JP4880491B2 - Granulated powder for mold forming, method for producing the same, and method for producing sintered parts using the granulated powder - Google Patents

Granulated powder for mold forming, method for producing the same, and method for producing sintered parts using the granulated powder Download PDF

Info

Publication number
JP4880491B2
JP4880491B2 JP2007025421A JP2007025421A JP4880491B2 JP 4880491 B2 JP4880491 B2 JP 4880491B2 JP 2007025421 A JP2007025421 A JP 2007025421A JP 2007025421 A JP2007025421 A JP 2007025421A JP 4880491 B2 JP4880491 B2 JP 4880491B2
Authority
JP
Japan
Prior art keywords
powder
granulated
molding
binder
granulated powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007025421A
Other languages
Japanese (ja)
Other versions
JP2008189993A (en
Inventor
隆志 松村
次郎 榊
淳一 市川
智之 小比田
光春 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2007025421A priority Critical patent/JP4880491B2/en
Publication of JP2008189993A publication Critical patent/JP2008189993A/en
Application granted granted Critical
Publication of JP4880491B2 publication Critical patent/JP4880491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、金型法による焼結部品の製造方法に係り、特に、製品形状が小さく、かつ凹凸を有する焼結部品の製造に好適な造粒粉末、およびその製造方法、ならびに該造粒粉末を用いた金型成形法による焼結部品の製造方法に関する。   The present invention relates to a method for producing a sintered part by a mold method, and in particular, a granulated powder suitable for producing a sintered part having a small product shape and unevenness, a method for producing the same, and the granulated powder. The present invention relates to a method for manufacturing a sintered part by a mold forming method using a ceramic.

型孔を有する金型と、該型孔と摺動自在に嵌合する一対の上パンチと下パンチとを備える成形装置を用い、金型の型孔と下パンチとにより形成されるキャビティに原料粉末を充填して上下パンチにより原料粉末を圧縮成形して得られた成形体を焼結する、いわゆる金型法による焼結金属部品の製造方法は、ニアネットシェイプに造形でき材料コストや加工コストが低減できること、あるいは製法が容易でかつ大量生産に好適である等の利点を有し、従来より広く採用されている。   Using a molding apparatus having a mold having a mold hole and a pair of upper and lower punches slidably fitted in the mold hole, a raw material is formed in a cavity formed by the mold hole and the lower punch of the mold The sintered metal parts manufacturing method by the so-called die method, which sinters the molded body obtained by compressing and molding the raw material powder with the upper and lower punches by filling the powder, can be shaped into a near net shape, the material cost and processing cost Has the advantage that it can be reduced, or that the production method is easy and suitable for mass production, and has been widely used.

このような金型成形法は上下パンチを分割して多段化することで上下面に凹凸を有する複雑な形状の製品を成形することができる。しかし製品形状が小さくなると、凹凸を形成するパンチの幅を小さくせざるを得ず、そのためパンチの座屈や折損がおこりやすくなる。一方、上下パンチを多段化せず、上下パンチの端面に製品の凹凸形状の雌型となる凹凸を付与した形状として成形すると、キャビティに充填した際の原料粉末の嵩が異なるとともに、成形後の各部の厚さが異なることにより、製品の各部で成形密度が異なるものとなる。
すなわち、成形体の薄い部分で高密度となり、成形体の厚い部分は十分に圧縮されず低密度となる。例えば製品に凸部が形成され凸部が他部材と摺動するような製品の場合には、他部材と摺動する凸部を高密度に成形する必要があるが、一段パンチで成形する場合、上記のように凸部が低密度となるため、所望の製品を成形できないことになる。
In such a mold forming method, a product having a complicated shape having irregularities on the upper and lower surfaces can be formed by dividing the upper and lower punches into multiple stages. However, when the product shape is reduced, the width of the punch for forming the unevenness has to be reduced, and the punch is likely to buckle or break. On the other hand, if the shape of the upper and lower punches is not multi-staged, and the end surface of the upper and lower punches is shaped as a rugged shape that becomes the female shape of the product, the bulk of the raw material powder when filling the cavity is different, When the thickness of each part is different, the molding density is different in each part of the product.
That is, the thin portion of the molded body has a high density, and the thick portion of the molded body is not sufficiently compressed and has a low density. For example, in the case of a product in which a convex part is formed on the product and the convex part slides with another member, it is necessary to form the convex part sliding with the other member at a high density. As described above, since the convex portions have a low density, a desired product cannot be formed.

射出成形法は、金属粉末に熱可塑性樹脂やワックス等の可塑性のバインダを40〜60体積%添加して混練した原料を用いて、プラスチックの射出成形と同様に、製品形状の雌型を形成した金型内に射出して造形し、得られた成形体を脱バインダした後焼結することによって複雑な形状の製品を得ることができる。このような射出成形法によれば、可塑化したバインダの液圧により圧力が複雑な形状の金型内で均等に作用するため複雑な形状であっても比較的均一な密度の成形体を得ることができる。
しかし、成形体はバインダを40〜60体積%程度含有するので、バインダの除去に時間がかかるとともに、収縮量が大きい点が問題となっている。また、射出成形法は、液圧により粉末を加圧して充填するため、射出口(ゲート)の大きさより小さい微小な金型の隙間には粉末が充填され難く、専ら可塑化したバインダが充填されてしまうことから、製品の形状によっては均一な密度の製品を得ることが困難であるという問題を有している。
In the injection molding method, a product-shaped female mold was formed in the same manner as in plastic injection molding, using a raw material obtained by adding 40-60% by volume of a plastic binder such as a thermoplastic resin or wax to metal powder. A product having a complicated shape can be obtained by injection molding into a mold and shaping, and then removing the binder from the resulting molded body and then sintering. According to such an injection molding method, since the pressure acts evenly in a mold having a complicated shape due to the liquid pressure of the plasticized binder, a molded body having a relatively uniform density is obtained even in a complicated shape. be able to.
However, since the molded body contains about 40 to 60% by volume of the binder, it takes time to remove the binder, and there is a problem that the amount of shrinkage is large. In addition, in the injection molding method, the powder is filled by pressurizing with hydraulic pressure, so that it is difficult to fill the gap in the small mold smaller than the size of the injection port (gate), and the plasticized binder is filled exclusively. Therefore, depending on the shape of the product, there is a problem that it is difficult to obtain a product with a uniform density.

このような状況の下で、原料粉末に10〜45体積%の可塑性バインダを混合して金型成形する方法が提唱されている(特許文献1、2等)。この方法は、通常の金型成形法の場合よりも多量の可塑性バインダを添加した原料粉末の所定量を、金型の型内に投入して上下パンチにより加圧し、原料粉末を流動させながら微小な金型の凹部(成形体の凸部)へ充填するもので、多量の可塑性バインダにより原料粉末の流動性が高められるとともに、多量の可塑性バインダがパンチの押圧力を均一に伝達することにより、均一な密度にするという方法である。この方法によれば射出成形法専用の金型や射出装置を用いなくても、可塑性バインダの液圧により複雑な形状の成形体を比較的均一な成形密度で成形することができ、かつ射出成形の場合よりもバインダの量を低減でき、バインダの除去時間を短縮できるという利点がある。   Under such circumstances, a method has been proposed in which a raw material powder is mixed with 10 to 45% by volume of a plastic binder and molded by molding (Patent Documents 1 and 2, etc.). In this method, a predetermined amount of raw material powder to which a larger amount of a plastic binder is added than in the case of a normal mold forming method is put into a mold of a mold and pressed by an upper and lower punch, and while flowing the raw material powder, Filling the concave part of the mold (convex part of the molded body), the fluidity of the raw material powder is enhanced by a large amount of the plastic binder, and the large amount of the plastic binder uniformly transmits the pressing force of the punch, This is a method of uniform density. According to this method, a molded body having a complicated shape can be molded with a relatively uniform molding density by the hydraulic pressure of the plastic binder without using a mold or an injection device dedicated to the injection molding method, and injection molding. In this case, the amount of the binder can be reduced and the removal time of the binder can be shortened.

特開平02−141502号公報Japanese Patent Laid-Open No. 02-141502 特開平08−027501号公報Japanese Patent Laid-Open No. 08-027501

しかしながら、上記特許文献1、2等の多量の可塑性バインダを原料粉末に添加して金型成形法により成形する方法においては、理論的には加圧を上下パンチにより与えるため微小な金型の隙間へ粉末を充填し易いはずであるが、実際には均一な密度の製品が得られず、実用化には至っていないのが現状である。   However, in the method of adding a large amount of a plastic binder such as the above-mentioned Patent Documents 1 and 2 to the raw material powder and molding it by the mold molding method, theoretically, since the pressure is applied by the upper and lower punches, It should be easy to fill the powder, but in reality, a product with a uniform density cannot be obtained and has not yet been put to practical use.

そこで、本発明は、多量の可塑性バインダを原料粉末に添加して金型成形法により成形する方法を具体的に実現できるようにして、凹凸を有する製品を、パンチの座屈や折損を生じることなく、均一な密度で製造することができる製造方法を提供することを目的とする。また、その場合に、現有の金型成形用の設備を、特殊な改造等を施さなくともそのまま用いることができるようにすることを目的とする。   Therefore, the present invention is capable of concretely realizing a method of adding a large amount of a plastic binder to a raw material powder and molding it by a mold molding method, and causes a product having irregularities to cause buckling or breakage of a punch. It aims at providing the manufacturing method which can be manufactured with a uniform density. In this case, another object of the present invention is to make it possible to use the existing mold forming equipment as it is without any special modification.

上記目的を達成するため、本発明者等が鋭意研究を重ねた結果、金属粉末を可塑性バインダで結着する造粒粉末の性質を調整することにより、上記製造方法を具体的に実現できることが判明した。
本発明はこの知見によるもので、本発明の金型成形のための造粒粉末は、金属粉末、あるいは金属粉末と、金属粉末に対して1.4質量%以下の黒鉛粉末をバインダで結着して造粒した、金型成形のための造粒粉末であって、前記金属粉末が、粒径が250メッシュ(61μm)の篩目を通過する大きさであり、かつタップ密度が3.7Mg/m以上の鉄基合金粉末であり、前記バインダが、セルロースと、高級脂肪酸、その誘導体およびワックスのうちの少なくとも1種とからなるとともに、造粒粉末に占めるバインダの割合が5〜30体積%であり、造粒粉末の粒径が35メッシュ(447μm)の篩目を通過する大きさであり、かつ造粒粉末の見掛け密度が2.0Mg/m以上であることを特徴とする。
In order to achieve the above object, the present inventors have conducted extensive research, and as a result, it has been found that the above production method can be specifically realized by adjusting the properties of the granulated powder that binds the metal powder with a plastic binder. did.
The present invention is based on this finding, and the granulated powder for molding the mold of the present invention is a metal powder or a metal powder and a graphite powder of 1.4% by mass or less based on the metal powder is bound with a binder. Granulated powder for molding, wherein the metal powder is sized to pass through a sieve having a particle size of 250 mesh (61 μm), and the tap density is 3.7 Mg. / M 3 or more iron-based alloy powder, and the binder is composed of cellulose and at least one of higher fatty acids, derivatives thereof and wax, and the proportion of the binder in the granulated powder is 5 to 30 volumes. The granulated powder has a particle size passing through a mesh of 35 mesh (447 μm), and the apparent density of the granulated powder is 2.0 Mg / m 3 or more.

また、本発明の金型成形のための造粒粉末の製造方法は、粒径が好ましくは300メッシュ(46μm)の篩目を通過する大きさであり、かつタップ密度が3.7Mg/m以上の鉄基合金粉末からなる原料粉末、もしくは該鉄基合金粉末と、該鉄基合金粉末に対して1.4質量%以下の黒鉛粉末とからなる原料粉末を用意し、セルロースと、高級脂肪酸、その誘導体およびワックスのうちの少なくとも1種とからなり、前記原料粉末に対して5〜30体積%となる割合のバインダ成分を用意し、セルロースが可溶の分散媒中に前記原料粉末と前記バインダ成分を投入して混練する混練工程、混練物を、押出した後、転動して球状化させる造粒工程、および造粒物よりセルロースが分散した分散媒を揮発除去する乾燥工程、とからなることを特徴とする。 Moreover, the manufacturing method of the granulated powder for metal mold | die shaping | molding of this invention is a magnitude | size which passes a sieving of a 300 mesh (46 micrometers) particle diameter preferably, and a tap density is 3.7 Mg / m < 3 >. A raw material powder comprising the above iron-base alloy powder or a raw material powder comprising the iron-base alloy powder and a graphite powder of 1.4% by mass or less based on the iron-base alloy powder is prepared. Cellulose and higher fatty acid , A derivative component and at least one of waxes, and a binder component in a ratio of 5 to 30% by volume with respect to the raw material powder is prepared. In the dispersion medium in which cellulose is soluble, the raw material powder and the above A kneading step in which a binder component is added and kneaded, a granulation step in which the kneaded product is extruded and then rolled to spheroidize, and a drying step in which the dispersion medium in which cellulose is dispersed from the granulated product is volatilized and removed. To be And butterflies.

本発明の金型成形のための造粒粉末を用いることにより、多量の可塑性バインダを原料粉末に添加して金型成形法により成形する方法を具体的に実現することができるようになる。すなわち、金型成形法を用いて、一段パンチを用いてパンチの座屈や折損を防止しつつ、金型の隙間が微小であっても均一な密度で複雑な形状の成形体を成形できるようになるという格別の効果を有する。また、バインダの添加量が射出成形法の場合よりも少ないため、バインダの除去時間を短くすることができるという効果も有する。これらの効果により金型成形法による製品の適用範囲を拡大することができる。   By using the granulated powder for molding of the mold of the present invention, it becomes possible to specifically realize a method of molding by a mold molding method by adding a large amount of a plastic binder to the raw material powder. In other words, using a mold forming method, a single-stage punch can be used to prevent the buckling and breakage of the punch, and even with a small gap between the molds, it is possible to form a compact with a uniform density and a complex shape. It has a special effect of becoming. Further, since the amount of the binder added is smaller than that in the case of the injection molding method, the binder removal time can be shortened. With these effects, the range of application of the product by the mold forming method can be expanded.

以下に、本発明の金型成形のための造粒粉末、造粒粉末の製造方法、および該造粒粉末を用いた焼結部品の製造方法について説明する。   Below, the granulated powder for the metal mold | die shaping | molding of this invention, the manufacturing method of granulated powder, and the manufacturing method of the sintered component using this granulated powder are demonstrated.

[造粒粉末]
金属粉末を金型の微小な凹部に導入するためには、金属粉末は微細かつ球状であることが必要である。すなわち微細であることにより金型の微小な凹部に均一に充填することが可能となり、球状であることにより緻密に充填することが可能となる。
[Granulated powder]
In order to introduce the metal powder into the minute recesses of the mold, the metal powder needs to be fine and spherical. That is, it is possible to uniformly fill minute concave portions of the mold by being fine, and dense filling can be achieved by being spherical.

上記の微細な金属粉末という観点から、使用する金属粉末は、粒径が250メッシュの篩目を通過する大きさであることが必要である。粒径が250メッシュの篩目を通過する粉末は、最大粒径が61μmの粉末であり、これを超えるような大きな金属粉末が混入していると金型の凹部が微小な場合に、その凹部に充填され難くなって、均一な密度の成形体が得られなくなる。金属粉末の粒径が300メッシュの篩目を通過する粉末(最大粒径が46μmの粉末)であると、より微小な金型の凹部に充填されやすくなるため好ましい。その一方で、過度に微細な粉末はコストが高くなるため、金属粉末としては平均粒径が10〜30μm程度とすることが好ましい。   From the viewpoint of the fine metal powder, the metal powder to be used needs to have a size that allows the particle size to pass through a 250 mesh screen. The powder that passes through the mesh having a particle size of 250 mesh is a powder having a maximum particle size of 61 μm. When a large metal powder exceeding this size is mixed, the concave portion of the mold is very small. Therefore, it becomes difficult to obtain a molded body having a uniform density. It is preferable that the particle size of the metal powder is a powder that passes through a 300-mesh sieve (powder having a maximum particle size of 46 μm) because it is easy to fill the concave portion of a smaller mold. On the other hand, since an excessively fine powder increases the cost, the average particle size of the metal powder is preferably about 10 to 30 μm.

また、上記の球状の金属粉末の観点から、使用する金属粉末が鉄基合金粉末の場合、タップ密度が3.7Mg/m以上のものが適している。すなわち、球状に近い粉末ほど緻密に充填されやすいためタップ密度が向上する。タップ密度が3.7Mg/mを下回るような粉末は、粉末の丸みが乏しく、緻密に充填され難くなるため不適当である。 From the viewpoint of the above spherical metal powder, when the metal powder to be used is an iron-based alloy powder, a tap density of 3.7 Mg / m 3 or more is suitable. That is, since the powder close to a sphere tends to be densely packed, the tap density is improved. A powder having a tap density of less than 3.7 Mg / m 3 is unsuitable because the powder has poor roundness and is difficult to be densely packed.

また、原料粉末の各部で流動性を均一にして、金型の凹部への金属粉末の流動を均一にするため、金属粉末は各種金属の混合物を用いるより、単一の合金粉末を用いることが好ましい。また、単一の合金粉末を用いると、得られる焼結金属部品の各部で均一な組成となり、各部が均一な特性を有する製品となるという効果も得られる。さらに、金属粉末の硬さが低いと、パンチによる加圧時に金属粉末自体が塑性変形し易く、金属粉末の塑性変形が生じると金型の隙間部への金属粉末の流動が損なわれて、均一な密度となり難い、という知見を本発明者等は見出した。
これらの点から本発明においては金属粉末として鉄基合金粉末の使用を必須要件とするものである。すなわち、鉄基合金粉末は、Feを主成分とし、他の元素をFe基地中に固溶するため、粉末の硬さ(基地硬さ)が高くなり、塑性変形し難いものである。ただし、C分を全て鉄基合金粉末に固溶して与えると粉末が硬くなり過ぎて、成形時に金属粉末間の塑性変形が全く生じず、金属粉末どうしの絡みが全く発生しないため、成形体の形状の維持は成形潤滑剤のバインダ作用のみとなり、成形体強度が著しく低下する。またこのような成形体より成形潤滑剤の除去を行うと成形体の保形が難しくなり、型くずれし易くなる。このため、C分については黒鉛粉末の形態で1.4質量%以下であれば造粒粉末に添加しても差し支えない。
In addition, in order to make the fluidity uniform in each part of the raw material powder and make the flow of the metal powder into the recess of the mold uniform, the metal powder should be a single alloy powder rather than a mixture of various metals. preferable. In addition, when a single alloy powder is used, an effect is obtained in which each part of the sintered metal part to be obtained has a uniform composition, and each part has a product having uniform characteristics. Furthermore, if the hardness of the metal powder is low, the metal powder itself is likely to be plastically deformed when pressed by a punch, and if the metal powder is plastically deformed, the flow of the metal powder to the gap portion of the mold is impaired and uniform. The present inventors have found that it is difficult to achieve a high density.
From these points, in the present invention, it is an essential requirement to use an iron-based alloy powder as the metal powder. That is, the iron-base alloy powder has Fe as a main component and other elements are solid-dissolved in the Fe matrix, so that the hardness (base hardness) of the powder is high and plastic deformation is difficult. However, if the C content is all dissolved in the iron-based alloy powder, the powder becomes too hard, and no plastic deformation occurs between the metal powders during molding, and no entanglement between the metal powders occurs. The shape is maintained only by the binder action of the molding lubricant, and the strength of the molded body is significantly reduced. Further, when the molding lubricant is removed from such a molded body, it becomes difficult to retain the shape of the molded body, and the mold tends to lose its shape. For this reason, about C content, if it is 1.4 mass% or less in the form of graphite powder, it may be added to the granulated powder.

なお、鉄基合金粉末の硬さとしては、目安としてヴィッカース硬さが150Hv以上、さらに200〜800Hvの範囲の合金粉末を用いることが好ましい。ヴィッカース硬さが150Hvに満たない粉末であると、塑性変形し易く、成形体密度が不均一となりやすい。一方、鉄基合金粉末のヴィッカース硬さが800Hvを超えると、粉末が硬くなり過ぎて上記のような不具合が顕著となる。   The hardness of the iron-based alloy powder is preferably an alloy powder having a Vickers hardness of 150 Hv or more and more preferably in the range of 200 to 800 Hv as a guide. When the powder has a Vickers hardness of less than 150 Hv, plastic deformation is likely to occur, and the density of the molded body tends to be uneven. On the other hand, when the Vickers hardness of the iron-based alloy powder exceeds 800 Hv, the powder becomes too hard and the above-described problems become remarkable.

バインダは、セルロースと、高級脂肪酸、その誘導体あるいはワックスのうちの少なくとも1種からなる成形潤滑剤成分とから構成する。また、バインダは、造粒粉末に占める割合として5〜30体積%とする必要がある。   The binder is composed of cellulose and a molding lubricant component composed of at least one of higher fatty acids, derivatives thereof or waxes. Moreover, a binder needs to be 5-30 volume% as a ratio to granulated powder.

セルロースは、後述する造粒粉末の製造工程において、バインダ成分が溶解した溶液中に金属粉末、または金属粉末と黒鉛粉末を均一に分散させる分散剤の役割を担うとともに、混練物の強度を高めて、混練物の押出成形、切断、転動等の工程において、造粒粉末の保形の役割も担う。   Cellulose plays the role of a dispersing agent that uniformly disperses metal powder or metal powder and graphite powder in a solution in which the binder component is dissolved in the granulated powder manufacturing process described later, and increases the strength of the kneaded product. Also, in the process of extrusion molding, cutting, rolling, etc. of the kneaded product, it also plays the role of shape retention of the granulated powder.

高級脂肪酸、その誘導体あるいはおよびワックスは、造粒粉末においては金属粉末どうしや金属粉末と黒鉛粉末に結着し、通常の金型成形時に用いられる粉末容器(ホッパー)からフィーダ(粉箱)への粉末供給時や、フィーダ(粉箱)によるダイキャビティへの充填時には造粒粉末が破壊されず、圧縮成形時の加圧力で容易に解砕する程度の適度の強度を造粒粉末に付与する役割を担う。また、圧縮成形時においては、金属粉末間および金属粉末と金型壁面との摩擦を低減して上記の微細な金属粉末を金型の微細な凹部(成形体の凸部)に流動させる役割を担う。
このような役割を担う高級脂肪酸、その誘導体あるいはワックスは、金型成形法において、成形潤滑剤として用いられるものが使用でき、高級脂肪酸としてはステアリン酸や、その誘導体例えばエルカ酸アミド、その他ステアリン酸亜鉛やステアリン酸リチウム等が用いられる。ワックスとしてはエチレンビスステアロアミドやエチレンビスステアロアミドにラウリン酸アミド、ステアリン酸アミドなどの脂肪族カルボン酸モノアミドを添加したもの等が使用できる。また、これらは単一で、もしくは複数混合して用いることができる。
Higher fatty acids, their derivatives or waxes are bound to metal powders or between metal powders and graphite powders in granulated powders, and they are transferred from a powder container (hopper) used during normal mold molding to a feeder (powder box). The role of giving the granulated powder an appropriate strength to the extent that it can be easily crushed by the applied pressure during compression molding, when the powder is supplied or when the die cavity is filled with a feeder (powder box). Take on. Also, at the time of compression molding, the role of reducing the friction between the metal powder and between the metal powder and the mold wall surface and causing the fine metal powder to flow into the fine concave portions (convex portions of the molded body) of the mold. Bear.
Higher fatty acids, their derivatives or waxes that play such a role can be used as molding lubricants in the mold molding method. As the higher fatty acids, stearic acid, its derivatives such as erucic acid amide, and other stearic acids. Zinc, lithium stearate or the like is used. As the wax, ethylene bisstearamide or ethylene bisstearamide added with an aliphatic carboxylic acid monoamide such as lauric acid amide or stearic acid amide can be used. These may be used singly or in combination.

上記のセルロースと、成形潤滑剤成分とからなるバインダは、造粒粉末に占める割合として5体積%に満たないと、原料粉末の流動性が乏しくなり、金型の凹部に金属粉末を十分に流動させることができず、密度が低下することとなる。その一方で、造粒粉末に占めるバインダの割合が30体積%を超えると、バインダ量が過多となり、バインダの除去時間が長くかかるようになる上、成形体に占める金属粉末の割合が小さくなり収縮量が大きくなって寸法精度の低下が顕著となる。   If the binder composed of the cellulose and the molding lubricant component is less than 5% by volume in the granulated powder, the fluidity of the raw material powder becomes poor, and the metal powder flows sufficiently in the recesses of the mold. The density cannot be reduced. On the other hand, if the proportion of the binder in the granulated powder exceeds 30% by volume, the amount of the binder becomes excessive, it takes a long time to remove the binder, and the proportion of the metal powder in the compact becomes small and shrinks. As the amount increases, the dimensional accuracy decreases significantly.

バインダにおける、セルロースと、成形潤滑剤成分の割合は、セルロースの割合が過少となると上記のセルロースの作用が乏しくなり、セルロースの割合が過多となると上記の成形潤滑剤成分の作用が乏しくなる。このためバインダにおけるセルロースの割合を5〜15質量%とするとことが好ましい。   Regarding the ratio of cellulose to the molding lubricant component in the binder, if the cellulose ratio is too low, the effect of the cellulose becomes poor, and if the ratio of cellulose is excessive, the action of the molding lubricant component becomes poor. For this reason, it is preferable that the ratio of the cellulose in a binder shall be 5-15 mass%.

造粒粉末は、流動性が高く、見掛け密度が高いことが好ましい。すなわち、造粒粉末の流動性が高いと、ホッパー(粉末容器)からフィーダ(粉箱)への原料粉末の流れ、フィーダ(粉箱)からダイキャビティへの原料粉末の充填が良好となる。また見掛け密度が高いと、ダイキャビティに充填される原料粉末の量がばらつかず安定して成形体重量が安定する。このため造粒粉末は球状のものが好ましい。   The granulated powder preferably has high fluidity and high apparent density. That is, when the fluidity of the granulated powder is high, the flow of the raw material powder from the hopper (powder container) to the feeder (powder box) and the filling of the raw material powder from the feeder (powder box) to the die cavity become good. Further, when the apparent density is high, the amount of the raw material powder filled in the die cavity does not vary and the molded body weight is stabilized stably. For this reason, the granulated powder is preferably spherical.

この観点より、上記組成の造粒粉末は見掛け密度が2.0Mg/m以上とする必要がある。見掛け密度が2.0Mg/mより小さくなると、球状の度合いが小さくなって流動性が悪化するとともに、ダイキャビティへの充填量がばらついて成形体の重量がばらつくこととなる。 From this viewpoint, it is necessary that the granulated powder having the above composition has an apparent density of 2.0 Mg / m 3 or more. When the apparent density is smaller than 2.0 Mg / m 3 , the degree of sphericalness is reduced and the fluidity is deteriorated, and the filling amount into the die cavity varies, and the weight of the molded body varies.

また、造粒粉末の大きさは流動性およびダイキャビティへの充填性の点から、35メッシュの篩目で篩って通過した(粒径447μm以下の)粉末、好ましくは40メッシュの篩目で篩って通過した(粒径381μm以下の)粉末を用いる。35メッシュの篩目を通過しない粗大な造粒粉末は流動性が悪化するとともに、ダイキャビティへの充填量がばらつくこととなる。一方、造粒粉末が破砕して生じた鉄基合金粉末や、微小な造粒粉末が混在すると、流動性および充填性が低下することから、さらに200メッシュの篩目で篩って通過した(粒径74μm以下の)粉末、好ましくは100メッシュの篩目で篩って通過した(粒径140μm以下の)粉末を除去して用いることが好ましい。   The size of the granulated powder is a powder that has passed through a 35 mesh screen (particle size of 447 μm or less), preferably 40 mesh screen, from the viewpoint of fluidity and filling into the die cavity. Use powder that passed through a sieve (particle size of 381 μm or less). Coarse granulated powder that does not pass through a 35 mesh screen deteriorates fluidity and varies the filling amount into the die cavity. On the other hand, when the iron-based alloy powder generated by crushing the granulated powder and the minute granulated powder are mixed, the fluidity and the filling property are lowered, so that the powder passed through a 200 mesh sieve ( It is preferable to use after removing the powder (particle size of 74 μm or less), preferably the powder passed through a 100 mesh sieve (particle size of 140 μm or less).

[造粒粉末の製造方法]
造粒方法としては、多種の造粒方法が存在し、基本的な特徴より、転動型造粒法、流動層型造粒法、押出型造粒法、圧縮型造粒法、解砕型造粒法、噴射型造粒法に大別される。
転動型造粒法は、回転ドラム、回転パンなどにより材料に転動作用を与え、凝集ないしは被覆によって造粒する方法である。流動層型造粒法は、乾燥型の流動層(噴流層)において液体バインダを散液して凝集造粒したり、散液中の溶質を流動化粒子に被覆造粒する方法である。押出型造粒法は、スクリュー、ピストンまたはロール式の押出し機によって可塑性材料をダイスより押し出して円筒状の造粒物とする方法である。圧縮型造粒法は、乾燥粉体または低湿粉体をポンチ、モールドなどを利用して圧縮成形する方法である。解砕型造粒法は、粉体凝集物(成形物)を回転ブレードにより切断し、細粒状の凝集造粒物とする方法である。噴射型造粒法は、空気中、油中または水中において溶融物質を分散させ、冷却固化により造粒物とする方法である。
また、造粒の基本操作の前処理として、混合、捏和、溶解、溶融等の調整を行ったり、後処理として分級、乾燥、焼固、解砕等の操作をともない、これら諸操作の機構を同時に備えた形式のものが多数存在する。本願発明は、これら多種にわたる造粒方法において、上記特性の造粒粉末を得るため、本発明者等が鋭意研究して、その最適な組み合わせを見出した結果なされたものであり、以下に、金型成形法に好適な本発明の造粒粉末の製造方法を説明する。
[Production method of granulated powder]
As granulation methods, there are various types of granulation methods. From basic features, rolling granulation method, fluidized bed granulation method, extrusion granulation method, compression granulation method, crushing type It is roughly divided into granulation method and injection type granulation method.
The rolling type granulation method is a method in which a material is used for rolling operation by a rotating drum, a rotating pan, etc., and granulated by agglomeration or coating. The fluidized bed granulation method is a method in which a liquid binder is sprinkled in a dry fluidized bed (spouted bed) to perform agglomeration granulation, or a solute in the sprinkling is coated and granulated on fluidized particles. The extrusion granulation method is a method in which a plastic material is extruded from a die by a screw, piston or roll type extruder to form a cylindrical granulated product. The compression granulation method is a method in which a dry powder or a low-humidity powder is compression-molded using a punch, a mold or the like. The pulverization type granulation method is a method in which a powder aggregate (molded product) is cut with a rotating blade to form a fine aggregated granulated product. The injection-type granulation method is a method in which a molten substance is dispersed in air, oil, or water, and is granulated by cooling and solidifying.
In addition, mixing, kneading, dissolution, melting, etc. are adjusted as pretreatment for basic operations of granulation, and operations such as classification, drying, baking, crushing, etc. are performed as post-treatments. There are a number of types that have both. The present invention has been made as a result of the inventors' diligent research and finding the optimum combination in order to obtain a granulated powder having the above characteristics in these various granulation methods. A method for producing the granulated powder of the present invention suitable for the mold forming method will be described.

造粒粉末の製造工程を図1に示す。以下、図1を参照しながら、各工程の説明を行う。原料粉末は上記のとおりであり、粒径が250メッシュ(61μm)の篩目を通過する大きさで、かつタップ密度が3.7Mg/m以上の鉄基合金粉末を用いることができる。また、この鉄基金属粉末に対して1.4質量%以下の黒鉛粉末を添加してもよい。バインダ成分としてはセルロースと成形潤滑剤成分の2種類を用いる。 The manufacturing process of granulated powder is shown in FIG. Hereinafter, each step will be described with reference to FIG. The raw material powder is as described above, and an iron-base alloy powder having a particle size passing through a mesh having a mesh size of 250 mesh (61 μm) and a tap density of 3.7 Mg / m 3 or more can be used. Moreover, you may add 1.4 mass% or less graphite powder with respect to this iron-based metal powder. Two types of binder components, cellulose and a molding lubricant component, are used.

用意した原料粉末1と成形潤滑剤成分2を、図1の混練工程に示すように、セルロースを分散する分散媒3とともに混練装置(ニーダ)4に投入し、液体中に原料粉末が均一に分散するよう、撹拌、混合、捏和を行い混練物を作製する。図1は混練装置4の一例であり、羽根部5を有する軸6を回転させることにより液体と原料粉末に撹乱流動運動を与えて液体中に原料粉末を均一に混練するものである。軸6の上に羽根部5を複数備えたものもある。なお、混練する際に分散媒中に界面活性剤を添加すると、分散中に原料粉末がより均一に分散する効果、もしくはより短時間で均一に分散する効果が得られるので好ましい。また、セルロースは水分を吸収して膨潤して分散媒中に均一に分散するのに時間がかかるため、混練装置への投入に先立ち、予めセルロースを分散媒中に分散させておくことが好ましい。セルロースの分散媒としては水、エタノール、ポリオキシエチレン、ポリオキシプロピレン、アルキルエーテルおよびそれらの混合物などが使用でき、界面活性剤の例としては、商品名:エマルゲン、アンヒトールなどの非イオン系または両性活性剤が用いられる。   As shown in the kneading step of FIG. 1, the prepared raw material powder 1 and the molded lubricant component 2 are put into a kneading device (kneader) 4 together with a dispersion medium 3 for dispersing cellulose, and the raw material powder is uniformly dispersed in the liquid. The kneaded product is prepared by stirring, mixing, and kneading. FIG. 1 shows an example of a kneading device 4 in which a raw material powder is uniformly kneaded in a liquid by giving a disturbing flow motion to the liquid and the raw material powder by rotating a shaft 6 having blade portions 5. Some have a plurality of blade portions 5 on the shaft 6. In addition, it is preferable to add a surfactant to the dispersion medium at the time of kneading because an effect of dispersing the raw material powder more uniformly during the dispersion or an effect of uniformly dispersing in a shorter time can be obtained. In addition, since it takes time for cellulose to absorb water and swell and disperse uniformly in the dispersion medium, it is preferable to disperse cellulose in the dispersion medium in advance prior to introduction into the kneading apparatus. As a dispersion medium for cellulose, water, ethanol, polyoxyethylene, polyoxypropylene, alkyl ether, and a mixture thereof can be used. Examples of surfactants are nonionic or amphoteric products such as trade names: Emulgen, Amphital, etc. An activator is used.

得られた混練物7を、図1の押出工程に示すように、押出装置8を用いて押出成形して、混練物を適当な大きさのペレット(円柱状混練物)9とする。図1に示した押出装置8は前押出式スクリュー造粒機といわれるもので、スクリューの推力により混練物を加圧、圧縮し、先端部に取り付けたダイス10により混練物を押し出し成形するものであり、最も標準的な機構のものである。混練物が長く紐状に押し出される場合は適当な長さに切断しても良い。この場合は、例えば図1のダイス10の前面に回転するカッタ等を設け、適当な回転数でカッタを回転させれば適当な長さに切断できる。得られた押出混練物は、略円柱状のペレット形状を呈する。上記の前押出式スクリュー造粒機の他に、横押出式スクリュー造粒機、ロール型押出造粒機、バスケット式造粒機、歯車式押出造粒機、シリンダー式押出造粒機等各種の押出造粒装置を用いることができる。   As shown in the extrusion process of FIG. 1, the obtained kneaded product 7 is extrusion-molded using an extrusion apparatus 8, and the kneaded product is made into pellets (columnar kneaded product) 9 of an appropriate size. The extrusion device 8 shown in FIG. 1 is a pre-extrusion type screw granulator, which pressurizes and compresses the kneaded material by the thrust of the screw, and extrudes the kneaded material with a die 10 attached to the tip. Yes, with the most standard mechanism. When the kneaded material is extruded into a string shape for a long time, it may be cut into an appropriate length. In this case, for example, a rotating cutter or the like is provided on the front surface of the die 10 in FIG. 1, and the cutter can be cut to an appropriate length by rotating the cutter at an appropriate rotational speed. The obtained extruded kneaded product has a substantially cylindrical pellet shape. In addition to the above-mentioned pre-extrusion type screw granulator, various types such as horizontal extrusion type screw granulator, roll type extrusion granulator, basket type granulator, gear type extrusion granulator, cylinder type extrusion granulator, etc. An extrusion granulator can be used.

得られた略円柱状混練物9を、図1の転動工程に示すように、転動装置11を用いて転動運動させて略球状の混練物12とする。図1は球形整粒機として知られる転動装置の例であり、投入された略円柱状混練物9は、水平に回転するプレート13の遠心力と、プレートに設けられた凹凸の摩擦力とによりケーシング内壁面で捩れながら転動運動をしつつ回転し、この転動運動により混練物を略球状に整粒するものである。球状化転動工程としては、適当な隙間に調整され、互いに逆方向に回転する上下のプレート間で転動運動させて球状化させてもよい。   The substantially cylindrical kneaded material 9 obtained is rolled by using a rolling device 11 as shown in the rolling step of FIG. FIG. 1 shows an example of a rolling device known as a spherical sizing machine. The substantially columnar kneaded material 9 that has been put in is composed of a centrifugal force of a plate 13 that rotates horizontally, and an uneven frictional force provided on the plate. Therefore, the kneaded material is rotated in a rolling motion while twisting on the inner wall surface of the casing. As the spheroidizing rolling process, the spheroidizing may be performed by rolling between upper and lower plates which are adjusted to an appropriate gap and rotate in opposite directions.

このような混練物の押出工程、切断工程、および転動工程を経ることによって、混練物を略球状で、かつ均一の径にすることができる。本製造方法において、所望の径の造粒粉末を得るには、押出装置8の押出孔10aの径を適切なものに設定すればよく、極めて簡便に略球状で、かつ均一な造粒粉末を製造することができる。すなわち略球状の混練物の径は後述の乾燥工程を経てもほとんど変化せず、上記の押出工程から転動工程を経て得られる略球状の混練物の大きさが造粒粉末の大きさとなる。したがって、造粒粉末を35メッシュの篩目で篩って通過する(粒径447μm以下の)粉末とするためには、分散媒除去による体積減少を考慮して押出装置の押出孔の径を450μm程度にすればよく、造粒粉末を40メッシュの篩目で篩って通過する(粒径381μm以下の)粉末とするためには押出孔の径を400μm程度にすればよい。   By passing through the extrusion process, the cutting process, and the rolling process of such a kneaded product, the kneaded product can be made into a substantially spherical and uniform diameter. In this production method, in order to obtain a granulated powder having a desired diameter, the diameter of the extrusion hole 10a of the extrusion device 8 may be set to an appropriate one, and an extremely spherical and uniform granulated powder can be obtained very easily. Can be manufactured. That is, the diameter of the substantially spherical kneaded material hardly changes even after the drying step described later, and the size of the substantially spherical kneaded material obtained through the rolling step from the extrusion step becomes the size of the granulated powder. Accordingly, in order to obtain a granulated powder that passes through a 35 mesh sieve (particle size of 447 μm or less), the diameter of the extrusion hole of the extrusion device is set to 450 μm in consideration of volume reduction due to removal of the dispersion medium. In order to make the granulated powder into a powder that passes through a 40 mesh sieve (particle size of 381 μm or less), the diameter of the extrusion hole may be about 400 μm.

上記のようにして得られた略球状の混練物より分散媒を揮発除去する乾燥工程を経ることにより造粒粉末16が得られる。分散媒の除去方法としては、単純に加熱して分散媒を気化蒸発させてもよく、真空環境下に曝して真空乾燥してもよい。図1は、乾燥装置14の一例で、バンド乾燥機として知られるもので、穴の空いたベルト15上で略球状の混練物12を搬送しつつ、ベルトの下部より温風を与えて加熱し、混練物中の分散媒を揮発除去するものである。ベルトを加熱炉に通して上方および/または側面から混練物を加熱してもよい。すなわち、混練物中より分散媒を揮発除去できるものであれば、いずれの装置を用いても差し支えない。   The granulated powder 16 is obtained through a drying process in which the dispersion medium is volatilized and removed from the substantially spherical kneaded product obtained as described above. As a method for removing the dispersion medium, the dispersion medium may be simply heated to vaporize and evaporate, or may be exposed to a vacuum environment and vacuum dried. FIG. 1 shows an example of a drying device 14, which is known as a band dryer. While conveying a substantially spherical kneaded material 12 on a belt 15 with holes, it is heated by applying warm air from the bottom of the belt. The dispersion medium in the kneaded product is removed by volatilization. The kneaded material may be heated from above and / or from the side by passing the belt through a heating furnace. That is, any apparatus can be used as long as the dispersion medium can be volatilized and removed from the kneaded product.

ただし、分散媒の揮発除去を行う乾燥温度において、バインダ成分のうち、成形潤滑剤成分の一部が溶融状態となっている必要がある。すなわち、バインダ成分が分散媒中に溶解した溶液の時点では溶液はゲル状であり原料粉末を結着しているが、分散媒が揮発した時点でこれらのバインダ成分が溶融していないと、原料粉末の結着が損なわれて、せっかく略球状に形成した造粒粉末が崩壊する虞が生じる。したがって、分散媒と、成形潤滑剤成分は、分散媒の気化温度以下に成形潤滑剤成分の融点が存在する組み合わせを選定する必要がある。   However, at the drying temperature at which the dispersion medium is volatilized and removed, part of the molded lubricant component needs to be in a molten state among the binder components. That is, at the time of the solution in which the binder component is dissolved in the dispersion medium, the solution is in a gel state and binds the raw material powder, but when these binder components are not melted at the time when the dispersion medium volatilizes, the raw material The binding of the powder is impaired, and there is a possibility that the granulated powder formed into a substantially spherical shape collapses. Therefore, it is necessary to select a combination of the dispersion medium and the molded lubricant component in which the melting point of the molded lubricant component exists below the vaporization temperature of the dispersion medium.

ところで、水は、極めて容易に入手可能で、かつ揮発しても人体や環境に何ら悪影響をもたらさないため、分散媒として特に推奨される。このような水を分散媒として使用するにあたっては、水の気化温度以下に融点があるステアリン酸(融点:60℃)やエルカ酸アミド(融点:80℃)を組み合わせて用いることが好ましい。特にステアリン酸は、粉末冶金用の成形潤滑剤として多量に流通しており、安価に入手可能であるため、これを用いることが好ましい。
このように分散媒として水を用い、バインダ成分としてセルロースと、ステアリン酸およびエルカ酸アミドのうちの少なくとも1種とからなるものを用いた場合、上記のようにして得られた略球状混練物を80〜120℃の温度範囲に加熱すれば、水分が揮発してもバインダ成分の一部(ステアリン酸およびエルカ酸アミドのうちの少なくとも1種)が溶融して原料粉末を結着しており、造粒粉末の崩壊を招くことなく、造粒粉末を乾燥することができる。なお、分散媒として水を用いる場合、原料粉末である鉄基合金粉末の表面に錆が発生する虞があるため、分散媒中に防錆剤を適量添加してもよい。
By the way, water is particularly recommended as a dispersion medium because it is very easily available and does not cause any adverse effects on the human body or the environment even if it volatilizes. In using such water as a dispersion medium, it is preferable to use stearic acid (melting point: 60 ° C.) or erucic acid amide (melting point: 80 ° C.) having a melting point below the vaporization temperature of water. In particular, stearic acid is distributed in a large amount as a molding lubricant for powder metallurgy and is available at low cost, so that it is preferable to use this.
Thus, when water is used as the dispersion medium and cellulose is used as the binder component and at least one of stearic acid and erucic acid amide is used, the substantially spherical kneaded product obtained as described above is used. If heated to a temperature range of 80 to 120 ° C., even if the water volatilizes, a part of the binder component (at least one of stearic acid and erucic acid amide) melts and binds the raw material powder, The granulated powder can be dried without causing the granulated powder to collapse. In addition, when using water as a dispersion medium, since there exists a possibility that rust may generate | occur | produce on the surface of the iron-base alloy powder which is a raw material powder, you may add an appropriate amount of a rust preventive agent in a dispersion medium.

上記の工程により得られた造粒粉末を目的とする粒度とするため、35メッシュ(447μm)の篩目、好ましくは40メッシュ(381μm)の篩目で篩って通過した粉末を用いる。ただし、上記の造粒工程において破砕した造粒粉末に由来する微小の鉄基合金粉末をも含むものであるため、さらに200メッシュ(74μm)、好ましくは100メッシュ(140μm)の篩目で篩って、篩目上に残留した造粒粉末を用いる。このように分級した造粒粉末は径の下限が74μm、好ましくは140μmであり、径の上限が447μm、好ましくは381μmの範囲となる。   In order to make the granulated powder obtained by the above steps into a target particle size, a powder that passes through a 35 mesh (447 μm) sieve, preferably a 40 mesh (381 μm) sieve, is used. However, since it also contains a fine iron-based alloy powder derived from the granulated powder crushed in the granulation step, it is further sieved with a mesh of 200 mesh (74 μm), preferably 100 mesh (140 μm), Use the granulated powder remaining on the sieve mesh. The granulated powder thus classified has a lower limit of 74 μm, preferably 140 μm, and an upper limit of 447 μm, preferably 381 μm.

[焼結部品の製造方法]
上述した本発明の造粒粉末は、略球状で、かつ均一な大きさであり、一般の金型成形法の場合に用いる原料粉末よりも流動性に優れ、一般の金型成形法で行われる粉末容器(ホッパー)からフィーダ(粉箱)への粉末供給や、フィーダ(粉箱)によるダイキャビティへの充填を容易に行うことができる。
また、充填した造粒粉末の圧縮成形は、一般の金型成形法で行われる、型孔を有する金型と、前記型孔と摺動自在に嵌合する一対の上パンチと下パンチとを備える成形装置を用い、前記金型の型孔と前記下パンチとにより形成されるキャビティに前記原料粉末を充填して前記上パンチと前記下パンチにより圧縮成形することで行われる。このとき、造粒粉末は解砕され、鉄基合金粉末は、(1)塑性変形し難く、(2)微細な粒径であり、かつ(3)球形に近い丸みを帯びた粒形であって、成形潤滑剤成分が上記(1)〜(3)の特徴を有する鉄基合金粉末間および鉄基合金粉末と金型壁面との摩擦を低減して、鉄基合金粉末を金型の微小な凹部(成形体の凸部)に流動させ、充填することから、各部で均一な成形密度の成形体が得られる。
[Method of manufacturing sintered parts]
The above-mentioned granulated powder of the present invention is substantially spherical and has a uniform size, and is more fluid than the raw material powder used in the general mold molding method, and is performed by a general mold molding method. It is possible to easily supply the powder from the powder container (hopper) to the feeder (powder box) and to fill the die cavity with the feeder (powder box).
Further, compression molding of the filled granulated powder is performed by a general mold forming method, and includes a mold having a mold hole, and a pair of upper punch and lower punch that are slidably fitted in the mold hole. This is performed by using a molding apparatus provided, filling the cavity formed by the mold hole of the mold and the lower punch with the raw material powder, and compression molding the upper punch and the lower punch. At this time, the granulated powder was crushed, and the iron-based alloy powder was (1) difficult to plastically deform, (2) a fine particle size, and (3) a rounded particle shape close to a spherical shape. Thus, the friction of the forming lubricant component between the iron-base alloy powders having the characteristics (1) to (3) and between the iron-base alloy powder and the mold wall surface is reduced. Since it is made to flow and fill in a concave part (convex part of a molded object), the molded object of a uniform molding density is obtained in each part.

また、造粒粉末は上記のように流動性および充填性に優れているので、幅の小さい凹部および/または凸部や、製品各部で高さの異なる凹部および/または凸部を有する製品であっても、上下パンチとして一対の一段パンチを用いて充分に均一な成形密度とすることができる。このため金型機構を複雑化するとともに、折損や座屈を生じ易い幅の小さいパンチを用いる多段パンチの使用を省いて簡略化することができる。また、多段パンチを使用する場合であっても、造粒粉末の流動性および充填性が高いことから金型のキャビティ内部での鉄基合金粉末の流動が効率的に行われ、従来よりも低圧力で圧縮成形できるため、幅の小さいパンチを用いても折損や座屈の虞を格段に小さくすることができる。   Further, since the granulated powder is excellent in fluidity and filling property as described above, it is a product having a concave portion and / or a convex portion with a small width and a concave portion and / or a convex portion having different heights in each part of the product. However, a sufficiently uniform molding density can be obtained by using a pair of one-stage punches as the upper and lower punches. For this reason, it is possible to simplify the mold mechanism while omitting the use of a multi-stage punch that uses a punch having a small width that easily causes breakage or buckling. Even when multi-stage punches are used, the flowability and filling properties of the granulated powder make it possible to efficiently flow the iron-based alloy powder inside the mold cavity, which is lower than before. Since compression molding can be performed with pressure, the possibility of breakage or buckling can be greatly reduced even when a punch having a small width is used.

上記の成形は、通常の粉末冶金法の場合と同様に、室温下(冷間)で行うことができる。この場合、金属粉末は成形潤滑剤により金属粉末間ならびに金型内壁と金属粉末間で滑りながら微細な金型隙間に流動して充填される。また、金型を成形潤滑剤の軟化点温度以上に加熱して温間で成形しても良い。この場合は軟化した成形潤滑剤が加圧時に流動し易くなり、原料粉末の流動性が向上するとともに、加圧時の圧力が軟化した成形潤滑剤により各部で均一に伝播するためより均一な成形密度が得やすい。ただし成形後の抜き出し時に成形潤滑剤が軟化していると抜き出し時に成形体の型くずれが生じ易く、また成形潤滑剤が金型内壁に付着したりするため、抜き出しは成形潤滑剤の軟化点以下に冷却した後に行う必要がある。
このような成形を行うため、金型に加熱手段と冷却手段を設けて、加熱と冷却を交互に行っても良いが、連続成形時の金型表面での発熱により成形潤滑剤の軟化点温度をちょうど超えながら成形し、圧縮完了後に金型の熱伝導により金型壁面の温度が低下して成形潤滑剤の軟化点温度以下の温度となるような成形潤滑剤を選定して成形を行う。あるいは、上記のような状態で成形できる温度に金型を加熱して成形を行うことにより、別途冷却手段を設けずとも、上記の冷間成形と温間成形の利点を兼ね備えた成形を行うことができる。
The above molding can be performed at room temperature (cold) as in the case of a normal powder metallurgy method. In this case, the metal powder flows and fills in the fine mold gap while sliding between the metal powder and between the mold inner wall and the metal powder by the molding lubricant. Alternatively, the mold may be warmly molded by heating it above the softening point temperature of the molding lubricant. In this case, the softened molding lubricant is easy to flow during pressurization, improving the fluidity of the raw material powder, and the pressure during pressurization propagates uniformly in each part due to the softened molding lubricant. Easy to obtain density. However, if the molding lubricant is softened at the time of extraction after molding, the molded product will be easily deformed at the time of extraction, and the molding lubricant will adhere to the inner wall of the mold, so the extraction will be below the softening point of the molding lubricant. Need to be done after cooling.
In order to perform such molding, the mold may be provided with heating means and cooling means, and heating and cooling may be performed alternately. However, the softening point temperature of the molding lubricant due to heat generation on the mold surface during continuous molding. After molding is completed, molding is performed by selecting a molding lubricant that lowers the temperature of the mold wall surface due to the heat conduction of the mold and is equal to or lower than the softening point temperature of the molding lubricant. Alternatively, by performing molding by heating the mold to a temperature that can be molded in the above-described state, it is possible to perform molding that combines the advantages of cold molding and warm molding without providing a separate cooling means. Can do.

上記により得られた成形体は、射出成形法と同様にバインダ成分(本願の場合は成形潤滑剤)を多量に含むものであり、射出成形法の場合と同様に、バインダ成分の揮発温度以上に加熱してバインダ成分を揮発除去する。このとき用いたバインダ成分の熱分解温度近傍の昇温速度が速いと、バインダ成分が急激にガス化して膨張し、成形体の型くずれを引き起こすので、少なくともバインダ成分の熱分解温度近傍の昇温は徐々に行う必要がある。
ただし本発明の造粒粉末は、射出成形法の場合に比してバインダ成分の添加量が少ないため、射出成形法の場合よりも短時間でバインダ除去工程を完了することができる。
The molded body obtained as described above contains a large amount of a binder component (in the case of the present application, a molding lubricant) in the same manner as in the injection molding method, and, as in the case of the injection molding method, exceeds the volatilization temperature of the binder component. The binder component is volatilized and removed by heating. If the rate of temperature increase near the thermal decomposition temperature of the binder component used at this time is high, the binder component rapidly gasifies and expands, causing the mold to lose its shape. Need to be done gradually.
However, since the granulated powder of the present invention has a smaller amount of the binder component compared to the injection molding method, the binder removal step can be completed in a shorter time than in the injection molding method.

上記の成形潤滑剤の除去を行った後の成形体では、金属粉末どうしは未だ拡散しておらず、金属的に結合していない状態であり、極めて脆いものである。そこで金属粉末どうしを金属的に拡散結合させるため焼結を行う。
焼結温度は金属粉末の組成により異なるが、1000〜1300℃程度が適当である。焼結工程では、金属粉末として上記のように微細でかつ球状に近いものを用いるので金属粉末の接触面積が大きく、そのため焼結による緻密化が進行しやすく、上記温度で密度比が80%以上の緻密な焼結体が得られる。また、焼結時の寸法変化は成形体密度の影響を受けることが知られているが、上記の成形体は各部で均一な密度を有することから焼結時の各部での寸法変化が一様であり、得られる焼結金属部品は寸法精度に優れたものとなる。
In the molded body after removing the molding lubricant described above, the metal powders are not yet diffused, are not metallicly bonded, and are extremely brittle. Therefore, sintering is performed in order to diffusely bond metal powders in a metallic manner.
The sintering temperature varies depending on the composition of the metal powder, but about 1000 to 1300 ° C is appropriate. In the sintering process, the metal powder that is fine and nearly spherical as described above is used, so the contact area of the metal powder is large, so that densification by sintering is likely to proceed, and the density ratio is 80% or more at the above temperature. A dense sintered body is obtained. In addition, it is known that the dimensional change during sintering is affected by the density of the compact, but since the above compact has a uniform density in each part, the dimensional change in each part during sintering is uniform. Thus, the obtained sintered metal part is excellent in dimensional accuracy.

[実施例1]
鉄基合金粉末として、表1に示す粒径およびタップ密度のJIS規格のSUS440C相当の鉄基合金粉末を用意した。また、黒鉛粉末(アズベリー(株)製、商品名SW1651)、セルロース(日本曹達(株)製、商品名HPC−M)、成形潤滑剤としてステアリン酸(大日化学工業(株)製、商品名W−02)を用意した。
分散媒として水を用い、これら鉄基合金粉末、黒鉛粉末、セルロース、成形潤滑剤を表1に示す割合で水とともに混練装置(不二パウダル(株)製、商品名ニーダー)に投入し混練した。なお、水は、原料粉末10kgに対して600gの割合で投入した。
得られた混練物を押出装置(不二パウダル(株)製、商品名ドームグラン)に投入して、φ0.3mmのペレット形状に押し出し成形した。次いで、ペレット状混練物を球形整粒機(不二パウダル(株)製、商品名マルメライザー)に投入して転動させてφ0.35mmの略球状の混練物とした。得られた略球状混練物を乾燥機で100℃に加熱して、水分を除去して造粒粉末を作製した。
得られた造粒粉末を35メッシュ(447μm)の篩目で篩って、該篩目を通過した粉末をさらに100メッシュ(140μm)の篩目で篩って篩目の上に残留した粉末、すなわち粒径が140〜447μmの造粒粉末を実験用造粒粉末として調製した。なお造粒粉末の見掛け密度は2.3Mg/mであった。
[Example 1]
As the iron-based alloy powder, an iron-based alloy powder equivalent to JIS 440C of JIS standard having a particle size and tap density shown in Table 1 was prepared. In addition, graphite powder (manufactured by Asbury Co., Ltd., trade name SW1651), cellulose (manufactured by Nippon Soda Co., Ltd., trade name HPC-M), and stearic acid (manufactured by Dainichi Chemical Co., Ltd., trade name) as a molding lubricant. W-02) was prepared.
Using water as a dispersion medium, these iron-based alloy powder, graphite powder, cellulose, and molding lubricant were mixed with water in the proportions shown in Table 1 in a kneading apparatus (Fuji Powder Co., Ltd., trade name kneader) and kneaded. . Water was added at a rate of 600 g per 10 kg of the raw material powder.
The obtained kneaded product was put into an extrusion apparatus (trade name Dome Gran manufactured by Fuji Paudal Co., Ltd.) and extruded into a pellet shape of φ0.3 mm. Next, the pelletized kneaded product was put into a spherical granulator (trade name Malmerizer, manufactured by Fuji Powder Co., Ltd.) and rolled to obtain a substantially spherical kneaded product having a diameter of 0.35 mm. The obtained substantially spherical kneaded product was heated to 100 ° C. with a dryer to remove moisture and produce a granulated powder.
The obtained granulated powder is sieved with a mesh of 35 mesh (447 μm), and the powder that has passed through the mesh is further sieved with a mesh of 100 mesh (140 μm), and the powder remains on the mesh, That is, a granulated powder having a particle size of 140 to 447 μm was prepared as an experimental granulated powder. The apparent density of the granulated powder was 2.3 Mg / m 3 .

得られた造粒粉末を用いて、金型成形における造形性の評価を行った。造形性の評価は次のような方法によって行った。すなわち、図2に示すような、□50mm×50mm、パンチ面下端面の幅が各5mm、凹部深さが20mm、凹部の底の幅が5mmの3本の縦溝22を形成した一段パンチを上パンチ21として用い、□50mm×50mmの平坦な一段パンチを下パンチ23として用いた。さらに、図3(a)に示すように造粒粉末16を金型24のキャビティ25に充填した後、図3(b)に示すように上パンチ21を下降させて造粒粉末を圧縮成形した。
このときの上パンチ21の縦溝22の凹部への造粒粉末16の流入具合を、成形後の成形体の凸部の盛り上がり高さを測定することにより評価した。すなわち、造粒粉末の流動性および充填性が良い造粒粉末の場合は、図4(a)に示すように、凸部高さが20mmに形成されるが、原料粉末の流動性および充填性が悪い造粒粉末の場合は、図4(b)に示すように、凸部高さが不充分となる。この成形後の成形体の凸部の盛り上がり高さを測定した結果を表2に併せて示す。
The obtained granulated powder was used to evaluate the formability in mold molding. The evaluation of the formability was performed by the following method. That is, as shown in FIG. 2, a single-stage punch having three vertical grooves 22 each having a square of 50 mm × 50 mm, a width of the lower end surface of the punch surface of 5 mm, a recess depth of 20 mm, and a recess bottom width of 5 mm is formed. A flat single-stage punch of 50 mm × 50 mm was used as the lower punch 23 as the upper punch 21. Further, as shown in FIG. 3 (a), the granulated powder 16 is filled into the cavity 25 of the mold 24, and then the upper punch 21 is lowered to compress the granulated powder as shown in FIG. 3 (b). .
At this time, the inflow of the granulated powder 16 into the concave portion of the vertical groove 22 of the upper punch 21 was evaluated by measuring the raised height of the convex portion of the molded body after molding. That is, in the case of a granulated powder having good fluidity and filling property of the granulated powder, as shown in FIG. 4 (a), the convex part height is formed to 20 mm. However, in the case of a granulated powder having a poor quality, the height of the convex portion is insufficient as shown in FIG. Table 2 also shows the results of measuring the raised height of the convex portions of the molded body after molding.

図3(a)に示す金型の型孔と上記下パンチとにより形成されるダイキャビティへの造粒粉末の充填は、通常の金型成形法において使用されている一般的なフィーダ(粉箱)を用いて行った。すなわち、高架されて原料粉を貯えるホッパーからフレキシブルホースで無底箱上のフィーダを油圧シリンダーなどの駆動装置に連結して金型の上面で前進させ、ダイキャビティに原料粉末を落とし込み、次いでダイキャビティ内に充填され堆積した原料粉末の上面をフィーダの下縁で平らに擦り切りつつ待機位置まで後退させて充填の1サイクルを行う方法である。   The filling of the granulated powder into the die cavity formed by the mold hole of the mold shown in FIG. 3 (a) and the lower punch is a general feeder (powder box) used in a normal mold forming method. ). That is, the feeder on the bottomless box is connected to a driving device such as a hydraulic cylinder by a flexible hose from the elevated hopper that stores the raw material powder, and is advanced on the upper surface of the mold, and the raw material powder is dropped into the die cavity. This is a method of performing one filling cycle by retreating the upper surface of the raw material powder filled and deposited in the inside to the standby position while rubbing flatly at the lower edge of the feeder.

なお、表1において、鉄基合金粉末の粒径の篩欄に記載した数字は篩目のメッシュ番号であり、その欄に記載した負の数値はそのメッシュ番号の篩目を通過した粉末を用いたことを示すものである。またその右隣欄の粒径(μm)はその場合の鉄基合金粉末の最大粒径を示す。
また、表1および表2の試料番号20は一般に行われている金型成形法の例、すなわち従来例であり、通常の粒径の純鉄粉末に2質量%の電解銅粉末と1.0質量%の黒鉛粉末を配合するとともに成形潤滑剤としてステアリン酸粉末を配合して混合した混合粉末を用いた場合の例である。
In Table 1, the numbers described in the sieve column of the particle diameter of the iron-based alloy powder are mesh numbers of the meshes, and the negative values described in the column are the powders that passed through the mesh numbers. It shows that there was. The particle size (μm) in the right adjacent column indicates the maximum particle size of the iron-based alloy powder in that case.
Sample No. 20 in Tables 1 and 2 is an example of a commonly used mold forming method, that is, a conventional example. Pure iron powder having a normal particle diameter is added with 2% by mass of electrolytic copper powder and 1.0%. It is an example in the case of using a mixed powder in which a mass% graphite powder is blended and a stearic acid powder is blended and mixed as a molding lubricant.

Figure 0004880491
Figure 0004880491

Figure 0004880491
Figure 0004880491

表1および表2の試料番号01〜07の試料を比較することによって、鉄基合金粉末の粒径の影響を調べることができる。
これらより、鉄基合金粉末の粒径が250メッシュの篩目を通過する大きさである(試料番号01〜04)と成形体凸部の盛り上がり高さが良好であるが、鉄基合金粉末が250メッシュの篩目を通過しない粗大な粉末を含有する(試料番号05〜07)ようになると、成形体凸部の盛り上がり高さは低下し、原料粉末の流動性、充填性が損なわれることがわかる。
By comparing the samples of sample numbers 01 to 07 in Table 1 and Table 2, the influence of the particle size of the iron-based alloy powder can be examined.
From these, when the particle size of the iron-based alloy powder is a size that passes through a 250-mesh sieve (sample numbers 01 to 04), the raised height of the convex portion of the compact is good, but the iron-based alloy powder is When coarse powder that does not pass through a 250 mesh screen (Sample Nos. 05 to 07) is used, the raised height of the convex portion of the molded body is lowered, and the fluidity and filling properties of the raw material powder may be impaired. Recognize.

表1および表2の試料番号03、08〜10の試料を比較することによって、鉄基合金粉末のタップ密度の影響を調べることができる。
これらより鉄基合金粉末のタップ密度が3.7Mg/m以上の試料(試料番号03、09、10)では成形体凸部の盛り上がり高さが良好であるが、鉄基合金粉末のタップ密度が3.7Mg/m以下の試料(試料番号08)は成形体凸部の盛り上がり高さが低く、原料粉末の流動性、充填性が低いことがわかる。
By comparing the samples Nos. 03 and 08 to 10 in Table 1 and Table 2, the influence of the tap density of the iron-based alloy powder can be examined.
From these, in the samples (sample numbers 03, 09, 10) in which the tap density of the iron-based alloy powder is 3.7 Mg / m 3 or more, the raised height of the convex portion of the compact is good, but the tap density of the iron-based alloy powder is Is 3.7 Mg / m 3 or less (Sample No. 08), it is found that the raised height of the convex portion of the molded body is low, and the fluidity and filling property of the raw material powder are low.

表1および表2の試料番号03、11〜15の試料を比較することによって、バインダ成分の添加量の影響を調べることができる。
これらより、バインダ成分の添加量が5体積%に満たない試料(試料番号11)では原料粉末の流動性、充填性が不充分で、成形体凸部の盛り上がり高さが低いものとなっている。一方、バインダ成分の添加量が5体積%を超える試料(試料番号03、12〜15)では原料粉末の流動性、充填性が充分となり、成形体凸部の盛り上がり高さが高くなっている。ただし、バインダ成分の添加量が30体積%を超える試料(試料番号15)では、バインダ成分が過多となり、成形は良好に行えたものの、バインダ成分が金型と上下パンチの隙間からはみ出していることが確認され、次の成形を行う前に金型の型孔および上下パンチの清掃が必要であった。このことから、バインダ成分の添加量が30体積%を超える試料(試料番号15)は、バインダ成分が過多であり、連続成形に適していないことが確認された。
By comparing the samples Nos. 03 and 11 to 15 in Tables 1 and 2, the influence of the added amount of the binder component can be examined.
From these, in the sample (Sample No. 11) in which the added amount of the binder component is less than 5% by volume, the fluidity and filling property of the raw material powder are insufficient, and the raised height of the convex portion of the molded body is low. . On the other hand, in samples (sample numbers 03, 12 to 15) in which the amount of the binder component added exceeds 5% by volume, the flowability and filling properties of the raw material powder are sufficient, and the raised height of the convex portion of the molded body is high. However, in the sample (sample number 15) in which the amount of the binder component added exceeds 30% by volume, the binder component is excessive and the molding can be performed satisfactorily, but the binder component protrudes from the gap between the mold and the upper and lower punches. As a result, it was necessary to clean the mold hole and the upper and lower punches before the next molding. From this, it was confirmed that the sample (sample number 15) in which the added amount of the binder component exceeds 30% by volume has an excessive binder component and is not suitable for continuous molding.

表1および表2の試料番号03、16〜19の試料を比較することで、バインダ成分中のセルロースと成形潤滑剤成分との割合の影響を調べることができる。
これらより、バインダ成分に占めるセルロースの含有割合が5質量%に満たない試料(試料番号16)は、混連を行っても良好な混練物が得られず、押し出しを行うことができなかった。また、セルロースの含有割合が15質量%を超える試料(試料番号19)は、良好な混練物が得られ、後の押し出し工程および転動工程を経て球状混練物を作製できたが、乾燥工程において、鉄基合金粉末を結着する成形潤滑剤成分が不足して乾燥後に得られた造粒粉末は、解砕され微粉しか得られず、分級工程により実験用の造粒粉末が得られなかった。
一方、セルロースの含有割合が5〜15質量%の範囲の試料(試料番号03、17、18)では、良好な混練物が得られ、後の押し出し工程、転動工程、乾燥工程および分級工程を経て良好な造粒粉末が得られるとともに、成形試験においても良好な成形体凸部の盛り上がり高さが得られた。
By comparing the samples Nos. 03 and 16 to 19 in Table 1 and Table 2, the influence of the ratio of cellulose to the molding lubricant component in the binder component can be examined.
From these, the sample (sample number 16) in which the content ratio of cellulose in the binder component is less than 5% by mass could not be extruded even when mixed, and the extrusion could not be performed. In addition, a sample having a cellulose content of more than 15% by mass (sample No. 19) was obtained as a good kneaded product, and a spherical kneaded product could be produced through the subsequent extrusion process and rolling process. The granulated powder obtained after drying due to insufficient molding lubricant component to bind the iron-based alloy powder was crushed and only fine powder was obtained, and the experimental granulated powder was not obtained by the classification process .
On the other hand, in the samples having a cellulose content of 5 to 15% by mass (sample numbers 03, 17, and 18), a good kneaded product is obtained, and the subsequent extrusion process, rolling process, drying process, and classification process are performed. As a result, a good granulated powder was obtained, and a good raised height of the convex part of the molded product was obtained in the molding test.

なお、表1および表2の試料番号20の試料は従来より用いられている一般的な金型成形法の例であり、成形体凸部の盛り上がり高さが極めて低く、流動性、充填性が乏しく、造形性に問題があることがわかる。その一方で本発明範囲の試料はいずれも成形体凸部の盛り上がり高さが高く、流動性、充填性に優れたものであることがわかる。   Note that the sample No. 20 in Table 1 and Table 2 is an example of a general mold forming method that has been used conventionally, and the raised height of the convex portion of the molded body is extremely low, and the fluidity and fillability are low. It is scarce and it turns out that there is a problem in formability. On the other hand, it can be seen that all the samples within the scope of the present invention have a high raised height of the convex portion of the molded body and are excellent in fluidity and filling properties.

[実施例2]
実施例1の試料番号03の、原料粉末として鉄基合金粉末(最大粒径:46μm、タップ密度:4.0Mg/m)を用い、これに黒鉛粉末を1.0質量%添加した原料粉末を用い、バインダとして、バインダ中に占めるセルロースの割合が10質量%であり、残部がステアリン酸のバインダを原料粉末に対して20体積%を用い、実施例1の方法において転動工程を省略して造粒粉末を作製した(表3、試料番号21)。また、流動層造粒法(同、試料番号22)および加熱造粒法(同、試料番号23)と異なる造粒法により造粒を行って造粒粉末を作製した。
[Example 2]
Sample powder No. 03 of Example 1 using an iron-based alloy powder (maximum particle size: 46 μm, tap density: 4.0 Mg / m 3 ) as a raw material powder, and 1.0% by mass of graphite powder added thereto As a binder, the proportion of cellulose in the binder is 10% by mass, the remainder is 20% by volume of the binder of stearic acid with respect to the raw material powder, and the rolling step is omitted in the method of Example 1. A granulated powder was prepared (Table 3, Sample No. 21). In addition, granulation was performed by a granulation method different from the fluidized bed granulation method (same as sample number 22) and the heated granulation method (same as sample number 23) to produce granulated powder.

流動層造粒法は、図5に示すように、流動層乾燥機26の内部で、下方より流動化ガス27を導入して粉体を強制循環流動させつつ、粉体28に結合剤の液滴29を噴霧して、流動化している粉末に結合剤の噴霧液滴を接触させることで、固−液間の界面エネルギーの働きによって粒子間に液体架橋の形成凝集を起こさせて造粒しつつ乾燥する方法である。
本実施例においては、粉体として実施例1の試料番号03と同じ原料粉末とバインダを用い、流動層造粒装置((株)パウレック製)を用いて、原料粉末を強制的に循環流動させて、バインダ成分を水に溶解した溶液を噴霧して造粒、乾燥を行った。
In the fluidized bed granulation method, as shown in FIG. 5, the fluidized gas 27 is introduced into the fluidized bed dryer 26 from below to force the powder to circulate and flow the binder 28 into the powder 28. By spraying droplets 29 and bringing the sprayed droplets of the binder into contact with the fluidized powder, the formation of liquid bridges between the particles by the action of the solid-liquid interfacial energy causes agglomeration. It is a method of drying while.
In this example, the same raw material powder and binder as sample No. 03 of Example 1 were used as powder, and the raw material powder was forcibly circulated and fluidized using a fluidized bed granulator (manufactured by POWREC Co., Ltd.). Then, a solution obtained by dissolving the binder component in water was sprayed to perform granulation and drying.

加熱造粒法は、撹拌造粒法の一種であり、バインダ溶液を用いず、常温においては粉末状で結合力を持たないが、ある温度において溶融して液状となり、バインダとしての結合力を発揮するものをバインダとして用い、予め粉末にバインダとなるべき粉末を加えてミキサーで完全に分散させつつ加熱して造粒し、適当な粒度のところで冷却して造粒粉末を得る方法である。
本実施例においては、原料粉末として実施例1の試料番号03と同じ原料粉末を用い、バインダとしてステアリン酸のみを用い、これらをヘンシェルタイプのミキサー(深江パウテック(株)製)を用いて、ベッセルの周囲をジャケット加温して原料粉末の加熱造粒を行った。
The heating granulation method is a kind of agitation granulation method, which does not use a binder solution and is powdery at room temperature and does not have a binding force, but melts into a liquid at a certain temperature and exhibits a binding force as a binder. In this method, a powder to be a binder is added in advance to a powder, heated and granulated while being completely dispersed by a mixer, and cooled at an appropriate particle size to obtain a granulated powder.
In this example, the same raw material powder as sample No. 03 of Example 1 was used as the raw material powder, only stearic acid was used as the binder, and these were used with a Henschel type mixer (Fukae Pautech Co., Ltd.) The jacket was heated to heat and granulate the raw material powder.

得られた造粒粉末について、実施例1と同様に分級した後、実施例1と同じ方法で金型成形を行い成形体を各条件につき50個づつ作製した。この成形体について実施例1と同様に成形体凸部の盛り上がり高さを測定した。得られた成形体を700℃に加熱してバインダの除去を行った後、真空度10torrの真空雰囲気中1250℃に加熱して焼結を行った。
得られた焼結体につき、重量を測定し各条件の重量ばらつきの幅を6σを用いて評価した。また、得られた焼結体につき切断し、断面の金属組織観察を行った。これらの評価結果について表3に示す。
The obtained granulated powder was classified in the same manner as in Example 1, and then molded by the same method as in Example 1 to produce 50 compacts for each condition. About this molded object, the raised height of the molded object convex part was measured like Example 1. FIG. The obtained molded body was heated to 700 ° C. to remove the binder, and then heated to 1250 ° C. in a vacuum atmosphere with a vacuum degree of 10 torr for sintering.
About the obtained sintered compact, the weight was measured and the width of the weight dispersion | variation in each condition was evaluated using 6 (sigma). Further, the obtained sintered body was cut and the metal structure of the cross section was observed. These evaluation results are shown in Table 3.

Figure 0004880491
Figure 0004880491

表3より、鉄基合金粉末の要件、バインダ成分の要件を兼ね備えた造粒粉末は、いずれの方法によっても成形体凸部の盛り上がり高さは同等で、原料粉末の流動性、充填性の点では問題のない造粒粉末が得られることがわかる。ただし、本発明の造粒粉末の製造方法より転動工程を省いた試料(試料番号21)では、焼結体の重量ばらつきが大きくなっている。
これは、転動工程を省いたことにより、造粒粉末の見掛け密度が低下し、このため造粒粉末の金型のキャビティへの充填量がばらついたことによるものと考えられる。
From Table 3, the granulated powder that has both the requirements for the iron-base alloy powder and the requirements for the binder component has the same raised height of the protrusions of the molded body by any method, and the flowability and filling properties of the raw material powder. It can be seen that a granulated powder having no problem can be obtained. However, in the sample (sample number 21) in which the rolling step is omitted from the method for producing the granulated powder of the present invention, the weight variation of the sintered body is large.
This is considered to be due to the fact that the apparent density of the granulated powder is reduced by omitting the rolling step, and therefore the filling amount of the granulated powder into the mold cavity varies.

また、本発明とは異なる流動層造粒法(試料番号22)や加熱造粒法(試料番号23)の場合は、球状の造粒粉末が得られることから、金型のキャビティへの充填量が安定して重量ばらつきは小さいものの、焼結体の金属組織に粗大気孔が確認された。
これは、これらの造粒方法において、鉄基合金粉末と比重の異なる黒鉛粉末が均一に造粒されず、黒鉛粉末が偏析した箇所が生じたため、焼結時に鉄基合金の基地中に黒鉛が拡散して消失した後に残留した気孔(いわゆるカーケンダルボイド:Kirkendall void)が生じたと考えられる。したがって、流動層造粒法(試料番号22)や加熱造粒法(試料番号23)により得られる造粒粉末は、比重の軽い粉末の凝集が生じ易いものであると考えられる。
In addition, in the case of the fluidized bed granulation method (sample number 22) and the heat granulation method (sample number 23) different from the present invention, since the spherical granulated powder is obtained, the filling amount into the cavity of the mold However, although the variation in weight was small, rough atmospheric pores were confirmed in the metal structure of the sintered body.
This is because, in these granulation methods, graphite powder having a specific gravity different from that of the iron-based alloy powder was not uniformly granulated, and a portion where the graphite powder segregated occurred, so that the graphite was present in the base of the iron-based alloy during sintering. It is thought that pores (so-called Kirkendall void) remained after diffusing and disappearing. Therefore, it is considered that the granulated powder obtained by the fluidized bed granulation method (sample number 22) or the heat granulation method (sample number 23) is likely to cause aggregation of a light powder having a low specific gravity.

一方、混練工程、押出工程、転動工程、乾燥工程および分級工程を経た試料(試料番号03)においては、粗大気孔の存在は確認されず、本発明の造粒粉末は、比重の異なる粉末であっても凝集、偏析を生じることなく、均一な成分組成の造粒粉末を形成でき、焼結後に粗大な気孔の発生することのない優れたものであることが確認された。   On the other hand, in the sample (Sample No. 03) that has undergone the kneading step, the extrusion step, the rolling step, the drying step, and the classification step, the presence of coarse air holes is not confirmed, and the granulated powder of the present invention is a powder having a different specific gravity. Even in such a case, it was confirmed that a granulated powder having a uniform component composition can be formed without causing aggregation and segregation, and that no coarse pores are generated after sintering.

[実施例3]
金属粉末として、300メッシュ(46μm)の篩目を通過する大きさで、タップ密度:3.7Mg/mより大きい値を持つ純鉄粉末(表4、試料番号24)、Fe−6.5Co−1.5Mo−1.5Ni−0.5Mn合金粉末(試料番号25)、フェライト系ステンレス鋼(SUS316相当鋼)粉(試料番号26)、Fe−3Si合金粉末(試料番号27)、Fe−6.5Si合金粉末(試料番号28)を用意した。これらの金属粉末を実施例1の試料番号03と同様にその他の成分を配合し同様の方法で造粒粉末とし、同様に金型成形における造形性の評価を行った。その結果を表4に示す。また各金属粉末のヴィッカース硬さについては表4に併記した。なお、表4においてはマルテンサイト系ステンレス鋼(SUS440C相当鋼)粉を用いた例として、実施例1の試料番号03の試料の値を再掲した。
[Example 3]
As a metal powder, pure iron powder (Table 4, sample number 24) having a size that passes through a 300 mesh (46 μm) sieve mesh and a tap density greater than 3.7 Mg / m 3 , Fe-6.5Co -1.5Mo-1.5Ni-0.5Mn alloy powder (sample number 25), ferritic stainless steel (SUS316 equivalent steel) powder (sample number 26), Fe-3Si alloy powder (sample number 27), Fe-6 .5Si alloy powder (Sample No. 28) was prepared. These metal powders were blended with other components in the same manner as in Sample No. 03 of Example 1 to obtain granulated powders in the same manner, and the moldability in mold molding was similarly evaluated. The results are shown in Table 4. The Vickers hardness of each metal powder is also shown in Table 4. In Table 4, as an example using martensitic stainless steel (SUS440C equivalent steel) powder, the value of the sample of sample number 03 of Example 1 is shown again.

Figure 0004880491
Figure 0004880491

表4より、原料の金属粉末として純鉄粉末を用いた試料(試料番号24)は、原料の金属粉末として鉄基合金粉末を用いた試料(試料番号03、25〜28)に比して成形体凸部の盛り上がり高さが低い値となっている。一方、鉄基合金粉末を用いた試料(試料番号03、25〜28)は、いずれも十分な成形体凸部の盛り上がり高さを示し、造形性が高いことがわかる。これは、純鉄粉末は粉末硬さが低いため、圧粉成形時に塑性変形が生じて金属粉末の流動性、充填性が低下したためと考える。また、本実施例において鉄基合金粉末の粉末硬さが150Hv以上のものが造形性が高いことが確認された。   From Table 4, the sample using pure iron powder as the raw metal powder (sample number 24) is molded in comparison with the sample using iron-based alloy powder as the raw metal powder (sample numbers 03, 25 to 28). The raised height of the body convex portion is a low value. On the other hand, the samples using the iron-based alloy powder (sample numbers 03, 25 to 28) all show a sufficient height of the protrusions of the molded body, and it can be seen that the formability is high. This is thought to be because pure iron powder has low powder hardness, and plastic deformation occurred during compaction molding, resulting in decreased fluidity and filling properties of the metal powder. Moreover, in the present Example, it was confirmed that the iron-base alloy powder having a powder hardness of 150 Hv or more has high formability.

以上より、本発明の造粒粉末は、極めて優れた流動性と充填性を有するとともに、黒鉛粉末等の比重の異なる成分粉末を含有する場合であっても、偏析のない均一な成分組成を有するもので、金型成形法に適用した場合、高い造形性を発揮することが証明された。また、本発明の造粒粉末により得られる成形体は、射出成形法の場合の成形体に比してバインダ量が少ないため、バインダ除去の時間を短縮することができるという効果も有する。   From the above, the granulated powder of the present invention has extremely excellent fluidity and filling properties, and has a uniform component composition without segregation even when it contains component powders having different specific gravity such as graphite powder. Therefore, when applied to the mold forming method, it has been proved to exhibit high formability. Moreover, since the molded object obtained by the granulated powder of this invention has few binder amounts compared with the molded object in the case of an injection molding method, it also has the effect that the time of binder removal can be shortened.

本発明の金型成形のための造粒粉末を用いれば、多量の可塑性バインダを原料粉末に添加して金型成形法により成形する方法を具体的に実現することができるようになる。すなわち、金型成形法を用いて、一段パンチを用いてパンチの座屈や折損を防止しつつ、金型の隙間が微小であっても均一な密度で複雑形状の成形体を成形できるようになるという格別の効果を有する。また、バインダの添加量が射出成形法の場合よりも少ないため、バインダの除去時間を短くすることができるという効果も有する。これらの効果により製品形状が小さく、かつ凹凸を有する焼結部品に好適な金型成形法による製品の適用範囲を拡大することができる。   If the granulated powder for molding of the present invention is used, a method of molding by a mold molding method by adding a large amount of a plastic binder to the raw material powder can be realized. In other words, by using a mold forming method, a single-stage punch can be used to prevent punch buckling and breakage, and even if the gap between the molds is very small, it is possible to form a compact body with a uniform density. It has a special effect of becoming. Further, since the amount of the binder added is smaller than that in the case of the injection molding method, the binder removal time can be shortened. Due to these effects, it is possible to expand the application range of the product by the mold forming method suitable for the sintered part having a small product shape and unevenness.

本発明の造粒工程を説明する概略図である。It is the schematic explaining the granulation process of this invention. 実施例において用いた上パンチの斜視図である。It is a perspective view of the upper punch used in the Example. 実施例の成形状態を説明する概略図である。(a)は造粒粉末をキャビティに充填した状態を示す。(b)は上パンチで粉末を圧縮した状態を示す。It is the schematic explaining the shaping | molding state of an Example. (A) shows the state which filled the granulated powder in the cavity. (B) shows a state in which the powder is compressed by the upper punch. (a)は実施例により得られる凸部高さが充分な成形体の斜視図である。 (b)は比較例により得られる凸部高さが不充分な成形体の斜視図である。(A) is a perspective view of a molded article having a sufficient height of a convex portion obtained by an example. (B) is a perspective view of a molded article obtained by a comparative example and having an insufficient convex part height. 比較例の造粒工程に用いた流動層造粒装置の概略図である。It is the schematic of the fluidized-bed granulator used for the granulation process of the comparative example.

符号の説明Explanation of symbols

1 原料粉末
2 成形潤滑剤
3 分散媒
4 混練装置
5 羽根部
6 軸
7 混練物
8 押出装置
9 円柱状混練物
10 ダイス
10a 押出孔
11 転動装置
12 球状混練物
13 プレート
14 乾燥装置
15 ベルト
16 球状造粒粉末
21 上パンチ
22 縦溝
23 下パンチ
24 金型
25 キャビティ
26 流動層乾燥機
27 流動化ガス
28 粉体
29 結合剤液滴
DESCRIPTION OF SYMBOLS 1 Raw material powder 2 Molding lubricant 3 Dispersion medium 4 Kneading apparatus 5 Blade | wing part 6 Shaft 7 Kneaded material 8 Extruding device 9 Cylindrical kneaded material 10 Die 10a Extrusion hole 11 Rolling device 12 Spherical kneaded material 13 Plate 14 Drying device 15 Belt 16 Spherical granulated powder 21 Upper punch 22 Vertical groove 23 Lower punch 24 Mold 25 Cavity 26 Fluidized bed dryer 27 Fluidized gas 28 Powder 29 Binder droplet

Claims (10)

金属粉末、あるいは金属粉末と、金属粉末に対して1.4質量%以下の黒鉛粉末をバインダで結着して造粒した金型成形のための造粒粉末であって、
前記金属粉末が、粒径が250メッシュ(61μm)の篩目を通過する大きさであり、かつタップ密度が3.7Mg/m以上の鉄基合金粉末であり、
前記バインダが、セルロースと、高級脂肪酸、その誘導体およびワックスのうちの少なくとも1種とからなるとともに、造粒粉末に占めるバインダの割合が5〜30体積%であり、
造粒粉末の粒径が35メッシュ(447μm)の篩目を通過する大きさであり、かつ造粒粉末の見掛け密度が2.0Mg/m以上であることを特徴とする金型成形のための造粒粉末。
A granulated powder for molding a metal powder, or a metal powder, and a graphite powder of 1.4% by mass or less based on the metal powder and granulated by binding with a binder,
The metal powder is an iron-based alloy powder having a particle size of 250 mesh (61 μm) passing through a sieve mesh and a tap density of 3.7 Mg / m 3 or more,
The binder is composed of cellulose and at least one of higher fatty acids, derivatives thereof and waxes, and the proportion of the binder in the granulated powder is 5 to 30% by volume,
For mold forming, wherein the granulated powder has a particle size passing through a mesh of 35 mesh (447 μm) and the apparent density of the granulated powder is 2.0 Mg / m 3 or more Granulated powder.
前記金属粉末が、ヴィッカース硬さで150Hv以上の鉄基合金粉末であることを特徴とする請求項1に記載の金型成形のための造粒粉末。   The granulated powder for molding a metal mold according to claim 1, wherein the metal powder is an iron-base alloy powder having a Vickers hardness of 150 Hv or more. 前記バインダに占めるセルロースの割合が5〜15質量%であることを特徴とする請求項1または2に記載の金型成形のための造粒粉末。   The granulated powder for molding according to claim 1 or 2, wherein a ratio of cellulose in the binder is 5 to 15% by mass. 粒径が250メッシュ(61μm)の篩目を通過する大きさであり、かつタップ密度が3.7Mg/m以上の鉄基合金粉末からなる原料粉末、もしくは該鉄基合金粉末と、該鉄基合金粉末に対して1.4質量%以下の黒鉛粉末とからなる原料粉末を用意し、
セルロースと、高級脂肪酸、その誘導体およびワックスのうちの少なくとも1種とからなり、前記原料粉末に対して5〜30体積%となる割合のバインダ成分を用意し、
前記セルロースが分散した分散媒中に前記原料粉末と前記高級脂肪酸、その誘導体およびワックスのうちの少なくとも1種を投入して混練する混練工程、
混練物を、押し出した後、転動して球状化させる造粒工程、および
造粒物より分散媒を揮発除去する乾燥工程、
からなることを特徴とする金型成形のための造粒粉末の製造方法。
A raw material powder comprising an iron-base alloy powder having a particle size of 250 mesh (61 μm) and having a tap density of 3.7 Mg / m 3 or more, or the iron-base alloy powder and the iron Prepare raw material powder consisting of 1.4 mass% or less graphite powder with respect to the base alloy powder,
It comprises cellulose and at least one of higher fatty acids, derivatives thereof and waxes, and prepares a binder component in a proportion of 5 to 30% by volume with respect to the raw material powder,
A kneading step of charging and kneading at least one of the raw material powder and the higher fatty acid, a derivative thereof and a wax in a dispersion medium in which the cellulose is dispersed;
A granulation step in which the kneaded product is extruded and then rolled to spheroidize, and a drying step in which the dispersion medium is volatilized and removed from the granulated product,
The manufacturing method of the granulated powder for metal mold | die shaping | molding characterized by comprising.
前記金属粉末が、ヴィッカース硬さで150Hv以上の鉄基合金粉末であることを特徴とする請求項4に記載の金型成形のための造粒粉末の製造方法。   The method for producing a granulated powder for mold forming according to claim 4, wherein the metal powder is an iron-base alloy powder having a Vickers hardness of 150 Hv or more. 前記バインダに占めるセルロースの割合が5〜15質量%であることを特徴とする請求項4または5に記載の金型成形のための造粒粉末の製造方法。   The method for producing a granulated powder for molding a mold according to claim 4 or 5, wherein a ratio of cellulose in the binder is 5 to 15% by mass. 分散媒として水を用い、前記バインダ成分としてセルロースと、ステアリン酸およびエルカ酸アミドのうちの少なくとも1種を用い、前記乾燥工程を70〜120℃の温度範囲に加熱して行うことを特徴とする請求項4から6のいずれかに記載の金型成形のための造粒粉末の製造方法。   Water is used as a dispersion medium, cellulose and at least one of stearic acid and erucic acid amide are used as the binder component, and the drying step is performed by heating to a temperature range of 70 to 120 ° C. The manufacturing method of the granulated powder for metal mold | die shaping | molding in any one of Claim 4 to 6. 前記分散媒中に界面活性剤を添加したことを特徴とする請求項4から7のいずれかに記載の金型成形のための造粒粉末の製造方法。   The method for producing a granulated powder for molding a mold according to any one of claims 4 to 7, wherein a surfactant is added to the dispersion medium. 得られた造粒粉末を、35メッシュ(447μm)の篩目で分級して、該篩目を通過した粉末を得る分級工程を含むことを特徴とする請求項4から8のいずれかに記載の金型成形のための造粒粉末の製造方法。   The obtained granulated powder is classified with a mesh of 35 mesh (447 μm), and includes a classification step for obtaining a powder that has passed through the mesh. A method for producing granulated powder for mold forming. 金属粉末をバインダで造粒した造粒粉末を用い、金型成形法により圧縮成形し、得られた成形体を加熱してバインダを除去した後、焼結する焼結金属部品の製造方法において、
造粒粉末として請求項1から3のいずれかに記載の造粒粉末を用いるとともに、
上パンチおよび下パンチからなる一対の一段パンチを用いることを特徴とする焼結部品の製造方法。

In the method for producing a sintered metal part, using a granulated powder obtained by granulating a metal powder with a binder, compression molding by a mold molding method, removing the binder by heating the obtained molded body, and then sintering.
While using the granulated powder according to any one of claims 1 to 3 as the granulated powder,
A method for producing a sintered part, comprising using a pair of one-stage punches comprising an upper punch and a lower punch.

JP2007025421A 2007-02-05 2007-02-05 Granulated powder for mold forming, method for producing the same, and method for producing sintered parts using the granulated powder Expired - Fee Related JP4880491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025421A JP4880491B2 (en) 2007-02-05 2007-02-05 Granulated powder for mold forming, method for producing the same, and method for producing sintered parts using the granulated powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025421A JP4880491B2 (en) 2007-02-05 2007-02-05 Granulated powder for mold forming, method for producing the same, and method for producing sintered parts using the granulated powder

Publications (2)

Publication Number Publication Date
JP2008189993A JP2008189993A (en) 2008-08-21
JP4880491B2 true JP4880491B2 (en) 2012-02-22

Family

ID=39750360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025421A Expired - Fee Related JP4880491B2 (en) 2007-02-05 2007-02-05 Granulated powder for mold forming, method for producing the same, and method for producing sintered parts using the granulated powder

Country Status (1)

Country Link
JP (1) JP4880491B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544928B2 (en) * 2010-02-26 2014-07-09 セイコーエプソン株式会社 Granulated powder and method for producing granulated powder
US20110217555A1 (en) 2010-03-03 2011-09-08 Seiko Epson Corporation Granulated powder and method for producing granulated powder
CN104353825A (en) * 2014-10-22 2015-02-18 苏州莱特复合材料有限公司 Magnesium matrix composite and preparation method thereof
KR101549697B1 (en) 2015-04-15 2015-09-03 이윤재 Mold for Manufacturing Saw Blade and Manufacturing method for Saw Blade using the mold
JP6922197B2 (en) * 2016-11-25 2021-08-18 株式会社村田製作所 Mold, processing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665376B2 (en) * 1990-10-19 1994-08-24 日本碍子株式会社 Ceramic grain manufacturing method
JP3957331B2 (en) * 1993-05-18 2007-08-15 Jfeスチール株式会社 Method for producing water atomized iron powder for powder metallurgy
JPH11315302A (en) * 1998-05-01 1999-11-16 Sumitomo Electric Ind Ltd Powder for powder metallurgy and powdery mixture for powder metallurgy
JP3952006B2 (en) * 2003-11-26 2007-08-01 セイコーエプソン株式会社 Raw material powder for sintering or granulated powder for sintering and sintered body thereof

Also Published As

Publication number Publication date
JP2008189993A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US7232473B2 (en) Composite material containing tungsten and bronze
González-Gutiérrez et al. Powder injection molding of metal and ceramic parts
JP4880491B2 (en) Granulated powder for mold forming, method for producing the same, and method for producing sintered parts using the granulated powder
AU762649B2 (en) Powder composition comprising aggregates of iron powder and additives and a flow agent and a process for its preparation
JPH06506165A (en) Method and apparatus for continuous extrusion of solid articles
JP2010265454A (en) Lubricant combination and process for preparing the same
JP4964126B2 (en) Method for producing a molded product
CN104994975A (en) Aluminum material for sintering, method for producing aluminum material for sintering, and method for producing porous aluminum sintered compact
JP5170390B2 (en) Iron-based mixed powder for powder metallurgy
JP4707407B2 (en) Steelmaking dust solidified product and method for producing the same
JP2004190051A (en) Iron based powdery mixture for power metallurgy, and production method therefor
US6355207B1 (en) Enhanced flow in agglomerated and bound materials and process therefor
EP1118404A1 (en) Alloy powder, alloy sintered compact and method for their production
KR20060102348A (en) Powder metal mixture including fragmented cellulose fibers
TWI289601B (en) Powder metal mixture including micronized starch
JP2005207581A (en) Friction material granulating method and friction material preform manufacturing method
CN105228774A (en) The solvent-free adhesive method of metallurgical composites
US5977033A (en) Lubricated aluminum powder agglomerates having improved flowability
JP2021055160A (en) Method for manufacturing molded article
WO2019230259A1 (en) Powder mixture for powder metallurgy and method for producing powder mixture for powder metallurgy
KR102260776B1 (en) Powder mixture for powder metallurgy and method for preparing the same
JP2004156063A (en) Iron-based powder mixture for powder metallurgy and manufacturing method therefor
JP2002249793A (en) Lubricant for forging and method for producing the same
JP6939579B2 (en) Microcapsules, composite ceramic granules and ceramic manufacturing methods using them
JP6770369B2 (en) Microcapsules and ceramics manufacturing methods using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4880491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees