JP4891037B2 - Composite copper foil and method for producing the same, and method for producing printed wiring board using the composite copper foil - Google Patents

Composite copper foil and method for producing the same, and method for producing printed wiring board using the composite copper foil Download PDF

Info

Publication number
JP4891037B2
JP4891037B2 JP2006315195A JP2006315195A JP4891037B2 JP 4891037 B2 JP4891037 B2 JP 4891037B2 JP 2006315195 A JP2006315195 A JP 2006315195A JP 2006315195 A JP2006315195 A JP 2006315195A JP 4891037 B2 JP4891037 B2 JP 4891037B2
Authority
JP
Japan
Prior art keywords
layer
copper foil
molybdenum
composite copper
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006315195A
Other languages
Japanese (ja)
Other versions
JP2008130867A (en
Inventor
祐志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP2006315195A priority Critical patent/JP4891037B2/en
Publication of JP2008130867A publication Critical patent/JP2008130867A/en
Application granted granted Critical
Publication of JP4891037B2 publication Critical patent/JP4891037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明はプリント配線板の製造に用いる複合銅箔であって、高温加工時に支持体金属層と薄銅層間でフクレが発生しない複合銅箔、ならびに該複合銅箔を用いたプリント配線板に関する。   The present invention relates to a composite copper foil used for manufacturing a printed wiring board, and relates to a composite copper foil that does not cause swelling between a support metal layer and a thin copper layer during high-temperature processing, and a printed wiring board using the composite copper foil.

支持体金属層と剥離層と薄銅層とからなる複合銅箔が、超高密度プリント配線板製造工程で使用されている。複合銅箔と樹脂基材とを、薄銅層が樹脂基材に面するように積層成型した後、支持体金属層を剥離し、薄銅層をエッチング加工して回路が形成される。支持体金属層のない一般の銅箔を使用した場合に比べて、薄銅層の厚さを薄くすることができるので、微細回路の形成に有利となる。剥離層としてはベンゾトリアゾール系の有機化合物やクロム酸化物などの無機化合物を含有する層が一般的に用いられるが、高温において剥離層内に銅が拡散するため、薄銅層から支持体金属層を剥離することが困難となる。そこで、銅の拡散を防止する層を剥離層と支持体金属層や薄銅層との界面に形成することが提案されているが、製造工程が複雑となる。一方、ポリイミド樹脂フィルムと複合銅箔を積層成型する工程においては、一般に表面温度が400℃程度の加熱ロールによる加工が一般的であるが、このとき、複合銅箔が急速に加熱されるため、熱膨張係数の違いや結晶構造の変化などに起因すると思われる界面破壊により支持体金属層と薄銅層との間にフクレが発生し、さらには自発的に剥離する場合がある。そこで、支持体となる銅箔と、銅原子の拡散を防止する第1の拡散防止層と、第1の拡散防止層と第2の拡散防止層との剥離可能な強度で保持する剥離機能層と、銅原子の拡散を防止する第2の拡散防止層と、薄銅層とからなり、第1の拡散防止層と剥離機能層と第2の拡散防止層の界面において、おのおのを構成する金属原子と酸素原子の濃度比が連続的に変化し、明確な界面を形成していないことを特徴とする支持体付極薄銅箔が提案されているが、高温ロールを用いるラミネート法では、フクレが発生する問題点が残されていた。

特開2002−292788号公報 特開2006−240074号公報
A composite copper foil composed of a support metal layer, a release layer, and a thin copper layer is used in an ultra-high density printed wiring board manufacturing process. After the composite copper foil and the resin base material are laminated and molded so that the thin copper layer faces the resin base material, the support metal layer is peeled off, and the thin copper layer is etched to form a circuit. Compared with the case of using a general copper foil without a support metal layer, the thickness of the thin copper layer can be reduced, which is advantageous for forming a fine circuit. As the release layer, a layer containing an organic compound such as a benzotriazole-based organic compound or chromium oxide is generally used. However, since copper diffuses into the release layer at a high temperature, the support metal layer is changed from a thin copper layer. It becomes difficult to peel off. Therefore, it has been proposed to form a layer for preventing copper diffusion at the interface between the release layer and the support metal layer or thin copper layer, but the manufacturing process becomes complicated. On the other hand, in the process of laminating and molding the polyimide resin film and the composite copper foil, processing with a heating roll having a surface temperature of about 400 ° C. is generally used, but at this time, because the composite copper foil is rapidly heated, In some cases, blisters are generated between the support metal layer and the thin copper layer due to interfacial fracture that may be caused by a difference in thermal expansion coefficient, a change in crystal structure, or the like, and may further be spontaneously separated. Therefore, a copper foil as a support, a first diffusion prevention layer that prevents diffusion of copper atoms, and a release functional layer that maintains the peelable strength between the first diffusion prevention layer and the second diffusion prevention layer. And a second diffusion preventing layer for preventing diffusion of copper atoms, and a thin copper layer, and each of the metals constituting each of the interfaces of the first diffusion preventing layer, the peeling functional layer and the second diffusion preventing layer An ultrathin copper foil with a support has been proposed in which the concentration ratio of atoms and oxygen atoms changes continuously and a clear interface is not formed. The problem that occurred was left.

JP 2002-292788 A JP 2006-240074 A

解決しようとする問題点は、支持体金属層と薄銅箔層間のフクレの防止である。   The problem to be solved is prevention of blistering between the support metal layer and the thin copper foil layer.

本発明は、支持体となる金属箔と剥離層と薄銅層とからなる複合銅箔であって、表面温度400℃のラミネートロールによる貼合せ工程において、フクレが発生しないことを特徴とする複合銅箔である。また、本発明は、モリブデン化合物とニッケル化合物からなる電解液中で、支持体となる金属箔上にニッケルとモリブデンと酸素からなる層を電気分解により析出し、ついで、前記の電気分解条件より低い電流密度により、主としてモリブデンと酸素からなる層を電気分解により析出した後、再度、ニッケルとモリブデンと酸素からなる層を電気分解により析出することにより剥離層を形成し、ついで、薄銅層を電気分解により析出し、100℃以上の温度で熱処理することを特徴とする前記の複合銅箔の製造方法である。さらに、本発明は、前記の複合銅箔を樹脂基材に積層成型し、ついで、支持体となる金属箔と剥離層を除去し、薄銅層に対して回路加工を行うことを特徴とする配線板の製造方法である。   The present invention relates to a composite copper foil comprising a metal foil as a support, a release layer, and a thin copper layer, and is a composite characterized in that no blistering occurs in a laminating process using a laminate roll having a surface temperature of 400 ° C. Copper foil. In the present invention, a layer made of nickel, molybdenum and oxygen is deposited by electrolysis on a metal foil serving as a support in an electrolytic solution made of a molybdenum compound and a nickel compound, and then lower than the above electrolysis conditions. Depending on the current density, a layer consisting mainly of molybdenum and oxygen is deposited by electrolysis, and then a layer consisting of nickel, molybdenum and oxygen is deposited again by electrolysis, and then a peeling layer is formed. The method for producing a composite copper foil, wherein the composite copper foil is deposited by decomposition and heat-treated at a temperature of 100 ° C. or higher. Furthermore, the present invention is characterized in that the composite copper foil is laminated and molded on a resin substrate, and then the metal foil and the release layer as a support are removed, and circuit processing is performed on the thin copper layer. It is a manufacturing method of a wiring board.

本発明の複合銅箔は、ポリイミド樹脂フィルムと複合銅箔を積層成型する工程において急速に加熱しても支持体金属層と薄銅層との間でフクレが発生しないことから、高密度プリント配線板の製造に適する。   Since the composite copper foil of the present invention does not generate swelling between the support metal layer and the thin copper layer even when rapidly heated in the step of laminating and molding the polyimide resin film and the composite copper foil, high density printed wiring Suitable for board production.

本発明で用いる支持体金属層の材質、厚さは特に規定するものではないが、コストや製造工程、機械特性及び化学特性から、厚さ8μm〜35μmの銅箔が好ましい。表面粗さについては、薄銅層と樹脂基材との接着強度が必要な場合は、支持体金属層の表面粗さは、大きいことが好ましく、一方、微細回路の形成が必要な場合は、表面粗さが小さいことが望ましい。また、薄銅層が薄い場合も表面粗さの小さいことが好ましい。   The material and thickness of the support metal layer used in the present invention are not particularly defined, but a copper foil having a thickness of 8 μm to 35 μm is preferable from the viewpoint of cost, manufacturing process, mechanical properties and chemical properties. Regarding the surface roughness, when the adhesive strength between the thin copper layer and the resin base material is required, the surface roughness of the support metal layer is preferably large, while when the formation of a fine circuit is required, It is desirable that the surface roughness is small. Also, when the thin copper layer is thin, it is preferable that the surface roughness is small.

剥離層の形成前に、支持体金属層の表面を適切な前処理によって清浄化することが好ましい。通常の酸洗処理のほか、アルカリ脱脂や電解洗浄を行ってもよい。   Prior to the formation of the release layer, the surface of the support metal layer is preferably cleaned by an appropriate pretreatment. In addition to the usual pickling treatment, alkaline degreasing or electrolytic cleaning may be performed.

本発明の剥離層は、モリブデン化合物とニッケル化合物とからなる電解液を用いて、電気めっきを行うことにより形成することができる。モリブデン化合物としては、モリブデン酸ナトリウムなどの金属塩、ニッケル化合物としては、硫酸ニッケルのほか、炭酸ニッケルなどの各種金属塩を用いることができる。金属イオンの溶解性や析出状態を安定化させる目的で、電解液にはクエン酸などの多価カルボン酸など配位結合により錯体を形成する配位子となる化合物、また、抵抗値調整の目的で硫酸ナトリウムなどの無機塩を添加してもよい。モリブデン化合物の添加量は、各々金属換算で0.1〜10g/l、好ましくは0.5〜2g/lである。また、ニッケル化合物については、金属換算で0.6〜60g/l、好ましくは3〜12g/lである。クエン酸の濃度は、ナトリウムイオンを除く金属種に対してモル換算で、0.2〜5倍、より好ましくは0.5〜2倍である。電解液温度は5〜70℃、好ましくは10〜50℃である。ニッケルとモリブデンと酸素からなる層を電気分解により析出するときの電流密度は0.2〜10A/dm、好ましくは0.5〜5A/dmであり、主としてモリブデンと酸素からなる層を電気分解により析出するときの電流密度は、0.2〜0.5A/dmである。また、pHは2〜8、好ましくは4〜7の範囲である。上記の条件で電気めっきを行うと、まず、主としてニッケルとモリブデンが金属として析出し、電気めっきの進行とともに酸化物が主として析出する。これは、ニッケル金属イオンが消費される一方で、その供給が拡散律則により制限されるために、ニッケル濃度が低下することによる。ニッケル濃度が十分に低下した段階で、低電流密度で電気分解を継続することにより、主としてモリブデンと酸素からなる層が析出する。一方、この期間にニッケル濃度が拡散により回復し、再度、電流密度を増加させることにより、主としてニッケルとモリブデンが金属として析出することとなる。 The release layer of the present invention can be formed by electroplating using an electrolytic solution composed of a molybdenum compound and a nickel compound. As the molybdenum compound, metal salts such as sodium molybdate can be used, and as the nickel compound, various metal salts such as nickel carbonate can be used in addition to nickel sulfate. For the purpose of stabilizing the solubility and precipitation state of metal ions, the electrolyte is a compound that forms a complex by coordination bonds such as polyvalent carboxylic acids such as citric acid, and the purpose of adjusting the resistance value Inorganic salts such as sodium sulfate may be added. The amount of the molybdenum compound added is 0.1 to 10 g / l, preferably 0.5 to 2 g / l, in terms of metal. Moreover, about a nickel compound, it is 0.6-60 g / l in metal conversion, Preferably it is 3-12 g / l. The concentration of citric acid is 0.2 to 5 times, more preferably 0.5 to 2 times in terms of moles relative to the metal species excluding sodium ions. The electrolyte temperature is 5 to 70 ° C, preferably 10 to 50 ° C. The current density when depositing the layer composed of nickel, molybdenum and oxygen by electrolysis is 0.2 to 10 A / dm 2 , preferably 0.5 to 5 A / dm 2. The layer composed mainly of molybdenum and oxygen is electrically current density when deposited by decomposition is 0.2~0.5A / dm 2. Moreover, pH is 2-8, Preferably it is the range of 4-7. When electroplating is performed under the above conditions, first, nickel and molybdenum are mainly precipitated as metals, and oxides are mainly precipitated as electroplating proceeds. This is because nickel metal ions are consumed, but their supply is limited by the diffusion law, so that the nickel concentration decreases. When the nickel concentration is sufficiently lowered, electrolysis is continued at a low current density, thereby depositing a layer mainly composed of molybdenum and oxygen. On the other hand, during this period, the nickel concentration is recovered by diffusion, and the current density is increased again, so that nickel and molybdenum are mainly precipitated as metal.

以上の過程において、モリブデン、ニッケル、及び酸素の濃度は連続的に変化して明確な界面を形成しないこととなり、このため、界面における熱膨張係数等の差異による剥離が発生しにくくなる。さらに、100℃以上での熱処理を行なうことにより、界面がより不明確になるとともに、微量の水酸化物等、加熱時にガス化してフクレの原因となる不純物が拡散し、フクレの発生を防止できる。なお、熱処理温度が100℃よりも低いと、熱処理に長時間を要するため、好ましくない。また、300℃よりも高温に加熱することで、熱処理時間を短縮することができるが、急速に加熱するとフクレが発生し、また、変色等が発生するおそれがある。   In the above process, the concentrations of molybdenum, nickel, and oxygen change continuously, so that a clear interface is not formed, and separation due to a difference in thermal expansion coefficient or the like at the interface is less likely to occur. Furthermore, by performing a heat treatment at 100 ° C. or higher, the interface becomes more unclear, and impurities such as trace amounts of hydroxide that are gasified during heating and cause blistering can be diffused to prevent the occurrence of blistering. . Note that it is not preferable that the heat treatment temperature is lower than 100 ° C. because the heat treatment takes a long time. In addition, the heat treatment time can be shortened by heating to a temperature higher than 300 ° C. However, when heated rapidly, blistering may occur and discoloration or the like may occur.

本発明の薄銅層は特に限定するものではないが、ピロ燐酸銅を主体とする電解液を用いた場合には緻密な銅めっき層が形成されることから、ピンホールが減少する。また、硫酸銅を主体とする電解液を用いた場合は、高速めっきが可能となり、薄銅層を効率よく形成することができる。両方のめっき方法を組み合わせることにより、所望の厚さを有し、ピンホールの少ない薄銅層を効率よく形成することができる。薄銅層の厚さは、用途に応じて任意に設定してよい。   The thin copper layer of the present invention is not particularly limited, but when an electrolytic solution mainly composed of copper pyrophosphate is used, a dense copper plating layer is formed, so that pinholes are reduced. In addition, when an electrolytic solution mainly composed of copper sulfate is used, high-speed plating is possible, and a thin copper layer can be formed efficiently. By combining both plating methods, it is possible to efficiently form a thin copper layer having a desired thickness and few pinholes. The thickness of the thin copper layer may be arbitrarily set according to the application.

薄銅層の表面には、公知の方法で、クロメート処理などの方法により防錆処理を行うことができる。また、必要に応じて、基材樹脂との接着性を向上させる目的で、シランカップリング剤等による接着強化処理を行ってもよい。   The surface of the thin copper layer can be subjected to rust prevention treatment by a known method such as chromate treatment. Moreover, you may perform the adhesion reinforcement | strengthening process by a silane coupling agent etc. for the purpose of improving adhesiveness with base-material resin as needed.

支持体金属層には、厚さ18μmの電解銅箔を用いた。この銅箔の表面を硫酸中で陰極処理を行い、表面を清浄化した。ついで、表1記載の条件で、光沢面に剥離層を形成した後、ピロリン酸銅めっき浴と硫酸銅めっき浴を順次用いて3.9μmの薄銅層を形成した。さらに、公知の方法で厚さ1μm相当の微細粗化を行い、ついで、クロメート処理とシランカップリング剤処理を行うことにより、複合銅箔A〜Cを製造した。なお、比較のため、剥離層の形成条件または熱処理条件を表1記載の条件で変更し、銅箔D〜Gを製造した。   For the support metal layer, an electrolytic copper foil having a thickness of 18 μm was used. The surface of this copper foil was subjected to cathode treatment in sulfuric acid to clean the surface. Next, after forming a release layer on the glossy surface under the conditions shown in Table 1, a 3.9 μm thin copper layer was formed using a copper pyrophosphate plating bath and a copper sulfate plating bath in sequence. Furthermore, the composite copper foil AC was manufactured by performing the fine roughening equivalent to thickness of 1 micrometer by a well-known method, and performing a chromate process and a silane coupling agent process then. For comparison, the formation conditions of the release layer or the heat treatment conditions were changed under the conditions shown in Table 1, and copper foils D to G were manufactured.

ポリイミド樹脂フィルム(厚さ25μm、熱可塑性ポリイミド樹脂系接着剤層あり)に、複合銅箔A〜Gを薄銅層が基材に面するように積層し、400℃の加熱ロール(直径15cm)を用いてラミネートした。ロール間の圧力は30kN/mに設定し、送り速度を調整して所定の時間、ロールに銅箔とポリイミド樹脂フィルムが接するようにした。 Composite copper foils A to G are laminated on a polyimide resin film (thickness 25 μm, with a thermoplastic polyimide resin adhesive layer) so that the thin copper layer faces the substrate, and a 400 ° C. heating roll (15 cm in diameter) Was laminated. The pressure between the rolls was set to 30 kN / m 2 and the feed rate was adjusted so that the copper foil and the polyimide resin film were in contact with the roll for a predetermined time.

複合銅箔D〜Fを用いた銅張ポリイミド樹脂フィルムは、支持体金属箔と薄銅層間でフクレが発生した。また、複合銅箔Gを用いた銅張ポリイミド樹脂フィルムでは、支持体金属箔を剥離することができなかった。一方、複合銅箔A〜Cを用いた銅張ポリイミド樹脂フィルムにはフクレが見られず、15〜35kN/mの剥離強度を有し、剥離後の薄銅層表面は通常の金属光沢と金属銅特有の色相を呈した。 In the copper-clad polyimide resin film using the composite copper foils D to F, swelling occurred between the support metal foil and the thin copper layer. Moreover, in the copper-clad polyimide resin film using the composite copper foil G, the support metal foil could not be peeled off. On the other hand, no swelling is observed in the copper-clad polyimide resin film using the composite copper foils A to C, and the peel strength is 15 to 35 kN / m, and the surface of the thin copper layer after peeling is a normal metallic luster and metal. A hue specific to copper was exhibited.

Figure 0004891037
Figure 0004891037

本発明の複合銅箔は、高温での加熱加工に際し支持体金属箔と薄銅層間でフクレがなく、加熱加工後に、支持体金属層が薄銅層から容易に剥離するため、高密度プリント配線板の製造に適する。   The composite copper foil of the present invention has no swelling between the support metal foil and the thin copper layer during heat treatment at high temperature, and the support metal layer easily peels off from the thin copper layer after the heat treatment. Suitable for board production.

Claims (3)

支持体となる金属箔と
該金属箔上に、ニッケルとモリブデンと酸素からなる層(1)、主としてモリブデンと酸素からなる層(2)及びニッケルとモリブデンと酸素からなる層(3)を電気分解によって順次析出して形成した剥離層と
該剥離層上の薄銅層
とからなる複合銅箔を、100℃以上の温度で熱処理して得られた複合銅箔であって、表面温度400℃のラミネートロールによる貼合わせ工程において、フクレが発生しないことを特徴とする複合銅箔。
A metal foil as a support ,
On the metal foil, a layer (1) composed of nickel, molybdenum and oxygen, a layer (2) composed mainly of molybdenum and oxygen, and a layer (3) composed of nickel, molybdenum and oxygen were sequentially deposited by electrolysis. A release layer ;
A composite copper foil obtained by heat-treating a composite copper foil composed of a thin copper layer on the release layer at a temperature of 100 ° C. or higher , and in a bonding step using a laminate roll having a surface temperature of 400 ° C., A composite copper foil that does not occur.
モリブデン化合物とニッケル化合物からなる電解液中で、支持体となる金属箔上にニッケルとモリブデンと酸素からなる層を電気分解により析出し、ついで、前記の電気分解条件より低い電流密度により、主としてモリブデンと酸素からなる層を電気分解により析出した後、再度、ニッケルとモリブデンと酸素からなる層を電気分解により析出することにより剥離層を形成し、ついで、薄銅層を電気分解により析出し、100℃以上の温度で熱処理することを特徴とする請求項1の複合銅箔の製造方法。   In an electrolytic solution composed of a molybdenum compound and a nickel compound, a layer composed of nickel, molybdenum, and oxygen is deposited by electrolysis on a metal foil serving as a support, and then the molybdenum mainly due to a current density lower than the above electrolysis conditions. And a layer made of oxygen are deposited by electrolysis, and then a layer made of nickel, molybdenum and oxygen is deposited again by electrolysis to form a release layer, and then a thin copper layer is deposited by electrolysis. The method for producing a composite copper foil according to claim 1, wherein the heat treatment is performed at a temperature equal to or higher than C. 請求項1の複合銅箔を樹脂基材に積層成型し、ついで、支持体となる金属箔と剥離層を除去し、薄銅層に対して回路加工を行うことを特徴とする配線板の製造方法。   A composite copper foil according to claim 1 is laminated and formed on a resin base material, and then a metal foil and a release layer as a support are removed, and circuit processing is performed on a thin copper layer. Method.
JP2006315195A 2006-11-22 2006-11-22 Composite copper foil and method for producing the same, and method for producing printed wiring board using the composite copper foil Active JP4891037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315195A JP4891037B2 (en) 2006-11-22 2006-11-22 Composite copper foil and method for producing the same, and method for producing printed wiring board using the composite copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315195A JP4891037B2 (en) 2006-11-22 2006-11-22 Composite copper foil and method for producing the same, and method for producing printed wiring board using the composite copper foil

Publications (2)

Publication Number Publication Date
JP2008130867A JP2008130867A (en) 2008-06-05
JP4891037B2 true JP4891037B2 (en) 2012-03-07

Family

ID=39556390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315195A Active JP4891037B2 (en) 2006-11-22 2006-11-22 Composite copper foil and method for producing the same, and method for producing printed wiring board using the composite copper foil

Country Status (1)

Country Link
JP (1) JP4891037B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336395A1 (en) 2008-09-05 2011-06-22 Furukawa Electric Co., Ltd. Ultrathin copper foil with carrier, and copper laminated board or printed wiring board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977790B2 (en) * 2003-09-01 2007-09-19 古河サーキットフォイル株式会社 Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
TW200609109A (en) * 2004-08-02 2006-03-16 Nippon Denkai Ltd Composite copper foil and method for production thereof
JP4934409B2 (en) * 2005-12-15 2012-05-16 古河電気工業株式会社 Ultra-thin copper foil with carrier and printed wiring board

Also Published As

Publication number Publication date
JP2008130867A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4303291B2 (en) Composite copper foil and method for producing the same
JP4831783B2 (en) Conductive layer, laminate using the same, and production method thereof
JP2002292788A (en) Composite copper foil and method for manufacturing the same
TW201139752A (en) Surface-treated copper foil, method for producing same, and copper clad laminated board
KR20110049920A (en) Ultrathin copper foil with carrier, and copper laminated board or printed wiring board
JP5441945B2 (en) An extremely thin copper foil using a very low profile copper foil as a carrier and a method for producing the same.
JP5505828B2 (en) Composite metal foil and method for producing the same
TWI523586B (en) A composite metal foil, a method for manufacturing the same, and a printed circuit board
TW201636207A (en) Composite metal foil, method of manufacturing the same and printed circuit board
JPS6134385B2 (en)
JP2005260058A (en) Carrier-attached very thin copper foil, manufacturing method of carrier-attached very thin copper foil, and wiring board
KR102118245B1 (en) Composite metal foil, copper-clad laminate using the composite metal foil, and manufacturing method of the copper-clad laminate
JP4612978B2 (en) Composite copper foil and method for producing the same
JP2009293103A (en) Ultrathin copper foil with support and method of manufacturing the same
JP4891037B2 (en) Composite copper foil and method for producing the same, and method for producing printed wiring board using the composite copper foil
JP2006240074A (en) Composite copper foil and its production method
JP2005060772A (en) Flexible printed circuit board manufacturing method, and base material for circuit used therefor
JP2004131836A (en) Electrolytic copper foil with carrier foil and its producing method, and copper clad laminated board using electrolytic copper foil with carrier foil
EP1089603A2 (en) Copper foil bonding treatment with improved bond strength and resistance to undercutting
JPWO2013118416A1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, and copper-clad laminate
JP5854872B2 (en) Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board
JP5628106B2 (en) Composite metal foil, method for producing the same, and printed wiring board
JP2016008343A (en) Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and production method of the surface-treated copper foil
JP2005240132A (en) Electrolytic copper foil, and electrolytic polishing method for shiny face of electrolytic copper foil
JPH0851281A (en) Method for manufacture high-temperature large-expansion copper foil for printed circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Ref document number: 4891037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250