては0.1〜10μmが好ましい。皮膜の厚さも用途に応じて適当な厚さが選択される。
本発明を諸例を用いて説明すると以下の通りである。
実施例1
系の温度を40℃に保ち、10質量%アルカリ処理ゼラチン水溶液(株式会社ニッピ製 AD pI:5.06) 60質量部を撹拌しながら、40℃の温水(イオン交換水) 80質量部、イソパラフィン(エッソ化学社製 アイソパーM) 80質量部を順に添加して乳化・分散させてO/Wエマルジョンを形成させた。さらにポリアニオンとして1.25質量%カルボキシメチルセルロースナトリウム水溶液(第一工業製薬株式会社製 セロゲンF−7A)60質量部を混合して均一にした。10質量%塩酸(和光純薬工業株式会社製 試薬)を添加してpHを4.2に調整し、コアセルベート皮膜を形成させた。このエマルジョンを撹拌しながら5℃まで徐々に冷却して皮膜をゲル化させ、30min/5℃に保ち安定化させた。冷却されたマイクロカプセル分散液を分液ロートに移し、静置によりマイクロカプセル層と分散液層に分離した。分離したマイクロカプセル層に5℃に冷却したイオン交換水を加え、撹拌洗浄を行った後に再びマイクロカプセル層と分散液層に分離した。この操作を数回繰り返した後、洗浄したマイクロカプセル分散液をビーカーに移し、撹拌を行った。系の温度を25℃まで昇温させ、オキサゾリン高分子化合物(株式会社日本触媒 エポクロスWS−700)48.9質量部を10質量%塩酸(和光純薬工業株式会社製 試薬)でpH4.0に調整したものを添加した。10質量%塩酸(和光純薬工業株式会社製 試薬)を添加してpHを4.0に調整し、系の温度を25℃に保ったまま67h撹拌を継続し、皮膜が硬化したマイクロカプセル分散液を得た。得られたマイクロカプセルは皮膜の膨潤が無く、耐熱性を持った単核のマイクロカプセルであった。
実施例2〜6
上記実施例1において、ゼラチン種を表1に記載のものに換えた他は同様にしてマイクロカプセルの製造を行った。
pH測定は、ガラス電極式水素イオン濃度計(東亜ディーケーケー株式会社製 HM−30S)により測定した。
Figure 0004896410
応用実施例1
芯物質として微粒子磁性体とイソパラフィン(エッソ化学社製 アイソパーM)を主成分とする油性塑性液を混合した塑性分散液88質量部を、系の温度を40℃に保ちながら、10質量%のアルカリ処理ゼラチン水溶液(株式会社ニッピ製 AD pI:5.06)60質量部、40℃の温水(イオン交換水)80質量部を均一に混合した水溶液に乳化・分散させてS/O/Wエマルジョンを形成させた。さらにポリアニオンとして1.25質量%カルボキシメチルセルロースナトリウム水溶液(第一工業製薬株式会社製 セロゲンF−7A)60質量部を混合して均一にした。10質量%塩酸(和光純薬工業株式会社製 試薬)を添加してpHを4.2に調整し、コアセルベート皮膜を形成させた。このエマルジョンを撹拌しながら5℃まで徐々に冷却して皮膜をゲル化させ、30min/5℃に保ち安定化させた。冷却されたマイクロカプセル分散液を分液ロートに移し、静置によりマイクロカプセル層と分散液層に分離した。分離したマイクロカプセル層に5℃に冷却したイオン交換水を加え、撹拌洗浄を行った後に再びマイクロカプセル層と分散液層に分離した。この操作を数回繰り返した後、洗浄したマイクロカプセル分散液をビーカーに移し、撹拌を行った。系の温度を25℃まで昇温させ、オキサゾリン高分子化合物(株式会社日本触媒 エポクロスWS−700)48.9質量部を10質量%塩酸(和光純薬工業株式会社製 試薬)でpH4.0に調整したものを添加した。10質量%塩酸(和光純薬工業株式会社製 試薬)を添加してpHを4.0に調整し、系の温度を25℃に保ったまま67h撹拌を継続し、皮膜が硬化したマイクロカプセル分散液を得た。得られたマイクロカプセルは皮膜の膨潤が無く、耐熱性を持った単核のマイクロカプセルであった。
得られたマイクロカプセル分散液を厚さ125μmのPETフィルムを支持体として塗布し、磁気表示媒体を形成させた。得られた磁気表示媒体は十分な解像度を有するものであった。
本発明は、マイクロカプセルの製造法、およびそれによって製造されたマイクロカプセルを提供し、用いられる芯物質によって、例えば粘着剤、接着剤、色材などに利用可能である。また、表示媒体の素子等、例えば磁気表示媒体の微小磁性粒子などを分散物として含む油性物質、または加熱により変色する感熱記録材料を芯物質として用いれば、磁気表示媒体等の表示・記録材料にも利用可能である。また、そのほか食品、医薬品、医薬部外品、香料、洗浄剤等、水に不混和なものを芯物質とすることができ、利用可能である。

Claims (4)

  1. カルボキシル基を有する親水性コロイドとしてゼラチンを基本皮膜物質とするマイクロカプセルの製造方法であって、上記基本皮膜物質を、水中で、オキサゾリン基を有する化合物によって硬化することによりマイクロカプセルの皮膜を形成することを特徴とする、マイクロカプセルの製造法。
  2. 前記ゼラチンがpI=4.9〜8.1である請求項に記載のマイクロカプセルの製造法。
  3. 請求項1または2の何れかに記載の製造法によって得られる、ゼラチンを基本皮膜物質とし、該基本皮膜物質を水中でオキサゾリン基を有する化合物によって硬化した皮膜を有するマイクロカプセル。
  4. 少なくとも芯物質として表示素子を内包した請求項に記載のマイクロカプセルを複数個配列して得られる表示媒体。
JP2005024040A 2005-01-31 2005-01-31 マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた表示媒体 Expired - Fee Related JP4896410B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024040A JP4896410B2 (ja) 2005-01-31 2005-01-31 マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた表示媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024040A JP4896410B2 (ja) 2005-01-31 2005-01-31 マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた表示媒体

Publications (2)

Publication Number Publication Date
JP2006205129A JP2006205129A (ja) 2006-08-10
JP4896410B2 true JP4896410B2 (ja) 2012-03-14

Family

ID=36962511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024040A Expired - Fee Related JP4896410B2 (ja) 2005-01-31 2005-01-31 マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた表示媒体

Country Status (1)

Country Link
JP (1) JP4896410B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6802160B2 (ja) 2014-12-04 2020-12-16 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se マイクロカプセル
CN112961526B (zh) * 2021-03-03 2021-11-23 中国船舶重工集团公司第七二五研究所 一种磁粒子富集防腐防污一体化自修复微胶囊制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100743A (ja) * 1984-10-24 1986-05-19 Fuji Photo Film Co Ltd ゼラチンの硬化方法
US7008994B1 (en) * 1998-04-15 2006-03-07 Mikuni Shikiso Kabushiki Kaisha Aqueous pigment dispersion, process for producing the same, and water-based ink comprising the same
JP2001106928A (ja) * 1999-07-30 2001-04-17 Dainippon Ink & Chem Inc 導電材料カプセル化樹脂粒子およびその製法
JP2004310050A (ja) * 2003-03-26 2004-11-04 Daicel Chem Ind Ltd マイクロカプセル及びその製造方法
JP2005169248A (ja) * 2003-12-11 2005-06-30 Daicel Chem Ind Ltd マイクロカプセル及びその製造方法

Also Published As

Publication number Publication date
JP2006205129A (ja) 2006-08-10

Similar Documents

Publication Publication Date Title
US4273672A (en) Microencapsulation process
US3886084A (en) Microencapsulation system
JPH0620535B2 (ja) マイクロカプセルの製造方法
JPS63258641A (ja) マイクロカプセルの製造方法
JP4896410B2 (ja) マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた表示媒体
JP3503138B2 (ja) マイクロカプセル壁材料、その形成方法およびこのマイクロカプセル壁材料を有するマイクロカプセル
JPS645552B2 (ja)
JP5057501B2 (ja) マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた表示媒体
JP2007222786A (ja) マイクロカプセルおよびその製造法ならびにマイクロカプセルを具備してなる表示媒体
JP2007000756A (ja) アルカリ可溶性マイクロカプセル
JP2016087479A (ja) 微小カプセル又はビーズの製造方法
JP2007226059A (ja) マイクロカプセル及びその製造法並びにそれを用いた表示媒体
JP5172093B2 (ja) マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた表示媒体
JP2007222788A (ja) マイクロカプセルおよびその製造法ならびにマイクロカプセルを具備してなる表示媒体
JPH10287506A (ja) 抗菌剤、抗菌性樹脂組成物およびその製造方法
JP2001278995A (ja) 抗菌性線状体
KR20140039007A (ko) 캡슐화 및 고정 방법
JP2006281474A (ja) インクジェット記録媒体の製造方法
WO2006022255A1 (ja) マイクロカプセルの製造法ならびにマイクロカプセル及びそれを用いた磁気表示媒体
JP2706219B2 (ja) マイクロカプセルとその製造方法及びノーカーボン複写系
JPH06339624A (ja) 耐熱性マイクロカプセルおよびその生成方法
JP2865311B2 (ja) マイクロカプセル用の乳化剤、該乳化剤を用いてなるマイクロカプセル及びその製造方法並びに該マイクロカプセルを用いたノーカーボン感圧複写紙
JP3683691B2 (ja) 感熱記録材料
JPS5831214B2 (ja) マイクロカプセルカエキノ ホルムアルデヒドジヨキヨホウホウ
JPS6021874B2 (ja) 微小カプセルの塗布シ−ト

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees