JP4612978B2 - Composite copper foil and method for producing the same - Google Patents

Composite copper foil and method for producing the same Download PDF

Info

Publication number
JP4612978B2
JP4612978B2 JP2001286702A JP2001286702A JP4612978B2 JP 4612978 B2 JP4612978 B2 JP 4612978B2 JP 2001286702 A JP2001286702 A JP 2001286702A JP 2001286702 A JP2001286702 A JP 2001286702A JP 4612978 B2 JP4612978 B2 JP 4612978B2
Authority
JP
Japan
Prior art keywords
copper foil
composite
content
support
composite copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001286702A
Other languages
Japanese (ja)
Other versions
JP2003094553A (en
Inventor
祐志 佐藤
勝己 小林
智洋 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP2001286702A priority Critical patent/JP4612978B2/en
Publication of JP2003094553A publication Critical patent/JP2003094553A/en
Application granted granted Critical
Publication of JP4612978B2 publication Critical patent/JP4612978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は銅張積層板、プリント配線板に用いられる極薄銅箔を提供するための複合銅箔及びその製造方法に関し、より詳細には支持体銅箔と極薄銅箔の間に、剥離層を設けることにより、樹脂基材積層後の支持体銅箔の剥離強度を安定させた複合銅箔及びその製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の小型化、軽量化に伴いプリント配線板も高密度化が要求されている。この動きに伴い、使用される銅箔も薄くなる傾向にあり、高密度プリント配線板の製造には厚さが12μm以下の薄い銅箔が使用されている。
しかし厚さが12μm以下の薄い銅箔はシワが生じたり、箔が切れたりし易いので製造及び使用時に極めて慎重さが要求され、ハンドリング性の改善が望まれている。
このような問題点を改善するため、支持体銅箔に極薄銅箔を設けた複合銅箔が提案されている(特公昭53−18329号公報:複合箔及びその製法)。
【0003】
前記した複合銅箔は、極薄銅箔側が樹脂基材に接触するようにして樹脂基材と重ねて加熱、加圧積層した後、支持体銅箔を剥離して極薄銅張積層板とされる。この複合銅箔では、極薄銅箔と支持体銅箔との間に、剥離層として金属酸化物皮膜が設けられており、この層を介して剥離するものである。しかしながら、積層時、支持体銅箔と極薄銅箔間が加熱されることにより密着性が急激に上昇し、著しい場合は剥離不可能となり、支持体銅箔が極薄銅箔側に残留してしまったり、もしくは極薄銅箔が破損し、ピンホールとなってしまう等、高密度プリント配線板の製造に対して実用上の問題があった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、複合銅箔の極薄銅箔側に樹脂基材を重ねて加熱、加圧により積層した後、支持体銅箔を剥離するとき、加熱温度による剥離強度の変化が小さく、樹脂基材と積層後に支持体銅箔が容易に剥離し、剥離強度が安定している複合銅箔を提供することにある。
本発明の他の目的は、上記の複合銅箔の好適な製造方法、上記の複合銅箔を用いた銅張積層板及びプリント配線板を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、支持体銅箔と極薄銅箔との間に、Cu−Ni−Mo合金からなる剥離層を有する複合銅箔に関する。
【0006】
本発明はまた、支持体銅箔上に、めっきによりCu−Ni−Mo合金層からなる剥離層を形成し、次いで剥離層上にめっきにより極薄銅箔を形成することを特徴とする複合銅箔の製造方法に関する。
【0007】
本発明はまた、本発明の複合銅箔と樹脂基材とを、極薄銅箔を樹脂基材に接触させて積層成形した後、複合銅箔から支持体銅箔を機械的に剥離することを特徴とする銅張積層板の製造方法に関する。
本発明はまた、上記の複合銅箔を用いた銅張積層板及びプリント配線板に関する。
【0008】
【発明の実施の形態】
本発明において、支持体銅箔は、例えば、圧延銅箔、電解銅箔に代表されるがその材質、表面形状について限定はない。支持体銅箔の選択は、主にプリント配線板形成の段階で要求される極薄銅箔の形状に基づいて決定される。極薄銅箔と樹脂基材との接着強度を重視するならば、粗さの大きい表面形状のものを選択する。また、ファインラインの形成を重視するならば、粗さの小さい表面形状のものを選択する。このため、支持体銅箔としては電解銅箔が好ましく用いられる。電解銅箔の表面は、粗さの異なるM面(非光沢面)とS面(光沢面)があり、いずれかを選択することができる。また、必要ならば両面に適用してもよい。支持体銅箔の厚さはハンドリング性の点から10〜150μmのものが好ましく用いられ、15〜100μmのものがより好ましく用いられる。また、支持体銅箔は適切な前処理によってその表面が清浄化されていることが好ましい。
【0009】
本発明において、剥離層は、支持体銅箔と極薄銅箔を機械的に分離するための層であり、Cu−Ni−Mo合金からなる層が用いられる。
剥離層のCu−Ni−Mo合金のCu含有量は、100〜500,000μg/dmが好ましく、1,000〜50,000μg/dmがより好ましく、Ni含有量は10〜10,000μg/dmが好ましく、100〜1,000μg/dmがより好ましく、Mo含有量は5〜800μg/dmが好ましく、50〜400μg/dmがより好ましい。
Cu含有量が100μg/dm未満であるとピンホールが発生し、剥離強度が不安定になる傾向があり、500,000μg/dmを超えると生産性が低下する傾向がある。Ni含有量が10μg/dm未満であると剥離強度が上昇する傾向があり、10,000μg/dmを超えるとエッチング性が低下する傾向がある。Mo含有量が5μg/dm未満であると剥離強度が上昇し、剥離強度が温度により不安定になる傾向があり、800μg/dmを超えると剥離強度が小さくなり過ぎる傾向がある。
また、剥離層の厚さは、0.001〜5μmが好ましく、0.01〜0.5μmがより好ましい。剥離層の厚さが0.001μm未満であるとピンホールが発生し、剥離強度が不安定になる傾向があり、5μmを超えると生産性が悪化する傾向がある。
剥離層のCu−Ni−Mo合金の合金組成は、Cuは70〜99.89重量%が好ましく、85〜98.9重量%がより好ましく、Niは0.1〜15重量%が好ましく、1.0〜8.0重量%がより好ましく、Moは0.01〜15重量%が好ましく、0.1〜7.0重量%がより好ましい。
上記のCu、Ni及びMoの含有量は、ICP(誘導結合プラズマ発光分析装置)分析で測定した値である。また、Cu、Ni及びMoが合金化されていることはESCA(X線光電子分析装置)分析により確認した。
【0010】
支持体銅箔上に、めっきによりCu−Ni−Mo合金層からなる剥離層を形成する。好ましくはCu塩、Ni塩、Mo塩及びクエン酸塩を含む水溶液からの陰極処理でこれらの金属の合金皮膜を形成する。剥離強度は、めっき液組成、電解処理の電流密度、時間、pHなどによって皮膜の厚さを変えることにより調整可能である。
剥離層の形成に用いられるめっき液としては、硫酸銅・五水和物(濃度が好ましくは、0.6〜240g/l、より好ましくは、6〜120g/l)、硫酸ニッケル・六水和物(濃度が好ましくは、0.1〜40g/l、より好ましくは、1〜20g/l)、モリブデン酸ナトリウム・二水和物(濃度が好ましくは、0.1〜40g/l、より好ましくは、1〜20g/l)及びクエン酸三ナトリウム・二水和物(濃度が好ましくは、1〜400g/l、より好ましくは、10〜200g/l)を含有するめっき液が好ましく用いられる。
めっき液のpHは、好ましくは3〜8、より好ましくは4〜7とし、めっき時間は、好ましくは0.1〜1,000秒、より好ましくは1〜500秒とし、電流密度は、好ましくは0.1〜16A/dm、より好ましくは0.4〜8A/dmとし、液温は好ましくは10〜60℃、より好ましくは25〜45℃とする。
【0011】
極薄銅箔は剥離層上に電着される。銅を電着する方法については制限はなく、一般的には硫酸銅浴もしくはピロリン酸銅浴が好適である。なお、極薄銅箔とは厚さが9μm以下であり、好ましくは1〜5μmのものをいう。
極薄銅箔と樹脂基材との接着力を強化するための、銅又は銅合金等による電着粗化処理などや、更に極薄銅箔の耐酸化性、耐薬品性、耐熱性などを向上させるためのクロム、亜鉛、ニッケル、コバルト、モリブデン、シランカップリング剤等による防錆処理などの表面処理を行ってもよい。また、エポキシ樹脂層等を積層して樹脂付複合銅箔とすることもできる。
【0012】
【実施例】
以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
実施例1
厚さ35μmの電解銅箔を支持体銅箔として、その光沢面(S面、表面粗さRa0.2μm)を30g/l硫酸に20秒間浸漬することにより酸洗浄した後、20秒間水洗した。
次いで、CuSO・5HO:6g/l、NiSO・6HO:1g/l、NaMoO・2HO:1g/l、CNa・2HO:10g/lからなるCu−Ni−Mo合金めっき浴で、温度:35℃、pH:5.0、電流密度:0.4A/dm、処理時間:500秒の条件でめっきを行い、光沢面上にCu−Ni−Mo合金の剥離層を形成した後、20秒間水洗した。Cu−Ni−Mo合金層厚さ:0.49μm、Cu含有量:43,000μg/dm、Cu含有率:98.3wt%、Ni含有量:620μg/dm、Ni含有率:1.4wt%、Mo含有量:110μg/dm、Mo含有率:0.3wt%であった。
この剥離層を形成した支持体銅箔を20秒間水洗した後、CuSO・5HO:135g/l、HSO:100g/lの硫酸銅浴で、温度:40℃、電流密度:3.5A/dm、処理時間:300秒の条件で厚さ3.9μmの銅めっきを行い、極薄銅箔層を形成した後、20秒間水洗した。
更にこの極薄銅箔層の表面に対し、公知の硫酸銅めっき浴を用いて厚さ1.0μmの電着微細銅粗化処理を施し水洗した後、粗化処理が施された極薄銅箔の表面に公知の方法でクロメートの防錆処理を施し、水洗乾燥して複合銅箔を得た。
この複合銅箔の極薄銅箔側をガラスエポキシプリプレグ(FR−4基材)に重ね、温度170℃、圧力30kN/m、60分間積層し、銅張積層板を得た。
また、この複合銅箔をガラスエポキシプリプレグ(FR−5基材)に重ね、温度200℃、圧力30kN/m、60分間積層し、銅張積層板を得た。
支持体銅箔と極薄銅箔間の積層前剥離強度、積層後剥離強度(170℃、60分及び200℃、60分)をJIS−C−6481に準拠して測定した結果を表3に示す。FR−4基材及びFR−5基材に積層した剥離強度はいずれも0.02kN/mであり容易に剥離できた。
【0013】
実施例2〜6及び比較例1〜5
剥離層の形成を表1に示す条件で行った他は、実施例1と同様の支持体銅箔に剥離層、極薄銅箔層、粗化処理層、防錆処理層の順に各層を形成し、複合銅箔を得た。なお、実施例6では使用する銅箔支持体の被めっき面はM面とした。
【0014】
表3に支持体銅箔と極薄銅箔間の剥離強度の測定結果を示す。
【0015】
【表1】

Figure 0004612978
【0016】
【表2】
Figure 0004612978
【0017】
【表3】
Figure 0004612978
表中の×は、積層後剥離層から剥がれず樹脂基材、極薄銅箔間で剥離したことを意味する。
【0018】
【発明の効果】
本発明の複合銅箔は加熱温度によって剥離強度が変化しないため、積層の温度条件を変えても剥離強度が安定している。また、剥離強度が任意に設定可能で、穴あけ時バリ発生防止に有効である。
さらに、支持体銅箔が極薄銅箔側に残留したり、もしくは極薄銅箔が破損し、ピンホールとなってしまう等の実用上の問題がなく、極薄銅張積層板の製造、ひいては高密度プリント配線板の製造においてその有用性は明白である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper clad laminate, a composite copper foil for providing an ultrathin copper foil for use in a printed wiring board, and a method for producing the same, and more particularly, between a support copper foil and an ultrathin copper foil. The present invention relates to a composite copper foil in which the peel strength of a support copper foil after lamination of a resin base material is stabilized by providing a layer, and a method for producing the same.
[0002]
[Prior art]
In recent years, with the miniaturization and weight reduction of electronic devices, printed wiring boards are also required to have high density. Along with this movement, the copper foil used tends to be thin, and a thin copper foil having a thickness of 12 μm or less is used for manufacturing a high-density printed wiring board.
However, since a thin copper foil having a thickness of 12 μm or less is likely to be wrinkled or to be cut off, it is required to be extremely careful during manufacture and use, and improvement in handling properties is desired.
In order to improve such problems, a composite copper foil in which an ultrathin copper foil is provided on a support copper foil has been proposed (Japanese Examined Patent Publication No. 53-18329: composite foil and its manufacturing method).
[0003]
The composite copper foil described above is laminated with the resin base material so that the ultra-thin copper foil side is in contact with the resin base material, and after heating and pressure laminating, the support copper foil is peeled off and the ultra-thin copper-clad laminate and Is done. In this composite copper foil, a metal oxide film is provided as a peeling layer between the ultrathin copper foil and the support copper foil, and peeling is performed via this layer. However, during lamination, the adhesion between the support copper foil and the ultrathin copper foil is rapidly increased, and in the case of remarkable, peeling becomes impossible and the support copper foil remains on the ultrathin copper foil side. There have been practical problems for the production of high-density printed wiring boards, such as pinholes or broken ultrathin copper foils, resulting in pinholes.
[0004]
[Problems to be solved by the invention]
The purpose of the present invention is to superpose a resin base on the ultrathin copper foil side of the composite copper foil, and after laminating by heating and pressing, when peeling the support copper foil, the change in peel strength due to heating temperature is small, An object of the present invention is to provide a composite copper foil in which the support copper foil is easily peeled off after being laminated with the resin base material and the peel strength is stable.
Another object of the present invention is to provide a suitable method for producing the composite copper foil, a copper-clad laminate using the composite copper foil, and a printed wiring board.
[0005]
[Means for Solving the Problems]
The present invention relates to a composite copper foil having a release layer made of a Cu-Ni-Mo alloy between a support copper foil and an ultrathin copper foil.
[0006]
The present invention also provides a composite copper characterized in that a release layer composed of a Cu-Ni-Mo alloy layer is formed on a support copper foil by plating, and then an ultrathin copper foil is formed on the release layer by plating. The present invention relates to a method for manufacturing a foil.
[0007]
In the present invention, the composite copper foil of the present invention and the resin base material are laminated and formed by bringing the ultrathin copper foil into contact with the resin base material, and then the support copper foil is mechanically peeled from the composite copper foil. It is related with the manufacturing method of the copper clad laminated board characterized by these.
The present invention also relates to a copper clad laminate and a printed wiring board using the above composite copper foil.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the support copper foil is represented by, for example, a rolled copper foil and an electrolytic copper foil, but there is no limitation on the material and the surface shape. The selection of the support copper foil is determined mainly based on the shape of the ultrathin copper foil required at the stage of forming the printed wiring board. If importance is attached to the adhesive strength between the ultrathin copper foil and the resin base material, a surface shape having a large roughness is selected. Further, if importance is attached to the formation of fine lines, a surface shape having a small roughness is selected. For this reason, electrolytic copper foil is preferably used as the support copper foil. The surface of the electrolytic copper foil has an M surface (non-glossy surface) and an S surface (glossy surface) with different roughness, and either one can be selected. Moreover, you may apply to both surfaces if necessary. The thickness of the support copper foil is preferably 10 to 150 μm, more preferably 15 to 100 μm, from the viewpoint of handling properties. Moreover, it is preferable that the surface of the support copper foil is cleaned by an appropriate pretreatment.
[0009]
In the present invention, the release layer is a layer for mechanically separating the support copper foil and the ultrathin copper foil, and a layer made of a Cu—Ni—Mo alloy is used.
Cu content of Cu-Ni-Mo alloy of the release layer is preferably 100~500,000μg / dm 2, more preferably 1,000~50,000μg / dm 2, Ni content 10~10,000Myug / dm 2 is preferred, more preferably 100~1,000μg / dm 2, Mo content is preferably 5~800μg / dm 2, 50~400μg / dm 2 is more preferable.
If the Cu content is less than 100 μg / dm 2 , pinholes are generated and the peel strength tends to become unstable, and if it exceeds 500,000 μg / dm 2 , the productivity tends to decrease. If the Ni content is less than 10 μg / dm 2 , the peel strength tends to increase, and if it exceeds 10,000 μg / dm 2 , the etching property tends to decrease. When the Mo content is less than 5 μg / dm 2 , the peel strength increases, and the peel strength tends to become unstable with temperature, and when it exceeds 800 μg / dm 2 , the peel strength tends to be too small.
Moreover, 0.001-5 micrometers is preferable and, as for the thickness of a peeling layer, 0.01-0.5 micrometer is more preferable. When the thickness of the release layer is less than 0.001 μm, pinholes are generated and the peel strength tends to become unstable, and when it exceeds 5 μm, the productivity tends to deteriorate.
The alloy composition of the Cu—Ni—Mo alloy of the release layer is preferably 70 to 99.89% by weight of Cu, more preferably 85 to 98.9% by weight, and preferably 0.1 to 15% by weight of Ni. 0.0 to 8.0% by weight is more preferable, and Mo is preferably 0.01 to 15% by weight, and more preferably 0.1 to 7.0% by weight.
The contents of Cu, Ni, and Mo are values measured by ICP (inductively coupled plasma emission spectrometer) analysis. Moreover, it was confirmed by ESCA (X-ray photoelectron analyzer) analysis that Cu, Ni and Mo were alloyed.
[0010]
A release layer composed of a Cu—Ni—Mo alloy layer is formed on the support copper foil by plating. Preferably, an alloy film of these metals is formed by cathodic treatment from an aqueous solution containing Cu salt, Ni salt, Mo salt and citrate. The peel strength can be adjusted by changing the thickness of the coating depending on the plating solution composition, the current density of the electrolytic treatment, time, pH, and the like.
As the plating solution used for forming the release layer, copper sulfate pentahydrate (concentration is preferably 0.6 to 240 g / l, more preferably 6 to 120 g / l), nickel sulfate hexahydrate. Product (concentration is preferably 0.1 to 40 g / l, more preferably 1 to 20 g / l), sodium molybdate dihydrate (concentration is preferably 0.1 to 40 g / l, more preferably Is a plating solution containing 1 to 20 g / l) and trisodium citrate dihydrate (concentration is preferably 1 to 400 g / l, more preferably 10 to 200 g / l).
The pH of the plating solution is preferably 3 to 8, more preferably 4 to 7, the plating time is preferably 0.1 to 1,000 seconds, more preferably 1 to 500 seconds, and the current density is preferably 0.1-16 A / dm < 2 >, More preferably, it is 0.4-8 A / dm < 2 >, A liquid temperature becomes like this. Preferably it is 10-60 degreeC, More preferably, it is 25-45 degreeC.
[0011]
The ultrathin copper foil is electrodeposited on the release layer. There is no restriction | limiting about the method of electrodepositing copper, Generally a copper sulfate bath or a copper pyrophosphate bath is suitable. The ultrathin copper foil has a thickness of 9 μm or less, preferably 1 to 5 μm.
Electrodeposition roughening treatment with copper or copper alloy, etc. to strengthen the adhesion between ultrathin copper foil and resin base material, and also the oxidation resistance, chemical resistance, heat resistance, etc. of ultrathin copper foil Surface treatment such as rust prevention treatment with chromium, zinc, nickel, cobalt, molybdenum, silane coupling agent or the like for improvement may be performed. Moreover, an epoxy resin layer etc. can be laminated | stacked and it can also be set as composite copper foil with resin.
[0012]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this.
Example 1
An electrolytic copper foil having a thickness of 35 μm was used as a support copper foil, and the glossy surface (S surface, surface roughness Ra 0.2 μm) was acid-washed by immersing it in 30 g / l sulfuric acid for 20 seconds, followed by washing with water for 20 seconds.
Next, CuSO 4 .5H 2 O: 6 g / l, NiSO 4 .6H 2 O: 1 g / l, Na 2 MoO 4 .2H 2 O: 1 g / l, C 6 H 5 Na 3 O 7 .2H 2 O: It is a Cu-Ni-Mo alloy plating bath composed of 10 g / l, plated under conditions of temperature: 35 ° C., pH: 5.0, current density: 0.4 A / dm 2 , and processing time: 500 seconds. A Cu—Ni—Mo alloy release layer was formed thereon, and then washed with water for 20 seconds. Cu—Ni—Mo alloy layer thickness: 0.49 μm, Cu content: 43,000 μg / dm 2 , Cu content: 98.3 wt%, Ni content: 620 μg / dm 2 , Ni content: 1.4 wt %, Mo content: 110 μg / dm 2 , and Mo content: 0.3 wt%.
The support copper foil on which the release layer was formed was washed with water for 20 seconds, and then a copper sulfate bath of CuSO 4 .5H 2 O: 135 g / l, H 2 SO 4 : 100 g / l, temperature: 40 ° C., current density: After carrying out copper plating with a thickness of 3.9 μm under the conditions of 3.5 A / dm 2 and processing time: 300 seconds to form an ultrathin copper foil layer, it was washed with water for 20 seconds.
Furthermore, the surface of this ultrathin copper foil layer was subjected to an electrodeposition fine copper roughening treatment having a thickness of 1.0 μm using a known copper sulfate plating bath, washed with water, and then subjected to the roughening treatment. The surface of the foil was subjected to rust prevention treatment of chromate by a known method, washed with water and dried to obtain a composite copper foil.
The ultrathin copper foil side of this composite copper foil was overlaid on a glass epoxy prepreg (FR-4 base material) and laminated at a temperature of 170 ° C. and a pressure of 30 kN / m 2 for 60 minutes to obtain a copper-clad laminate.
Moreover, this composite copper foil was laminated | stacked on the glass epoxy prepreg (FR-5 base material), the temperature of 200 degreeC, the pressure of 30 kN / m < 2 > were laminated | stacked for 60 minutes, and the copper clad laminated board was obtained.
Table 3 shows the results of measuring the peel strength before lamination between the support copper foil and the ultrathin copper foil and the peel strength after lamination (170 ° C., 60 minutes and 200 ° C., 60 minutes) in accordance with JIS-C-6481. Show. The peel strengths laminated on the FR-4 base material and the FR-5 base material were both 0.02 kN / m and could be easily peeled off.
[0013]
Examples 2-6 and Comparative Examples 1-5
Except that the release layer was formed under the conditions shown in Table 1, each layer was formed in the order of the release layer, the ultrathin copper foil layer, the roughening treatment layer, and the rust prevention treatment layer on the same support copper foil as in Example 1. As a result, a composite copper foil was obtained. In Example 6, the surface to be plated of the copper foil support used was an M surface.
[0014]
Table 3 shows the measurement results of the peel strength between the support copper foil and the ultrathin copper foil.
[0015]
[Table 1]
Figure 0004612978
[0016]
[Table 2]
Figure 0004612978
[0017]
[Table 3]
Figure 0004612978
X in the table means that the film was not peeled off from the release layer after lamination and was peeled between the resin base material and the ultrathin copper foil.
[0018]
【The invention's effect】
Since the peel strength of the composite copper foil of the present invention does not change depending on the heating temperature, the peel strength is stable even if the temperature condition of the lamination is changed. In addition, the peel strength can be set arbitrarily, which is effective for preventing the occurrence of burrs when drilling.
Furthermore, there is no practical problem such that the support copper foil remains on the ultrathin copper foil side, or the ultrathin copper foil is broken and becomes a pinhole, and the production of an ultrathin copper-clad laminate, As a result, its usefulness in the production of high-density printed wiring boards is obvious.

Claims (7)

支持体銅箔と極薄銅箔との間に、Cu−Ni−Mo合金からなりCu含有量が100〜500,000μg/dm 、Ni含有量が10〜10,000μg/dm 、Mo含有量が5〜800μg/dm である剥離層を有する複合銅箔。Between the support copper foil and ultra-thin copper foil, Cu content Ri Do from Cu-Ni-Mo alloy is 100~500,000μg / dm 2, Ni content 10~10,000μg / dm 2, Mo composite copper foil content has 5~800μg / dm 2 der Ru peeling layer. 極薄銅箔の表面に接着力強化のための表面処理を施した請求項1記載の複合銅箔。Claim 1 Symbol mounting composite copper foil subjected to a surface treatment for the cohesive strengthening the surface of the ultrathin copper foil. 支持体銅箔上に、めっきによりCu−Ni−Mo合金層からなりCu含有量が100〜500,000μg/dm 、Ni含有量が10〜10,000μg/dm 、Mo含有量が5〜800μg/dm である剥離層を形成し、次いで剥離層上にめっきにより極薄銅箔を形成することを特徴とする複合銅箔の製造方法。On a support of copper foil, the Cu-Ni-Mo alloy layer from Do Ri Cu content 100~500,000μg / dm 2, Ni content 10~10,000μg / dm 2, Mo content by plating 5 ~800μg / dm 2 to form an der Ru release layer, and then producing a composite copper foil and forming a ultra-thin copper foil by plating on the release layer. 剥離層の形成を、Cu塩、Ni塩、Mo塩及びクエン酸塩を含む水溶液中で陰極処理することにより行う請求項記載の複合銅箔の製造方法。The manufacturing method of the composite copper foil of Claim 3 which performs formation of a peeling layer by carrying out the cathode process in the aqueous solution containing Cu salt, Ni salt, Mo salt, and a citrate. 請求項1又は2記載の複合銅箔と樹脂基材とを、極薄銅箔を樹脂基材に接触させて積層成形した後、複合銅箔から支持体銅箔を機械的に剥離することを特徴とする銅張積層板の製造方法。The composite copper foil and the resin base material according to claim 1 or 2 are laminated and formed by bringing the ultrathin copper foil into contact with the resin base material, and then the support copper foil is mechanically peeled from the composite copper foil. A method for producing a copper-clad laminate. 請求項1又は2記載の複合銅箔を用いた銅張積層板。The copper clad laminated board using the composite copper foil of Claim 1 or 2 . 請求項1又は2記載の複合銅箔を用いたプリント配線板。Printed circuit board using a composite copper foil according to claim 1 or 2, wherein.
JP2001286702A 2001-09-20 2001-09-20 Composite copper foil and method for producing the same Expired - Lifetime JP4612978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286702A JP4612978B2 (en) 2001-09-20 2001-09-20 Composite copper foil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286702A JP4612978B2 (en) 2001-09-20 2001-09-20 Composite copper foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003094553A JP2003094553A (en) 2003-04-03
JP4612978B2 true JP4612978B2 (en) 2011-01-12

Family

ID=19109631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286702A Expired - Lifetime JP4612978B2 (en) 2001-09-20 2001-09-20 Composite copper foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP4612978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662206A (en) * 2012-10-31 2015-05-27 古河电气工业株式会社 Copper foil, negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2020173574A1 (en) 2019-02-28 2020-09-03 Circuit Foil Luxembourg Composite copper foil and method of fabricating the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200609109A (en) 2004-08-02 2006-03-16 Nippon Denkai Ltd Composite copper foil and method for production thereof
CN1984527B (en) * 2005-12-15 2010-12-01 古河电气工业株式会社 Ultrathin copper foil with carrier and printed circuit board
JP4927503B2 (en) 2005-12-15 2012-05-09 古河電気工業株式会社 Ultra-thin copper foil with carrier and printed wiring board
JP4934409B2 (en) * 2005-12-15 2012-05-16 古河電気工業株式会社 Ultra-thin copper foil with carrier and printed wiring board
WO2012048460A1 (en) * 2010-10-13 2012-04-19 大连理工大学 Low resistivity high thermal-stability copper-nickel-molybdenum alloy film and producing method thereof
CN102452197B (en) 2010-10-21 2014-08-20 财团法人工业技术研究院 Foil-attached copper foil and method for producing same
JP5441945B2 (en) * 2011-04-14 2014-03-12 ナン ヤ プラスティクス コーポレーション An extremely thin copper foil using a very low profile copper foil as a carrier and a method for producing the same.
JP5481553B1 (en) * 2012-11-30 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5364838B1 (en) * 2012-11-30 2013-12-11 Jx日鉱日石金属株式会社 Copper foil with carrier
CN105142897B (en) * 2013-03-29 2018-09-28 Jx日矿日石金属株式会社 The manufacturing method of Copper foil with carrier, printing distributing board, copper-cover laminated plate, e-machine and printing distributing board
JP2018009237A (en) * 2016-07-15 2018-01-18 Jx金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, laminate, method for producing laminate, method for manufacturing printed wiring board and method for manufacturing electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309898A (en) * 1999-04-23 2000-11-07 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, production of the electrolytic copper foil and copper laminated sheet using the electrolytic copper foil
JP2001301087A (en) * 2000-03-10 2001-10-30 Olin Corp Copper foil reinforced in low profile bonding
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309898A (en) * 1999-04-23 2000-11-07 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, production of the electrolytic copper foil and copper laminated sheet using the electrolytic copper foil
JP2001301087A (en) * 2000-03-10 2001-10-30 Olin Corp Copper foil reinforced in low profile bonding
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662206A (en) * 2012-10-31 2015-05-27 古河电气工业株式会社 Copper foil, negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2020173574A1 (en) 2019-02-28 2020-09-03 Circuit Foil Luxembourg Composite copper foil and method of fabricating the same
US11639557B2 (en) 2019-02-28 2023-05-02 Circuit Foil Luxembourg Composite copper foil and method of fabricating the same

Also Published As

Publication number Publication date
JP2003094553A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US7771841B2 (en) Ultrathin copper foil with carrier and printed circuit board using same
US7892655B2 (en) Ultrathin copper foil with carrier and printed circuit board using same
JP5959149B2 (en) Ultra-thin copper foil with carrier and copper-laminated laminate or printed wiring board
KR100859614B1 (en) Composite copper foil and method for production thereof
JP4087369B2 (en) Ultra-thin copper foil with carrier and printed wiring board
US8530749B2 (en) Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
JP2002292788A (en) Composite copper foil and method for manufacturing the same
JP2010100942A (en) Ultra-thin copper foil with carrier, method of manufacturing the same and printed circuit board
JP2012102407A (en) Ultra-thin copper foil with carrier and printed circuit board
JPH0373338A (en) Composite foil and manufacture thereof
JP2004169181A (en) Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP4612978B2 (en) Composite copper foil and method for producing the same
JP5505828B2 (en) Composite metal foil and method for producing the same
JPS6134385B2 (en)
JP2005260058A (en) Carrier-attached very thin copper foil, manufacturing method of carrier-attached very thin copper foil, and wiring board
JP2011210994A (en) Copper foil for printed wiring board, and laminate using the same
JP4748519B2 (en) Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier
JP5298252B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JPWO2013118416A1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, and copper-clad laminate
JP5854872B2 (en) Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board
JP5702942B2 (en) Copper foil for printed wiring board excellent in etching property and laminate using the same
JP3406743B2 (en) Copper foil for printed wiring board and surface treatment method thereof
JP3210796B2 (en) High temperature stretched copper foil for printed circuits
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4612978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term